Package ‘mapgl’

January 12, 2026
Title Interactive Maps with 'Mapbox GL JS' and 'MapLibre GL JS'
Version 0.4.4
Date 2026-01-12

Description Provides an interface to the 'Mapbox GL JS' (<https:
//docs.mapbox.com/mapbox-gl-js/guides>)
and the 'MapLibre GL JS' (<https:
//maplibre.org/maplibre-gl-js/docs/>) interactive mapping libraries to help users
create custom interactive maps in R. Users can create interactive globe visualiza-
tions; layer 'sf' objects to create
filled maps, circle maps, 'heatmaps', and three-
dimensional graphics; and customize map styles and views. The package
also includes utilities to use 'Mapbox' and 'MapLibre' maps in 'Shiny' web applications.

URL https://walker-data.com/mapgl/

BugReports https://github.com/walkerke/mapgl/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Imports htmlwidgets, geojsonsf, sf, rlang, htmltools, grDevices,
base64enc, terra, classInt, shiny, viridisLite, png, jsonlite

Suggests mapboxapi, usethis, leaflet
NeedsCompilation no

Author Kyle Walker [aut, cre]

Maintainer Kyle Walker <kyle@walker-data.com>
Repository CRAN

Date/Publication 2026-01-12 16:50:02 UTC

https://docs.mapbox.com/mapbox-gl-js/guides
https://docs.mapbox.com/mapbox-gl-js/guides
https://maplibre.org/maplibre-gl-js/docs/
https://maplibre.org/maplibre-gl-js/docs/
https://walker-data.com/mapgl/
https://github.com/walkerke/mapgl/issues

2 Contents

Contents
add_circle_layer 4
add_control L s e 7
add_draw_control e 9
add_features_to_draw e e e 11
add_fill_extrusion_layer e 12
add_fill_layer e 14
add_fullscreen_control e 17
add_geocoder_control 17
add_geolocate_control 19
add_globe_control 20
add_globe_minimap L e 21
add_h3j_source e e e e e 22
add_heatmap_layer e 23
add_image e e e 25
add_image_SOUrce vt it e e e e e e 26
add_layer e 27
add_layers_control L 29
add_line_layer. 31
add_markers e 34
add_navigation_control L e e 36
add_pmtiles_source e e e e 37
add_raster_dem_SOUrce e e e e e e e e e 38
add_raster_layer. L. e e 39
add_raster_SOUICE o v v e e 41
add_reset_control e e 41
add_scale_control e e 42
add_screenshot_control e 43
add_source L e e e e e e e 45
add_symbol layer 45
add_VeCtor_SOUICE v v i e e e e e e e e e e e 51
add_video_SOUICe s 52
add_VIEW . . . 52
carto_style e 54
classification_helpers 54
clear_controls e e e e e 56
clear_drawn_features e e e e e 57
clear_layer. L e e 58
clear_legend L 59
clear_markers e 60
CluSter_OptionS o o e e 60
COMPAIC .+ v v v v v e 61
CONCAL . . . v v v i e i e 64
CASE_LO . . . i e e e e e e e e e e e e e e e 65
enable_shiny_hover L 65
fit bounds s 66

fly_to . . . e 67

Contents

3
GeL_COIUMN e e e e e 67
get_drawn_features L 68
get_queried_features L. 69
interpolate e 70
interpolate_palette L. e 71
JUIMP_LO . . o v o e e e e e 72
legend_style L 73
mapboxgl e e e 75
mapboxglCompareOutput 76
mapboxglOutput L 77
mapboxgl_compare_pProxy oot e e e e e e 77
mapboXgl_ProxXy e e e e e 78
mapboxgl_VIiew 78
mapbox_style e 80
maplibre L e e e e e e 80
maplibreCompareOutput 82
maplibreOutput 83
maplibre_compare_proxXyo i e e e e e e e e e e e 83
maplibre_proxy L e e e e 84
maplibre_view e 84
maptiler_style 86
map_legends L e e 86
match_expr 93
move_layer 94
number_format e e e e 95
ON_SECION v v v ittt e e e e e e e e 96
openfreemap_style 97
palette_to_lut 97
query_rendered_featureso 99
renderMapboxgl L 101
renderMapboxglCompare 102
renderMaplibre L e e e 102
renderMaplibreCompare L 103
set_config_property e e 103
set_filter L e e 104
Set_fOg . . . e e 104
set_layout_property e e e e e 105
Set_paint_property oo e i e e e e e e e e 106
SEL_POPUD + « v v e 106
SEt_Projection e e 107
SEL TAIN . . v v o o e e e e e e e e e, 107
SEL_STIOW . o v v v o e e e e e e e e e e e e 109
SEBL_SOUICE . . o ¢ v v v vt v e e e et e e e e e e e e e e 110
set_style e e 111
SEt_LEITAIN v o e e e e e e e e e e 112
SEL_LOOILIP o o e e e 113
SEL_VIEW . . v v v o e e e e e e e e e e e 113

