Package ‘matsbyname’

January 30, 2026

Type Package

Title An Implementation of Matrix Mathematics that Respects Row and
Column Names

Version 0.6.14

Date 2026-01-29

Description An implementation of matrix mathematics wherein operations are performed
License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first Unary, Utilities, Binary

Imports assertthat, dplyr, lifecycle, Matrix, magrittr, matrixcalc,
methods, purrr, RCLabels, rlang, tibble

Suggests bench, covr, Hmisc, knitr, matsindf, rmarkdown, spelling,
testthat (>= 3.0.0), tidyr

VignetteBuilder knitr

URL https://github.com/MatthewHeun/matsbyname,
https://matthewheun.github.io/matsbyname/

BugReports https://github.com/MatthewHeun/matsbyname/issues
NeedsCompilation no

Author Matthew Heun [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7438-214X>)

Maintainer Matthew Heun <matthew.heun@me.com>
Repository CRAN
Date/Publication 2026-01-30 06:10:28 UTC

* " by name."

https://github.com/MatthewHeun/matsbyname
https://matthewheun.github.io/matsbyname/
https://github.com/MatthewHeun/matsbyname/issues
https://orcid.org/0000-0002-7438-214X

2 Contents

Contents
abs_byname Lo e 4
aggregate_byname L L 4
aggregate_pieces_bynameo e e e 6
aggregate_to_pref_suff byname L 0oL 9
aggregation_map_helpers 10
all_byname e e e 11
and_byname e e 12
any_byname e e 13
binaryapply_byname 13
clean_byname 14
colprods_byname 15
colsums_byname e e e 16
COILYPE . . o o o e e 17
Compare_byName ot e e e e e e e e e e e e e e e 18
complete_and_sOrt L e e e e 19
complete_rows_cols L 20
count_vals_byname L L 22
count_vals_incols_byname oL 23
count_vals_inrows_byname Lo 24
create_colvec_byname 25
create_matrix_byname L. L 26
Create_rowvec_bynameo e e e e e e e 27
create_triplet L. Lo 29
cumapply_byname L 30
cumprod_byname e e e 31
CUMSUM_DYNAME v v vt vt e ettt e e e e e e e 32
difference_byname 33
eigenvalues_bynameo e e e 34
eigenvectors_byname Lo 35
elementapply_bynameo oL 36
equal_byname e 37
eXp_byname 38
fractionize_byname 38
geometricmean_bynameo e e e e e e 39
getcolnames_byname L L L e e e e 40
getrownames_byname Lo e e e e e 41
getzerorowcolnames_byname oL e e 42
get_row_col_index_mapso e e e 42
hadamardproduct_byname 43
hatinv_byname 44
hatize_byname e e e 46
identical_byname e e 47
identize_byname L e e e e 48
Iminus_byname L 49
INVert_byname e e e 50

ISMAtriX L e 51

Contents

3
ISZEIO_DYNAME i i e e e e e e e e e e e e 51
is_matrix_or_MatriX e e e e e e e e e e e e e e 52
kvec_from_template_byname 53
list_of TOWS_Or oIS e e 54
logarithmicmean_byname L 55
logmean 56
log_byname e 57
margin_from_types_byname 57
matricize_byname L. e e e e e 58
MatrixX e 59
matrixproduct_byname Lo e 61
mean_byname e e e e e e e e e 62
naryapplylogical_byname 63
naryapply_byname e 65
ncol_byname e e e e e e 66
NFOW_DYNAME o v ettt ot e e e e e e e e e e e e e 67
OFANIZE_ATTS « « . o v v e e e e e et e e e e e e e e e e 68
POW_DYName e e e e e e e e e 69
prepare_FUNdoOts e 70
PIEP_VECIOT_arg« o v v e it e it e e e e e e e e e e 71
prodall_byname 72
quotient_byname L. e e e e e 73
reallocate_byname e 74
rename_to_piece_bynameo 77
rename_to_pref_suff byname oL 79
rename_via_pattern_bynamel 80
replaceNaN_byname L 82
rowprods_byname L. 82
TOWSUMS_DYNAME o oot e e e e e e e e 83
TOWEYPE .« . o o o vt o e e e e e 84
samestructure_byname L. 85
selectzerocols_byname L. 86
selectzerorows_byname oL o 86
select_cols_byname 87
select_rowcol_piece_byname Lo 89
select_rows_byname e 91
select_rows_cols_byname Lo 92
setcolnames_byname 94
SELCOILYPE . . . o o o e e e e e e e e 95
SEtrownames_bynameo i e e e e e e e e e e e 96
SELTOWEYDE e 97
SOIt_TOWS_COIS o e e e 98
structure_index_map a e e e e e e e e e e e 99
sumall_byname L 100
SUM_DYName e e e 101
svd_byname e e e e e e 102
switch_notation_byname Lo e 103

to_named_triplet 104

Index

aggregate_byname

transpose_byname L. L L e 107
triM_TOWS_COIS e e e 107
unaryapply_byname 109
VECtOrIZE_bYName o o e e e e e e e e e e 110
vec_from_store_byname 111

abs_byname Absolute value of matrix elements

Description

Absolute value of matrix elements

Usage

abs_byname (a)

Arguments

a

Value

A matrix or list of matrices.

a with each element replaced by its absolute value.

Examples

abs_byname (1)
abs_byname(-1)

m<- matrix(c(-10,1,1,100), nrow = 2, dimnames = list(paste@("i", 1:2), paste@("c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

abs_byname (m)

aggregate_byname Aggregate rows and columns in a matrix

Description

Rows (margin = 1), columns (margin = 2), or both (margin = c(1, 2), the default) are aggregated
according to aggregation_map.

aggregate_byname 5

Usage

aggregate_byname(
a,
aggregation_map = NULL,
margin = c(1, 2),

pattern_type = "exact”
)
Arguments
a A matrix or list of matrices whose rows or columns are to be aggregated.

aggregation_map
A named list of rows or columns to be aggregated (or NULL). See details.

margin 1, 2, or c(1, 2) for row aggregation, column aggregation, or both. As a string,
margin can be a row or column type. Default is c(1, 2).

pattern_type See RCLabels: :make_or_pattern(). Default is "exact".

Details

When aggregation_map is NULL (the default), rows (or columns or both) of same name are aggre-
gated together.

If aggregation_map is not NULL, it must be a named list. The name of each aggregation_map
item is the name of a row or column in output that will contain the specified aggregation. The value
of each item in aggregation_map must be a vector of names of rows or columns in a. The names
in the value are aggregated and inserted into the output with the name of the value. For example
aggregation_map = list(new_row=c("r1", "r2")) will aggregate rows "rl1" and "r2", delete
rows "r1" and "r2", and insert a new row whose name is "new_row" and whose value is the sum of
rows "r1" and "r2’.

The values in the aggregation_map are interpreted as regular expressions, and they are escaped
using Hmisc: : escapeRegex () prior to use.

margin can be a string, in which case it is interpreted as a row or column type. If a string margin
does not match a row or column type, a is returned unmodified.

Note that aggregation on one margin only will sort only the aggregated margin, because the other
margin is not guaranteed to have unique names.

Value

A version of a with aggregated rows and/or columns

Examples

library(dplyr)
library(tibble)
m <- matrix(1:9, byrow = TRUE, nrow = 3,
dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1"))) %%
setrowtype("rows") %>% setcoltype(”cols")
Aggregate all rows by establishing an aggregation map (Tam™)

6 aggregate_pieces_byname

am <- list(new_row = c("r1", "r2"))
aggregate_byname(m, aggregation_map = am, margin = 1)
aggregate_byname() also works with lists and in data frames
ml <- matrix(42, nrow = 1, dimnames = list(c("r1"), c("c1")))
m2 <- matrix(1:4, byrow = TRUE, nrow = 2,
dimnames = list(c(”a", "a"), c("a", "a")))
m3 <- matrix(1:9, byrow = TRUE, nrow = 3,
dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1")))
DF <- tibble(m = list(m1, m1, ml, m2, m2, m2, m3, m3, m3),
margin = list(1, 2, c(1,2), 1, 2, c(1, 2), 1, 2, c(1, 2))) %%
mutate(
aggregated = aggregate_byname(m, margin = margin),
)
ml
DF$aggregated[[1]] # by rows
DF$aggregated[[2]] # by cols
DF$aggregated[[3]] # by rows and cols
m2
DF$aggregated[[4]] # by rows
DF$aggregated[[5]] # by cols
DF$aggregated[[6]] # by rows and cols
m3
DF$aggregated[[7]1] # by rows
DF$aggregated[[8]1] # by cols
DF$aggregated[[9]] # by rows and cols

aggregate_pieces_byname
Aggregate a matrix by pieces of row and/or column names

Description

Aggregate a matrix (or list of matrices or a column in a matsindf data frame) by pieces of the row
and column names

Usage

aggregate_pieces_byname(
a,
piece,
margin = list(c(1, 2)),
inf_notation = TRUE,
notation = list(RCLabels::notations_list),
choose_most_specific = FALSE,
prepositions = list(RCLabels: :prepositions_list),
aggregation_map = NULL,
pattern_type = "exact"

aggregate_pieces_byname 7

Arguments
a A matrix or list of matrices.
piece A character string indicating which piece of the row or column names to retain,
one of "noun", "pps", "pref" or "suff", or a preposition, indicating which part of
the row or column name is to be retained.
margin As a character, the row type or column type to be renamed. As an integer, the

margin to be renamed. Default is c(1, 2), meaning that both rows (margin = 1)
and columns (margin = 2) will be renamed.

inf_notation A boolean that tells whether to infer notation. Default is TRUE.

notation The notation used for row and column labels. Defaultis 1ist(RCLabels: :notations_list).
The default value is wrapped in a list, because RCLabels: :notations_list is,
itself, a list. See RCLabels.
choose_most_specific
A boolean that indicates whether the most-specific notation will be inferred
when more than one of notation matches a row or column label and allow_multiple
= FALSE. When FALSE, the first matching notation in notations is returned
when allow_multiple = FALSE. Default is FALSE.

prepositions Prepositions that can be used in the row and column label. Default is RCLabels: :prepositions_list.
aggregation_map
A named list of rows or columns to be aggregated (or NULL). See details.

pattern_type See RCLabels: :make_or_pattern(). Default is "exact".

Details

This is a convenience function that bundles two others for common use cases: rename_to_piece_byname()
followed by aggregate_byname(). Note that after renaming to the piece, there may be rows

or columns that are identically named. If those identically named names aren’t included in the
aggregation_map, an error will result. So, aggregate_byname() is called twice; first with aggregation_map
= NULL to sweep up any rows or columns that are identically named after renaming and second with
aggregation_map = aggregation_map to sum the desired rows or columns. See examples.

When aggregation_map is NULL (the default), rows (or columns or both) of same name are aggre-
gated together.

If aggregation_map is not NULL, it must be a named list. The name of each aggregation_map
item is the name of a row or column in output that will contain the specified aggregation. The value
of each item in aggregation_map must be a vector of names of rows or columns in a. The names
in the value are aggregated and inserted into the output with the name of the value. For example
aggregation_map = list(new_row=c("r1", "r2")) will aggregate rows "r1" and "r2", delete
rows "r1" and "r2", and insert a new row whose name is "new_row" and whose value is the sum of
rows "r1" and "r2’.

The values in the aggregation_map are interpreted as regular expressions, and they are escaped
using Hmisc: : escapeRegex () prior to use.

aggregation_map should aggregate by pieces, not by the full, original row and/or column names.

Value

A version of a with rows and/or columns aggregated according to aggregation_map.

8 aggregate_pieces_byname

Examples

a <- matrix(c(1, 2, 3,
4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE,
dimnames = list(c("a [from b]", "c [from d]"),
c("e [from f1", "g [from h1", "i [from j1")))
a %»>%
aggregate_pieces_byname(piece = "suff”,
notation = RCLabels::from_notation,
aggregation_map = list(rows = c("b", "d"),
cols = c("h", "i")
m <- matrix(c(1, @0, O,
o, 1, 1,
@, 1, 1), nrow = 3, ncol = 3, byrow = TRUE,
dimnames = list(c("Gasoline [from 0il refineries]”,
"Electricity [from Main activity producer electricity plants]”,
"Electricity [from Hydrol"),
c("Automobiles”, "LED lamps"”, "CFL lamps"))) %>%
setrowtype("Product”) %>% setcoltype("Industry”)
mT <- transpose_byname(m)
Aggregate the "Electricity” rows.
aggregate_pieces_byname(m, piece = "noun”, margin = "Product”,
notation = RCLabels::bracket_notation)
Also works in a list.
aggregate_pieces_byname(a = list(m, mT), piece = "noun”,
margin = "Product”,
notation = RCLabels::bracket_notation)
Use an aggregation map
aggregate_pieces_byname(a = list(m, mT), piece = "noun”,
margin = "Product”,
aggregation_map = list(list(final = c("Electricity”, "Gasoline"))),
notation = RCLabels::bracket_notation)
Also works in a data frame.
df <- tibble::tibble(m = list(m, mT),
pce = "noun”,
mgn = "Product”,
agg_map = list(list(final = c("Electricity”, "Gasoline"))),
notn = list(RCLabels: :bracket_notation)) %>%
dplyr: :mutate(
agg = aggregate_pieces_byname(a = m, piece = pce, margin = mgn,
aggregation_map = agg_map,
notation = notn)
)
df$agg
Works when renaming to the piece results in identical row or col names.
b <- matrix(1:6, nrow = 3, ncol = 2,
dimnames = list(c("a [from b]"”, "c [from d]", "c [from e]"),
c("c1", "c2")))
b
This aggregation works, because the "c" rows
are aggregated before applying the aggregation_map,
which, itself, does NOT aggregate the "c" rows.
b %>%

aggregate_to_pref _suff byname 9

aggregate_pieces_byname(piece = "noun”,
margin = 1,
inf_notation = FALSE,
notation = RCLabels::bracket_notation,
aggregation_map = list(f = c("a", "b")))

aggregate_to_pref_suff_byname
Aggregate a matrix to prefixes or suffixes of row and/or column names

Description

[Superseded] Row and column names are often constructed in the form prefix_start prefix
prefix_end suffix_start suffix suffix_end and described by a notation vector. (See notation_vec().)
This function performs aggregation by prefix or suffix according to a notation vector.

Usage
aggregate_to_pref_suff_byname (
a,
aggregation_map = NULL,
keep,
margin = c(1, 2),
notation,
pattern_type = "exact”
)
Arguments
a A matrix of list of matrices to be aggregated by prefix or suffix.

aggregation_map
See aggregate_byname().

keep See rename_to_pref_suff_byname()

margin the dimension over which aggregation is to be performed; 1 for rows, 2 for
columns, or c(1, 2) for both.

notation See notation_vec().

pattern_type See aggregate_byname().

Details

This function is a convenience function, as it bundles sequential calls to two helper functions,
rename_to_pref_suff_byname() and aggregate_byname(). All arguments are passed to the
helper functions.

Value

An aggregated version of a.

10 aggregation_map_helpers

Examples

This function is superseded.
Instead, use ~“aggregate_pieces_byname()".
For example:
m <- matrix((1:9), byrow = TRUE, nrow = 3,
dimnames = list(c("r1 ->b", "r2 ->b", "r3 ->a"), c("c1 ->z", "c2 ->y", "c3 ->y")))
m
aggregate_pieces_byname(m, piece = "pref"”, notation = RCLabels::arrow_notation)
aggregate_pieces_byname(m, piece = "suff"”, notation = RCLabels::arrow_notation)

Original examples:

Aggregation by prefixes does nothing more than rename, because all prefixes are different.
Doing renaming like this (without also aggregating) is potentially dangerous, because
some rows and some columns could end up with same names.
aggregate_to_pref_suff_byname(m, keep = "pref"”, notation = RCLabels::arrow_notation)

Aggregation by suffix reduces the number of rows and columns,

because there are same suffixes in both rows and columns
aggregate_to_pref_suff_byname(m, keep = "suff"”, notation = RCLabels::arrow_notation)

aggregation_map_helpers
Aggregation map conversions

Description

Aggregation is a many-to-few operation where specifics are summed to comprise broader cate-
gories. Examples include "John", "Paul", "George", and "Ringo" aggregated to "Beatles"; and
"Mick", "Keith", "Ronnie", "Bill", and "Charlie" aggregated to "Stones". An aggregation map is a
named list that describes the aggregation to be performed. An aggregation map for the examples
aboveis list(Beatles = c("John", "Paul”, "George", "Ringo"), Stones = c("Mick”, "Keith",
"Ronnie”, "Bill", "Charlie”)) Aggregation maps can be generated from many shapes of data.
These functions assist with translating from different data shapes to aggregation maps.

Usage

agg_table_to_agg_map(.df, few_colname, many_colname)

agg_map_to_agg_table(aggregation_map, few_colname, many_colname)

Arguments
.df A data frame from which an aggregation map is to be extracted.
few_colname The string name of a column in a data frame that corresponds to the "few" ag-

gregated categories.

many_colname The string name of a column in a data frame that corresponds to the "many"
specific items that will be aggregated.

aggregation_map
An aggregation map to be converted to a data frame.

all_byname 11

Value

For agg_table_to_agg_map(), an aggregation map. For agg_map_to_agg_table(),adata.frame,
probably at tibble.

Examples

bands <- tibble::tribble(~band, ~members,
"The Beatles”, "John",
"The Beatles”, "Paul”,
"The Beatles”, "George",
"The Beatles”, "Ringo",
Rejects duplicates and NA
"The Beatles”, "Ringo",
"The Beatles"”, NA,
"Rolling Stones”, "Mick”,
"Rolling Stones”, "Keith",
"Rolling Stones”, "Ronnie”,
"Rolling Stones”, "Bill"”,
"Rolling Stones”, "Charlie")
agg_map <- agg_table_to_agg_map(bands,

few_colname = "band”,
many_colname = "members”)
agg_map
agg_map_to_agg_table(agg_map, few_colname = "bands”, many_colname = "members")
all_byname Are all matrix elements TRUE ?
Description

Tells whether all elements in matrix a are true.

Usage
all_byname(a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if all elements of a are TRUE, FALSE otherwise

12 and_byname

Examples

all_byname(matrix(rep(TRUE, times = 4), nrow = 2, ncol = 2))
all_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))

and_byname And "by name"

Description

Operands should be logical, although numerical operands are accepted. Numerical operands are
interpreted as FALSE when @ and TRUE for any other number.

Usage
and_byname(..., .summarise = FALSE)
Arguments
Operands to the logical and function.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
Value

Logical and applied to the operands.

Examples

and_byname (TRUE)
and_byname (FALSE)
and_byname(list(TRUE, FALSE), list(TRUE, TRUE), list(TRUE, TRUE), list(TRUE, TRUE))
ml <- matrix(c(TRUE, TRUE, TRUE, FALSE), nrow = 2, ncol = 2,
dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
m2 <- matrix(c(TRUE, FALSE, TRUE, TRUE), nrow = 2, ncol = 2,
dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
and_byname(m1, m1)
and_byname(m1, m2)
and_byname(list(m1, m1), list(ml, m1), list(m2, m2))
and_byname(list(m1, m1), list(ml, m1), list(m2, m2), .summarise = TRUE)

any_byname 13

any_byname Are any matrix elements TRUE?

Description

Tells whether any elements in matrix a are true.

Usage

any_byname (a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if any elements of a are TRUE, FALSE otherwise

Examples

any_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))
any_byname(matrix(rep(FALSE, times = 4), nrow = 2, ncol = 2))

binaryapply_byname Apply a binary function "by name"

Description

If either a or b is missing or NULL, @ is passed to FUN in its place. Note that if either a and b are lists,
elements must be named the same. The names of list elements of a are applied to the output.

Usage

binaryapply_byname(
FUN,
a,
b,
.FUNdots = NULL,
match_type = c("all”, "matmult”, "none"),
set_rowcoltypes = TRUE,
.organize = TRUE

)

14 clean_byname

Arguments
FUN a binary function to be applied "by name" to a and b.
a the first operand for FUN.
b the second operand for FUN.
.FUNdots a list of additional named arguments passed to FUN.
match_type one of "all", "matmult", or "none". When both a and b are matrices, "all" (the

default) indicates that rowtypes of a must match rowtypes of b and coltypes of
a must match coltypes of b. If "matmult”, coltypes of a must match rowtypes of
b. If "none", neither coltypes nor rowtypes are checked.

set_rowcoltypes
tells whether to apply row and column types from a and b to the output. Set
TRUE (the default) to apply row and column types to the output. Set FALSE, to
not apply row and column types to the output.

.organize a boolean that tells whether or not to automatically complete a and b relative to
each other and sort the rows and columns of the completed matrices. Normally,
this should be TRUE (the default). However, if FUN takes over this responsibility,
set to FALSE.

Value

the result of applying FUN "by name" to a and b.

Examples

productnames <- c("p1”, "p2")

industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>% setcoltype("Industries™)

Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%
setrowtype("Products”) %>% setcoltype(”Industries”)

sum_byname (U, Y)

binaryapply_byname(*+~, U, Y)

clean_byname Clean (delete) rows or columns of matrices that contain exclusively
clean_value

Description

Cleaning is performed when all entries in a row or column or both, depending on the value of
margin, are within +/- tol of clean_value. Internally, values are deemed within +/- of tol when
abs(x - clean_value) <= tol.

Usage

clean_byname(a, margin = c(1, 2), clean_value = @, tol = @)

colprods_byname 15

Arguments
a The matrix to be cleaned.
margin The dimension over which cleaning should occur, 1 for rows, 2 for columns, or
c(1, 2) for both rows and columns. Default is c(1, 2).
clean_value The undesirable value. Default is 0.
tol The tolerance with which any value is deemed equal to clean_value. Default
is 0.
Details

If there is concern about machine precision, you might want to call this function with tol = .Machine$double.eps.

