The mapmisc package

Patrick Brown

January 12, 2026

This document will be incomplete if rgdal is unavailable or there is on internet connec-
tion when this document is compiled. The full document is at http://diseasemapping.
r-forge.r-project.org/.

1 Introduction

This package provides a few utilities for making nice maps in R, with an emphasis on en-
abling maps in short tidy code chunks which are suitable for Sweave and knitr documents.
The package duplicates the capabilities of packages such as classInt, geonames, and Open-
StreetMap, and the price of having tidier code is much of the flexibility from these other
packages has been lost here.

The meuse data

R> data('netherlands')
R> meuse = unwrap(meuse)
R> nldElev = unwrap(nldElev)

R> meuselL = project(meuse, crsLL)
The elevation data is a Raster.

R> class(nldElev)

[1] "SpatRaster"

attr(,"package")

[1] "terra"

R> nldElev = crop(nldElev, extend(ext(meuse), 1000))

2 Downloading background maps and city locations

Get a background map covering the extent of the meuse data

http://diseasemapping.r-forge.r-project.org/
http://diseasemapping.r-forge.r-project.org/

R>

R>
##
#i#
#Hit
R>
##
R>
#i#

nldTiles = openmap (meuse)
nldTiles is a Raster with the same projection as meuse

class(nldTiles)

[1] "SpatRaster"

attr(, "package")

[1] "terra"

crs(nldTiles, proj=TRUE)

[1] "+proj=sterea +lat_0=52.15616055555566 +1lon_0=5.38763888888889 +k=0.9999079 +x_0=1
crs(meuse, proj=TRUE)

[1] "+proj=sterea +lat_0=52.1561605555556 +1lon_0=5.38763888888889 +k=0.9999079 +x_0=1

Maps which can be downloaded are shown at https://diseasemapping.r-forge.r-project.

org/

R>

A list of cities, included in the netherlands data.
nldCities = unwrap(nldCities)

Or download using GNcities, a wrapper for the function of the same name in the geon-

ames package.

R>
R>
R>

R>
#Hit
##
##
R>
#i#
#Hit
#it
R>
#i#

3

options(geonamesUsername="myusernamehere")
if(file.exists("~/geonamesUsername.R")) source("~/geonamesUsername.R")
nldCities = GNcities(meuse, maxRows=6)

A SpatVector, with same map projection.

class(nldCities)
[1] "SpatVector"
attr(, "package")
[1] "terra"
names (nldCities)
[1] "lng" "geonameId" "countrycode" '"name" "fclName"
[6] "toponymName" "fcodeName" "wikipedia" "lat" "fcl"
[11] "population" "fcode"
crs(nldCities, proj=TRUE)
[1] "+proj=sterea +lat_0=52.1561605555556 +lon_0=5.38763888888889 +k=0.9999079 +x_0=1

Making maps

The map.new function sets up a map in the current plot window with the correct limits and
aspect ratio for the object supplied, and without margins or white space. scaleBar adds
a scale and north arrow. It uses the map projection of the argument supplied to calculate
distances and find north.

https://diseasemapping.r-forge.r-project.org/
https://diseasemapping.r-forge.r-project.org/

R> # plot the data locations

R> map.new(meuse)

R> plot(nldTiles, add=TRUE)

R> points(meuse,col="red", cex=0.3)

R> scaleBar (meuse,pos="topleft", bg="white")

R>

R> # plot city names

R> map.new(meuse)

R> plot(nldTiles, add=TRUE)

R> points(nldCities)

R> text(nldCities, labels=nldCities$name, pos=3)
R> scaleBar (meuse,pos="topleft", bg="white")

R>

R> # plot elevation

R> map.new(meuse, legendRight=TRUE)

R> plot(nldTiles, add=TRUE)

R> plot(nldElev,add=TRUE, col=terrain.colors(8),alpha=0.6,legend.mar=2, legend.line=0)
R> scaleBar (meuse,pos="topleft",bg="white")

(a) data locations (b) cities (c) elevation

Figure 1: simple map

4 Legends

Create a colour scale for plotting copper concentrations

R> cuScale = colourScale(meuse$copper, breaks=5, style='equal',
+ opacity=0.8, dec=-1, firstBreak=0)

and elevation, with transparency decreasing as elevation increases.

R> elevScale = colourScale(nldElev, style='equal',
+ breaks=6, col=terrain.colors,
+ firstBreak=0, dec=-1,opacity=c(0.2, 0.9))

Soil type is a categorical variable, create a factor and create a colour scale of unique
values

R> soilScale = colourScale(meuse$soil, col="Set2")

R> map.new(meuse)

R> plot(nldTiles, add=TRUE)

R> plot(meuse, col=cuScale$plot,add=TRUE,pch=16)

R> legendBreaks("bottomright", breaks=cuScale,

+ title="gals/firkin")

R>

R>

R> map.new(meuse)

R> plot(nldTiles, add=TRUE)

R> plot(meuse, col=soilScale$plot,add=TRUE,pch=16)

R> legendBreaks("bottomright", breaks=soilScale,

+ title="soil type", cex=0.7,bg="white")

R>

R> map.new(meuse)

R> plot(nldTiles, add=TRUE)

R> plot(nldElev, breaks=elevScale$breaks, col=elevScale$colOpacity,
+ legend=FALSE, add=TRUE)

R> legendBreaks("left", breaks=elevScale, title='Metres',bg="white")

5 More plots

Rotate the data 50 degrees clockwise with an oblique mercator projection.

R> meuseRot = project(meuse, omerc(meuse, -50))

R> tilesRot = openmap(meuseRot, fact=2)

R> elevRot = project(nldElev, crs(meuseRot))

R> nldCitiesRot = project(nldCities, crs(meuseRot))

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

6

(b) soil (c) elevation

Figure 2: Meuse data again

And create new plots

first elevation

map .new (meuseRot)

plot(tilesRot, add=TRUE)
plot(elevRot,add=TRUE,alpha=0.5,col=terrain.colors(8), legend=FALSE)
points(nldCitiesRot)

text (nldCitiesRot, labels=nldCitiesRot$name, pos=3)

scaleBar (meuseRot,pos="topleft", bg="white")
then data locations

map .new (meuseRot)

plot(tilesRot, add=TRUE)

points(meuseRot,col="red", cex=0.3)

scaleBar (meuseRot, bg="white")

Inset maps

R>

+

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

(a) elevation

Figure 3: Rotated map

world = openmap (
rast(ext(-10,30,40,60),crs=crsLL),
crs=crsMerc,
path="osm")

not rotated

map .new (meuse, legendRight=TRUE)
plot(nldTiles, add=TRUE)
points(meuse)

scaleBar (meuse,pos="bottomright", bg="white")
insetMap(crs=meuse, pos="topright",map=world)

rotated

map .new (meuseRot)

plot(tilesRot, add=TRUE)
points(meuseRot,col="red", cex=0.3)

scaleBar (meuseRot, bg="white")
insetMap (meuseRot, "bottomleft",map=world)

(a) elevation (b) rotated

Figure 4: Inset map

	Introduction
	Downloading background maps and city locations
	Making maps
	Legends
	More plots
	Inset maps