step_classification 114

SEEP_EXPL . o o o e e e e e e e e e e e e e
story_leaflet
0] 0 1T

story_maplibre

turf_convex_hull
turf_difference

Index

SLOTY_SECHION o o it e e e e e e e e e
turfoareao
turf_buffer
turf_center_of mass
turf_centroid e e
turf_concave_hull

turf_distance e e e e e e e e e e
turf filter e s
turf INtersect e e e e e e e
turf_union oL L.
turf_vOoronol e e

add_circle_layer

Add a circle layer to a Mapbox GL map

Description

Add a circle layer to a Mapbox GL map

Usage

add_circle_layer(
map,
id,
source,

source_layer = NULL,

circle_blur = NULL,

circle_color = NULL,
circle_opacity = NULL,
circle_radius = NULL,

circle_sort_key = NULL,
circle_stroke_color = NULL,
circle_stroke_opacity = NULL,
circle_stroke_width = NULL,

circle_translate

NULL,

circle_translate_anchor =
visibility = "visible”,

slot = NULL,
min_zoom = NULL,
max_zoom = NULL,

nmapn ,

add_circle_layer

add_circle_layer

popup = NULL,

tooltip = NULL,
hover_options = NULL,
before_id = NULL,
filter = NULL,
cluster_options = NULL

Arguments
map
id

source

source_layer
circle_blur
circle_color
circle_opacity

circle_radius

circle_sort_key

A map object created by the mapboxgl function.
A unique ID for the layer.

The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

The source layer (for vector sources).
Amount to blur the circle.

The color of the circle.

The opacity at which the circle will be drawn.

Circle radius.

Sorts features in ascending order based on this value.

circle_stroke_color

The color of the circle’s stroke.

circle_stroke_opacity

The opacity of the circle’s stroke.

circle_stroke_width

The width of the circle’s stroke.

circle_translate

The geometry’s offset. Values are c(x, y) where negatives indicate left and up.

circle_translate_anchor

visibility
slot
min_zoom
max_zoom

popup

tooltip

hover_options

before_id

Controls the frame of reference for circle-translate.
Whether this layer is displayed.

An optional slot for layer order.

The minimum zoom level for the layer.

The maximum zoom level for the layer.

A column name containing information to display in a popup on click. Columns
containing HTML will be parsed.

A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.

A named list of options for highlighting features in the layer on hover.

The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).

6 add_circle_layer

filter An optional filter expression to subset features in the layer.

cluster_options
A list of options for clustering circles, created by the cluster_options() func-
tion.

Value

The modified map object with the new circle layer added.

Examples

Not run:
library(mapgl)
library(sf)
library(dplyr)

Set seed for reproducibility
set.seed(1234)

Define the bounding box for Washington DC (approximately)
bbox <- st_bbox(
c(
xmin = -77.119759,
ymin = 38.791645,
xmax = -76.909393,
ymax = 38.995548
),
crs = st_crs(4326)

)

Generate 30 random points within the bounding box
random_points <- st_as_sf(
data.frame(
id = 1:30,

lon = runif (30, bbox["xmin"], bbox["xmax"]),
lat = runif (30, bbox["ymin"], bbox["ymax"])
)7
coords = c("lon"”, "lat"),
crs = 4326

)

Assign random categories
categories <- c("music”, "bar”, "theatre"”, "bicycle")
random_points <- random_points %>%

mutate(category = sample(categories, n(), replace = TRUE))

n

Map with circle layer
mapboxgl (style = mapbox_style("light")) %>%
fit_bounds(random_points, animate = FALSE) %>%
add_circle_layer(
id = "poi-layer”,
source = random_points,

add_control 7

circle_color = match_expr(

"category”,

values = c(
"music”, "bar", "theatre",
"bicycle”

),

stops = c(
"#1f78b4", "#33a02c"”,
"#e31alc", "#ff7f00"

),

circle_radius = 8,

circle_stroke_color = "#ffffff",

circle_stroke_width = 2,

circle_opacity = 0.8,

tooltip = "category”,

hover_options = list(
circle_radius = 12,
circle_color = "#ffff99"

)

) %>%

add_categorical_legend(
legend_title = "Points of Interest”,
values = c("Music”, "Bar"”, "Theatre”, "Bicycle"),
colors = c("#1f78b4", "#33a02c", "#e3lalc”", "#ff7f00"),
circular_patches = TRUE

)

End(Not run)

add_control Add a custom control to a map

Description

This function adds a custom control to a Mapbox GL or MapLibre GL map. It allows you to create
custom HTML element controls and add them to the map.

Usage

add_control(
map,
html,
position = "top-right"”,
className = NULL,
id = NULL,

add_control

Arguments

map A map object created by the mapboxgl or maplibre functions.

html Character string containing the HTML content for the control.

position The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".

className Optional CSS class name for the control container.

id Optional unique identifier for the control. If not provided, defaults to "custom".
This ID can be used with clear_controls() to selectively remove this specific
control.

Additional arguments passed to the JavaScript side.
Value

The modified map object with the custom control added.