When a row (when margin = 1) or a column (when margin = 2) contains exclusively clean_value
(within tol), the row or column is deleted from the matrix.

Value

A "cleaned" matrix, expunged of rows or columns that contain exclusively clean_value.

Examples
m <- matrix(c(-20, 1, -20, 2), nrow = 2, dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
m
m %>% clean_byname(margin = 1, clean_value = -20) # Eliminates -20, -20 row
Nothing cleaned, because no columns contain all @'s (the default clean_value).
m %>% clean_byname(margin = 2)

Also works with lists

list(m, m) %>% clean_byname(margin = 1, clean_value = -20)

Also works with data frames

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <-m

DFLL2,"m"]] <- m

DF %>% clean_byname(margin = 1, clean_value = -20)

m2 <- matrix(c(-20, -20, @, -20, -20, @, -20, -20, -20), nrow = 3,
dimnames = list(c("r1", "r2", "r3"), c("c1”, "c2", "c3")))

m2

clean_byname(m2, margin = c(1,2), clean_value = -20)

DF2 <- data.frame(m2 = I(list()))

DF2[L1, "m2"]1] <- m2

DF2[[2, "m2"]] <- m2

DF2 %>% clean_byname(margin = c(1, 2), clean_value = -20)

colprods_byname Column products, sorted by name

Description

Calculates column products (the product of all elements in a column) for a matrix. An optional
rowname for the resulting row vector can be supplied. If rowname is NULL or NA (the default), the
row name is set to the row type as given by rowtype(a).

16

Usage

Arguments
a A matrix or data frame from which column products are desired.
rowname The Name of the output row containing column products.

Value

colprods_byname(a, rowname = NA)

a row vector of type matrix containing the column products of a.

Examples

library(dplyr)

M <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i", 1:2), pasted("c",

setrowtype("Industries”) %>% setcoltype(”Commodities”)
colprods_byname (M)
colprods_byname(M, rowname = "E.ktoe")
M %>% colprods_byname %>% rowprods_byname
This also works with lists
colprods_byname(list(M, M))
colprods_byname(list(M, M), rowname = "E.ktoe")
colprods_byname(list(M, M), rowname = NA)
colprods_byname(list(M, M), rowname = NULL)
DF <- data.frame(M = I(list()))
DFLLT,"M"]1]1 <- M
DFL[2,"M"]1] <- M
colprods_byname (DF$ML[11])
colprods_byname (DF$M)
colprods_byname (DF$M, "prods")
res <- DF %>% mutate(

cs = colprods_byname(M),

colsums_byname

3:1))) D%

cs2 = colprods_byname(M, rowname = "prod")
)
res$cs2
colsums_byname Column sums, sorted by name
Description

Calculates column sums for a matrix by premultiplying by an identity vector (containing all 1’s).
In contrast to colSums (which returns a numeric result), the return value from colsums_byname is
a matrix. An optional rowname for the resulting row vector can be supplied. If rowname is NA (the
default), the row name is set to the row type as given by rowtype(a). If rowname is set to NULL, the

row name is returned empty.

coltype 17

Usage

colsums_byname(a, rowname = NA)

Arguments
a A matrix or list of matrices from which column sums are desired.
rowname The name of the output row containing column sums.

Value

A row vector of type matrix containing the column sums of a.

Examples

library(dplyr)
colsums_byname (42)
m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i", 1:2), pasteo("c"”, 3:1))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)
m
colsums_byname(m)
colsums_byname(m, rowname = "E.ktoe")
m %>%
colsums_byname() %>%
rowsums_byname ()
This also works with lists
colsums_byname(list(m, m))
colsums_byname(list(m, m), rowname = "E.ktoe")
colsums_byname(list(m, m), rowname = NA)
colsums_byname(list(m, m), rowname = NULL)
DF <- data.frame(m = I(list()))
DFLL1,"m"]1] <- m
DFLL2,"m"]] <- m
colsums_byname(DF$mLL1]11)
colsums_byname (DF $m)
colsums_byname (DF$m, "sums”
res <- DF %>% mutate(
cs = colsums_byname(m),

cs2 = colsums_byname(m, rowname = "sum”
)
res$cs2
coltype Column type
Description

Extracts column type of a.

18 compare_byname

Usage

coltype(a)

Arguments

a The object from which you want to extract column types.

Value

The column type of a.

Examples
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype(rowtype = "Commodities”) %>% setcoltype(”Industries”)

coltype(U)

This also works for lists

coltype(list(U,U))

compare_byname Compare matrix entries to a value

Description

Compares matrix entries to a value, returning a matrix of same size as a containing TRUE or FALSE
values as the result of applying compare_fun and val to all entries in a.

Usage
compare_byname(a, compare_fun = c("==", "!="_ "<" ‘"<=" ">=" ">") ' val = Q)
Arguments
a a matrix or list of matrices whose values are to be counted according to compare_fun
compare_fun the comparison function, one of "==", "!I=""<" "<="">=""or ">". Default is
"_:ll
val a single value against which entries in matrix a are compared. Default is 0.
Value

a logical matrix of same size as a containing TRUE where the criterion is met, FALSE otherwise

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)
compare_byname(m, "<", 3)
compare_byname(list(m,m), "<", 3)

complete_and_sort

19

complete_and_sort

Complete matrices relative to one another and sort into same row,
column order

Description

Completes each matrix relative to each other, thereby assuring that both matrices have same row
and column names. Missing rows and columns (relative to the other matrix) are filled with fill.
Thereafter, rows and columns of the matrices are sorted such that they are in the same order (by
name). To complete rows of a relative to columns of b (and vice versa), transpose_byname() the

b argument.
Usage
complete_and_sort(
a,
b,
fill = o,
margin = c(1, 2),
roworder = NA,
colorder =
)
Arguments
a The first matrix
b The second (optional) matrix.
fill rows and columns added to a and b will contain the value fill (a double).
margin Specifies the dimension(s) of a and b over which completing and sorting will
occur
roworder Specifies a custom ordering for rows of returned matrices. Unspecified rows are
dropped.
colorder Specifies a custom ordering for columns of returned matrices. Unspecified
columns are dropped.
Details

margin has nearly the same semantic meaning as in apply(). For rows only, give 1; for columns
only, give 2; for both rows and columns, give c(1,2), the default value.

If only a is specified, rows of a are completed and sorted relative to columns of a. If neither a nor
b have dimnames, a and b are returned unmodified. If only one of a or b has dimnames, an error is

thrown.

Value

A named list containing completed and sorted versions of a and b.

20 complete_rows_cols

Examples

ml <- matrix(c(1:6), nrow=3, dimnames = list(c("r1"”, "r2", "r3"), c("c2", "c1")))
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r3"”, "r4"), c("c2", "c3", "c4")))
complete_and_sort(m1)

complete_and_sort(m1, m2)

complete_and_sort(m1, m2, roworder = c("r3", "r2", "ri1"))

complete_and_sort(m1, m2, colorder = c("c4", "c3")) # Drops un-specified columns
complete_and_sort(m1l, m2, margin = 1)

complete_and_sort(ml, m2, margin = 2)

complete_and_sort(m1, t(m2))

complete_and_sort(ml, t(m2), margin = 1)

complete_and_sort(ml, t(m2), margin = 2)

v <- matrix(1:6, ncol=2, dimnames=list(c("r3"”, "r1", "r2"), c("c2", "c1")))
complete_and_sort(v, v)

Also works with lists

complete_and_sort(list(ml,m1), list(m2,m2))

complete_rows_cols Complete rows and columns in one matrix relative to another

Description

"Completing" rows and columns means that a contains a union of rows and columns between a and
mat, with missing data represented by the value for fill (@, by default), fillrow, or fillcol.

Usage

complete_rows_cols(
a = NULL,
mat = NULL,
fill = o,
fillrow = NULL,
fillcol = NULL,
margin = c(1, 2)

)
Arguments

a A matrix or list of matrix objects to be completed. a can be Matrix objects,
too.

mat A matrix or Matrix from which dimnames will be extracted for the purposes
of completing a with respect to mat.

fill Rows and columns added to a will contain the value fill. (Default is 0.)

fillrow A row vector of type matrix with same column names as a. Any rows added to

a will be fillrow. If non-NULL, fillrow takes precedence over both fillcol
and fill in the case of conflicts.

complete_rows_cols 21

fillcol A column vector of type matrix with same row names as a. Any columns added
to a will be fillcol. If non-NULL, fillcol takes precedence over fill in the
case of conflicts.

margin Specifies the subscript(s) in a over which completion will occur margin has
nearly the same semantic meaning as in base: :apply () For rows only, give 1;
for columns only, give 2; for both rows and columns, give c(1,2), the default
value.

Details

Note that complete_rows_cols(matl, mat2) and complete_rows_cols(mat2, mat1) are not
guaranteed to have the same order for rows and columns. (Nor are the values in the matrix guaran-
teed to have the same positions.)

If dimnames(mat) is NULL, a is returned unmodified.
If either a or mat are missing names on a margin (row or column), an error is given.

When a is non-NULL, a is named, and mat is NULL (the default), a is completed relative to itself,
meaning that a will be made square, containing the union of row and column names from a. Under
these conditions, no warning is given.

If mat is non-NULL and dimnames of mat cannot be determined (because, for example, mat doesn’t
have dimnames), a is completed relative to itself and a warning is given.

All added rows and columns will be created from one of the fillx arguments. When conflicts arise,
precedence among the fill* arguments is fillrow then fillcol then fill.
Value

A modified version of a possibly containing additional rows and columns whose names are ob-
tained from mat and whose values are obtained from fillrow, fillcol or fill (in that order of

preference).

Examples
ml <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c1”, "c2")))
ml
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r2", "r3"), c("c2", "c3", "c4")))
m2

complete_rows_cols(ml, m2) # Adds empty column c4
complete_rows_cols(ml, t(m2)) # Creates r2, r3 columns; c2, c3, c4 rows
complete_rows_cols(ml, m2, margin = 1) # No changes because r2 and r3 already present in mi
complete_rows_cols(ml, m2, margin = 2) # Adds empty columns c3 and c4
complete_rows_cols(ml, t(m2), margin = 1) # Adds empty rows c2, c3, c4
complete_rows_cols(m1, m2, fill = 100) # Adds columns c3 and c4 with 100's
complete_rows_cols(ml, ml1) # Nothing added, because everything already present
complete_rows_cols(ml, t(m1)) # Adds empty c1, c2 rows; Adds empty ri1, r2, r3 columns
Same as previous. With missing matrix, complete relative to transpose of ml.
complete_rows_cols(m1)
Adds rows ri10, ri11; cols c1@, cl11
complete_rows_cols(ml, matrix(@, nrow = 2, ncol = 2,

dimnames = list(c("r10", "r11"), c("c10", "c11"))))
Also works with lists

22 count_vals_byname

complete_rows_cols(a = list(m1,m1))
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2))
No changes because r2, r3 already present in m1l
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2), margin = 1)
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2), margin = 2)
complete_rows_cols(a = list(ml,ml1),

mat = RCLabels::make_list(matrix(o,

nrow = 2,
ncol = 2,
dimnames = list(c("r10", "r11"),

c("c1e0", "c11"))),
n =2, lenx = 1))

fillrow or fillcol can be specified
a <- matrix(c(11, 12, 21, 22), byrow = TRUE, nrow = 2, ncol = 2,

dimnames = list(c("r1”, "r2"), c("c1”, "c2")))
b <- matrix(c(1:6), byrow = TRUE, nrow = 3, ncol = 2,

dimnames = list(c("r1"”, "r2", "r3"), c("c1”, "c2")))
fillrow <- matrix(c(31, 32), byrow = TRUE, nrow = 1, ncol = 2,

dimnames = list("r42", c("c1", "c2")))

complete_rows_cols(a = a, mat = b, fillrow = fillrow)

count_vals_byname Count the number of matrix entries that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_byname(m, "<=", 1).

Usage
count_vals_byname(
a,
COmpare_fun = C(“::“, II!:II, II<II’ ”<:1I’ II>:II, ”>II),
val = 0@
)
Arguments
a A matrix or list of matrices whose values are to be counted according to compare_fun.
compare_fun The comparison function, one of "==", "I=", "<", "<=", ">", or ">=". Default is
n__mn
val The value against which matrix entries are compared. Default is 0.
Details

Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").

count_vals_incols_byname 23

Value

An integer indicating the number of entries in a that meet the specified criterion

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)

count_vals_byname(m) # uses defaults: compare_fun = "==" and val = @
count_vals_byname(m, compare_fun = "!=")

count_vals_byname(m, compare_fun = ~!=7)

Write expressions in a natural way

count_vals_byname(m, "<=", 1)

Also works for lists

count_vals_byname(list(m,m), "<=", 1)

count_vals_incols_byname
Count the number of matrix entries in columns that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_incols_byname(m, "<=", 1).

Usage
count_vals_incols_byname(
a,
COmpare_fun = C(“::“, II!:”, II<II’ ll<:1ﬁ’ II>:II, ll>ll),
val = 0@
)
Arguments
a a matrix or list of matrices whose values are to be counted by columns according
to compare_fun
compare_fun the comparison function, one of "==", "I=""<" "<="">" or ">=". Default is
n__mn
val the value against which matrix entries are compared. Default is 0.
Details
Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").
Value

an matrix with a single row indicating the number of entries in a that meet the specified criterion
in each column of a

24 count_vals_inrows_byname

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)

count_vals_incols_byname(m) # uses defaults: compare_fun = "==" and val = @
count_vals_incols_byname(m, compare_fun = "!="

count_vals_incols_byname(m, compare_fun = ~!=7)

Write expressions in a natural way

count_vals_incols_byname(m, "<=", 1)

Also works for lists

count_vals_incols_byname(list(m,m), "<=", 1)

count_vals_inrows_byname
Count the number of matrix entries in rows that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_inrows_byname(m, "<=", 1).

Usage
count_vals_inrows_byname(
a ’
Compare _Fun = C(”::H II':II H<II I1<:H II>:II H>II)
— ’ . ’ ’) ’ ’
val = @
)
Arguments
a a matrix or list of matrices whose values are to be counted by rows according to
compare_fun
compare_fun the comparison function, one of "==", "I=", "<" "<="_">" or ">=". Default is
nm__mn
val the value against which matrix entries are compared. Default is 0.
Details
Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").
Value

an matrix with a single column indicating the number of entries in a that meet the specified criterion
in each row of a

create_colvec_byname 25

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)

count_vals_inrows_byname(m) # uses defaults: compare_fun = "==" and val = 0
count_vals_inrows_byname(m, compare_fun = "!=")

count_vals_inrows_byname(m, compare_fun = ~!=7)

Write expressions in a natural way

count_vals_inrows_byname(m, "<=", 1)

Also works for lists

count_vals_inrows_byname(list(m,m), "<=", 1)

create_colvec_byname Create column vectors from data

Description

This function takes data in the .dat and creates column vectors.

Usage

create_colvec_byname (
.dat,
dimnames = NA,
colname = NA,

matrix_class = c("matrix”, "Matrix")
)
Arguments

.dat Data to be converted to column vectors.

dimnames The dimension names to be used for creating the column vector, in a list format,
or as a data frame column containing a list of the dimension names to be used
for each observation.

colname The name of the column of the colvector.

matrix_class One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Details

The row and column names in the resulting column vector are taken from the names of .dat and
colname. If set, dimnames overrides the names of .dat and colname.

This function is a "byname" function that can accept a single number, a vector, a list, or a data frame
in .dat.

Row types and column types are taken from the row type and column type attributes of .dat.

26 create_matrix_byname

Value

A column vector, a list of column vectors, or a data frame column of column vectors, depending on
the value of .dat and class.

Examples

Works with single numbers
create_colvec_byname(c(r1 = 1) %>% setrowtype("rt") %>% setcoltype(”ct"),
colname = "r1")
Works with vectors
create_colvec_byname(c(r1 =1, r2 = 2), colname = "c1")
Works with a list
create_colvec_byname(list(c(r1 =1, r2 = 2), c(R1 = 3, R2 = 4, R3 =5)),
colname = list("c1"”, "C1"))
Works in a tibble, too.
(Must be a tibble, not a data frame, so that names are preserved.)
dat <- list(c(rl =1, r2 = 2),
c(R1 = 2, R2 = 3),
c(rt =1, r2=2,r3=3,r4d=4, r5=5,r6==6))

cnms <- list("c1", "C1", "c1")
df1 <- tibble::tibble(dat, cnms)
df1

df1 <- df1 %>%
dplyr::mutate(
colvec_col = create_colvec_byname(dat, colname = cnms)
)
df1$colvec_col[[1]]
df1$colvec_col[[2]]
df1$colvec_col[[3]]

create_matrix_byname Create a "byname" matrix from a vector

Description

This function creates a "byname" matrix, or list of matrices, from .dat, depending on the input
arguments. This function is similar to matrix(), but with "byname" characteristics.

Usage

create_matrix_byname (
.dat,
nrow,
ncol,
byrow = FALSE,
dimnames,
matrix_class = c("matrix"”, "Matrix")

create_rowvec_byname

Arguments

.dat

nrow

ncol

byrow

dimnames

matrix_class

Details

27

The data to be used to create the matrix, in a list format, or as a data frame
column containing a list of the data to be used for each observation.

The number of rows to be used to create the matrix, in a list format, or as a
data frame column containing a list of the number of rows to be used for each
observation.

The number of columns to be used to create the matrix, in a list format, or as
a data frame column containing a list of the number of columns to be used for
each observation.

The argument stating whether the matrix should be filled by rows or by columns
(FALSE by column, TRUE by row), in a list format, or as a data frame column
containing a list of the byrow argument for each observation. Default is FALSE.

The dimension names to be used for creating the matrices, in a list format, or
as a data frame column containing a list of the dimension names to be used for
each observation.

One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Row and column names are taken from the dimnames argument.

Any row or column type information on .dat is preserved on output.

The created object(s) can be of type base: :matrix or Matrix: :Matrix, the latter enables sparse
objects to save both memory and disk.

Value

A matrix, list of matrices, or column in a data frame, depending on the input arguments.

Examples

create_matrix_byname(c(1, 2), nrow = 2, ncol =1,

dimnames = list(c("r1"”, "r2"), "c1"))

create_matrix_byname(list(1, 2), nrow = list(1, 1), ncol = list(1,1),

dimnames = list(list("r1"”, "c1"), list("R1", "C1")))

create_rowvec_byname Create row vectors from data

Description

This function takes data in the .dat and creates row vectors.

28 create_rowvec_byname

Usage

create_rowvec_byname (
.dat,
dimnames = NA,
rowname = NA,

matrix_class = c("matrix"”, "Matrix")
)
Arguments

.dat Data to be converted to row vectors.

dimnames The dimension names to be used for creating the row vector, in a list format, or
as a data frame column containing a list of the dimension names to be used for
each observation.

rowname The name of the row of the row vector.

matrix_class One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Details

The row and column names in the resulting row vector are taken from rowname and the names of
.dat. If set, dimnames overrides rowname and the names of .dat.

Row types and column types are taken from the row type and column type attributes of .dat.

This function is a "byname" function that can accept a single number, a vector, a list, or a data frame
in .dat.

Value

A row vector, a list of row vectors, or a data frame column of row vectors, depending on the values
of .dat and class.

Examples

Works with single numbers
create_rowvec_byname(c(cl = 1) %>% setrowtype("rt") %>% setcoltype(”ct"), rowname = "r1")
Works with vectors
create_rowvec_byname(c(cl = 1, ¢c2 = 2), rowname = "r1")
Works with a list
create_rowvec_byname(list(c(cl =1, c2 = 2), c(C1 = 3, C2 = 4, C3 =5)),
rowname = list("r1", "R1"))
Works in a tibble, too.
(Must be a tibble, not a data frame, so that names are preserved.)
dat <- list(c(cl 1,
c(C1 =2, C2 = 3),
c(cl =1, c2=2, c3 =3, cd=14, c5 =5, c6 =6))
rnms <- list("r1"”, "R1", "r1")

create_triplet 29

df1 <- tibble::tibble(dat, rnms)
df1
df1 <- df1 %>%
dplyr: :mutate(
rowvec_col = create_rowvec_byname(dat, rowname = rnms)
)
df1$rowvec_col[[1]]
df1$rowvec_col[[2]]
df1$rowvec_col[[3]1]

create_triplet Create a triplet from a matrix

Description

Creates a data frame triplet with columns i_col, j_col, and value_col from matrix m. Zero entries
are not reported. i and j integers are directly from m and not referenced to any global set of i and

j values.
Usage
create_triplet(
m7
retain_zero_structure = FALSE,
i_col = "i",
j_col = ”j n R
value_col = "value”
)
Arguments
m A matrix or Matrix to be converted to triplet form.

retain_zero_structure

A boolean that tells whether to retain the structure of zero matrices. Default is
FALSE.

i_col, j_col, value_col
String names of i, j, and x columns.

Details

When m is a zero matrix, a zero-row data frame is returned by default (retain_zero_structure
= FALSE). But when retain_zero_structure is TRUE, zero entries are reported for all rows and
columns, thereby preserving the structure of the matrix.

Value

A tibble triplet representation of m.

30 cumapply_byname

cumapply_byname Apply a function cumulatively to a list of matrices or numbers

Description

FUN must be a binary function that also accepts a single argument. The result is a list with first
element FUN(a[[1]]). For i>=2, elements are FUN(a[[i]], out[[i-1]]1), where out is the
result list.

Usage

cumapply_byname(FUN, a)

Arguments

FUN the function to be applied

a the list of matrices or numbers to which FUN will be applied cumulatively
Details

naryapply_byname() and cumapply_byname() are similar. Their differences can be described by
considering a data frame. naryapply_byname () applies FUN to several columns (variables) of the
data frame. For example, sum_byname() applied to several variables gives another column con-
taining the sums across each row of the data frame. cumapply_byname () applies FUN to successive
entries in a single column. For example sum_byname () applied to a single column gives the sum of
all numbers in that column.

