Package ‘mllrnrs’

January 17, 2026

Title R6-Based ML Learners for 'mlexperiments’
Version 0.0.8

Description Enhances 'mlexperiments'
<https://CRAN.R-project.org/package=mlexperiments> with additional
machine learning (‘'ML") learners. The package provides R6-based
learners for the following algorithms: 'glmnet’
<https://CRAN.R-project.org/package=glmnet>, ranger'
<https://CRAN.R-project.org/package=ranger>, 'xgboost'
<https://CRAN.R-project.org/package=xgboost>, and 'lightgbm'
<https://CRAN.R-project.org/package=1ightgbm>. These can be used
directly with the 'mlexperiments' R package.

License GPL (>=3)
URL https://github.com/kapsner/mllrnrs

BugReports https://github.com/kapsner/mllrnrs/issues
Depends R (>=4.1.0)
Imports data.table, kdry, mlexperiments (>= 1.0.0), R6, stats

Suggests glmnet, lightgbm (>= 4.0.0), lintr, measures, mlbench,
parallel, quarto, ranger, rBayesianOptimization, splitTools,
testthat (>= 3.0.1), xgboost (>=3.1.2.1)

VignetteBuilder quarto
Config/testthat/edition 3
Config/testthat/parallel false
Date/Publication 2026-01-17 06:10:16 UTC
Encoding UTF-8

SystemRequirements Quarto command line tools
(https://github.com/quarto-dev/quarto-cli).

RoxygenNote 7.3.3
NeedsCompilation no

Author Lorenz A. Kapsner [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0003-1866-860X>)

1

https://CRAN.R-project.org/package=mlexperiments
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=lightgbm
https://github.com/kapsner/mllrnrs
https://github.com/kapsner/mllrnrs/issues
https://orcid.org/0000-0003-1866-860X

2 LearnerGlmnet

Maintainer Lorenz A. Kapsner <lorenz.kapsner@gmail.com>
Repository CRAN

Contents
LearnerGlmnet e 2
LearnerLightgbm L 4
LearnerRanger e 7
LearnerXgboost e e e 9

Index 13

LearnerGlmnet R6 Class to construct a Glmnet learner
Description

The LearnerGlmnet class is the interface to the glmnet R package for use with the mlexperiments
package.

Details
Optimization metric: Can be used with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerGlmnet

Methods
Public methods:

e LearnerGlmnet$new()
e LearnerGlmnet$clone()

Method new(): Create a new LearnerGlmnet object.
Usage:
LearnerGlmnet$new(metric_optimization_higher_better)

Arguments:

metric_optimization_higher_better A logical. Defines the direction of the optimization
metric used throughout the hyperparameter optimization.

Returns: A new LearnerGlmnet R6 object.

LearnerGlmnet

Examples:

if (requireNamespace("glmnet”, quietly = TRUE)) {
LearnerGlmnet$new(metric_optimization_higher_better = FALSE)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerGlmnet$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

glmnet: :glmnet (), glmnet::cv.glmnet()

Examples

binary classification

if (requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("mlbench”, quietly = TRUE) &&
requireNamespace("measures”, quietly = TRUE)) {

library(mlbench)

data(”"PimaIndiansDiabetes2")

dataset <- PimaIndiansDiabetes2 |>
data.table::as.data.table() |>
na.omit()

seed <- 123
feature_cols <- colnames(dataset)[1:8]

train_x <- model.matrix(
~ -1+,
dataset[, .SD, .SDcols = feature_cols]

)
train_y <- as.integer(dataset[, get("diabetes")]) - 1L

fold_list <- splitTools::create_folds(

y = train_y,

k =3,

type = "stratified”,
seed = seed

)

glmnet_cv <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = 2,
seed = 123

4 LearnerLightgbm

)
glmnet_cv$learner_args <- list(

alpha = 1,

lambda = 0.1,

family = "binomial”,

type.measure = "class”,

standardize = TRUE
)
glmnet_cv$predict_args <- list(type = "response”)
glmnet_cv$performance_metric_args <- list(positive = "1", negative = "0")
glmnet_cv$performance_metric <- mlexperiments::metric(”AUC")

set data
glmnet_cv$set_data(
X = train_x,
y = train_y
)

glmnet_cv$execute()

oo
Method ~LearnerGlmnet$new”
B m o

if (requireNamespace(”glmnet”, quietly = TRUE)) {
LearnerGlmnet$new(metric_optimization_higher_better = FALSE)

}

LearnerLightgbm R6 Class to construct a LightGBM learner

Description
The LearnerLightgbm class is the interface to the 1ightgbm R package for use with the mlexperiments
package.