Examples

Not run:
library(mapgl)

Basic custom control
maplibre() |>
add_control(
html = "<div style='background-color: white; padding: 5px;'>
<p>Custom HTML</p>

</div>",
position = "top-left”
)

Custom control with specific ID for selective removal
maplibre() |>
add_control(

html = "<div style='background: blue; color: white; padding: 10px;'>

My Control
</div>",
position = "top-right”,
id = "my_custom_control”

)
Later, remove only this specific control
maplibre_proxy("map"”) |>

clear_controls("my_custom_control”)

End(Not run)

add_draw_control 9

add_draw_control Add a draw control to a map

Description

Add a draw control to a map

Usage

add_draw_control(
map,
position = "top-left”,
freehand = FALSE,
simplify_freehand = FALSE,
rectangle = FALSE,
radius = FALSE,
orientation = "vertical”,
source = NULL,
point_color = "#3bb2d0",
line_color = "#3bb2d0",
fill_color = "#3bb2d0",
fill_opacity = 0.1,
active_color = "#fbbo3b",
vertex_radius = 5,
line_width = 2,
download_button = FALSE,

download_filename = "drawn-features”,
show_measurements = FALSE,
measurement_units = "both",
)
Arguments
map A map object created by the mapboxgl or maplibre functions.
position A string specifying the position of the draw control. One of "top-right", "top-

left", "bottom-right", or "bottom-left".

freehand Logical, whether to enable freehand drawing mode. Default is FALSE.

simplify_freehand
Logical, whether to apply simplification to freehand drawings. Default is FALSE.

rectangle Logical, whether to enable rectangle drawing mode. Default is FALSE.
radius Logical, whether to enable radius/circle drawing mode. Default is FALSE.
orientation A string specifying the orientation of the draw control. Either "vertical" (default)

or "horizontal".

10 add_draw_control

source A character string specifying a source ID to add to the draw control. Default is
NULL.

point_color Color for point features. Default is "#3bb2d0" (light blue).

line_color Color for line features. Default is "#3bb2d0" (light blue).

fill_color Fill color for polygon features. Default is "#3bb2d0" (light blue).
fill_opacity Fill opacity for polygon features. Default is 0.1.

active_color Color for active (selected) features. Default is "#fbb03b" (orange).
vertex_radius Radius of vertex points in pixels. Default is 5.

line_width Width of lines in pixels. Default is 2.
download_button
Logical, whether to add a download button to export drawn features as GeolJ-
SON. Default is FALSE.
download_filename
Base filename for downloaded GeoJSON (without extension). Default is "drawn-
features".
show_measurements
Logical, whether to show live measurements while drawing. Default is FALSE.
measurement_units

Units for measurements. Either "metric", "imperial", or "both". Default is
"both".

Additional named arguments. See https://github.com/mapbox/mapbox-gl-draw/
blob/main/docs/API.md#options for a list of options.

Value

The modified map object with the draw control added.

Examples

Not run:
library(mapgl)

mapboxgl (
style = mapbox_style("streets"),
center = c(-74.50, 40),
zoom = 9

) 1>

add_draw_control()

With initial features from a source
library(tigris)
tx <- counties(state = "TX", cb = TRUE)
mapboxgl (bounds = tx) [>
add_source(id = "tx", data = tx) |>
add_draw_control(source = "tx")

With custom styling

https://github.com/mapbox/mapbox-gl-draw/blob/main/docs/API.md#options
https://github.com/mapbox/mapbox-gl-draw/blob/main/docs/API.md#options

add_features_to_draw 11

mapboxgl() |>

add_draw_control(
point_color = "#ff0000",
line_color = "#00ff00",
fill_color = "#0000ff",
fill_opacity = 0.3,
active_color = "#ffooff",
vertex_radius = 7,
line_width = 3

)

Enable rectangle drawing mode
mapboxgl() |>
add_draw_control(rectangle = TRUE)

Enable radius/circle drawing mode
mapboxgl() |>
add_draw_control(radius = TRUE)

Enable multiple drawing modes
mapboxgl() |>
add_draw_control(
freehand = TRUE,
rectangle = TRUE,
radius = TRUE
)

End(Not run)

add_features_to_draw Add features to an existing draw control

Description

This function adds features from an existing source to a draw control on a map.

Usage

add_features_to_draw(map, source, clear_existing = FALSE)

Arguments
map A map object with a draw control already added
source Character string specifying a source ID to get features from

clear_existing Logical, whether to clear existing drawn features before adding new ones. De-
fault is FALSE.