Value

a list of same length as a containing the cumulative application of FUN to a

Examples

cumapply_byname(sum, list(1, 2, 3, 4))

cumapply_byname (sum_byname, list(1, 2, 3, 4))
cumapply_byname(prod, list(1, 2, 3, 4))

cumapply_byname (hadamardproduct_byname, list(1, 2, 3, 4))

cumprod_byname 31

cumprod_byname Cumulative element-product that respects row and column names

Description

Provides cumulative element-products along a list or column of a data frame. If a is a single number,
a is returned. If a is a list of numbers, a list representing the cumulative product of the numbers
is returned. If a is a single matrix, a is returned. If a is a list of matrices, a list representing the
cumulative product of the matrices is returned. In this case, each entry in the returned list is product
"by name," such that row and column names of the matrices are respected.

Usage

cumprod_byname (a)

Arguments
a A number, list of numbers, matrix or list of matrices for which cumulative ele-
ment product is desired.
Details

This function respects groups if a is a variable in a data frame.

Value

A single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of
a.

Examples

cumprod_byname(list(1, 2, 3, 4, 5))

ml <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%
setrowtype("row”) %>% setcoltype(”col")

m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%
setrowtype("row”) %>% setcoltype(”col")

m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row"”) %>% setcoltype(”col™)
cumprod_byname(list(m1, m2, m3))

32 cumsum_byname

cumsum_byname Cumulative sum that respects row and column names

Description

Provides cumulative sums along a list or column of a data frame. If a is a single number, a is
returned. If a is a list of numbers, a list representing the cumulative sum of the numbers is returned.
If a is a single matrix, a is returned. If a is a list of matrices, a list representing the cumulative sum
of the matrices is returned. In this case, each entry in the returned list is sum "by name," such that
row and column names of the matrices are respected.

Usage

cumsum_byname (a)

Arguments
a A number, list of numbers, matrix or list of matrices for which cumulative sum
is desired.
Details

If cumulative sums are desired in the context of a data frame, groups in the data frame are respected
if mutate is used. See examples.

Value

A single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of

a.
Examples

library(dplyr)

library(tibble)

ml <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%
setrowtype("row”) %>% setcoltype(”col™)

m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%
setrowtype("row”) %>% setcoltype(”col")

m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row”) %>% setcoltype(”col")

cumsum_byname(list(m1, m2, m3))

Groups are respected in the context of mutate.

tibble(grp = c("A", "A", "B"), m = list(ml, m2, m3)) %>% group_by(grp) %>%
mutate(m2 = cumsum_byname(m))

difference_byname 33

difference_byname Name-wise subtraction of matrices

Description

Name-wise subtraction of matrices

Usage

difference_byname(minuend, subtrahend)

Arguments
minuend matrix or constant
subtrahend matrix or constant
Performs a union and sorting of row and column names prior to differencing.
Zeroes are inserted for missing matrix elements.
Value

A matrix representing the name-wise difference between minuend and subtrahend

Examples
library(dplyr)
difference_byname(100, 50)
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype("Commodities”) %>% setcoltype(”Industries”)

G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype("”Industries”)

U - G # Non-sensical. Row and column names not respected.

difference_byname(U, G) # Row and column names respected! Should be all zeroes.

difference_byname(100, U)

difference_byname(10, G)

difference_byname(G) # When subtrahend is missing, return minuend (in this case, G).

difference_byname(subtrahend = G) # When minuend is missing, return - subtrahend (in this case, -G)

This also works with lists

difference_byname(list(100, 100), list(50, 50))

difference_byname(list(U,U), list(G,G))

DF <- data.frame(U = I(list()), G = I(list()))

DFCL1,"U"]] <- U

DFCL2,"U"]1] <- U

DFLL1,"G"1]1 <- G

DFL[2,"G"]] <- G

difference_byname(DFU, DFG)

DF %>% mutate(diffs = difference_byname(U, G))

34 eigenvalues_byname

eigenvalues_byname Calculate eigenvalues of a matrix

Description

Calculate the eigenvalues of a matrix or a list of matrices.

Usage

eigenvalues_byname(a)

Arguments

a A matrix or list of matrices.

Details

This function pairs with eigenvectors_byname(); the first value of the result is the eigenvalue
for the eigenvector reported in the first column of the result from eigenvectors_byname(). The
second value of the result is the eigenvalue for the eigenvector reported in the second column of the
result from eigenvectors_byname(). Etc.

Internally, this function uses base: :eigen(only.values = TRUE).

complete_rows_cols() is called prior to calculating the eigenvalues.

Value

A vector of eigenvalues.

Examples

m <- matrix(c(4, 6, 10,
3, 10, 13,
-2, -6, -8), byrow = TRUE, nrow = 3, ncol = 3,
dimnames = list(c("p1"”, "p2", "p3"), c("p1", "p2", "p3")))
m
eigenvalues_byname(m)
eigenvalues_byname(list(m, 2*m))
DF <- tibble::tibble(m_col = list(m, 2*m)) %>%
dplyr: :mutate(
eigen_col = eigenvalues_byname(m_col)
)
DF$eigen_col[[1]1]
DF$eigen_col[[2]1]

eigenvectors_byname 35

eigenvectors_byname Calculate eigenvectors of a matrix

Description

Calculate the eigenvectors of a matrix or a list of matrices.

Usage

eigenvectors_byname(a)

Arguments

a A matrix or list of matrices.

Details

This function pairs with eigenvalues_byname(); the first column of the resulting matrix is the
eigenvector for the first eigenvalue reported by eigenvalues_byname(). The second column of the
resulting matrix is the eigenvector for the second eigenvalue reported by eigenvalues_byname().
Etc.

Internally, this function uses base: :eigen().

complete_rows_cols() is called prior to calculating the eigenvectors.

Value

A matrix whose columns are the eigenvectors of a.

Examples

m <- matrix(c(4, 6, 10,
3, 10, 13,
-2, -6, -8), byrow = TRUE, nrow = 3, ncol = 3,
dimnames = list(c("p1"”, "p2", "p3"), c("p1", "p2", "p3")))
m
eigenvectors_byname(m)
eigenvectors_byname(list(m, 2xm))
DF <- tibble::tibble(m_col = list(m, 2*m)) %>%
dplyr: :mutate(
eigen_col = eigenvectors_byname(m_col)
)
DF$eigen_col[[1]1]
DF$eigen_col[[2]1]

36 elementapply_byname

elementapply_byname Apply a function to an element of a matrix specified by rows and
columns

Description

FUN is applied to the element of a that is specified by row and col.

Usage

elementapply_byname(FUN, a, row, col, .FUNdots = NULL)

Arguments
FUN a unary function to be applied to specified rows and columns of a
a the argument to FUN
row the row name of the element to which FUN will be applied
col the column name of the element to which FUN will be applied
.FUNdots a list of additional arguments to FUN. (Default is NULL.)

Details

row and col can be any of row or column names or integer indices or a mix of both.

Value

a, after FUN has been applied to the element at row and col

Examples

divide <- function(x, divisor){
x/divisor
3
m <- matrix(c(1:4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1”, "c2"))) %>%
setrowtype("row”) %>% setcoltype("col")
elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 2))
elementapply_byname(divide, a = m, row = 1, col = 2, .FUNdots = list(divisor = 10))
elementapply_byname(divide, a = m, row = "r2", col = "c2", .FUNdots = list(divisor = 100))

equal_byname 37

equal_byname Compare two matrices "by name" for equality

Description

If operands are matrices, they are completed and sorted relative to one another prior to comparison.

Usage
equal_byname(..., .summarise = FALSE, tol = 0)
Arguments
Operands to be compared.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE). Default is FALSE (across lists).
tol A double that tells how precisely equal the values of a and b must be. Default is
0.
Details

Comparisons are made by equal _matrix_or_Matrix(a, b, tolerance = abs(tol)) so that vari-
ations among numbers within tol will still return TRUE.

If EXACT comparison is needed, use identical_byname (), which compares using identical(a,
b).

tol should be a single value that applies to all items in

Value

TRUE iff all information is equal, including row and column types and row and column names and
entries in the matrices.

Examples
a <- matrix(1:4, nrow = 2)
b <- matrix(1:4, nrow = 2)

equal_byname(a, b)

equal_byname(a, b + 1e-100)

identical_byname(a, b + 1e-100)

a <- a %>% setrowtype("Industries"”) %>% setcoltype(”Commodities”)
equal_byname(a, b) # FALSE because a has row and column types, but b does not.
b <- b %>% setrowtype(”"Industries”) %>% setcoltype("Commodities")
equal_byname(a, b)

dimnames(a) <- list(c("i1"”, "i2"), c("c1", "c2"))

dimnames(b) <- list(c("c1", "c2"), c("i1", "i2"))

equal_byname(a, b) # FALSE, because row and column names are not equal
dimnames(b) <- dimnames(a)

equal_byname(a, b)

38 fractionize_byname

exp_byname Exponential of matrix elements

Description

Gives the exponential of all elements of a matrix or list of matrices

Usage

exp_byname(a)

Arguments

a a matrix of list of matrices

Value

M with each element replaced by its exponential

Examples

exp_byname (1)
m <- matrix(c(log(10),log(1),
log(1),log(100)),
byrow = TRUE, nrow = 2, ncol = 2,
dimnames = list(paste@("i"”, 1:2), paste@(”c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")
m
exp_byname (m)

fractionize_byname Compute fractions of matrix entries

Description

This function divides all entries in a by the specified sum, thereby "fractionizing" the matrix.

Usage

fractionize_byname(a, margin, inf_becomes = .Machine$double.xmax)

geometricmean_byname 39

Arguments
a The matrix to be fractionized.
margin If 1 (rows), each entry in a is divided by its row’s sum. If 2 (columns), each
entry in a is divided by its column’s sum. If c(1,2) (both rows and columns),
each entry in a is divided by the sum of all entries in a.
inf_becomes A value to be substitute for any Inf produced by division. Defaultis .Machine$double.xmax.
Another reasonable value is Inf. Set to NULL to disable substitution. inf_becomes
is passed to hatinv_byname().
Value

A fractionized matrix of same dimensions and same row and column types as a.

Examples

M <- matrix(c(1, 5,
4, 5),
nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("p1”, "p2"), c("il1", "i2"))) %>%
setcoltype(”"Products”) %>% setrowtype("Industries”)
fractionize_byname(M, margin = c(1,2))
fractionize_byname(M, margin = 1)
fractionize_byname(M, margin = 2)

geometricmean_byname Name- and element-wise geometric mean of two matrices.

Description

Gives the geometric mean of corresponding entries of a and b.

Usage
geometricmean_byname(..., .summarise = FALSE)
Arguments
operands; constants, matrices, or lists of matrices
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
Details

This function performs a union and sorting of row and column names prior to performing geometric
mean. Zeroes are inserted for missing matrix elements.

40 getcolnames_byname

Value

name-wise geometric mean of operands

Examples

library(dplyr)
geometricmean_byname (10, 1000)
geometricmean_byname (10, 1000, 100000)
commoditynames <- c("c1”, "c2")
industrynames <- "i1"
U <- matrix(c(10, 1000), ncol =1, nrow = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype(”Commodities”) %>% setcoltype(”Industries™)
G <- matrix(c(1e3, 1e5), ncol = 1, nrow = 2,
dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype("”Industries™)
Non-sensical. Row and column names not respected.
sqrt (UxG)
Row and column names respected!
geometricmean_byname(U, G)
geometricmean_byname (1000, U)
geometricmean_byname (10, G)
This also works with lists
geometricmean_byname(list(10, 1000), list(1000, 10))
geometricmean_byname(list(U,U), list(G,G))
DF <- data.frame(U = I(list()), G = I(list()))
DFCL1,"U"]] <- U
DFLL2,"U"]1] <- U
DFLL1,"G"1]1 <- G
DFL[2,"G"]] <- G
geometricmean_byname (DFU, DFG)
DF %>% mutate(geomeans = geometricmean_byname(U, G))

getcolnames_byname Gets column names

Description
Gets column names in a way that is amenable to use in chaining operations in a functional program-
ming way

Usage

getcolnames_byname(a)

Arguments

a The matrix or data frame from which column names are to be retrieved

getrownames_byname 41

Value

Column names of m.

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i”, 1:2), paste@("c"”, 1:3))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

getcolnames_byname (m)

This also works for lists

getcolnames_byname(list(m,m))

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <= m

DFL[2,"m"]] <- m

getcolnames_byname (DF $m)

getrownames_byname Gets row names

Description

Gets row names in a way that is amenable to use in chaining operations in a functional programming
way

Usage

getrownames_byname(a)

Arguments

a The matrix or data frame on which row names are to be retrieved

Value

row names of a

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i”, 1:2), paste@("c"”, 1:3))) %>%
setrowtype(”Industries”) %>% setcoltype(”Commodities™)

getrownames_byname (m)

This also works for lists

getrownames_byname(list(m,m))

DF <- data.frame(m = I(list()))

DFLL1,"m"]1] <-m

DFLL2,"m"]] <-m

getrownames_byname (DF $m)

42 get_row_col_index_maps

getzerorowcolnames_byname
Names of zero rows and columns

Description
When a matrix has rows or columns full of zeroes, it is singular, and can’t be inverted. This function
returns the names of rows or columns that are full with zeroes.

Usage

getzerorowcolnames_byname(a, tol = 1e-06)

Arguments

a A matrix or list of matrices.

tol The allowable deviation from O for any element.
Value

A vector of names of zero rows or columns.

Examples

m <- matrix(c(1, 0, 1,
1, 0, 0,
0, 0, 0),
dimnames = list(c("r1"”, "r2", "r3"), c("c1”, "c2", "c3")),
nrow = 3, ncol = 3, byrow = TRUE)
m
getzerorowcolnames_byname (m)

get_row_col_index_maps
Figure out row and column index maps

Description

The index_map argument can take several forms. This function figures out (for a given a_mat) the
index maps for rows (first data frame in the return list) and columns (second data frame in the return
list).

Usage

get_row_col_index_maps(a_mat, ind_maps)

hadamardproduct_byname 43

Arguments

a_mat A matrix for which index maps should be determined.

ind_maps A single data frame or a list of two or more data frames of potential index maps.
Details

ind_maps can be a single data frame, in which case the single data frame will be applied to both
rows and columns of a_mat.

ind_maps can also be a 2-item list, in which case the first item is applied to rows and the second
item is applied to columns.

Finally, ind_maps can be a named list of length 2 or more, in which case the names are interpreted
as row or column types. Names in the ind_maps list are matched to row and column types and
applied as required.

This is a non-exported function meant only for internal use.

Value

A list of two data frames. The first data frame is the index map for the rows of a_mat. The second
data frame is the index map for the columns of a_mat.

hadamardproduct_byname
Name-wise matrix Hadamard multiplication

Description

Performs a union and sorting of names of rows and columns for both multiplicand and multiplier for
each sequential multiplication step. Zeroes are inserted for missing matrix elements. Doing so en-
sures that the dimensions of the multiplicand and multiplier are be conformable for each sequential

multiplication.
Usage
hadamardproduct_byname(..., .summarise = FALSE)
Arguments
Operands; constants, matrices, or lists of matrices.
.summarise When TRUE, operands are multiplied down lists. When FALSE (the default),
items multiplied across lists.
Details

The Hadamard product is also known as the entrywise product.

44 hatinv_byname

Value

Name-wise element product of operands.

Examples
library(dplyr)
hadamardproduct_byname(2, 2)
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype("Commodities”) %>% setcoltype(”Industries”)

G <- matrix(1:4, ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype(”Industries”)

U * G # Not what is desired, because names aren't aligned

hadamardproduct_byname(U, G)

hadamardproduct_byname(U, G, G)

hadamardproduct_byname (U, @)

hadamardproduct_byname(@, G)

This also works with lists

hadamardproduct_byname(list(U, U), list(G, G))

DF <- data.frame(U = I(list()), G = I(list()))

DFLL1,"U"1] <= U

DFC[2,"U"]] <- U

DFLL1,"G"]1] <- G

DF[[2,"G"]1] <- G

hadamardproduct_byname (DFU, DFG)

DF %>% mutate(entrywiseprods = hadamardproduct_byname(U, G))

Also works down lists with ~.summarise = TRUE™.

hadamardproduct_byname(list(U, G), .summarise = TRUE)

hatinv_byname Hatize and invert a vector

Description

When dividing rows or columns of a matrix by elements of a vector, the vector elements are placed
on the diagonal of a new matrix, the diagonal matrix is inverted, and the result is pre- or post-
multiplied into the matrix. This function performs the hatizing and inverting of vector v in one step
and takes advantage of computational efficiencies to achieve the desired result. The computational
shortcut is apparent when one observes that the matrix produced by hatizing and inverting a vector is
a diagonal matrix whose non-zero elements are the numerical inverses of the individual elements of
v. So this function first inverts each element of v then places the inverted elements on the diagonal
of a diagonal matrix.

Usage

hatinv_byname(v, keep = NULL, inf_becomes = .Machine$double.xmax)

hatinv_byname 45

Arguments
v The vector to be hatized and inverted.
keep See hatize_byname().
inf_becomes A value to be substitute for any Inf produced by the inversion process. Default
is .Machine$double.xmax. Another reasonable value is Inf. Set to NULL to
disable substitution.
Details

Note that this function gives the same result as invert_byname(hatize_byname(v)), except that
invert_byname(hatize_byname(v)) fails due to a singular matrix error when any of the elements
of v are zero. This function will give inf_becomes on the diagonal of the result for each zero
element of v, arguably a better answer. The sign of Inf is preserved in the substitution. The
default value of inf_becomes is .Machine$double. xmax. Set inf_becomes to NULL to disable this
behavior.

The default behavior is helpful for cases when the result of hatinv_byname () is later multiplied by
0 to obtain @. Multiplying Inf by @ gives NaN which would effectively end the stream of calcula-
tions.

Value

a square diagonal matrix with inverted elements of v on the diagonal

Examples

v <- matrix(1:10, ncol = 1, dimnames = list(c(paste@("i", 1:10)), c("c1"))) %>%
setrowtype("Industries”) %>% setcoltype(NA)

r <- matrix(1:5, nrow = 1, dimnames = list(c("r1"), c(paste@(”c”, 1:5)))) %>%
setrowtype(NA) %>% setcoltype(”Commodities”)

hatinv_byname(v, keep = "rownames"”)

hatinv_byname(r, keep = "colnames")

This function also works with lists.

hatinv_byname(list(v, v), keep = "rownames")

Watch out for @ values

v2 <- matrix(@:1, ncol = 1, dimnames = list(c(paste@("i", @:1)), c("p1"))) %>%
setrowtype("Industries”) %>% setcoltype(NA)

Produces singular matrix error

Not run: v2 %>% hatize_byname() %>% invert_byname

Handles @ values well

hatinv_byname(v2, keep = "rownames")

hatinv_byname(v2, inf_becomes = 42, keep = "rownames")
hatinv_byname(v2, inf_becomes = NA, keep = "rownames”)

Deals with 1x1 matrices well, if the “keep™ argument is set.

m <- matrix(42, nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%

setrowtype(”Product -> Industry”) %>%
setcoltype(”Industry -> Product”)
m %>%
hatinv_byname(keep = "rownames")
m %>%
hatinv_byname(keep = "colnames")

46 hatize_byname

hatize_byname Creates a diagonal "hat" matrix from a vector
y g

Description

A "hat" matrix (or a diagonal matrix) is one in which the only non-zero elements are along on the
diagonal. To "hatize" a vector is to place its elements on the diagonal of an otherwise-zero square
matrix. v must be a matrix object with at least one of its two dimensions of length 1 (i.e., a vector).
The names on both dimensions of the hatized matrix are the same and taken from the dimension of
v that is not 1. Note that the row names and column names are sorted prior to forming the "hat"
matrix.

Usage
hatize_byname(v, keep = NULL)

Arguments
v The vector from which a "hat" matrix is to be created.
keep One of "rownames" or "colnames" or NULL. If NULL, the default, names are kept
from the dimension that is not size 1.
Details

Hatizing a 1x1 vector is potentially undefined. The argument keep determines whether to keep
"rownames" or "colnames". By default keep is NULL, meaning that the function should attempt to
figure out which dimension’s names should be used for the hatized matrix on output. If vector v
could ever be 1x1, it is best to set a value for keep when writing code that calls hatize_byname().

If the caller specifies keep = "colnames” when v is a column vector, an error is thrown. If the caller
specifies keep = "rownames” when v is a row vector, an error is thrown.

Value

A square "hat" matrix with size equal to the length of v.

Examples

v <- matrix(1:10, ncol = 1, dimnames = list(c(paste@("i"”, 1:10)), c("c1"))) %>%
setrowtype("Industries”) %>% setcoltype(NA)

v

hatize_byname(v, keep = "rownames")

r <- matrix(1:5, nrow = 1, dimnames = list(c("r1"), c(paste@(”c”, 1:5)))) %>%
setrowtype(NA) %>% setcoltype(”Commodities”)

r

hatize_byname(r, keep = "colnames”)
This also works with lists.
hatize_byname(list(v, v), keep = "rownames")

A 1x1 column vector is a degenerate case.

identical_byname 47

Row names and rowtype are transferred to the column.
matrix(42, nrow = 1, ncol = 1, dimnames = list("r1")) %>%
setrowtype(”Product -> Industry”) %>%
hatize_byname(keep = "rownames")
A 1x1 row vector is a degenerate case.
Column names and coltype are transferred to the row.
matrix(42, nrow = 1, ncol = 1, dimnames = list(NULL, "c1")) %>%
setcoltype("Industry -> Product”) %>%

hatize_byname(keep = "colnames")
A 1x1 matrix with both row and column names generates a failure.
Not run:
matrix(42, nrow = 1, ncol = 1, dimnames = list("r1"”, "c1")) %>%

setrowtype("Product -> Industry”") %>%
setcoltype(”Industry -> Product”) %>%
hatize_byname()

End(Not run)
But you could specify which you want keep, row names or column names.
m <- matrix(42, nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%
setrowtype(”"Product -> Industry”) %>%
setcoltype(”Industry -> Product”)

m
m %>%
hatize_byname(keep = "rownames")
m %>%
hatize_byname(keep = "colnames")
identical_byname Compare two matrices "by name" for exact equality
Description

If operands are matrices, they are completed and sorted relative to one another prior to comparison.