Details

Optimization metric: needs to be specified with the learner parameter metric. The following op-
tions can be set via options():

* "mlexperiments.optim.lgb.nrounds" (default: 5000L)

* "mlexperiments.optim.Igb.early_stopping_rounds" (default: 500L)

* "mlexperiments.lgb.print_every_n" (default: 50L)

* "mlexperiments.lgb.verbose" (default: -1L)

LearnerLightgbm can be used with

LearnerLightgbm 5

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerLightgbm

Methods

Public methods:

e LearnerLightgbm$new()
e LearnerLightgbm$clone()

Method new(): Create a new LearnerLightgbm object.
Usage:
LearnerLightgbm$new(metric_optimization_higher_better)
Arguments:

metric_optimization_higher_better A logical. Defines the direction of the optimization
metric used throughout the hyperparameter optimization.

Returns: A new LearnerLightgbm R6 object.

Examples:

if (requireNamespace("lightgbm”, quietly = TRUE)) {
LearnerLightgbm$new(metric_optimization_higher_better = FALSE)
3

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerLightgbm$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also
lightgbm::1gb.train(), lightgbm::1gb.cv()

Examples

binary classification

if (requireNamespace("lightgbm”, quietly = TRUE) &&
requireNamespace("mlbench”, quietly = TRUE) &%
requireNamespace("measures”, quietly = TRUE)) {

library(mlbench)
data(”"PimaIndiansDiabetes2")

LearnerLightgbm

dataset <- PimalndiansDiabetes2 |>
data.table::as.data.table() [>
na.omit()

seed <- 123
feature_cols <- colnames(dataset)[1:8]

param_list_lightgbm <- expand.grid(
bagging_fraction = seq(0.6, 1, .2),
feature_fraction = seq(@.6, 1, .2),
min_data_in_leaf = seq(10, 50, 10),
learning_rate = seq(0.1, 0.2, 0.1),
num_leaves = seq(10, 50, 10),
max_depth = -1L

)

train_x <- model.matrix(
~ -1+,
dataset[, .SD, .SDcols = feature_cols]

)
train_y <- as.integer(dataset[, get("diabetes”)]) - 1L

fold_list <- splitTools::create_folds(

y = train_y,
k =3,
type = "stratified”,

seed = seed

)
lightgbm_cv <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
)!
fold_list = fold_list,
ncores = 2,

seed = 123
)
lightgbm_cv$learner_args <- c(
as.list(
data.table: :data.table(
param_list_lightgbm[37, 1,
stringsAsFactors = FALSE
)’
)’
list(
objective = "binary",
metric = "binary_logloss”
)!
nrounds = 45L
)
lightgbm_cv$performance_metric_args <- list(positive = "1", negative = "0")

lightgbm_cv$performance_metric <- mlexperiments::metric("AUC")

set data

LearnerRanger 7

lightgbm_cv$set_data(
X = train_x,
y = train_y

)

lightgbm_cv$execute()
}

B o
Method ~LearnerLightgbm$new”
oo

if (requireNamespace("lightgbm”, quietly = TRUE)) {
LearnerLightgbm$new(metric_optimization_higher_better = FALSE)
}

LearnerRanger R6 Class to construct a Ranger learner

Description
The LearnerRanger class is the interface to the ranger R package for use with the mlexperiments
package.

Details
Optimization metric:

* classification: classification error rate

* regression: mean squared error Can be used with
* mlexperiments::MLTuneParameters

* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerRanger

Methods

Public methods:

* LearnerRanger$new()
* LearnerRanger$clone()

Method new(): Create a new LearnerRanger object.

Usage:
LearnerRanger$new()

Returns: A new LearnerRanger R6 object.

Examples:
if (requireNamespace("ranger”, quietly = TRUE)) {
LearnerRanger$new()

3

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerRanger$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ranger::ranger()

Examples

binary classification

if (requireNamespace("ranger"”, quietly = TRUE) &&
requireNamespace("mlbench”, quietly = TRUE) &&
requireNamespace("measures”, quietly = TRUE)) {

library(mlbench)

data(”"PimaIndiansDiabetes2")

dataset <- PimalndiansDiabetes2 |>
data.table::as.data.table() |>
na.omit()

seed <- 123
feature_cols <- colnames(dataset)[1:8]

param_list_ranger <- expand.grid(
num.trees = seq(500, 1000, 500),
mtry = seq(2, 6, 2),
min.node.size = seq(1, 9, 4),
max.depth = seq(1, 9, 4),
sample.fraction = seq(0.5, 0.8, 0.3)
)

train_x <- model.matrix(
~ -1,
dataset[, .SD, .SDcols = feature_cols]