Value

The modified map object

12

Examples

Not run:
library(mapgl)
library(tigris)

Add features from an existing source
tx <- counties(state = "TX", cb = TRUE)
mapboxgl (bounds = tx) |>
add_source(id = "tx", data = tx) [>
add_draw_control() |>
add_features_to_draw(source = "tx")

In a Shiny app
observeEvent(input$load_data, {
mapboxgl_proxy("map") |>
add_features_to_draw(
source = "dynamic_data"”,
clear_existing = TRUE
)
»

End(Not run)

add_fill_extrusion_layer

add_fill_extrusion_layer

Add a fill-extrusion layer to a Mapbox GL map

Description

Add a fill-extrusion layer to a Mapbox GL map

Usage

add_fill_extrusion_layer(
map,
id,
source,
source_layer = NULL,
fill_extrusion_base = NULL,
fill_extrusion_color = NULL,
fill_extrusion_height = NULL,
fill_extrusion_opacity = NULL,
fill_extrusion_pattern = NULL,
fill_extrusion_translate = NULL,

fill_extrusion_translate_anchor = "map”
visibility = "visible”,
slot = NULL,

min_zoom = NULL,

add_fill_extrusion_layer 13

max_zoom = NULL,
popup = NULL,

tooltip = NULL,
hover_options = NULL,
before_id = NULL,
filter = NULL

)
Arguments
map A map object created by the mapboxgl function.
id A unique ID for the layer.
source The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

source_layer The source layer (for vector sources).
fill_extrusion_base
The base height of the fill extrusion.
fill_extrusion_color
The color of the fill extrusion.
fill_extrusion_height
The height of the fill extrusion.
fill_extrusion_opacity
The opacity of the fill extrusion.
fill_extrusion_pattern
Name of image in sprite to use for drawing image fills.
fill_extrusion_translate
The geometry’s offset. Values are c(x, y) where negatives indicate left and up.
fill_extrusion_translate_anchor
Controls the frame of reference for fill-extrusion-translate.

visibility Whether this layer is displayed.

slot An optional slot for layer order.

min_zoom The minimum zoom level for the layer.

max_zoom The maximum zoom level for the layer.

popup A column name containing information to display in a popup on click. Columns

containing HTML will be parsed.

tooltip A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.

hover_options A named list of options for highlighting features in the layer on hover.

before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).

filter An optional filter expression to subset features in the layer.

14 add_fill_layer

Value

The modified map object with the new fill-extrusion layer added.

Examples
Not run:
library(mapgl)

maplibre(
style = maptiler_style("basic"),

center = c(-74.0066, 40.7135),
zoom = 15.5,
pitch = 45,
bearing = -17.6
) 1>
add_vector_source(
id = "openmaptiles”,

url = paste@(
"https://api.maptiler.com/tiles/v3/tiles. json?key=",
Sys.getenv("MAPTILER_API_KEY")
)
) 1>
add_fill_extrusion_layer(
id = "3d-buildings”,
source = "openmaptiles”,
source_layer = "building”,
fill_extrusion_color = interpolate(
column = "render_height”,
values = c(0, 200, 400),
stops = c("lightgray”, "royalblue”, "lightblue”)
),
fill_extrusion_height = list(
"interpolate”,
list("linear"),
list("zoom"),
15,
o,
16,
list("get”, "render_height")

)

End(Not run)

add_fill_layer Add a fill layer to a map

Description

Add a fill layer to a map

add_fill_layer

Usage

add_fill_layer(
map,
id,
source,
source_layer
fill_antialia
fill_color =
fill_emissive
fill_opacity
fill_outline_
fill_pattern
fill_sort_key
fill_translat
fill_translat
fill_z_offset
visibility =
slot = NULL,
min_zoom = NU
max_zoom = NU
popup = NULL,
tooltip = NUL
hover_options
before_id = N
filter = NULL

Arguments
map
id

source

source_layer
fill_antialias

fill_color
fill_emissive_s

fill_opacity
fill_outline_co

fill_pattern
fill_sort_key
fill_translate

15

= NULL,

s = TRUE,

NULL,

_strength = NULL,
= NULL,

color = NULL,

= NULL,

= NULL,

e = NULL,
e_anchor = "map”,
= NULL,
"visible"”,

LL,
LL,

L,
= NULL,
ULL,

A map object created by the mapboxgl or maplibre functions.
A unique ID for the layer.

The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

The source layer (for vector sources).
Whether or not the fill should be antialiased.

The color of the filled part of this layer.
trength
Controls the intensity of light emitted on the source features.

The opacity of the entire fill layer.
lor
The outline color of the fill.

Name of image in sprite to use for drawing image fills.
Sorts features in ascending order based on this value.

The geometry’s offset. Values are c(x, y) where negatives indicate left and up.