Usage
identical_byname(..., .summarise = FALSE)
Arguments
Operands to be compared.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
Details

Comparisons are made by identical(a, b) so that variations among numbers within the compu-
tational precision will return FALSE.

If fuzzy comparison is needed, use equal_byname, which compares using isTRUE(all.equal(a,

b)).

48 identize_byname

Value

TRUE iff all information is identical, including row and column types and row and column names
and entries in the matrices.

Examples

a <- matrix(1:4, nrow = 2)

b <- matrix(1:4, nrow = 2)

identical_byname(a, b)

identical_byname(a, b + 1e-100)

a <- a %»>% setrowtype("Industries"”) %>% setcoltype(”Commodities”)
identical_byname(a, b) # FALSE because a has row and column types, but b does not.
b <- b %>% setrowtype(”"Industries”) %>% setcoltype("”Commodities")
identical_byname(a, b)

dimnames(a) <- list(c("i1"”, "i2"), c("c1", "c2"))

dimnames(b) <- list(c("c1", "c2"), c("i1", "i2"))

identical_byname(a, b) # FALSE, because row and column names are not equal
dimnames(b) <- dimnames(a)

identical_byname(a, b)

identize_byname Named identity matrix or vector

Description
Creates an identity matrix (I) or vector (i) of same size and with same names and same row and
column types as a.

Usage

identize_byname(a, margin = c(1, 2))

Arguments
a the matrix whose names and dimensions are to be preserved in an identity matrix
or vector
margin determines whether an identity vector or matrix is returned. See details.
Details

Behaviour for different values of margin are as follows:
e If margin = 1, makes a column matrix filled with 1s. Row names and type are taken from row
names and type of a. Column name and type are same as column type of a.

* If margin = 2, make a row matrix filled with 1s. Column names and type are taken from
column name and type of a. Row name and type are same as row type of a.

e If list(c(1,2)) (the default), make an identity matrix with 1s on the diagonal. Row and
column names are sorted on output.

Iminus_byname 49

Value

An identity matrix or vector.

Examples

M <- matrix(1:16, ncol = 4, dimnames=list(c(paste@("i"”, 1:4)), pasteo("c"”, 1:4))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

identize_byname (M)

identize_byname(M, margin = c(1,2))

identize_byname(M, margin = 1)

identize_byname(M, margin = 2)

N <- matrix(c(-21, -12, -21, -10), ncol = 2, dimnames = list(c("b", "a"), c("b", "a"))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

identize_byname(N)

This also works with lists

identize_byname(list(M, M))

Iminus_byname Subtract a matrix with named rows and columns from a suitably named
and sized identity matrix (1)

Description

The order of rows and columns of m may change before subtracting from I, because the rows and
columns are sorted by name prior to subtracting from I. Furthermore, if m is not square, it will be
made square before subtracting from I by calling complete_and_sort().

Usage

Iminus_byname(a)

Arguments

a The matrix to be subtracted from I.

Value

The difference between an identity matrix (I) and m. (whose rows and columns have been completed
and sorted)

Examples

m <- matrix(c(-21, -12, -21, -10), ncol = 2, dimnames = list(c("b", "a"), c("b", "a"))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

Rows and columns are unsorted

diag(1l, nrow = 2) - m

Rows and columns are sorted prior to subtracting from the identity matrix

Iminus_byname(m)

This also works with lists

50 invert_byname

Iminus_byname(list(m,m))

If the m is not square before subtracting from I,

it will be made square by the function complete_and_sort.

m2 <- matrix(c(1,2,3,4,5,6), ncol = 2, dimnames = list(c("a", "b", "c"), c("a", "b"))) %>%
setrowtype(”Industries"”) %>% setcoltype(”Commodities")

Iminus_byname(m2)

invert_byname Invert a matrix

Description
This function transposes row and column names as well as row and column types. Rows and
columns of a are sorted prior to inverting.

Usage

invert_byname(a, method = c("solve”", "QR", "SVD"), tol = .Machine$double.eps)

Arguments
a The matrix to be inverted. a must be square.
method One of "solve", "QR", or "SVD". Default is "solve". See details.
tol The tolerance for detecting linear dependencies in the columns of a. Default is
.Machine$double.eps.
Details

The method argument specifies which method should be used for calculating the inverse. "solve"
uses base: :solve() and the value of tol. "QR" uses base::solve.qr() and the value of tol.
"SVD" uses matrixcalc::svd.inverse(), ignoring the tol argument.

Both tol and method should be a single values and apply to all matrices in a.

If a is a singular matrix, names of zero rows and columns are reported in the error message.

Value

The inversion of a.

Examples

m<- matrix(c(10,0,0,100), nrow = 2, dimnames = list(paste@("i", 1:2), paste@("c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

invert_byname(m)

matrixproduct_byname(m, invert_byname(m))

matrixproduct_byname(invert_byname(m), m)

invert_byname(list(m,m))

invert_byname(m, method = "QR")

invert_byname(m, method = "SVD")

is.Matrix 51

is.Matrix Is an object a Matrix?

Description
Arguably, this function should be in the Matrix package, but it is not. We include it here for
convenience.

Usage

is.Matrix(a)

Arguments

a The object to be queried if it is Matrix.

Details

This function is not vectorized.

is.Matrix() is a wrapper for inherits(a, "Matrix).

Value

A boolean. TRUE if a is a Matrix, FALSE otherwise.

Examples

is.Matrix(matrix(42))
is.Matrix(Matrix::Matrix(42))

iszero_byname Test whether this is the zero matrix

Description
Note that this function tests whether the elements of abs(a) are <= tol. The default value for tol
is 1e-6. So, you can set tol = @ to discover if a is EXACTLY the zero matrix.

Usage

iszero_byname(a, tol = 1e-06)

Arguments
a A matrix or list of matrices.
tol The allowable deviation from O for any element. Interpreted as an absolute

value.

52 is_matrix_or_Matrix

Details

If a contains any NA values, NA is returned.

Value

TRUE Iff this is the zero matrix within tol.

Examples

zero <- matrix(@, nrow = 50, ncol = 50)
iszero_byname(zero)

nonzero <- matrix(1:4, nrow = 2)
iszero_byname(nonzero)

Also works for lists

iszero_byname(list(zero, nonzero))

And it works for data frames

DF <- data.frame(A = I(list()), B = I(list()))
DFLL1,"A"]1] <- zero

DFLL2,"A"]] <- nonzero

DFLL1,"B"]1] <- nonzero

DFL[2,"B"]1] <- zero

iszero_byname (DF$A)

iszero_byname (DF$B)

iszero_byname(matrix(1e-1@, nrow = 2))
iszero_byname(matrix(1e-1@, nrow = 2), tol = 1e-11)
When any NA value is present, NA is returned
iszero_byname (NA)

iszero_byname(matrix(c(@, NA), ncol = 2))
iszero_byname(list(matrix(c(@, NA)), zero, nonzero))

is_matrix_or_Matrix Tells whether an object is one of a matrix or a Matrix

Description
Often, it helps to know whether an object is a matrix or a Matrix, and you don’t care which. This
function helps in those situations.

Usage

is_matrix_or_Matrix(a)

Arguments

a The object about which we want to know if it is a matrix or a Matrix.

Value

TRUE when ais amatrix or a Matrix. FALSE otherwise.

kvec_from_template_byname 53

Examples

is_matrix_or_Matrix(42)
is_matrix_or_Matrix(matrix(42))
is_matrix_or_Matrix(Matrix::Matrix(42))
is_matrix_or_Matrix(matsbyname: :Matrix(42))

kvec_from_template_byname

Create a constant vector from matrix a

Description

This function creates a vector using a as a template and k as its value. Row names are taken from
the row names of a. The column name of the output is given by colname. Row and column types
are transferred from a to the output, directly.

Usage

kvec_from_template_byname(a, k = 1, colname = NA, column = TRUE)

Arguments

a
k

colname

column

Details

The template matrix for the column vector.
The value of the entries in the output column vector.

The name of the output vector’s 1-sized dimension (the only column if column
is TRUE, the only row otherwise).

Tells whether a column vector (if TRUE, the default) or a row vector (if FALSE)
should be created.

If column is TRUE, the output is a column vector with row names taken from row names of a and
a column named by colname. If column is FALSE, the output is a row vevtor with column names
taken from column names of a and a row named by colname.

If the class of a is Matrix, the output object will be a Matrix. Otherwise, the class of the output
object will be amatrix.

Value

A vector vector formed from a.

54 list_of rows_or_cols

Examples

kvec_from_template_byname(matrix(42, nrow = 4, ncol = 2,
dimnames = list(c("r1", "r2", "r3”, "r4"), c("c1”, "c2"))),
colname = "new column”)
kvec_from_template_byname(matrix(42, nrow = 4, ncol = 2,
dimnames = list(c("r1", "r2", "r3”, "r4"), c("c1”, "c2"))),
colname = "new row"”, column = FALSE)

list_of_rows_or_cols Named list of rows or columns of matrices

Description

This function takes matrix m and converts it to a list of single-row (if margin ==1) or single-
column(if margin == 2) matrices. Each item in the list is named for its row (if margin==1) or
column (if margin == 2).

Usage

list_of_rows_or_cols(a, margin)

Arguments
a a matrix or list of matrices (say, from a column of a data frame)
margin the margin of the matrices to be extracted (1 for rows, 2 for columns)
Details

Note that the result provides column vectors, regardless of the value of margin.

Value

a named list of rows or columns extracted from m

Examples

m <- matrix(data = c(1:6),
nrow = 2, ncol = 3,
dimnames = list(c("p1”, "p2"), c("il1", "i2", "i3"))) %>%
setrowtype(rowtype = "Products”) %>% setcoltype(coltype = "Industries"”)
list_of_rows_or_cols(m, margin = 1)
list_of_rows_or_cols(m, margin = 2)

logarithmicmean_byname 55

logarithmicmean_byname

Name- and element-wise logarithmic mean of matrices

Description

The logarithmic mean of corresponding entries of a and bis@ifa=0@orb=0,aifa=b, or (b -
a) / (log(b) - log(a)) otherwise.

Usage

logarithmicmean_byname(a, b, base = exp(1))

Arguments

a
b

base

Details

first operand (a matrix or constant value or lists of same).
second operand (a matrix or constant value or lists of same).

the base of the logarithm used when computing the logarithmic mean. (Default
is base = exp(1).)

This function performs a union and sorting of row and column names prior to performing logarith-
mic mean. Zeroes are inserted for missing matrix elements.

Internally, the third condition is implemented as (b - a) / log(b/a).

Note that (b - a) / log(b/a) = (a - b) / log(a/b), so logarithmic mean is commutative; the or-
der of arguments a and b does not change the result.

Value

A matrix representing the name-wise logarithmic mean of a and b.

Examples

library(dplyr)

ml <- matrix(c(1:6), nrow = 3, ncol = 2) %>%
setrownames_byname(c("r1", "r2", "r3")) %>% setcolnames_byname(c("c1"”, "c2")) %>%
setrowtype("row”) %>% setcoltype(”col")

m2 <- matrix(c(7:12), nrow = 3, ncol = 2) %>%
setrownames_byname(c("r2", "r3", "r4")) %>% setcolnames_byname(c("c2", "c3")) %>%
setrowtype("row”) %>% setcoltype(”col")

logarithmicmean_byname(m1, m2)

This also works with lists

logarithmicmean_byname(list(m1, m1), list(m2, m2))

DF <- data.frame(ml = I(list()), m2 = I(list()))

DFLLT,"m1"]] <= ml

DFLL2,"m1"]1] <- ml

56 logmean

DFLLT,"m2"]1] <- m2

DFL[2,"m2"]] <- m2

logarithmicmean_byname (DF$m1, DF$m2)

DF %>% mutate(logmeans = logarithmicmean_byname(m1, m2))

logmean Logarithmic mean of two numbers

Description

Calculates the logarithmic mean of two numbers.

Usage

logmean(a, b, base = exp(1))

Arguments

a the first operand (must be non-negative)

b the second operand (must be non-negative)

base the base of the logarithm used in this calculation. (Default is exp(1).)
Details

This is an internal helper function for logarithmicmean_byname.

Value

Q0ifa=0orb=0;x1ifa==b;and (a-b) / log(a’/b, base = base) for all other values of a and
b

Examples

matsbyname: : :logmean(@, @) # 0

matsbyname: : :logmean(@, 1) # 0

matsbyname: ::logmean(1, @) # 0

matsbyname: ::logmean(1, 1) # 1

matsbyname: ::logmean(2, 1)

matsbyname: : :logmean(1, 2) # commutative

matsbyname: ::logmean(1, 10) # base = exp(1), the default
matsbyname: : :logmean(1, 10, base = 10)

log_byname 57

log_byname Logarithm of matrix elements

Description

Specify the base of the log with base argument.

Usage

log_byname(a, base = exp(1))

Arguments

a A matrix or list of matrices.

base The base of the logarithm (default is exp(1), giving the natural logarithm).
Value

M with each element replaced by its base base logarithm

Examples

log_byname(exp(1))

m<- matrix(c(10,1,1,100), nrow = 2, dimnames = list(paste@("i", 1:2), paste@("c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

log_byname(m)

log_byname(m, base = 10)

margin_from_types_byname
Translate row and column types to integer margins

Description

Converts row and column types to integer margins, based on a and types. If types is not a character
vector, types is returned unmodified. If types is a character vector, an integer vector is returned
corresponding to the margins on which types are found. If types are not found in the row or
column types of a, NA_integer_ is returned.

Usage

margin_from_types_byname(a, types)

58 matricize_byname

Arguments
a A matrix or list of matrices.
types A character vector or list of character vectors representing row or column types
whose corresponding integer margins in a are to be determined.
Value

A vector of integers or list of vectors of integers corresponding to the margins on which types exist.

Examples

Works for single matrices
m <- matrix(1) %>%
setrowtype("Product”) %>% setcoltype("Industry"”)
margin_from_types_byname(m, "Product")
margin_from_types_byname(m, "Industry")
margin_from_types_byname(m, c(”"Product”, "Industry”))
margin_from_types_byname(m, c("Industry”, "Product”))
Works for lists of matrices
margin_from_types_byname(list(m, m), types = "Product")
margin_from_types_byname(list(m, m), types = "Industry")
margin_from_types_byname(list(m, m), types = c("Product”, "Product”))
margin_from_types_byname(list(m, m), types = c("Industry”, "Industry”))
margin_from_types_byname(list(m, m), types = c("Product”, "Industry"))
margin_from_types_byname(list(m, m), types = list("Product”, "Industry"))
margin_from_types_byname(list(m, m), types = list(c("Product”, "Industry")))
margin_from_types_byname(list(m, m), types = list(c("Product”, "Industry"),
c("Product”, "Industry")))
Works in a data frame
m2 <- matrix(2) %>%
setrowtype("Industry”) %>% setcoltype("Product”)
df <- tibble::tibble(m = list(m, m2), types = list("Product”, c("Product”, "Industry"”)))
res <- df %>%
dplyr: :mutate(
margin = margin_from_types_byname(m, types)
)

res$margin

matricize_byname Matricize a vector

Description

Converts a vector with rows or columns named according to notation into a matrix or a Matrix,
depending on the type of a. Row and column types of the output are taken from the row or column
type of the long dimension of the incoming vector. If the row or column type of the long dimension
of the incoming vector is NULL, the outgoing matrix will have NULL rowtype and NULL coltype.

Matrix 59

Usage

matricize_byname(a, notation)

Arguments
a A row (column) vector to be converted to a matrix based on its row (column)
names.
notation A string vector created by RCLabels: :notation_vec() that identifies the no-
tation for row or column names.
Value

A matrix created from vector a.

Examples

v <- matrix(c(1,

2,
3’
4)’
nrow = 4, ncol = 1, dimnames = list(c("p1 -> i1",
"p2 => i1,
"p1 -> i2",

"p2 -> 1i2"))) %>%
setrowtype("Products -> Industries”)
Default separator is " -> ".

matricize_byname(v, notation = RCLabels::arrow_notation)

Matrix Create a Matrix amenable to use in the matsbyname package

Description

The matsbyname package uses Matrix objects for its default data representation, taking advantage
of the sparse matrix capabilities of Matrix compared to the base matrix class. This function routes
toMatrix: :Matrix(), with some important differences. See details.

Usage
Matrix(
data = NA,
nrow = 1,
ncol =1,

byrow = FALSE,

dimnames = base::dimnames(data),
sparse = NULL,

doDiag = FALSE,

forceCheck = FALSE,

60 Matrix

rowtype = matsbyname::rowtype(data),
coltype = matsbyname::coltype(data)

)
Arguments

data An optional numeric data vector or matrix.

nrow When data is not amatrix or a Matrix, the desired number of rows. Default is
1.

ncol When datais notamatrix or aMatrix, the desired number of columns. Default
is 1.

byrow A boolean. If FALSE (the default) the Matrix is filled by columns, otherwise the
Matrix is filled by rows.

dimnames A dimnames attribute for the Matrix: a list of two character components. Default
is base: :dimnames(data).

sparse A boolean or NULL. Specifies whether the result should be sparse or not. By
default (NULL), the Matrix is made sparse when more than half of the entries are
Q.

doDiag A boolean indicating if a diagonalMatrix object should be returned when the
resulting Matrix is diagonal (mathematically). Default is FALSE, which is differ-
ent from Matrix: :Matrix().

forceCheck A boolean indicating if the checks for structure should happen when data is
already a Matrix object. Default is FALSE.

rowtype The rowtype for the result. Default is matsbyname: : rowtype(data).

coltype The coltype for the result. Default is matsbyname: : coltype(data).

Details

This function NEVER creates a symmetric matrix (e.g., dsCMatrix, dsyMatrix, dsRMatrix, lsyMatrix,
nsyMatrix), because symmetric matrices do not respect some future changes to dimnames, which

can cause information loss in the matsbyname context. A non-symmetric Matrix is assured by
calling as(out, "generalMatrix") on the outgoing Matrix object.

This function enables setting row and column types at the time of construction with the rowtype
and coltype arguments.

This function has different defaults compared to Matrix: :Matrix(), including

¢ Here, the default for doDiag is FALSE, while the default for doDiag is TRUE forMatrix: :Matrix().

* Preserves rowtype and coltype on data.

This function is vectorized over a list of matrix objects supplied to data. See examples.

Value

A Matrix object.

matrixproduct_byname 61

Examples

matsbyname::Matrix() will not create a Matrix with a symmetric subclass.
dgCMatrix is a general matrix.
matsbyname: :Matrix(c(1, 0, 2,
0, 9, 0,
2, @, 0), byrow = TRUE, nrow = 3, ncol = 3)
But Matrix::Matrix() will create a symmetric matrix.
dsCMatrix is a symmetric matrix.
Matrix::Matrix(c(1, 0, 2,
0, 0, 0,
2, 0, 0), byrow = TRUE, nrow = 3, ncol = 3)
matsbyname::Matrix() will not create a diagonal matrix.
dgeMatrix is a general matrix.
matsbyname: :Matrix(c(1, 0,
@, 1), byrow = TRUE, nrow = 2, ncol = 2)
But Matrix::Matrix() will create a diagonal matrix.
ddiMatrix is a diagonal matrix.
Matrix::Matrix(c(1, O,
@, 1), byrow = TRUE, nrow = 2, ncol = 2)
This function is vectorized over lists of “matrix™ objects in “data”.
m <- matrix(c(1, 0, 2,
0, 9, 0,
2, 0, 0), byrow = TRUE, nrow = 3, ncol
matsbyname: :Matrix(list(m, m))

3

matrixproduct_byname Name-wise matrix multiplication

Description

Multiplies operands from left to right (when . summarise = FALSE). If . summarise = TRUE, operands
are multiplied from first to last.

Usage
matrixproduct_byname(..., .summarise = FALSE)
Arguments
Operands; constants, matrices, or lists of matrices.
.summarise When TRUE, a matrix multiplication proceeds down lists of arguments. When
FALSE (the default), items are multiplied across lists.
Details

Performs a union and sorting of multiplicand rows and multiplier columns by name prior to mul-
tiplication. Zeroes are inserted for missing matrix elements. Doing so ensures that the dimensions
of multiplicand and multiplier matrices will be conformable. I.e., the number of columns in multi-
plicand will equal the number of rows in multiplier, so long as the column names of multiplicand

62 mean_byname

are unique and the row names of multiplier are unique. If column type of the multiplicand is not
same as row type of the multiplier on any step of the multiplication, the function will fail. The
result is matrix product with row names from the first multiplicand and column names from the last
multiplier.

Value

A matrix representing the name-wise product of operands.