)
train_y <- as.integer(dataset[, get("diabetes”)]) - 1L

LearnerRanger

LearnerXgboost 9

fold_list <- splitTools::create_folds(

y = train_y,
k =3,
type = "stratified”,

seed = seed
)
ranger_cv <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerRanger$new(),
fold_list = fold_list,
ncores = 2,
seed = 123
)
ranger_cv$learner_args <- c(
as.list(
data.table: :data.table(
param_list_ranger[37, 1,
stringsAsFactors = FALSE
),
),
list(classification = TRUE)
)
ranger_cv$performance_metric_args <- list(positive = "1", negative = "0")
ranger_cv$performance_metric <- mlexperiments::metric("AUC")

set data
ranger_cv$set_data(
X = train_x,
y = train_y

)

ranger_cv$execute()

o
Method ~LearnerRanger$new”
e

if (requireNamespace("ranger”, quietly = TRUE)) {
LearnerRanger$new()

}

LearnerXgboost R6 Class to construct a Xgboost learner

Description

The LearnerXgboost class is the interface to the xgboost R package for use with the mlexperiments
package.

10

Details

LearnerXgboost

Optimization metric: needs to be specified with the learner parameter eval_metric. The following

options can be set via options():

* "mlexperiments.optim.xgb.nrounds" (default: 5000L)
* "mlexperiments.optim.xgb.early_stopping_rounds" (default: 500L)
* "mlexperiments.xgb.print_every_n" (default: 50L)

* "mlexperiments.xgb.verbose" (default: FALSE)
LearnerXgboost can be used with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerXgboost

Methods
Public methods:

e LearnerXgboost$new()
e LearnerXgboost$clone()

Method new(): Create a new LearnerXgboost object.

Usage:
LearnerXgboost$new(metric_optimization_higher_better)

Arguments:

metric_optimization_higher_better A logical. Defines the direction of the optimization

metric used throughout the hyperparameter optimization.
Returns: A new LearnerXgboost R6 object.

Examples:

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerXgboost$new(metric_optimization_higher_better =

3

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerXgboost$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

LearnerXgboost

See Also

xgboost: :xgb.train(), xgboost: :xgb.cv()

Examples

if (requireNamespace("xgboost”, quietly = TRUE) &&
requireNamespace("mlbench”, quietly = TRUE) &&
requireNamespace("measures”, quietly = TRUE)) {

binary classification
Sys.setenv("OMP_THREAD_LIMIT" = 2)

library(mlbench)

data(”"PimaIndiansDiabetes2")

dataset <- PimalndiansDiabetes2 |>
data.table::as.data.table() [>
na.omit()

seed <- 123
feature_cols <- colnames(dataset)[1:8]

param_list_xgboost <- expand.grid(
subsample = seq(@.6, 1, .2),
colsample_bytree = seq(@0.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = seq(@.1, 0.2, 0.1),
max_depth = seq(1, 5, 4),
nthread = 2

)

train_x <- model.matrix(
~ -1,
dataset[, .SD, .SDcols = feature_cols]

)
train_y <- as.integer(dataset[, get("diabetes")]) - 1L

fold_list <- splitTools::create_folds(

y = train_y,
k = 3,
type = "stratified”,

seed = seed

)

xgboost_cv <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerXgboost$new(

metric_optimization_higher_better = FALSE

),
fold_list = fold_list,
ncores = 2L,
seed = 123

)

xgboost_cv$learner_args <- c(
as.list(

LearnerXgboost

data.table: :data. table(
param_list_xgboost[37, 1,
stringsAsFactors = FALSE

)!
)!
list(
objective = "binary:logistic”,
eval_metric = "logloss”
)7
nrounds = 45L
)
xgboost_cv$performance_metric_args <- list(positive = "1", negative = "0")

xgboost_cv$performance_metric <- mlexperiments::metric("AUC")

set data
xgboost_cv$set_data(
X = train_x,
y = train_y
)

xgboost_cv$execute()

oo
Method ~LearnerXgboost$new™
B m o

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerXgboost$new(metric_optimization_higher_better = FALSE)

}

Index

glmnet::cv.glmnet(), 3
glmnet: :glmnet(), 3

LearnerGlmnet, 2
LearnerLightgbm, 4
LearnerRanger, 7
LearnerXgboost, 9
lightgbm::1gb.cv(), 5
lightgbm::1gb.train(), 5

mlexperiments: :MLCrossValidation, 2, 5,
7,10

mlexperiments::MLLearnerBase, 2, 5, 7, 10

mlexperiments: :MLNestedCV, 2, 5, 7, 10

mlexperiments: :MLTuneParameters, 2, 5, 7,
10

ranger::ranger(), 8

xgboost: :xgh.cv(), 11
xgboost: :xgh.train(), 11

13

	LearnerGlmnet
	LearnerLightgbm
	LearnerRanger
	LearnerXgboost
	Index