16 add_fill_layer
fill_translate_anchor
Controls the frame of reference for fill-translate.
fill_z_offset Specifies an uniform elevation in meters.
visibility Whether this layer is displayed.
slot An optional slot for layer order.
min_zoom The minimum zoom level for the layer.
max_zoom The maximum zoom level for the layer.
popup A column name containing information to display in a popup on click. Columns
containing HTML will be parsed.
tooltip A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.
hover_options A named list of options for highlighting features in the layer on hover.
before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).
filter An optional filter expression to subset features in the layer.
Value
The modified map object with the new fill layer added.
Examples
Not run:
library(tidycensus)

fl_age <- get_acs(
geography = "tract”,
variables = "B01002_001",

state = "FL",
year = 2022,

geometry = TRUE

)

mapboxgl() |>

fit_bounds(fl_age, animate = FALSE) |>
add_fill_layer(
id = "fl_tracts”,

source =

fl_age,

fill_color = interpolate(
column = "estimate”,
values = c(20, 80),
stops = c("lightblue”, "darkblue"),
na_color = "lightgrey”

)’

fill_opacity = 0.5

)

End(Not run)

add_fullscreen_control 17

add_fullscreen_control
Add a fullscreen control to a map

Description

Add a fullscreen control to a map

Usage
add_fullscreen_control(map, position = "top-right")
Arguments
map A map object created by the mapboxgl or maplibre functions.
position A string specifying the position of the fullscreen control. One of "top-right",
"top-left", "bottom-right", or "bottom-left".
Value

The modified map object with the fullscreen control added.

Examples

Not run:
library(mapgl)

maplibre(
style = maptiler_style("streets"),
center = c(11.255, 43.77),
zoom = 13

) 1>

add_fullscreen_control(position = "top-right")

End(Not run)

add_geocoder_control Add a geocoder control to a map

Description

This function adds a Geocoder search bar to a Mapbox GL or MapLibre GL map. By default, a
marker will be added at the selected location and the map will fly to that location. The results of the
geocode are accessible in a Shiny session at input$MAPID_geocoder$result, where MAPID is the
name of your map.

18

Usage

add_geocoder_control

add_geocoder_control(

map,

position = "top-right"”,
placeholder = "Search”,
collapsed = FALSE,
provider = NULL,
maptiler_api_key = NULL,

Arguments

map
position

placeholder
collapsed

provider

A map object created by the mapboxgl or maplibre function.

non

The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".

A string to use as placeholder text for the search bar. Default is "Search".
Whether the control should be collapsed until hovered or clicked. Default is
FALSE.

The geocoding provider to use for MapLibre maps. Either "osm" for Open-
StreetMap/Nominatim or "maptiler" for MapTiler geocoding. If NULL (de-
fault), MapLibre maps will use "osm". Mapbox maps will always use the Map-
box geocoder, regardless of this parameter.

maptiler_api_key

Value

Your MapTiler API key (required when provider is "maptiler" for MapLibre
maps). Can also be set with MAPTILER_API_KEY environment variable. Mapbox
maps will always use the Mapbox API key set at the map level.

Additional parameters to pass to the Geocoder.

The modified map object with the geocoder control added.

Examples

Not run:
library(mapgl)

mapboxgl() |>

add_geocoder_

maplibre() |>

add_geocoder_

control(position = "top-left”, placeholder = "Enter an address")

control(position = "top-right”, placeholder = "Search location”)

Using MapTiler geocoder

maplibre() |>

add_geocoder_

End(Not run)

control(provider = "maptiler”, maptiler_api_key = "YOUR_API_KEY")

add_geolocate_control 19

add_geolocate_control Add a geolocate control to a map

Description

This function adds a Geolocate control to a Mapbox GL or MapLibre GL map. The geolocate
control allows users to track their current location on the map.

Usage

add_geolocate_control(
map,
position = "top-right”,
track_user = FALSE,
show_accuracy_circle = TRUE,
show_user_location = TRUE,
show_user_heading = FALSE,
fit_bounds_options = list(maxZoom = 15),
position_options = list(enableHighAccuracy = FALSE, timeout = 6000)

Arguments
map A map object created by the mapboxgl or maplibre functions.
position The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".
track_user Whether to actively track the user’s location. If TRUE, the map will continu-

ously update as the user moves. Default is FALSE.
show_accuracy_circle
Whether to show a circle indicating the accuracy of the location. Default is
TRUE.
show_user_location
Whether to show a dot at the user’s location. Default is TRUE.
show_user_heading
Whether to show an arrow indicating the device’s heading when tracking loca-
tion. Only works when track_user is TRUE. Default is FALSE.
fit_bounds_options
A list of options for fitting bounds when panning to the user’s location. Default
maxZoom is 15.
position_options
A list of Geolocation API position options. Default has enableHighAccuracy=FALSE
and timeout=6000.

Value

The modified map object with the geolocate control added.

20 add_globe_control

Examples

Not run:
library(mapgl)

mapboxgl() |>
add_geolocate_control(
position = "top-right”,
track_user = TRUE,
show_user_heading = TRUE

)

End(Not run)

add_globe_control Add a globe control to a map

Description

This function adds a globe control to a MapLibre GL map that allows toggling between "mercator”
and "globe" projections with a single click.

Usage

add_globe_control(map, position = "top-right")

Arguments
map A map object created by the maplibre function.
position The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".
Value

The modified map object with the globe control added.

Examples

Not run:
library(mapgl)

maplibre() |>
add_globe_control(position = "top-right")

End(Not run)

add_globe_minimap

21

add_globe_minimap Add a Globe Minimap to a map

Description

This function adds a globe minimap control to a Mapbox GL or Maplibre map.