Examples

library(dplyr)

V <- matrix(1:6, ncol = 3, dimnames = list(c("i1", "i2"), c("c1", "c2", "c3"))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

G <- matrix(1:4, ncol = 2, dimnames = list(c("c2", "c1"), c("i2", "i1"))) %>%
setrowtype("Commodities”) %>% setcoltype(”Industries”)

Z <- matrix(11:14, ncol = 2, dimnames = list(c("i1", "i2"), c("s1", "s2"))) %>%
setrowtype(”Industries”) %>% setcoltype(”Sectors")

Succeeds because G is completed to include a row named c3 (that contains zeroes).

matrixproduct_byname(V, G)

Not run: V %x% G # Fails because E lacks a row named c3.

matrixproduct_byname(V, G, Z)

This also works with lists

matrixproduct_byname(list(V,V), list(G,G))

DF <- data.frame(V = I(list()), G = I(list()))

DFCLT,"v"]] <=V

DFL[2,"V"]] <= V

DFLL1,"G"]] <- G

DFL[2,"G"]] <- G

matrixproduct_byname(DFV, DFG)

DF %>% mutate(matprods = matrixproduct_byname(V, G))

Also works with lists, multiplying down the lists if ~.summarise = TRUE™.

matrixproduct_byname(list(V, G, Z), .summarise = TRUE)

mean_byname Name- and element-wise arithmetic mean of matrices

Description

Gives the arithmetic mean of operandsin

Usage
mean_byname(..., .summarise = FALSE)
Arguments
Operands: constants, matrices, or lists of matrices.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down

lists (TRUE).

naryapplylogical_byname 63

Details

This function performs a union and sorting of row and column names prior to performing arithmetic
mean. Zeroes are inserted for missing matrix elements.

Value

name-wise arithmetic mean of operands.

Examples

library(dplyr)

mean_byname (100, 50)

mean_byname (10, 20, 30)

commoditynames <- c("c1"”, "c2")

industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype("Commodities”) %>% setcoltype(”Industries”)

G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype("”Industries™)

(U + G) / 2 # Non-sensical. Row and column names not respected.

mean_byname(U, G) # Row and column names respected! Should be 1, 2, 3, and 4.

mean_byname(U, G, G)

mean_byname (100, U)

mean_byname (100, 50, U)

mean_byname (10, G)

This also works with lists

mean_byname(1list (100, 100), list(50, 50))

mean_byname(list(U,U), 1list(G,G))

DF <- data.frame(U = I(list()), G = I(list()))

DFCL1,"U"]] <- U

DFC[2,"U"1] <- U

DFLL1,"G"1]1 <- G

DFL[2,"G"]] <- G

mean_byname (DFU, DFG)

DF %>% mutate(means = mean_byname(U, G))

naryapplylogical_byname
Apply a function logically to numbers, matrices, or lists of numbers or
matrices

Description

Operands should be logical, although numerical operands are accepted. Numerical operands are
interpreted as @ is FALSE, and any other number is TRUE.

64 naryapplylogical_byname

Usage

naryapplylogical_byname(
FUN,

.FUNdots = NULL,

match_type = c(”all”, "matmult”, "none"),
set_rowcoltypes = TRUE,

.organize = TRUE,

.summarise = FALSE

)
Arguments
FUN a binary function (that returns logical values) to be applied over operands
operands; constants, matrices, or lists of matrices
.FUNdots a list of additional named arguments passed to FUN.
match_type One of "all", "matmult", or "none". When ... are matrices, "all" (the default)

indicates that rowtypes of all ... matrices must match and coltypes of all . ..
matrices must match. If "matmult", the coltype of the first operand must match
the rowtype of the second operand for every sequential invocation of FUN. If
"none", neither coltypes nor rowtypes are checked by naryapply_byname().
set_rowcoltypes

Tells whether to apply row and column types from operands in . . . to the output
of each sequential invocation of FUN. Set TRUE (the default) to apply row and
column types. Set FALSE, to not apply row and column types to the output.

.organize A boolean that tells whether or not to automatically complete operands in . . .
relative to each other and sort the rows and columns of the completed matrices.
This organizing is done on each sequential invocation of FUN. Normally, this
should be TRUE (the default). However, if FUN takes over this responsibility, set
to FALSE.

.summarise A boolean that tells whether this call is considered a summarise operation (like
dplyr::summarise()). Default is FALSE.
Details

This function is not exported, thereby retaining the right to future changes.

Value

the result of FUN applied logically to . . .

Examples

matsbyname: : :naryapplylogical_byname(&, TRUE, TRUE, TRUE)
matsbyname: : :naryapplylogical_byname(&, TRUE, TRUE, FALSE)

naryapply_byname 65

naryapply_byname Apply a function "by name" to any number of operands
Description
Applies FUN to all operands in Other arguments have similar meaning as binaryapply_byname().

See details for more information.

Usage

naryapply_byname(
FUN,

.FUNdots = NULL,

match_type = c(”all”, "matmult”, "none"),
set_rowcoltypes = TRUE,

.organize = TRUE,

.summarise = FALSE

)
Arguments
FUN a binary function to be applied "by name" to all operands in
the operands for FUN.
.FUNdots a list of additional named arguments passed to FUN.
match_type One of "all", "matmult", or "none". When ... are matrices, "all" (the default)

indicates that rowtypes of all ... matrices must match and coltypes of all . ..
matrices must match. If "matmult", the coltype of the first operand must match
the rowtype of the second operand for every sequential invocation of FUN. If
"none", neither coltypes nor rowtypes are checked by naryapply_byname().

set_rowcoltypes
Tells whether to apply row and column types from operands in . . . to the output
of each sequential invocation of FUN. Set TRUE (the default) to apply row and
column types. Set FALSE, to not apply row and column types to the output.

.organize A boolean that tells whether or not to automatically complete operands in . . .
relative to each other and sort the rows and columns of the completed matrices.
This organizing is done on each sequential invocation of FUN. Normally, this
should be TRUE (the default). However, if FUN takes over this responsibility, set
to FALSE.

.summarise A boolean that tells whether this call is considered a summarise operation (like
dplyr::summarise()). Default is FALSE.

66 ncol_byname

Details

If only one ... argument is supplied, FUN must be capable of handling one argument, and the call
is routed to unaryapply_byname (). When set_rowcoltypes is TRUE, the rowcoltypes argument
of unaryapply_byname() is set to "all", but when set_rowcoltypes is FALSE, the rowcoltypes
argument of unaryapply_byname() is set to "none". If finer control is desired, the caller should
use unaryapply_byname() directly. If more than one argument is passed in ..., FUN must be
a binary function, but its use in by naryapply_byname() is "n-ary." Arguments match_type,
set_rowcoltypes, and .organize have same meaning as for binaryapply_byname(). Thus, all
of the operands in . . . must obey the rules of type matching when match_type is TRUE.

naryapply_byname () and cumapply_byname() are similar. Their differences can be described by
considering a data frame. naryapply_byname () applies FUN to several columns (variables) of the
data frame. For example, sum_byname() applied to several variables gives another column con-
taining the sums across each row of the data frame. cumapply_byname () applies FUN to successive
entries in a single column. For example sum_byname () applied to a single column gives the sum of
all numbers in that column.

Value

the result of applying FUN to all operands in . . .

Examples

naryapply_byname(FUN = sum_byname, 2, 3)
naryapply_byname(FUN = sum_byname, 2, 3, 4, -4, -3, -2)

Routes to unaryapply_byname

naryapply_byname(FUN = ~*~ 1list(1,2,3), .FUNdots = list(2))

ncol_byname Get the number of columns in a "byname" matrix.

Description

The function gets the number of columns in a "byname" matrix, or for each "byname" matrix
contained in a column of a data frame.

Usage

ncol_byname(a)

Arguments

a A matrix or a column of a data frame populated with "byname" matrices.

Value

The number of columns of the matrix, or a list containing the number of columns in each of the
matrices contained in the column of a data frame.

nrow_byname

Examples

productnames <- c("p1"”, "p2")

industrynames <-
U <- matrix(1:4,

c("i1”, "i2")
ncol = 2, dimnames = list(productnames, industrynames)) %>%

setrowtype("Products”) %>%
setcoltype(”Industries”)
productnames <- c("p1"”, "p2")
industrynames <- c("i1", "i2", "i3")
U2 <- matrix(1:3, ncol = length(industrynames),
nrow = length(productnames), dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>%
setcoltype(”Industries”)
productnames <- c("p1"”, "p2", "p3")
industrynames <- c("i1", "i2", "i3", "i4")
U3 <- matrix(1:4, ncol = length(industrynames),
nrow = length(productnames), dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>%
setcoltype(”Industries”)
dfUs <- data.frame(
year = numeric(),

matrix_byname

)

I(list())

dfUs <- data.frame(

year = numeric(),
I(list())

matrix_byname =

)

dfUs[[1, "matrix_byname”]] <- U

dfUs[[2, "matrix_byname"”]] <- U2

dfUs[[3, "matrix_byname"]] <- U3

dfUs[[1, "year”1] <- 2000

dfUs[[2, "year"]] <- 2001

dfUs[[3, "year”]] <- 2002

number_cols <- ncol_byname(dfUs$matrix_byname) %>%

print()

67

nrow_byname

Get the number of rows in a "byname" matrix.

Description

The function gets the number of rows in a "byname" matrix, or for each "byname" matrix contained
in a column of a data frame.

Usage

nrow_byname (a)

Arguments

a

A matrix or a column of a data frame populated with "byname" matrices.

68

Value

organize_args

The number of rows of the matrix, or a list containing the number of rows in each of the matrices
contained in the column of a data frame.

Examples

productnames <- c("p1”, "p2")

industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>%
setcoltype(”Industries”)

productnames <- c("p1"”, "p2")

industrynames <- c("i1", "i2", "i3")

U2 <- matrix(1:3, ncol = length(industrynames),

nrow = length(productnames), dimnames = list(productnames, industrynames)) %>%

setrowtype("Products”) %>%
setcoltype(”Industries”)
productnames <- c("p1"”, "p2", "p3")
industrynames <- c("i1", "i2", "i3", "i4")
U3 <- matrix(1:4, ncol = length(industrynames),

nrow = length(productnames), dimnames = list(productnames, industrynames)) %>%

setrowtype("Products”) %>%

setcoltype(”Industries”)
dfUs <- data.frame(

year = numeric(),

matrix_byname = I(list())

)

dfUs[[1, "matrix_byname”]] <- U

dfUs[[2, "matrix_byname"]] <- U2

dfUs[[3, "matrix_byname”]] <- U3

dfUs[[1, "year"]] <- 2000

dfUs[[2, "year"]] <- 2001

dfUs[[3, "year"]] <- 2002

number_rows <- matsbyname::nrow_byname(dfUs$matrix_byname)

organize_args Organize binary arguments

Description

Organizes arguments of binary (2 arguments) _byname functions. Actions performed are:

if only one argument is a list, make the other argument also a list of equal length.

if both arguments are lists, ensure that they are same length.

if one argument is a matrix and the other is a constant, make the constant into a matrix.
ensures that row and column types match for typematch_margins.

ensures that list item names match if both a and b are lists; no complaints are made if neither
a nor b has names.

completes and sorts the matrices.

pow_byname 69

Usage

organize_args(a, b, match_type = "all", fill)

Arguments
a the first argument to be organized
b the second argument to be organized
match_type one of "all”, "matmult”, "none"”. When both a and b are matrices, "all" (the
default) indicates that rowtypes of a must match rowtypes of b and coltypes of
a must match coltypes of b. If "matmult"”, coltypes of a must match rowtypes
of b.
fill a replacement value for a or b if either is missing or NULL.
Value

a list with two elements (named a and b) containing organized versions of the arguments

pow_byname Powers of matrix elements

Description

Gives the result of raising all elements of a matrix or list of matrices to a power.

Usage

pow_byname(a, pow)

Arguments

a a matrix of list of matrices

pow the power to which elements of a will be raised
Value

a with each element raised to pow

Examples

library(dplyr)

pow_byname (2, 3)

m <- matrix(2, nrow = 2, ncol = 3, dimnames = list(paste@("r", 1:2), paste@("c"”, 1:3))) %>%
setrowtype("rows") %>% setcoltype(”cols"”)

pow_byname(m, 2)

DF <- data.frame(m = I(list()), pow = I(list()))

DFLLT, "m"]1] <-m

DFLL2, "m"]1] <= m

70 prepare_.FUNdots

DFLL1, "pow"]1] <- 0.5

DFL[2, "pow"]1] <- -1

DF %>% mutate(
sqrtm = pow_byname(m, 0.5),
mtopow = pow_byname(m, pow)

)

prepare_.FUNdots Prepare the .FUNdots argument for xapply_byname functions.

Description

This is a helper function for the various *apply_byname functions.

Usage

prepare_.FUNdots(a, .FUNdots)

Arguments
a the main argument to an *apply_byname function.
.FUNdots a list of additional arguments to be applied to FUN in one of the *apply_byname
functions.
Details

We have four cases between a and any single item of .FUNdots:

* both a and the item of .FUNdots are lists
— if the item of .FUNdots (a list itself) has length different from 1 or length(a), throw an
error
— if the item of .FUNdots (a list itself) has length 1, replicate the single item to be a list of
length = length(a)
— if the item of .FUNdots (a list itself) has length = length(a), use the item of .FUNdots as
is
* ais a list but the item (argument) of .FUNdots is NOT a list
— if the item of .FUNdots (which is not a list) has length != 1, throw an error, because there
is ambiguity how the item of .FUNdots should be treated.
— if the item of .FUNdots (which is not a list) has length = 1, replicate that single item to be
a list of length = length(a)
¢ ais NOT a list, but the item of .FUNdots IS a list
— pass the argument along and hope for the best. This situation is probably an error. If so,
it will become apparent soon.
* neither a nor the item of .FUNdots is a list
— ashould have length = 1, but a single matrix reports its length as the number of elements
of the matrix. So, we can’t check length in this situation.
— the item of .FUNdots is assumed to have length 1 and passed along

prep_vector_arg 71

Value
a reconfigured version of .FUNdots, ready for use by an *apply_byname function.

¢ both a and the item of .FUNdots are lists

— if the item of .FUNdots (a list itself) has length different from 1 or length(a), throw an
error

— if the item of .FUNdots (a list itself) has length 1, replicate the single item to be a list of
length = length(a)

— if the item of .FUNdots (a list itself) has length = length(a), use the item of .FUNdots as
is

¢ ais NOT a list, but the item of .FUNdots IS a list

— pass the argument along and hope for the best. This situation is probably an error. If so,
it will become apparent soon.

* aisalist but the item (argument) of .FUNdots is NOT a list This situation could be ambiguous.
Let’s say the list of a values has length 2, and an argument margin = c(1, 2). Should margin
=1 be applied to al[1]] and margin = 2 be applied to al[2]1]? Or should margin =c(1,
2) be applied to both a[[1]] and a[[2]]? This ambiguity should be handled by using the
function prep_vector_arg() within the function that calls unaryapply_byname(). For an
example, see identize_byname(). When the arguments are coming in from a data frame,
there will be no ambiguity, but the information will not be coming . FUNdots[[i]] as a list.
Optimizing for the data frame case, this function allows vectors of length equal to the length of
the list a, interpreting such vectors as applying in sequence to each a in turn. So the algorithm
is as follows:

— if anon-NULL item of .FUNdots (which is not a list) has length other than 1 or length(a),
throw an error.

— if anon-NULL item of .FUNdots (which is not a list) has length = 1, replicate that single
item to be a list of length = length(a).

— if anon-NULL item of .FUNdots (which is not a list) has length = length(a), leave it as-is.
* neither a nor the item of .FUNdots is a list

— ashould have length = 1, but a single matrix reports its length as the number of elements
of the matrix. So, we can’t check length in this situation.

— the item of .FUNdots is assumed to have length 1 and passed along

prep_vector_arg Prepare a vector argument

Description

This is a helper function for many *_byname functions.

Usage

prep_vector_arg(a, vector_arg)

72 prodall_byname

Arguments

a A matrix or list of matrices.

vector_arg The vector argument over which to apply a calculation.
Details

It is potentially ambiguous to specify a vector or matrix argument, say, margin =c(1, 2) when
applying the *_byname functions to unary list of a. Rather, one should specify, say, margin =
list(c(1, 2)) to avoid ambiguity. If a is a list, vector_arg is not a list and has length > 1 and
length not equal to the length of a, this function returns a list value for vector_arg. If a is not a list
and vector_arg is a list, this function returns an un-recursive, unlisted version of vector_arg.

Note that if vector_arg is a single matrix, it is automatically enclosed by a list when a is a list.

Value

vector_arg, possibly modified when a is a list.

Examples

m <- matrix(c(2, 2))

prep_vector_arg(m, vector_arg = c(1,2))
prep_vector_arg(list(m), vector_arg = c(1,2))
prep_vector_arg(list(m, m), vector_arg = c(1,2))
prep_vector_arg(list(m, m, m), vector_arg = c(1,2))

prodall_byname Product of all elements in a matrix

Description
This function is equivalent to a \%>\% rowprods_byname() \%>\% colprods_byname(), but
returns a single numeric value instead of a 1x1 matrix.

Usage

prodall_byname(a)

Arguments

a The matrix whose elements are to be multiplied.

Value

The product of all elements in a as a numeric.

quotient_byname 73

Examples

library(dplyr)

M <- matrix(2, nrow=2, ncol=2, dimnames = list(paste@("i"”, 1:2), paste@("c"”, 1:2))) %>%
setrowtype("Industry”) %>% setcoltype("Product”)

prodall_byname (M)

rowprods_byname(M) %>% colprods_byname

Also works for lists

prodall_byname(list(M,M))

DF <- data.frame(M = I(list()))

DFLLT,"M"]] <- M

DFL[2,"M"]] <- M

prodall_byname(DF$ML[1]1])

prodall_byname (DF $M)

res <- DF %>% mutate(
prods = prodall_byname(M)

)

res$prods

quotient_byname Name-wise matrix element division

Description

Element-wise division of two matrices.

Usage

quotient_byname(dividend, divisor)

Arguments
dividend Dividend matrix or constant
divisor Divisor matrix or constant
Details

Performs a union and sorting of names of rows and columns for both dividend and divisor prior
to element division. Zeroes are inserted for missing matrix elements. Doing so ensures that the
dimensions of the dividend and divisor will be conformable.

Value

A matrix representing the name-wise element quotient of dividend and divisor

74 reallocate_byname

Examples
library(dplyr)
quotient_byname (100, 50)
commoditynames <- c("c1”, "c2")
industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype(”Commodities”) %>% setcoltype(”Industries”)

G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype("Industries”)

U / G # Non-sensical. Names aren't aligned

quotient_byname(U, G)

quotient_byname(U, 10)

quotient_byname(10, G)

This also works with lists

quotient_byname(10, list(G,G))

quotient_byname(list(G,G), 10)

quotient_byname(list(U, U), list(G, G))

DF <- data.frame(U = I(list()), G = I(list()))

DFLL1,"U"1] <- U

DFC[2,"U"]] <- U

DFLL1,"G"]1] <- G

DF[[2,"G"]1] <- G

quotient_byname (DFU, DFG)

DF %>% mutate(elementquotients = quotient_byname(U, G))

reallocate_byname Reallocate values from one row or column to others

Description

There are situations where it is helpful to reallocate values from one row or column to another,
in proportion to remaining values in corresponding columns or rows. This function performs the
reallocation operation. See examples.

Usage

reallocate_byname(
a,
rownames
colnames
margin,
.zero_behaviour = c("error”, "warning”, "zeroes"”, "allocate equally"),
piece_rownames = "all",
pattern_type_rownames = "exact”,
prepositions_rownames = RCLabels: :prepositions_list,
notation_rownames = RCLabels::notations_list,
inf_notation_rownames = TRUE,
choose_most_specific_rownames = FALSE,

NULL,
NULL,

reallocate_byname 75
piece_colnames = "all",
pattern_type_colnames = "exact”,

prepositions_colnames = RCLabels: :prepositions_list,
notation_colnames = RCLabels::notations_list,
inf_notation_colnames = TRUE,
choose_most_specific_colnames = FALSE

Arguments

a
rownames
colnames
margin

.zero_behaviour

A matrix or a list of matrices.

The row names to reallocate. NULL (the default) means include all rows.

The column names to reallocate. NULL (the default) means include all rows.

An integer vector of length 1 or a vector of integers where each entry has length
1. The margin of the matrix over which the reallocation should occur. The only

valid values are 1 (reallocate to other rows) or 2 (reallocate to other columns).
To reallocate both rows and columns, call the function twice.

Tells how to proceed when remaining (i.e., unallocated) rows or columns are all
zero. Default is "error", which throws an error. See details for other options. If
aisalist, applies to all items in the list.

piece_rownames, piece_colnames

The piece of row or column names to be assessed. Default is "all", indicating
that the entire label will be assessed. If a is a 1ist, applies to all items in the
list.

pattern_type_rownames, pattern_type_colnames

The pattern type desired for row and column names. Default is "exact". Other

options are "leading", "trailing", "anywhere", and "literal". See RCLabels: :make_or_pattern()
for details. If a is a 1ist, applies to all items in the list.

prepositions_rownames, prepositions_colnames

Prepositions used by select_rowcol_piece_byname() for row and column
name matching. Default is RCLabels::prepositions_list. If a is a 1ist, applies
to all items in the list.

notation_rownames, notation_colnames

The row or column notation used by select_rowcol_piece_byname() for row
and column name matching. Default is RCLabels::notations_list. If ais a list,
applies to all items in the list.

inf_notation_rownames, inf_notation_colnames

A boolean used by select_rowcol_piece_byname() that tells whether to infer
notation for rows and columns. Default is TRUE. See RCLabels: :infer_notation()
for details. If ais a 1ist, applies to all items in the list.

choose_most_specific_rownames, choose_most_specific_colnames

A boolean used by select_rowcol_piece_byname() that tells whether to choose

the most specific notation from notation when inferring notation. Default

is FALSE so that a less specific notation can be inferred. In combination with
notations_lists, the default value of FALSE means that RCLabels::bracket_notation
will be selected instead of anything more specific, such as RCLabels::from_notation.
If ais a list, applies to all items in the list.