Usage

add_globe_minimap(
map,
position = "bottom-right",
globe_size = 82,
land_color = "white",
water_color = "rgba(30 40 70/60%)",
marker_color = "#ff2233",
marker_size = 1

)
Arguments
map A mapboxgl or maplibre object.
position A string specifying the position of the minimap.
globe_size Number of pixels for the diameter of the globe. Default is 82.
land_color HTML color to use for land areas on the globe. Default is *white’.

water_color HTML color to use for water areas on the globe. Default is "rgba(30 40 70/60%)’.

marker_color =~ HTML color to use for the center point marker. Default is *#{f2233’.

marker_size Scale ratio for the center point marker. Default is 1.

Value

The modified map object with the globe minimap added.

Examples

Not run:
library(mapgl)

m <- mapboxgl() %>%
add_globe_minimap()

m <- maplibre() %>%
add_globe_minimap()

End(Not run)

22 add_h3j_source

add_h3j_source Add a hexagon source from the H3 geospatial indexing system.

Description

Add a hexagon source from the H3 geospatial indexing system.

Usage
add_h3j_source(map, id, url)

Arguments
map A map object created by the mapboxgl or maplibre function.
id A unique ID for the source.
url A URL pointing to the vector tile source.

References

https://h3geo.org, https://github.com/INSPIDE/h3j-h3t

Examples

url = "https://inspide.github.io/h3j-h3t/examples/h3j/sample.h3j"
maplibre(center=c(-3.704, 40.417), zoom=15, pitch=30) |>
add_h3j_source("h3j_testsource”,
url = url
R
add_fill_extrusion_layer(
id = "h3j_testlayer”,

source = "h3j_testsource”,
fill_extrusion_color = interpolate(
column = "value",

values = c(@, 21.864),

stops = c("#430254", "#f83c70")
),
fill_extrusion_height = list(

"interpolate”,

list("linear"),

list("zoom"),

14,

o,

15.05,

list("x", 10, list("get", "value"))
),

fill_extrusion_opacity = 0.7

add_heatmap_layer 23

add_heatmap_layer Add a heatmap layer to a Mapbox GL map

Description

Add a heatmap layer to a Mapbox GL map

Usage

add_heatmap_layer(
map,
id,
source,
source_layer = NULL,
heatmap_color = NULL,
heatmap_intensity = NULL,
heatmap_opacity = NULL,
heatmap_radius = NULL,
heatmap_weight = NULL,
visibility = "visible”,
slot = NULL,
min_zoom = NULL,
max_zoom = NULL,
before_id = NULL,
filter = NULL

)
Arguments
map A map object created by the mapboxgl function.
id A unique ID for the layer.
source The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

source_layer The source layer (for vector sources).

heatmap_color The color of the heatmap points.
heatmap_intensity

The intensity of the heatmap points.
heatmap_opacity

The opacity of the heatmap layer.

heatmap_radius The radius of influence of each individual heatmap point.
heatmap_weight The weight of each individual heatmap point.
visibility Whether this layer is displayed.

slot An optional slot for layer order.

24 add_heatmap_layer

min_zoom The minimum zoom level for the layer.
max_zoom The maximum zoom level for the layer.
before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).
filter An optional filter expression to subset features in the layer.
Value

The modified map object with the new heatmap layer added.

Examples
Not run:
library(mapgl)
mapboxgl (
style = mapbox_style("dark"),
center = c(-120, 50),
zoom = 2
) 1>
add_heatmap_layer(
id = "earthquakes-heat”,
source = list(
type = "geojson”,
data = "https://docs.mapbox.com/mapbox-gl-js/assets/earthquakes.geojson”
),
heatmap_weight = interpolate(
column = "mag”,
values = c(0, 6),
stops = c(0, 1)
),
heatmap_intensity = interpolate(
property = "zoom",
values = c(0, 9),
stops = c(1, 3)
),
heatmap_color = interpolate(
property = "heatmap-density”,
values = seq(@, 1, 0.2),
stops = c(
"rgba(33,102,172,0)", "rgb(103,169,207)",
"rgh(209,229,240)", "rgb(253,219,199)",
"rgb(239,138,98)", "rgh(178,24,43)"
)
),
heatmap_opacity = 0.7
)

End(Not run)

add_image 25

add_image Add an image to the map

Description

This function adds an image to the map’s style. The image can be used with icon-image, background-
pattern, fill-pattern, or line-pattern.

Usage

add_image(
map,
id,
url,
content = NULL,
pixel_ratio =1,
sdf = FALSE,
stretch_x = NULL,
stretch_y = NULL

)
Arguments
map A map object created by the mapboxgl or maplibre functions.
id A string specifying the ID of the image.
url A string specifying the URL of the image to be loaded or a path to a local image
file. Must be PNG or JPEG format.
content A vector of four numbers c(x1, y1, x2, y2) defining the part of the image that
can be covered by the content in text-field if icon-text-fit is used.
pixel_ratio A number specifying the ratio of pixels in the image to physical pixels on the
screen.
sdf A logical value indicating whether the image should be interpreted as an SDF
image.
stretch_x A list of number pairs defining the part(s) of the image that can be stretched
horizontally.
stretch_y A list of number pairs defining the part(s) of the image that can be stretched
vertically.
Value

The modified map object with the image added.

26 add_image_source

Examples

Not run:
library(mapgl)

Path to your local image file OR a URL to a remote image file
that is not blocked by CORS restrictions
image_path <- "/path/to/your/image.png"

pts <- tigris::landmarks("DE")[1:100,]
maplibre(bounds = pts) |>

add_image("local_icon”, image_path) |>
add_symbol_layer(

id = "local_icons”,
source = pts,
icon_image = "local_icon”,

icon_size = 0.5,
icon_allow_overlap = TRUE

)

End(Not run)

add_image_source Add an image source to a Mapbox GL or Maplibre GL map

Description

Add an image source to a Mapbox GL or Maplibre GL map

Usage
add_image_source(
map,
id,
url = NULL,
data = NULL,

coordinates = NULL,
colors = NULL

)
Arguments
map A map object created by the mapboxgl or maplibre function.
id A unique ID for the source.
url A URL pointing to the image source.

data A SpatRaster object from the terra package or a RasterLayer object.

add_layer 27

coordinates A list of coordinates specifying the image corners in clockwise order: top left,
top right, bottom right, bottom left. For SpatRaster or RasterlLayer objects,
this will be extracted for you.

colors A vector of colors to use for the raster image.

Value

The modified map object with the new source added.

add_layer Add a layer to a map from a source

Description

In many cases, you will use add_layer () internal to other layer-specific functions in mapgl. Ad-
vanced users will want to use add_layer () for more fine-grained control over the appearance of
their layers.

Usage

add_layer(
map,
id,
type = "fill",
source,
source_layer = NULL,
paint = list(),
layout = 1list(),
slot = NULL,
min_zoom = NULL,
max_zoom = NULL,
popup = NULL,
tooltip = NULL,
hover_options = NULL,
before_id = NULL,
filter = NULL

)
Arguments
map A map object created by the mapboxgl () or maplibre() functions.
id A unique ID for the layer.
type The type of the layer (e.g., "fill", "line", "circle").
source The ID of the source, alternatively an sf object (which will be converted to

a GeoJSON source) or a named list that specifies type and url for a remote
source.

28 add_layer

source_layer The source layer (for vector sources).

paint A list of paint properties for the layer.

layout A list of layout properties for the layer.

slot An optional slot for layer order.

min_zoom The minimum zoom level for the layer.

max_zoom The maximum zoom level for the layer.

popup A column name containing information to display in a popup on click. Columns

containing HTML will be parsed.

tooltip A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.

hover_options A named list of options for highlighting features in the layer on hover.

before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).
filter An optional filter expression to subset features in the layer.
Value

The modified map object with the new layer added.

Examples

Not run:

Load necessary libraries
library(mapgl)
library(tigris)

Load geojson data for North Carolina tracts
nc_tracts <- tracts(state = "NC", cb = TRUE)

Create a Mapbox GL map
map <- mapboxgl(
style = mapbox_style("light"),
center = ¢(-79.0193, 35.7596),
zoom = 7

)

Add a source and fill layer for North Carolina tracts
map %>%
add_source(

id = "nc-tracts”,
data = nc_tracts
) %%
add_layer(
id = "nc-layer”,
type = "fill",
source = "nc-tracts”,

paint = list(
"fill-color" = "#888888",

add_layers_control

29

"fill-opacity” = 0.4

)

End(Not run)

add_layers_control Add a layers control to the map

Description

Add a layers control to the map

Usage

add_layers_control(

map,

position = "top-left”,
layers = NULL,

collapsible =

TRUE,

use_icon = TRUE,
background_color = NULL,

active_color
hover_color =

= NULL,

NULL,

active_text_color = NULL,
inactive_text_color = NULL,
margin_top = NULL,
margin_right = NULL,

margin_bottom

margin_left

Arguments

map
position

layers

collapsible

use_icon

= NULL,
NULL

A map object.

non

The position of the control on the map (one of "top-left", "top-right", "bottom-
left", "bottom-right").

Either a character vector of layer IDs to include in the control, a named list/vector
where names are labels and values are layer IDs, or a named list where values
can be vectors to group multiple layers together. If NULL, all layers will be
included.

Whether the control should be collapsible.

Whether to use a stacked layers icon instead of the "Layers" text when collapsed.
Only applies when collapsible = TRUE.

background_color

The background color for the layers control; this will be the color used for inac-
tive layer items.

30 add_layers_control

active_color The background color for active layer items.

hover_color The background color for layer items when hovered.
active_text_color

The text color for active layer items.
inactive_text_color

The text color for inactive layer items.

margin_top Custom top margin in pixels, allowing for fine control over control positioning
to avoid overlaps. Default is NULL (uses standard positioning).

margin_right Custom right margin in pixels. Default is NULL.
margin_bottom Custom bottom margin in pixels. Default is NULL.

margin_left Custom left margin in pixels. Default is NULL.