76 reallocate_byname

Details

This function will provide answers, but it is unlikely that the answers will be meaningful when the
remaining data (the rows or columns not being reallocated) contain negative numbers.

The value of margin affects the interpretation of rownames and colnames. If margin = 1, rownames
identifies the rows to be reallocated to other rows. colnames identifies the columns to be reallocated,
where NULL (the default) means that all columns are reallocated. If margin = 2, colnames identifies
the columns to be reallocated to other columns. rownames identifies the rows to be reallocated,
where NULL (the default) means that all rows are reallocated.

When the remaining rows or columns not being reallocated contain exclusively zeroes, the result is
determined by .zero_behaviour. Options are one of:

e "error" (the default) to throw an error.

* "warning" to issue a warning but continue execution. Be careful with this option!

* "zeroes" to return zeroes in the row or column with zeroes. Note that "zeroes" and "warning"
return the same value. "zeroes" does so without a warning.

 "allocate equally" to equally allocate across remaining rows or columns.

Value

A modified version of a with rownames or colnames redistributed.

Examples
m <- matrix(c(1, 2, 3,
4, 5, 6,
7, 8, 9),
nrow = 3, ncol = 3, byrow = TRUE,
dimnames = list(c("r1"”, "r2", "r3"),
c("c1", "c2", "c3")))
m
Move row 3 into the other rows (r1 and r2) proportionally
reallocate_byname(m, rownames = "r3", margin = 1)
Move column 2 into the other columns (c1 and c¢3) proportionally
reallocate_byname(m, colnames = "c2", margin = 2)

Demonstrate different options for reallocating when zeroes remain.
m2 <- matrix(c(1, 2, O,

4, 5, 0,
7, 8, 10),
nrow = 3, ncol = 3, byrow = TRUE,
dimnames = list(c("r1", "r2", "r3"),
c("c1", "c2", "c3")))
m2
reallocate_byname(m2, rownames = "r3", margin = 1,
.zero_behaviour = "zeroes")
reallocate_byname(m2, rownames = "r3", margin = 1,
.zero_behaviour = "allocate equally”)
Not run:

"error” will cause an error to be emitted.
reallocate_byname(m2, rownames = "r3", margin = 1,

rename_to_piece_byname 77

.zero_behaviour = "error")
"warning” will cause a warning to be emitted
and will return a result that is the same as "zeroes”.
reallocate_byname(m2, rownames = "r3", margin = 1,
.zero_behaviour = "warning")

End(Not run)

rename_to_piece_byname
Rename matrix rows and columns by piece of row or column names

Description

It can be convenient to rename rows or columns of matrices based on retaining only a piece of the
row and/or column names. This function provides that capability.

Usage

rename_to_piece_byname(
a,
piece,
margin = list(c(1, 2)),
inf_notation = TRUE,
notation = list(RCLabels::notations_list),
choose_most_specific = FALSE,
prepositions = list(RCLabels: :prepositions_list)

)
Arguments
a A matrix or list of matrices whose rows or columns will be renamed.
piece A character string indicating which piece of the row or column names to retain,
one of "noun", "pps", "pref" or "suff", or a preposition, indicating which part of
the row or column name is to be retained.
margin As a character, the row type or column type to be renamed. As an integer, the

margin to be renamed. Default is c(1, 2), meaning that both rows (margin =1)
and columns (margin = 2) will be renamed.

inf_notation A boolean that tells whether to infer notation. Default is TRUE.

notation The notation used for row and column labels. Defaultis 1ist (RCLabels: :notations_list).
The default value is wrapped in a list, because RCLabels: :notations_list is,
itself, a list. If notation is not a list, unexpected behavior can result. See
RCLabels.
choose_most_specific
A boolean that indicates whether the most-specific notation will be inferred
when more than one of notation matches a row or column label and allow_multiple
= FALSE. When FALSE, the first matching notation in notations is returned
when allow_multiple = FALSE. Default is FALSE.

78 rename_to_piece_byname
prepositions Prepositions that can be used in the row and column label. Default is RCLabels: :prepositions_list.

Details

Internally, this function finds pieces of row and column names via the RCLabels package. piece can
be anything that RCLabels: :get_piece() understands. Note that margin can be either an integer
vector or a character vector. If margin is a character vector, it is interpreted as a row or column type,
and margin_from_types_byname() is called internally to resolve the integer margins of interest.

Note that if row and/or column type are present, the row and/or column type are also renamed ac-
cording to piece. This behavior is usually helpful. For example, if the prefix is requested (piece
= "pref") and the row/coltype is a single word that does not conform to the notation, the en-
tire row/coltype string is retained. However, if the suffix is requested (piece = "suff") and the
row/coltype is a single word that does not conform to the notation, an empty string ("") is returned.
In those circumstances, the caller is responsible for setting the row/coltype if an empty string ("")
is not desired. See the examples for details.

Value

A version of a with renamed rows and columns.

Examples

m <- matrix(c(1, 2,
3, 4,
5, 6), nrow = 3, byrow = TRUE,
dimnames = list(c("a -> b", "r2", "r3"), c("a -> b", "c -> d")))
m
rename_to_piece_byname(m, piece = "pref”, notation = RCLabels::arrow_notation)
m2 <- m %>%
setrowtype("rows"”) %>% setcoltype(”cols")

m2
In this example,
rowtype and coltype are unchanged, because the
whole string is considered to be the prefix.
rename_to_piece_byname(m2, piece = "pref”, margin = "rows"”,

notation = RCLabels::arrow_notation)
Here, the rowtype is set to the empty string ("")
because there is no suffix for the type of the "rows” margin.
rename_to_piece_byname(m2, piece = "suff”, margin = "rows”,

notation = RCLabels::arrow_notation)
m3 <- m2 |>

setrowtype(”Industry -> Product”)

m3
Note that the rowtype becomes the prefix for the rowtype,
in this example "Industry”.
rename_to_piece_byname(m3, piece = "pref"”, margin = 1,

notation = RCLabels::arrow_notation)
And when a suffix is present,
the rowtype becomes the suffix,
in this example "Product”.
rename_to_piece_byname(m3, piece = "suff”, margin = 1,

rename_to_pref_suff _byname 79

notation = RCLabels::arrow_notation)

rename_to_pref_suff_byname
Rename matrix rows and columns by prefix and suffix

Description

[Superseded] It can be convenient to rename rows or columns of matrices based on retaining pre-
fixes or suffixes. This function provides that capability.

Usage

rename_to_pref_suff_byname(a, keep, margin = c(1, 2), notation)

Arguments
a a matrix or list of matrices whose rows or columns will be renamed.
keep one of "prefix" or "suffix" indicating which part of the row or column name to
retain.
margin one of 1, 2, or c(1, 2) where 1 indicates rows and 2 indicates columns.
notation See notation_vec().
Details

A prefix is defined by an opening string (prefix_open) and a closing string (prefix_close). A
suffix is defined by an opening string (suffix_open) and a closing string (suffix_close). If
sep is provided and none of prefix_open, prefix_close, suffix_open, and suffix_close are
provided, default arguments become: * prefix_open: "", * prefix_close: sep, * suffix_open:
sep, and * suffix_close: "".

The keep parameter tells which portion to retain (prefixes or suffixes),

If prefixes or suffixes are not found in a row and/or column name, that name is unchanged.

Value

a with potentially different row or column names.

Examples

This function is superseded.
Instead, use “rename_to_piece_byname()".
For example:
m <- matrix(c(1, 2,
3, 4,
5, 6), nrow = 3, byrow = TRUE,
dimnames = list(c("a -> b", "r2", "r3"), c("a -> b", "c -> d")))

80 rename_via_pattern_byname

rename_to_piece_byname(m, piece = "pref”, notation = RCLabels::arrow_notation)

Note, labels are lost, because some labels are missing a suffix.
rename_to_piece_byname(m, piece = "suff”, notation = RCLabels::arrow_notation)

Original documentation:

rename_to_pref_suff_byname(m, keep = "pref”, notation = RCLabels::arrow_notation)
rename_to_pref_suff_byname(m, keep = "suff”, notation = RCLabels::arrow_notation)

rename_via_pattern_byname
Rename row or column names via regexp pattern

Description

It is sometimes helpful to rename row or column names for a list of matrices via a regexp_pattern.
When a is a matrix or a list of matrices, regexp_pattern indicates which characters are replaced
by replacement.

Usage
rename_via_pattern_byname(
a7
margin = list(c(1, 2)),
regexp_pattern = "$*",
replacement,
pieces = "all",

prepositions = RCLabels::prepositions_list,
notation = RCLabels: :bracket_notation,

)
Arguments
a A matrix or list of matrices.
margin The margin on which replacements are performed. Default is c(1, 2), meaning

both row (1) and column (2) names will be replaced.

regexp_pattern The regular expression pattern that will be replaced in the row or column labels.
Default is "$7", meaning nothing will be matched.

replacement The string to replace the regexp_pattern.

pieces The pieces of labels to be searched for regexp_pattern. See RCLabels::replace_by_pattern
for details. Default is "all".

prepositions Prepositions to use while searching for pieces. Default is RCLabels::prepositions_list.
notation The notation used for for searching pieces. Default is RCLabels::bracket_notation.

Other arguments passed to gsub(), such as ignore.case, perl, fixed, or
useBytes. Arguments in . .. apply to all matrices in a. See examples.

rename_via_pattern_byname 81

Details

Note that margin can be a rowtype or coltype string which will be de-referenced to the integer
margin (1 for rows or 2 for columns).

Internally, this function calls RCLabels::replace_by_pattern.

Value

A modified version of a.

Examples

ma <- matrix(c(1, 2), nrow = 2,
dimnames = list(c(”Natural gas [from Supplyl”,
"row2"),
"col")) |>
setrowtype("Product”) |> setcoltype(”Industry”)
mb <- matrix(c(1, 2), nrow = 2,
dimnames = list(c(”Natural gas [from Supplyl”,
"Fuel oil [from Supplyl"),

"col™)) |>
setrowtype("Product”) |> setcoltype("Industry”)
ma |>
rename_via_pattern_byname(regexp_pattern = " [from Supplyl”,
replacement = " bogus”,

fixed = TRUE)
list(ma, mb) |>
rename_via_pattern_byname(margin = 1,
regexp_pattern = " [from Supply]”,
replacement = " from Supply”,
fixed = TRUE)
resl <- tibble::tibble(m = list(ma, mb)) |>
dplyr: :mutate(
ml = .datal["m"1] |>
rename_via_pattern_byname(regexp_pattern = " [from Supplyl”,
replacement = ""
fixed = TRUE)
)
res1$mi
Transpose mb and use a string for the margin.
The string (in this case "Product”)
is dereferenced to an integer margin.
In this case, the rownames of the first matrix
and the colnames of the second matrix are replaced,
because those are on the "Product” margin.
res2 <- tibble::tibble(m = list(ma,
transpose_byname(mb))) |>

% o H

dplyr: :mutate(
m2 = .datal["m"1] |>
rename_via_pattern_byname(margin = "Product”,
regexp_pattern = " [from Supply]”,

nn

replacement = ,

82 rowprods_byname

fixed = TRUE)
)
rowtype(res2$m2[[11])
coltype(res2$m2[[2]1]1)
res2$m2

replaceNaN_byname Replace NaN values with a value

Description

In a matrix or within matrices in a list, replace all NaN matrix values with val.

Usage

replaceNaN_byname(a, val = 0)

Arguments
a A matrix of list of matrices in which NaN will be replaced by val.
val NaNs are replace by val.

Value

A matrix or list of matrices in which all NaN are replaced by val.

Examples

suppressWarnings(a <- matrix(c(1, sqrt(-1))))
replaceNaN_byname(a)
replaceNaN_byname(a, 42)

rowprods_byname Row products, sorted by name

Description

Calculates row products (the product of all elements in a row) for a matrix. An optional colname
for the resulting column vector can be supplied. If colname is NULL or NA (the default), the column
name is set to the column type as given by coltype(a).

Usage

rowprods_byname(a, colname = NA)

rowsums_byname 83

Arguments
a A matrix or list of matrices from which row products are desired.
colname The Name of the output column containing row products.

Value

A column vector of type matrix containing the row products of a

Examples

library(dplyr)

M <- matrix(c(1:6), ncol = 2, dimnames = list(paste@("i", 3:1), pasted("c", 1:2))) %>%
setrowtype(”Industries”) %>% setcoltype(”"Products™)

rowprods_byname (M)

rowprods_byname(M, "E.ktoe")

This also works with lists

rowprods_byname(list(M, M))

rowprods_byname(list(M, M), "E.ktoe")

rowprods_byname(list(M, M), NA)

rowprods_byname(list(M, M), NULL)

DF <- data.frame(M = I(list()))

DFLLT,"M"1] <- M

DF[[2,"M"]] <- M

rowprods_byname (DF$MLL11])

rowprods_byname (DF $M)

ans <- DF %>% mutate(rs = rowprods_byname(M))

ans

ans$rs[[1]]

Nonsensical

Not run: rowprods_byname(NULL)

rowsums_byname Row sums, sorted by name

Description

Calculates row sums for a matrix by post-multiplying by an identity vector (containing all 1’s). In
contrast to rowSums (which returns a numeric result), the return value from rowsums_byname is a
matrix. An optional colname for the resulting column vector can be supplied. If colname is NULL
or NA (the default), the column name is set to the column type as given by coltype(a). If colname
is set to NULL, the column name is returned empty.

Usage

rowsums_byname(a, colname = NA)

84 rowtype

Arguments
a A matrix or list of matrices from which row sums are desired.
colname The name of the output column containing row sums.

Value

A column vector of type matrix containing the row sums of m.

Examples

library(dplyr)

rowsums_byname (42)

m <- matrix(c(1:6), ncol = 2, dimnames = list(paste@("i”, 3:1), paste@("c"”, 1:2))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

m

rowsums_byname (m)

rowsums_byname(m, "E.ktoe")

This also works with lists

rowsums_byname(list(m, m))

rowsums_byname(list(m, m), "E.ktoe")

rowsums_byname(list(m, m), NA)

rowsums_byname(list(m, m), NULL)

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <-m

DFLL2,"m"]] <= m

rowsums_byname (DF$m[[111)

rowsums_byname (DF $m)

ans <- DF %>% mutate(rs = rowsums_byname(m))

ans

ans$rs[[1]]

Nonsensical

Not run: rowsums_byname(NULL)

rowtype Row type

Description

Extracts row type of a.

Usage

rowtype(a)

Arguments

a The object from which you want to extract row types.

samestructure_byname 85

Value

The row type of a.

Examples
library(dplyr)
commoditynames <- c("c1”, "c2")
industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype(rowtype = "Commodities”) %>% setcoltype(”Industries”)

rowtype (U)

This also works for lists

rowtype(list(U,U))

samestructure_byname Test whether matrices or lists of matrices have same structure

Description

Matrices are said to have the same structure if row and column types are identical and if row and
column names are identical. Values can be different.

Usage
samestructure_byname(..., .summarise = FALSE)
Arguments
Operands to be compared.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
Value

TRUE if all operands have the same structure, FALSE otherwise.

Examples

samestructure_byname(2, 2)

productnames <- c("p1”, "p2")

industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>% setcoltype("Industries”)

samestructure_byname(U, U)

samestructure_byname(U, U %>% setrowtype("row"))

samestructure_byname(U %>% setcoltype(”col”), U)

Also works with lists

samestructure_byname(list(U, U), list(U, U))

86 selectzerorows_byname

selectzerocols_byname Select zero columns

Description

Matrices with columns containing all zeroes are not invertible (singular). To diagnose this problem,
it is useful to find the zero columns of a singular matrix. This function selects (extracts) only the
zero columns of a matrix.

Usage

selectzerocols_byname(a, tol = 1e-06)

Arguments

a A matrix or a list of matrices.

tol The allowable deviation from O for any element.
Details

A column is said to be a zero column if all elements are within tol of zero.

Value

a with only zero columns selected.

Examples

m <- matrix(c(1, 0, 1,
1, 0, 1),
dimnames = list(c("r1"”, "r2"), c("c1”, "c2", "c3")),
nrow = 2, ncol = 3, byrow = TRUE) %>%
setrowtype("rows"”) %>% setcoltype(”cols")
selectzerocols_byname(m)

selectzerorows_byname Select zero rows

Description

Matrices with rows containing all zeroes are not invertible (singular). To diagnose this problem, it
is useful to find the zero rows of a singular matrix. This function selects (extracts) only the zero
rows of a matrix.

Usage

selectzerorows_byname(a, tol = 1e-06)

select_cols_byname 87

Arguments

a A matrix or a list of matrices.

tol The allowable deviation from O for any element.
Details

A row is said to be a zero row if all elements are within tol of zero.

Value

a with only zero rows selected.

Examples

m <- matrix(c(o, 0, 1,
0, 0, 0),
dimnames = list(c("r1"”, "r2"), c("c1”, "c2", "c3")),
nrow = 2, ncol = 3, byrow = TRUE) %>%
setrowtype("rows") %>% setcoltype(”cols"”)
m
selectzerorows_byname(m)

select_cols_byname Select columns of a matrix (or list of matrices) by name

Description

Arguments indicate which columns are to be retained and which are to be removed. For maximum
flexibility, arguments are extended regex patterns that are matched against column names.

Usage
select_cols_byname(
a,
retain_pattern = "$*",
remove_pattern = "$*",
ignore.case = FALSE,
perl = FALSE,

fixed = FALSE,
useBytes = FALSE

88 select_cols_byname

Arguments

a a matrix or a list of matrices

retain_pattern an extended regex or list of extended regular expressions that specifies which
columns of m to retain. Default pattern ("$2") retains nothing.

remove_pattern an extended regex or list of extended regular expressions that specifies which
columns of m to remove. Default pattern ("$"") removes nothing.

ignore.case, perl, fixed, useBytes
Arguments passed to grep().

Details

If ais NULL, NULL is returned.

Patterns are compared against column names using extended regex. If no column names of a match
the retain_pattern, NULL is returned. If no column names of a match the remove_pattern, a is
returned.

Retaining columns takes precedence over removing columns, always.

Some typical patterns are:

» "AElectricity$I*Oil$": column names that are EXACTLY "Electricity" or "Oil".
» "AElectricityl*Oil": column names that START WITH "Electricity" or "Oil".
* "ElectricitylOil": column names that CONTAIN "Electricity" or "Oil" anywhere within them.

Given a list of column names, a pattern can be constructed easily using RCLabels: :make_or_pattern().
RCLabels: :make_or_pattern() escapes regex strings using Hmisc: : escapeRegex (). This func-
tion assumes that retain_pattern and remove_pattern have already been suitably escaped.

Note that the default retain_pattern and remove_pattern ("$7") retain nothing and remove noth-
ing.

If the row or column labels contain "[" or "]", care should be taken to escape those characters.
Hmisc: :escapeRegex () is helpful in such situations.

Note that if all columns are removed from a, NULL is returned.

Value

a matrix that is a subset of a with columns selected by retain_pattern and remove_pattern.

Examples

m <- matrix(1:16, ncol = 4, dimnames=list(c(paste@("i", 1:4)), pasted("p"”, 1:4))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)

select_cols_byname(m,
retain_pattern = RCLabels::make_or_pattern(c("p1”, "p4"),
pattern_type = "exact"))

select_cols_byname(m,
remove_pattern = RCLabels::make_or_pattern(c("p1”, "p3"),
pattern_type = "exact"))

Also works for lists and data frames

select_cols_byname(list(m,m), retain_pattern = "*p1$|~p4$")

select_rowcol_piece_byname 89

select_rowcol_piece_byname
Select or remove rows or columns based on pieces of the names.

Description

select_rows_byname() and select_cols_byname() select rows and columns using regex pat-
terns This function performs similar actions based on the pieces of row and column labels.

Usage

select_rowcol_piece_byname(
a,
retain = NULL,
remove = NULL,
piece = "all",
pattern_type = "exact"”,
prepositions = RCLabels::prepositions_list,
notation = RCLabels::notations_list,
inf_notation = TRUE,
choose_most_specific = FALSE,
margin = c(1, 2)

)
Arguments

a A matrix or list of matrices whose rows or columns are to be selected.

retain The row or column names to be retained. Default is NULL, meaning that removal
is requested.

remove The row or column names to be removed. Default is NULL, meaning that retain-
ing is requested.

piece The piece of row or column names to be assessed. Default is "all", indicating

that the entire label will be assessed.

pattern_type The way to match label pieces. pattern_type is passed to RCLabels: :make_or_pattern().
See RCLabels: :make_or_pattern() for details. Default is "exact", meaning

non

that exact matches are retained or removed. Other options are "leading", "trail-

non

ing", "anywhere", and "literal".

prepositions The prepositions that can be used for identifying pieces. Default is RCLa-
bels::prepositions_list.

notation The notation for the row and column names. Default is RCLabels::notations_list,
meaning that all notations known to RCLabels will be assessed.

inf_notation A boolean that tells whether to infer notation for rows and columns. Default is
TRUE. See RCLabels: :infer_notation() for details.

90 select_rowcol_piece_byname

choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can
be inferred. In combination with RCLabels::notations_list, the default value of
FALSE means that RCLabels::bracket_notation will be selected instead of any-
thing more specific, such as RCLabels::from_notation.

margin The margin to which row or column removal is requested. 1 indicates rows; 2
indicates columns. Default is c(1, 2), meaning that action should be taken on
both rows and columns.

Details

This function uses the RCLabels package to match row and column names by pieces.
To retain rows or columns, specify retain. To remove rows or columns, specify remove.

If a has row and column types, a string may be passed to margin, in which case the margin will be
resolved. See examples.

notation may be a list of notations that could apply in a. This function will try to infer the notation
that applies to row and column names.

Retaining takes precedence over removing, always.

Options for piece are

e "all" (the default), meaning that the entire label will be matched,
» "pref", meaning that the prefix will be matched,

 "suff", meaning that the suffix will be matched,

* "noun", meaning that the first part will be matched, and

* "from" (or another preposition), meaning that the object of that preposition will be matched.

If retaining or removing rows or columns results in no rows or columns remaining in the matrix,
NULL is returned.

Value

a with rows and/or column retained or removed.

Examples

m <- matrix(1:4, nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("r1 [to al”, "r2 [to b]"),
c("cl [from c]", "c2 [from d]"))) %>%
setrowtype("rows") %>% setcoltype(”cols"”)
m
select_rowcol_piece_byname(m, retain = "r1"”, piece = "noun”,
notation = RCLabels::to_notation,
margin = 1)
select_rowcol_piece_byname(m, retain =
notation =
margin = 1)
select_rowcol_piece_byname(m, retain =

"h" piece = "to”,
RCLabels: :bracket_notation,

"c1", piece = "noun”,

select_rows_byname 91

notation = RCLabels::bracket_notation,
margin = 2)
select_rowcol_piece_byname(m, retain = "d", piece = "from”,
notation = RCLabels::bracket_notation,
margin = 2)
select_rowcol_piece_byname(m, retain = "c", piece = "from”,
notation = RCLabels::bracket_notation,

margin = 2)

select_rowcol_piece_byname(m, retain = "b", piece = "to",
notation = RCLabels::bracket_notation,
margin = "rows")

select_rowcol_piece_byname(m, retain = "c", piece = "from",
notation = RCLabels::bracket_notation,
margin = "cols")

select_rows_byname Select (or de-select) rows of a matrix (or list of matrices) by name
Description

Arguments indicate which rows are to be retained and which are to be removed. For maximum
flexibility, arguments are extended regex patterns that are matched against row names.

Usage
select_rows_byname(
a,
retain_pattern = "$*",
remove_pattern = "$*",
ignore.case = FALSE,
perl = FALSE,

fixed = FALSE,
useBytes = FALSE

Arguments

a A matrix or a list of matrices.

retain_pattern An extended regex or list of extended regular expressions that specifies which
rows of a to retain. Default pattern ("$7") retains nothing.

remove_pattern An extended regex or list of extended regular expressions that specifies which
rows of a to remove, Default pattern ("$7") removes nothing.

ignore.case, perl, fixed, useBytes
Arguments passed to grep().

92 select_rows_cols_byname

Details

If ais NULL, NULL is returned.

Patterns are compared against row names using extended regex. If no row names of a match the
retain_pattern, NULL is returned. If no row names of a match the remove_pattern, m is re-
turned. Note that the default retain_pattern and remove_pattern ("$7") retain nothing and
remove nothing.

Retaining rows takes precedence over removing rows, always.

Some typical patterns are:

» "MElectricity$l*"Oil$": row names that are EXACTLY "Electricity" or EXACTLY "Oil".
» "AElectricityl*Oil": row names that START WITH "Electricity" or START WITH "Oil".

* "ElectricitylOil": row names that CONTAIN "Electricity" or CONTAIN "Oil" anywhere within
them.

Given a list of column names, a pattern can be constructed easily using RCLabels: :make_or_pattern().
RCLabels: :make_or_pattern() escapes regex strings using Hmisc: : escapeRegex(). This func-
tion assumes that retain_pattern and remove_pattern have already been suitably escaped.

If the row or column labels contain "[" or "]", care should be taken to escape those characters.
Hmisc: :escapeRegex() is helpful in such situations.

Note that if all rows are removed from a, NULL is returned.

Value

A matrix that is a subset of m with rows selected by retain_pattern and remove_pattern.

Examples

m <- matrix(1:16, ncol = 4, dimnames = list(c(paste@("i"”, 1:4)), pasted("p", 1:4))) %>%
setrowtype(”Industries”) %>% setcoltype(”"Commodities™)

select_rows_byname(m,
retain_pattern = RCLabels: :make_or_pattern(c("il"”, "i4"),
pattern_type = "exact"))

select_rows_byname(m,
remove_pattern = RCLabels: :make_or_pattern(c("il”, "i3"),
pattern_type = "exact"))

Also works for lists and data frames

select_rows_byname(list(m, m), retain_pattern = "*i1$|*i4$")

select_rows_cols_byname
Select (or deselect) rows or columns

Description

Arguments indicate which columns are to be retained and which are to be removed by routing to
select_rows_byname() or select_cols_byname() based on the value of margin. margin can be
a string or vector of strings that are matched to row and column types.

select_rows_cols_byname 93

Usage

select_rows_cols_byname(
a,
margin = c(1, 2),
retain_pattern = "$*",
remove_pattern = "$*",
ignore.case = FALSE,
perl = FALSE,

fixed = FALSE,
useBytes = FALSE

)
Arguments
a A matrix or a list of matrices.
margin 1 for rows, 2 for columns, or c(1, 2) (the default) for both. Can be a string or

vector of strings that indicate row and/or column types.

retain_pattern An extended regex or list of extended regular expressions that specifies which
columns of m to retain. Default pattern ("$2") retains nothing.

remove_pattern An extended regex or list of extended regular expressions that specifies which
columns of m to remove. Default pattern ("$"") removes nothing.
ignore.case, perl, fixed, useBytes
Arguments passed to grep().

Details

If a is NULL, NULL is returned.

For maximum flexibility, arguments can be extended regex patterns that are matched against row or
column names. If no row or column (depending on margin) names of a match the retain_pattern,
NULL is returned. If no row or column (depending on margin) names of a match the remove_pattern,
a is returned.

Retaining takes precedence over removing, always.

Some typical patterns are:

» "AElectricity$l*Oil$": row or column names that are EXACTLY "Electricity" or "Oil".

» "AElectricityl*Oil": row or column names that START WITH "Electricity" or "Oil".

 "ElectricitylOil": row or column names that CONTAIN "Electricity" or "Oil" anywhere within
them.

If the row or column labels contain "[" or "]", care should be taken to escape those characters.
Hmisc: :escapeRegex() is helpful in such situations. This function assumes that retain_pattern
and remove_pattern have already been suitably escaped.

Given a list of row or column names, a pattern can be constructed easily using RCLabels: :make_or_pattern().
RCLabels: :make_or_pattern() escapes regex strings using Hmisc: : escapeRegex().

Note that the default retain_pattern and remove_pattern ("$") retain nothing and remove noth-
ing.

Note that if all columns are removed from a, NULL is returned.

94 setcolnames_byname

Value

A matrix that is a subset of a with columns selected by retain_pattern and remove_pattern.

Examples

m <- matrix(1:16, ncol = 4, dimnames=list(c(paste@("i", 1:4)), pasted("p"”, 1:4))) [|>
setrowtype("Industries”) |> setcoltype("”Commodities”)
select_rows_cols_byname(m,
margin = 2, # for columns
retain_pattern = RCLabels::make_or_pattern(c("p1"”, "p4"),
pattern_type = "exact"))
select_rows_cols_byname(m,
margin = 2,
remove_pattern = RCLabels: :make_or_pattern(c("p1”, "p3"),
pattern_type = "exact"))
Also works for lists and data frames
select_rows_cols_byname(list(m,m), margin = 2,
retain_pattern = "*p1$|*p4s$")

setcolnames_byname Sets column names

Description

Sets column names in a way that is amenable to use in piping operations in a functional program-
ming way. if a is NULL, NULL is returned. If a is a constant, it is converted to a matrix and colnames
are applied. If a is a matrix, colnames should be a vector of new column names that is as long as
the number of columns in a. If a is a list of matrices, colnames can also be a list, and it should be as
long as a. Or colnames can be a vector of column names which will be applied to every matrix in
the list of a. Each item in the list should be a vector containing column names for the corresponding
matrix in a.

Usage

setcolnames_byname(a, colnames)

Arguments
a A matrix or a list of matrices in which column names are to be set
colnames A vector of new column names or a list of vectors of new column names
Value

a copy of a with new column names

setcoltype 95

Examples

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i"”, 1:2), paste@("c", 1:3))) %>%
setrowtype(”Industries”) %>% setcoltype(”"Commodities™)

setcolnames_byname(m, c("a", "b", "c"))
setcoltype Sets column type for a matrix or a list of matrices
Description

This function is a wrapper for attr() so that setting can be accomplished by the pipe operator
(%>%). Column types are strings stored in the coltype attribute.

Usage
setcoltype(a, coltype)

Arguments
a The matrix on which column type is to be set.
coltype The type of item stored in columns.

Details

If is.null(coltype), the coltype attribute is deleted and subsequent calls to coltype will return
NULL.

Value

a with coltype attribute set.

Examples
library(dplyr)
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames))
U %>% setcoltype("Industries")

This also works for lists

setcoltype(list(U,U), coltype = "Industries”)
setcoltype(list(U,U), coltype = list("Industries”, "Industries”))
DF <- data.frame(U = I(list()))

DFLL1,"U"1] <= U

DFC[2,"U"]] <- U

setcoltype(DF$U, "Industries")

DF <- DF %>% mutate(newcol = setcoltype(U, "Industries”))
DF$newcol[[1]1]

DF$newcol[[2]1]

96 setrownames_byname

setrownames_byname Sets row names

Description

Sets row names in a way that is amenable to use in piping operations in a functional programming
way. If a is NULL, NULL is returned. If a is a constant, it is converted to a matrix and rownames
are applied. If a is a matrix, rownames should be a vector of new row names that is as long as the
number of rows in a. If a is a list of matrices, rownames can also be a list, and it should be as long
a. Or rownames can be a vector of row names which will be applied to every matrix in the list of a.
Each item in the list should be a vector containing row names for the corresponding matrix in a.

Usage

setrownames_byname(a, rownames)

Arguments
a A matrix or a list of matrices in which row names are to be set
rownames A vector of new row names or a list of vectors of new row names
Value

a copy of m with new row names

Examples

library(dplyr)

m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i"”, 1:2), paste@("c", 1:3))) %>%
setrowtype("Industries"”) %>% setcoltype(”Commodities")

setrownames_byname(m, c("a", "b"))

setrownames_byname(m %>% setrowtype("Industries”) %>% setcoltype(”Commodities”), c("c", "d"))

m %>% setrownames_byname (NULL)

m %>% setrownames_byname(c(NA, NA))

2 %>% setrownames_byname("row")

This also works for lists

setrownames_byname(list(m,m), list(c("a", "b")))

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <- m

DFL[2,"m"]1] <-m

setrownames_byname (DF$m, list(c("r1", "r2")))

setrownames_byname (DF$m, list(c("c"”, "d")))

DF <- DF %>% mutate(m = setrownames_byname(m, list(c("r1", "r2"))))

DF$mLL1]]

setrowtype 97

setrowtype Sets row type for a matrix or a list of matrices

Description

This function is a wrapper for attr() so that setting can be accomplished by the pipe operator
(%>%). Row types are strings stored in the rowtype attribute.

Usage

setrowtype(a, rowtype)

Arguments
a The matrix on which row type is to be set.
rowtype The type of item stored in rows.

Details

If is.null(rowtype), the rowtype attribute is deleted and subsequent calls to rowtype will return
NULL.

Value

a with rowtype attribute set to rowtype.

Examples
library(dplyr)
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames))
U %>% setrowtype(”"Commodities™)

This also works for lists

setrowtype(list(U,U), rowtype = "Commodities”)
setrowtype(list(U,U), rowtype = list(”"Commodities”, "Commodities"))
DF <- data.frame(U = I(list()))

DFCL1,"U"]] <- U

DFCL2,"U"]1] <- U

setrowtype(DF$U, "Commodities")

DF <- DF %>% mutate(newcol = setrowtype(U, "Commodities"))
DF$newcol[[1]]

DF$newcol[[2]1]

98

sort_rows_cols

sort_rows_cols

Sorts rows and columns of a matrix

Description

Checks that row names are unique and that column names are unique. Then, sorts the rows and
columns in a way that ensures any other matrix with the same row and column names will have the

same order.

Usage

sort_rows_cols(a, margin = c(1, 2), roworder = NA, colorder = NA)

Arguments

a

margin

roworder

colorder

Details

A matrix or data frame whose rows and columns are to be sorted.

Specifies the subscript(s) in a over which sorting will occur. margin has nearly
the same semantic meaning as in base: :apply. For rows only, give 1; for
columns only, give 2; for both rows and columns, give c(1, 2), the default value.

Specifies the order for rows with default sort(rownames(a)). If NA (the de-
fault), default sort order is used. Unspecified rows are removed from the output,
thus providing a way to delete rows from a. Extraneous row names (row names
in roworder that do not appear in a) are ignored.

Specifies the order for rows with default sort(colnames(a)). If NA (the de-
fault), default sort order is used. Unspecified columns are removed from the
output, thus providing a way to delete columns from a. Extraneous column
names (column names in colorder that do not appear in a) are ignored.

Default sort order is given by base: : sort() with decreasing = FALSE.

Value

A modified version of a with sorted rows and columns

Examples

m <- matrix(c(1:6), nrow=3, dimnames = list(c("r3"”, "r5", "r1"), c("c4", "c2")))

sort_rows_cols(m)

sort_rows_cols(t(m))

sort_rows_cols(m,
sort_rows_cols(m,

margin=1) # Sorts rows
margin=2) # Sorts columns

v <- matrix(c(1:5), ncol=1, dimnames=list(rev(paste@("r", 1:5)), "c1")) # Column vector

sort_rows_cols(v)
sort_rows_cols(v,
sort_rows_cols(v,

margin = 1) # Sorts rows
margin = 2) # No effect: only one column

structure_index_map 99

r <- matrix(c(1:4), nrow=1, dimnames=list("r1", rev(paste@(”c", 1:4)))) # Row vector
sort_rows_cols(r) # Sorts columns

n <- matrix(c(1,2), nrow = 1, dimnames = list(NULL, c("c2", "c1"))) # No row name
sort_rows_cols(n) # Sorts columns, because only one row.

Also works with lists

sort_rows_cols(list(m,m)) # Sorts rows and columns for both m's.

Sort rows only for first one, sort rows and columns for second one.

Row order is applied to all m's. Column order is natural.

sort_rows_cols(a = list(m,m), margin = 1, roworder = list(c("r5", "r3", "r1")))

Columns are sorted as default, because no colorder is given.

roworder is ignored.

sort_rows_cols(a = list(m,m), margin = 2, roworder = list(c("r5", "r3", "r1")))
Both columns and rows sorted, rows by the list, columns in natural order.
sort_rows_cols(a = list(m,m), margin = c(1,2), roworder = list(c("r5", "r3", "r1")))

structure_index_map Set the structure of an index map

Description
Index maps must be a data frame with one integer column and one character string column. This
function verifies the structure and ensures that the integer column is first.

Usage

structure_index_map(index_map)

Arguments

index_map The index map data frame to be structured.

Details

This is a non-exported function meant only for internal use.

Value

A data frame with an integer column as the first column and a character string column as the second
column.

100 sumall_byname

sumall_byname Sum of all elements in a matrix

Description

This function is equivalent to a \%>\% rowsums_byname () \%>\% colsums_byname(), but returns
a single numeric value instead of a 1x1 matrix.

Usage

sumall_byname(a)

Arguments

a The matrix whose elements are to be summed.

Value

The sum of all elements in a as a numeric.

Examples

library(dplyr)

sumall_byname(42)

m <- matrix(2, nrow=2, ncol=2, dimnames = list(paste@("i", 1:2), paste@("c”, 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

sumall_byname(m)

rowsums_byname(m) %>% colsums_byname

Also works for lists

sumall_byname(list(m,m))

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <- m

DFLL2,"m"]] <-m

sumall_byname(DF$m[[1]1])

sumall_byname (DF$m)

res <- DF %>% mutate(
sums = sumall_byname(m)

)

res$sums

sumall_byname(list(m, NULL))

sum_byname 101

sum_byname Name-wise addition of matrices

Description

Performs a union and sorting of addend and augend row and column names prior to summation.
Zeroes are inserted for missing matrix elements. Treats missing or NULL operands as 0.

Usage
sum_byname(..., .summarise = FALSE)
Arguments
Operands: constants, matrices, or lists of matrices.
.summarise When TRUE, a operands are summed down lists. When FALSE (the default), items
are summed across lists.
Details

For this function, a list of lists of operands is ambiguous. Should the operands be summed across
lists (first items summed across all lists, second items summed across all list, etc.) or should each
list be summed along each list? In the first case, the return object will have length equal to the
length of the lists in the ... argument. In the second case, the return object will have length equal
to the number of lists in the ... argument. The first case is like summing across rows of a data
frame. The second case is like summing down columns of a data frame. The summarise argument
distinguishes between these two cases. The default value for summarise is FALSE, giving the first
behavior. Set summarise to TRUE to cause this function to act like dplyr: :summarise() for its
list of arguments. If .summarise = TRUE, the data value is guaranteed to be a list. If the call to
sum_byname (. summarise = TRUE) is made in the context of a data frame, the column returned is
guaranteed to be a list column. See the aggregation vignette for additional details and examples.

Value

A matrix representing the name-wise sum of arguments.

Examples

library(dplyr)

sum_byname (2, 2)

sum_byname(2, 2, 2)

sum_byname(2, 2, -2, -2)

productnames <- c("p1"”, "p2")

industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>% setcoltype(”Industries”)

Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%
setrowtype(”"Products”) %>% setcoltype("Industries™)

102 svd_byname

sum_byname (U, 100)

sum_byname (200, Y)

U + Y # Non-sensical. Row and column names not respected.

sum_byname (U, U)

sum_byname (U, Y)

sum_byname(U, U, Y, Y)

V <- matrix(1:4, ncol = 2, dimnames = list(industrynames, productnames)) %>%
setrowtype("Industries”) %>% setcoltype("Products”)

U+ V # row and column names are non-sensical and blindly taken from first argument (U)

Not run: sum_byname(U, V) # Fails, because row and column types are different

This also works with lists

sum_byname(list(U,U), list(Y,Y))

sum_byname(list(U,U), list(100,100))

sum_byname (list(U,U), as.list(rep_len(100, 2)))

DF <- data.frame(U = I(list()), Y = I(list()))

DFLCL1,"U"]] <- U

DFC[2,"U"]] <- U

DFCLT,"Y"]1] <= Y

DFL[2,"Y"]1] <= Y

sum_byname (DFU, DFY)

DF %>% mutate(sums = sum_byname(U, Y))

sum_byname(U) # If only one argument, return it.

sum_byname (2, NULL) # Gives 2

sum_byname(2, NA) # Gives NA

sum_byname(NULL, 1) # Gives 1

sum_byname (1list(NULL, 1), list(1, 1))

DF2 <- data.frame(U = I(list()), Y = I(1list()))

DF2[[1,"U"]1] <- NULL

DF2[[2,"U"]1] <- U

DF2[[1,"Y"]] <- Y

DF2[[2,"Y"]1] <- Y

sum_byname (DF2$U, DF2$Y)

DF3 <- DF2 %>% mutate(sums = sum_byname(U, Y))

DF3

DF3$sums[[1]]

DF3$sums[[2]]

svd_byname Calculate the singular value decomposition of a matrix

Description

The singular value decomposition decomposes matrix A into A = U D VAT, where U and V are
orthogonal matrices and D is a diagonal matrix. U is the left singular vectors of A. V is the right
singular vectors of A.

Usage

svd_byname(a, which = c(”d", "u”, "v"))

switch_notation_byname 103

Arguments

a A matrix to be decomposed.

which The matrix to be returned. Default is "d". See details.
Details

which determines the part of the singular value decomposition to be returned. "d" (default) gives

non nen

the D matrix. "u" gives the U matrix. "v" gives the V matrix (not its transpose).

Value

A matrix of the singular value decomposition of a.

Examples

A = matrix(c(4, o,
3, -5), nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("r1", "r2"), c("cl1”, "c2"))) %>%
setrowtype("Product”) %>% setcoltype("Industry”)
A
svd_byname(A) # Gives D matrix, by default
svd_byname(A, which = "d")
svd_byname (A, which = "u")
svd_byname(A, which = "v")

switch_notation_byname
Change row and column name notation

Description
This function switches matrix row and/or column names from one type of notation to another based
on the from and to arguments. Optionally, prefix and suffix can be flipped.

Usage

switch_notation_byname(a, margin = c(1, 2), from, to, flip = FALSE)

Arguments
a A matrix or list of matrices whose row and/or column notation is to be changed.
margin 1 For rows, 2 for columns, or c(1, 2) for both rows and columns. Default is
c(1, 2).
from The notation to switch away from.
to The notation to switch zo.

flip A boolean that tells whether to also flip the notation. Default is FALSE.

104 to_named._triplet

Value

Matrices with row and column names with switched notation, per arguments.

Examples

m <- matrix(c(1, 2,
3, 4), nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("b [al”, "d [c1"), c("f [el”, "h [gl"))) %>%
setrowtype(”"Products [Industries]”) %>% setcoltype(”Industries [Products]")

m
switch_notation_byname(m, from = RCLabels: :bracket_notation, to = RCLabels::arrow_notation,

flip = TRUE)
Also works for lists.
Note that margin must be specified as a list here.
switch_notation_byname(list(m, m), margin = list(c(1, 2)),

from = RCLabels: :bracket_notation,

to = RCLabels::arrow_notation, flip = TRUE)

to_named_triplet Convert a matrix or list of matrices between named form and indexed
form

Description

Matrices can be in named matrix form or triplet form. Named matrix form is the usual representation
for the matsindf package, wherein names for rows and columns are included in the dimnames
attribute of every matrix or Matrix object, consuming memory. Typically, neither zero rows nor
zero columns are present. In some instances, many sparse matrices with the same names will be
created, leading to inefficiencies due to dimname storage with every matrix object. It can be more
memory-efficient to store named matrices in integer triplet form, (a table format with matrix data
represented as a data frame with row integer (i), column integer (j), and value (value) columns.
(Row names and column names can be stored as character string in the i and j columns, too, called
character triplet form.) Integer triplet form is required for databases that do not recognize a matrix
as a native storage format. In integer triplet form, a separate (external) mapping between row and
column indices and row and column names must be maintained. (In integer triplet form, it becomes
the responsibility of the caller to maintain a consistent mapping between row and column indices
and row and column names. However, rowtype and coltype are retained as attributes of both integer
and character triplet data frames.) These functions convert from named matrix form to integer triplet
form (to_triplet()) and vice versa (to_named_matrix()) using row and column name mappings
supplied in the index_map argument. to_triplet() and to_named_matrix() are inverses of each
other, with row and column order not necessarily preserved. See examples.

Usage

to_triplet(
a,
index_map,
retain_zero_structure = FALSE,

to_named._triplet 105

nin

row_index_colname i",
col_index_colname = "j",
value_colname = "value”,
rownames_colname = "rownames",

colnames_colname = "colnames"”

to_named_matrix(
a,
index_map,
matrix_class = c("matrix”, "Matrix"),

nin

row_index_colname = "i",
col_index_colname = "j",
value_colname = "value”,
.rnames = "rownames”,

.cnames = "colnames”

Arguments

a For to_triplet(), a matrix or list of matrices to be converted to triplet form.
For to_named_matrix(), a data frame or list of data frames in triplet form to
be converted to named matrix form.

index_map A mapping between row and column names and row and column indices. See
details.

retain_zero_structure
A boolean that tells whether to retain the structure of zero matrices when creat-
ing triplets. Default is FALSE. See details.

row_index_colname, col_index_colname
The names of row and column index columns in data frames. Defaults are "i"
and "j", respectively.

value_colname The name of the value column in data frames. Default is "value".
rownames_colname, colnames_colname
The name of row name and column name columns in data frames. Defaults are
"rownames" and "colnames", respectively.

matrix_class One of "matrix" (standard) or "Matrix" (sparse) representation for matrices. De-

fault is "matrix".
.rnames, .cnames

Column names used internally. Defaults are "rownames" and "colnames".

Details

index_map must be one of the following:
* A single data frame of two columns, with one an integer column and the other a character
column. When a single data frame, it will be applied to both rows and columns.

* Anunnamed list of exactly two data frames, each data frame must have only an integer column
and a character column. The first data frame of index_map is interpreted as the mapping

106 to_named._triplet

between row names and row indices and the second data frame of index_map is interpreted as
the mapping between column names and column indices.

* A named list of two or more data frames, in which the names of index_map are interpreted
as row and column types, with named data frames applied as the mapping for the associated
row or column type. For example the data frame named "Industry" would be applied to the
dimension (row or column) with an "Industry" type. When both row and column have "In-
dustry" type, the "Industry” mapping is applied to both. When sending named data frames
in index_map, a must have both a row type and a column type. If an appropriate mapping
cannot be found in index_map, an error is raised. Both matching data frames must have only
an integer column and a character column.

When converting to indexed form, rowtype and coltype are retained as attributes. See rowtype()
and coltype().

If any indices are unavailable in the index_map, an error is raised. It is an error to repeat a name in
the name column of an index_map data frame. It is an error to repeat an index in the index column
of an index_map data frame.

If a is NULL, NULL is returned. If a is a list and any member of the list is NULL, NULL is returned in
that position.

By default, to_triplet () will return a zero-row data frame when a is a zero matrix. Set retain_zero_structure
= TRUE to return all entries in the zero matrix.

Value

to_triplet() returns a as a data frame or list of data frames in triplet form. to_named_matrix()
returns a as a named matrix or a list of matrices in named form.

Examples

triplet <- data.frame(i = as.integer(c(9, 7, 5, 9, 7, 5)),
j = as.integer(c(3, 3, 3, 4, 4, 4)),
value = c(1, 2, 3, 4, 5, 6)) |>

setrowtype("rows”) |> setcoltype(”cols")

triplet

rowtype(triplet)

coltype(triplet)

We have more indices than actual entries in the martix

r_indices <- data.frame(names = paste@("r", 1:101),

indices = 1:101)
head(r_indices)

c_indices <- data.frame(names = paste@("c"”, 1:101),

indices = 1:101)

head(c_indices)

Names are interpreted as row and column types

indices <- list(cols = c_indices, rows = r_indices)

named <- to_named_matrix(triplet, indices)

named

triplet2 <- to_triplet(named, indices)

Although not in the same row order,
triplet and triplet2 are the same.

transpose_byname 107

triplet2

rowtype(triplet2)

coltype(triplet2)

And the same matrix can be recovered from triplet2
to_named_matrix(triplet2, indices)

transpose_byname Transpose a matrix by name

Description

Gives the transpose of a matrix or list of matrices.

Usage

transpose_byname(a)

Arguments

a The matrix to be transposed.

Value

The transposed matrix.

Examples

m<- matrix(c(11,21,31,12,22,32), ncol = 2, dimnames = list(paste@("i"”, 1:3), paste@("c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

transpose_byname (m)

transpose_byname(list(m,m))

trim_rows_cols Trim rows and/or columns from a matrix

Description

By default, the matsbyname package expands matrices with @ rows or columns prior to matrix
operations to ensure that rows and columns match. There are times when trimming rows or columns
is preferred over the default behavior. This function trims rows or columns in a to match the rows
or columns of mat. The return value will have rows or columns of a removed if they do not appear
in mat.

108 trim_rows_cols

Usage
trim_rows_cols(
a = NULL,
mat = NULL,

margin = c(1, 2),

warn_if_a_incomplete = TRUE,

a_piece = "all”,

mat_piece = "all”,

notation = RCLabels::bracket_notation,
prepositions = RCLabels: :prepositions_list

)
Arguments
a A matrix to be trimmed.
mat The matrix to be used as the template for rows and/or columns of a.
margin The dimension of a to be trimmed. 1 means rows; 2 means columns. Default is

c(1,2).
warn_if_a_incomplete

When TRUE (the default), a warning is emitted if a is missing entries on margin
that are present in mat. Default is TRUE.

a_piece The portion of a labels to be used for comparison. Default is "all".
mat_piece The portion of mat labels to be used for comparison. Default is "all".
notation The notation for row and column labels. Defaultis RCLabels: :bracket_notation.

prepositions The strings to be treated as prepositions in row and column labels. Default is
RCLabels: :prepositions_list.

Details

If a is NULL, NULL is returned. If mat is NULL, a is returned unmodified. If mat has NULL dimnames,
a is returned unmodified. If mat has NULL for dimnames on margin, an error is returned.

A common use case for this function is to trim a, because it has too many entries on margins
compared to mat. This trimming will result in a smaller result for any mathematical operations
involving a and mat. Typically, a should cover all the entries in mat on margin. Thus, by default,
this function warns if a is missing entries on margin that are present in mat. To turn off this checking
behavior, set warn_if_a_incomplete = FALSE.

a_piece and mat_piece control which part of row and column names are compared before trim-
ming. The default values for a_piece and mat_piece are "all", meaning that the entire label should
be matched. Other options for a_piece and mat_piece are "pref" and "suff", which will match the
prefix or suffix of the labels. Alternatively, prepositions can be given such that objects of preposi-
tions will be matched. Examples include "from" or "in". See RCLabels: :get_piece() for details.

Value

Matrix a with rows or columns trimmed to match mat.

unaryapply_byname 109

See Also

RCLabels: :get_piece(), which is used internally.

Examples

a <- matrix(c(1, 2, 3,
4, 5,6,
7, 8, 9), nrow = 3, ncol = 3, byrow = TRUE,
dimnames = list(c("r1"”, "r2", "r3"), c("c1”, "c2", "c3"))) %%
setrowtype("rowtype”) %>% setcoltype(”coltype")
mat <- matrix(c(1, 2, 3,
4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE,
dimnames = list(c("r1", "bogus"), c("c1”, "bogus"”, "c2"))) %>%
setrowtype("rowtype") %>% setcoltype(”coltype")
trim_rows_cols(a, mat, margin = 1)
trim_rows_cols(a, mat, margin = 2)
trim_rows_cols(a, mat)

unaryapply_byname Apply a unary function by name

Description

FUN is applied to a using additional arguments .FUNdots to FUN. If a is a list, the names of a are
applied to the output.

Usage
unaryapply_byname(
FUN,
a,
.FUNdots = NULL,
rowcoltypes = c("all”, "transpose”, "row”, "col”, "none")
)
Arguments
FUN a unary function to be applied "by name" to a.
a the argument to FUN.
.FUNdots a list of additional named arguments passed to FUN.
rowcoltypes a string that tells how to transfer row and column types of a to output. See

details.

110 vectorize_byname

Details

Note that . FUNdots can be a rectangular two-dimensional list of arguments to FUN. If so, . FUNdots
is interpreted as follows:

* The first dimension of . FUNdots contains named arguments to FUN.

* The second dimension of .FUNdots contains unique values of the named arguments to be

applied along the list that is a.

The length of the first dimension of .FUNdots is the number of arguments supplied to FUN. The
length of the second dimension of . FUNdots must be equal to the length of a.
See prepare_.FUNdots() for more details on the . FUNdots argument.

Options for the rowcoltypes argument are:

e "all": transfer both row and column types of a directly to output.

 "transpose": rowtype of a becomes coltype of output; coltype of a becomes rowtype of output.
"transpose" is helpful for FUNs that transpose a upon output.

* "row": rowtype of a becomes both rowtype and coltype of output.
* "col": coltype of a becomes both rowtype and coltype of output.

* "none": rowtype and coltype not set by unaryapply_byname. Rather, FUN will set rowtype
and coltype.

Note that rowcoltypes should not be a vector or list of strings. Rather, it should be a single string.

Value

the result of applying FUN "by name" to a.

Examples
productnames <- c("p1”, "p2")
industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>% setcoltype(”Industries”)
difference_byname(0, U)

unaryapply_byname(*-~, U)
vectorize_byname Vectorize a matrix
Description

Converts a matrix into a column vector. Each element of the matrix becomes an entry in the column
vector, with rows named via the notation argument. Callers may want to transpose the matrix first
with transpose_byname ().

vec_from_store_byname 111

Usage

vectorize_byname(a, notation)

Arguments

a The matrix to be vectorized.

notation A string vector created by notation_vec().
Details

The notation is also applied to rowtype and coltype attributes.

Value

A column vector containing all elements of a, with row names assigned as "rowname sep colname".

Examples

m <- matrix(c(1, 5,
4, 5),
nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("p1”, "p2"), c("i1", "i2"))) %>%
setrowtype(”"Products”) %>% setcoltype("Industries™)

m
vectorize_byname(m, notation = RCLabels::arrow_notation)
If a single number is provided, the number will be returned as a 1x1 column vector
with some additional attributes.
vectorize_byname(42, notation = RCLabels::arrow_notation)
attributes(vectorize_byname(42, notation = RCLabels::arrow_notation))

vec_from_store_byname Create a vector with labels from a matrix and values from a vector
store

Description

When a matrix is multiplied by a vector byname, naming can be tricky. There are times when
pieces of the vector labels should be matched to pieces of the matrix labels. This function helps by
performing the matching byname. For this function, vector v is considered a store of values from
which the output vector is created using special matching rules between matrix a and vector v.

Usage
vec_from_store_byname(
a,
V)
a_piece = "all”,

v_piece = "all”,

112 vec_from_store_byname

colname = NULL,

margin = 1,

notation = if (is.list(a)) {
list(RCLabels: :bracket_notation)

} else {

RCLabels: :bracket_notation
3
prepositions = if (is.list(a)) {
list(RCLabels: :prepositions_list)

} else {
RCLabels: :prepositions_list
1,
missing = NA_real_
)
Arguments
a A matrix from which row or column labels are taken. Can also be a list or the
name of a column in a data frame.
v A vector from which values are taken, when a_piece matches v_piece. Can
also be a list or the name of a column in a data frame.
a_piece The piece of labels on a that is to be matched. Default is "all".
v_piece The piece of labels on v that is to be matched. Default is "all".
colname The name of the output vector’s 1-sized dimension (the only column if column
is TRUE, the only row otherwise). Default is NULL, meaning that the name of the
1-sized dimension in v should be used.
margin Tells whether to assess the rows (1) or columns (2) of a when creating the out-
going vector. Default is 1.
notation The notation for the row and column labels. Defaultis RCLabels: :bracket_notation,

wrapped as a list if a is a list.

prepositions The strings that will count for prepositions. Defaultis RCLabels: :prepositions,
wrapped as a list if a is a list.

missing The value used when the desired value is not found in v. Default is NA_real _.

Details

The output of this function is a vector (a column vector if column is TRUE, the default; a row vector
if column is FALSE). The label of the size = 1 dimension is taken from colname (so named, because
the default is to return a column vector). The labels of the long dimension are taken from matrix a
(the row names of a if column is TRUE; the column names of a if column is FALSE). The values of the
output vector are obtained from v when a_piece matches v_piece using the RCLabels package.
The v_pieces of v must be unique. The default values for a_piece and v_piece are "all", meaning
that the entire label should be matched. Other options for a_piece and v_piece are "pref" and
"suff", which will match the prefix or suffix of the labels. Alternatively, prepositions can be given

vec_from_store_byname 113

such that objects of prepositions will be matched. Examples include "from" or "in". Row and
column types from v are applied to the output. If the piece given in a_piece is not present in row
or column names of a, NA_real_ is returned. If the piece given in v_piece is not present in row or
column names of v, NA_real_ is returned.

Note that notation and prepositions should be lists if a is a list but a single value otherwise. The
default values of notation and prepositions take care of this requirement, switching on the type
of a (list or not).

The class of the output object is determined from a. If a is a Matrix, the output will be a Matrix.
Otherwise, the output will be a matrix.

Value

A column vector with names from a and values from v.

Examples

a <- matrix(42, nrow = 3, ncol =5,
dimnames = list(c("Electricity [from b in c]",
"Coal [from e in f]",
"Crude o0il [from Production in USA]"),
c("Main activity producer electricity plants”,
"Wind turbines”,
"0il refineries”,
"Coal mines”,
"Automobiles”))) %>%
setrowtype("Product”) %>% setcoltype("Industry”)
a
v <- matrix(1:7, nrow = 7, ncol = 1,
dimnames = list(c("Electricity”,
"Peat”,
"Hydro",
"Crude o0il",
"Coal”,
"Hard coal (if no detail)”,
"Brown coal”),
"phi")) %>%
setrowtype("Product”) %>% setcoltype("phi")

v
vec_from_store_byname(a, v, a_piece = "pref")
vec_from_store_byname(a, v, a_piece = "noun")

v2 <- matrix(1:7, nrow = 7, ncol = 1,
dimnames = list(c("Electricity”,
"Peat”,
"USA",
nen
"Coal”,
"Hard coal (if no detail)”,
"),
"phi")) %>%
setrowtype("Product”) %>% setcoltype("phi”)

114 vec_from_store_byname

vec_from_store_byname(a, v2, a_piece = "in")

Works with lists
v3 <- matrix(1:7, nrow = 7, ncol = 1,
dimnames = list(c("Electricity [from USAJ",
"Peat [from nowhere]”,
"Production [from GHAJ",
"e [from ZAF]1",
"Coal [from AUS]",
"Hard coal (if no detail) [from GBR]",
"b [from Nebraskal"),
"phi")) %>%
setrowtype("Product”) %>% setcoltype("phi")
a_list <- list(a, a)
v_list <- list(v3, v3)
vec_from_store_byname(a_list, v_list, a_piece = "in", v_piece = "from")

Also works in a data frame
df <- tibble::tibble(a = list(a, a, a),
v = list(v3, v3, v3))

df %>%
dplyr: :mutate(
actual = vec_from_store_byname(a = a, v = v, a_piece = "in", v_piece = "from")

)

Index

abs_byname, 4
agg_map_to_agg_table

(aggregation_map_helpers), 10

agg_table_to_agg_map

(aggregation_map_helpers), 10

aggregate_byname, 4
aggregate_pieces_byname, 6

aggregate_to_pref_suff_byname, 9

aggregation_map_helpers, 10
all_byname, 11
and_byname, 12
any_byname, 13

apply(), 19

binaryapply_byname, 13

clean_byname, 14
colprods_byname, 15
colsums_byname, 16
coltype, 17

coltype(), 106
compare_byname, 18
complete_and_sort, 19
complete_rows_cols, 20
count_vals_byname, 22
count_vals_incols_byname, 23
count_vals_inrows_byname, 24
create_colvec_byname, 25
create_matrix_byname, 26
create_rowvec_byname, 27
create_triplet, 29
cumapply_byname, 30
cumprod_byname, 31
cumsum_byname, 32

difference_byname, 33
eigenvalues_byname, 34

eigenvectors_byname, 35
elementapply_byname, 36

115

equal_byname, 37, 47
exp_byname, 38

fractionize_byname, 38

geometricmean_byname, 39
get_row_col_index_maps, 42
getcolnames_byname, 40
getrownames_byname, 41
getzerorowcolnames_byname, 42
gsub(), 80

hadamardproduct_byname, 43
hatinv_byname, 44
hatize_byname, 46

Hmisc: :escapeRegex(), 88, 92, 93

identical_byname, 47
identize_byname, 48
Iminus_byname, 49
invert_byname, 50
is.Matrix, 51
is_matrix_or_Matrix, 52
iszero_byname, 51

kvec_from_template_byname, 53

list_of_rows_or_cols, 54
log_byname, 57
logarithmicmean_byname, 55
logmean, 56

margin_from_types_byname, 57
matricize_byname, 58
Matrix, 59
matrixproduct_byname, 61
mean_byname, 62

naryapply_byname, 65
naryapplylogical_byname, 63
ncol_byname, 66

116

nrow_byname, 67
organize_args, 68

pow_byname, 69
prep_vector_arg, 71
prepare_.FUNdots, 70
prodall_byname, 72

guotient_byname, 73

RCLabels: :bracket_notation, 75, 80, 90
RCLabels: :from_notation, 75, 90
RCLabels: :get_piece(), 108
RCLabels::infer_notation(), 75, 89
RCLabels: :make_or_pattern(), 75, 88, 89,
92, 93
RCLabels::notations_list, 75, 89, 90
RCLabels: :prepositions_list, 75, 80, 89
RCLabels: :replace_by_pattern, 80, 81
reallocate_byname, 74
rename_to_piece_byname, 77
rename_to_pref_suff_byname, 79
rename_via_pattern_byname, 80
replaceNaN_byname, 82
rowprods_byname, 82
rowsums_byname, 83
rowtype, 84
rowtype(), 106

samestructure_byname, 85
select_cols_byname, 87
select_cols_byname(), 92
select_rowcol_piece_byname, 89
select_rowcol_piece_byname(), 75
select_rows_byname, 91
select_rows_byname(), 92
select_rows_cols_byname, 92
selectzerocols_byname, 86
selectzerorows_byname, 86
setcolnames_byname, 94
setcoltype, 95
setrownames_byname, 96
setrowtype, 97
sort_rows_cols, 98
structure_index_map, 99
sum_byname, 101
sumall_byname, 100
svd_byname, 102

INDEX

switch_notation_byname, 103

to_named_matrix (to_named_triplet), 104
to_named_matrix(), 104-106
to_named_triplet, 104

to_triplet (to_named_triplet), 104
to_triplet(), 104-106
transpose_byname, 107
transpose_byname(), 19
trim_rows_cols, 107

unaryapply_byname, 109

vec_from_store_byname, 111
vectorize_byname, 110

	abs_byname
	aggregate_byname
	aggregate_pieces_byname
	aggregate_to_pref_suff_byname
	aggregation_map_helpers
	all_byname
	and_byname
	any_byname
	binaryapply_byname
	clean_byname
	colprods_byname
	colsums_byname
	coltype
	compare_byname
	complete_and_sort
	complete_rows_cols
	count_vals_byname
	count_vals_incols_byname
	count_vals_inrows_byname
	create_colvec_byname
	create_matrix_byname
	create_rowvec_byname
	create_triplet
	cumapply_byname
	cumprod_byname
	cumsum_byname
	difference_byname
	eigenvalues_byname
	eigenvectors_byname
	elementapply_byname
	equal_byname
	exp_byname
	fractionize_byname
	geometricmean_byname
	getcolnames_byname
	getrownames_byname
	getzerorowcolnames_byname
	get_row_col_index_maps
	hadamardproduct_byname
	hatinv_byname
	hatize_byname
	identical_byname
	identize_byname
	Iminus_byname
	invert_byname
	is.Matrix
	iszero_byname
	is_matrix_or_Matrix
	kvec_from_template_byname
	list_of_rows_or_cols
	logarithmicmean_byname
	logmean
	log_byname
	margin_from_types_byname
	matricize_byname
	Matrix
	matrixproduct_byname
	mean_byname
	naryapplylogical_byname
	naryapply_byname
	ncol_byname
	nrow_byname
	organize_args
	pow_byname
	prepare_.FUNdots
	prep_vector_arg
	prodall_byname
	quotient_byname
	reallocate_byname
	rename_to_piece_byname
	rename_to_pref_suff_byname
	rename_via_pattern_byname
	replaceNaN_byname
	rowprods_byname
	rowsums_byname
	rowtype
	samestructure_byname
	selectzerocols_byname
	selectzerorows_byname
	select_cols_byname
	select_rowcol_piece_byname
	select_rows_byname
	select_rows_cols_byname
	setcolnames_byname
	setcoltype
	setrownames_byname
	setrowtype
	sort_rows_cols
	structure_index_map
	sumall_byname
	sum_byname
	svd_byname
	switch_notation_byname
	to_named_triplet
	transpose_byname
	trim_rows_cols
	unaryapply_byname
	vectorize_byname
	vec_from_store_byname
	Index