Value

The modified map object with the layers control added.

Examples

Not run:
library(tigris)
options(tigris_use_cache = TRUE)

rds <- roads("TX", "Tarrant”)
tr <- tracts("TX", "Tarrant”, cb = TRUE)
cty <- counties("TX", cb = TRUE)

maplibre() |>

fit_bounds(rds) |>

add_fill_layer(
id = "Census tracts”,
source = tr,
fill_color = "purple”,
fill_opacity = 0.6

) 1>

add_line_layer(
"Local roads”,
source = rds,
line_color = "pink”

R

add_layers_control(
position = "top-left”,
background_color = "#ffffff",
active_color = "#4a90e2"

)

With custom labels

maplibre() |>
add_fill_layer(id = "tract-fill", source = tr) [>
add_line_layer(id = "tract-line"”, source = tr) |>
add_layers_control(

add_line_layer

layers = list(
"Census Tracts” = "tract-fill”,
"Tract Borders"” = "tract-line”

)

Group multiple layers together
maplibre(bounds = cty) |>

add_fill_layer(id = "county-fill"”, source = cty, fill_opacity = 0.3)

add_line_layer(

id = "county-outline”,
source = cty,
line_color = "yellow",
line_width = 3

) 1>

add_line_layer(
id = "roads-layer",
source = rds,
line_color = "blue”

) 1>

add_layers_control(
layers = list(
"Counties” = c("county-fill", "county-outline"),
"Roads"” = "roads-layer"”

)

End(Not run)

|>

31

add_line_layer Add a line layer to a map

Description

Add a line layer to a map

Usage

add_line_layer(
map,
id,
source,
source_layer = NULL,
line_blur = NULL,
line_cap = NULL,
line_color = NULL,
line_dasharray = NULL,
line_emissive_strength = NULL,
line_gap_width = NULL,

32

line_gradient

add_line_layer

= NULL,

line_join = NULL,
line_miter_limit = NULL,
line_occlusion_opacity = NULL,

line_offset =

NULL,

line_opacity = NULL,
line_pattern = NULL,
line_round_limit = NULL,

line_sort_key

= NULL,

line_translate = NULL,
line_translate_anchor = "map”,
line_trim_color = NULL,
line_trim_fade_range = NULL,
line_trim_offset = NULL,
line_width = NULL,

line_z_offset
visibility =
slot = NULL,

= NULL,

"visible”,

min_zoom = NULL,
max_zoom = NULL,

popup = NULL,

tooltip = NULL,

hover_options

= NULL,

before_id = NULL,

filter = NULL

Arguments

map
id

source

source_layer
line_blur
line_cap
line_color

line_dasharray

A map object created by the mapboxgl or maplibre functions.
A unique ID for the layer.

The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

The source layer (for vector sources).

Amount to blur the line, in pixels.

The display of line endings. One of "butt", "round", "square".
The color with which the line will be drawn.

Specifies the lengths of the alternating dashes and gaps that form the dash pat-
tern.

line_emissive_strength

line_gap_width

line_gradient

line_join

Controls the intensity of light emitted on the source features.

Draws a line casing outside of a line’s actual path. Value indicates the width of
the inner gap.

A gradient used to color a line feature at various distances along its length.

The display of lines when joining.

add_line_layer 33

line_miter_limit
Used to automatically convert miter joins to bevel joins for sharp angles.

line_occlusion_opacity
Opacity multiplier of the line part that is occluded by 3D objects.
line_offset The line’s offset.

line_opacity The opacity at which the line will be drawn.

line_pattern Name of image in sprite to use for drawing image lines.
line_round_limit
Used to automatically convert round joins to miter joins for shallow angles.
line_sort_key Sorts features in ascending order based on this value.
line_translate The geometry’s offset. Values are c(x, y) where negatives indicate left and up,
respectively.

line_translate_anchor
Controls the frame of reference for line-translate.
line_trim_color
The color to be used for rendering the trimmed line section.
line_trim_fade_range
The fade range for the trim-start and trim-end points.
line_trim_offset
The line part between c(trim_start, trim_end) will be painted using line_trim_color.
line_width Stroke thickness.

line_z_offset Vertical offset from ground, in meters.

visibility Whether this layer is displayed.

slot An optional slot for layer order.

min_zoom The minimum zoom level for the layer.

max_zoom The maximum zoom level for the layer.

popup A column name containing information to display in a popup on click. Columns

containing HTML will be parsed.

tooltip A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.

hover_options A named list of options for highlighting features in the layer on hover.

before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels)

filter An optional filter expression to subset features in the layer.

Value

The modified map object with the new line layer added.

34 add_markers

Examples

Not run:
library(mapgl)
library(tigris)

loving_roads <- roads("TX", "Loving")
maplibre(style = maptiler_style("backdrop”)) |>

fit_bounds(loving_roads) |>
add_line_layer(

id = "tracks”,
source = loving_roads,
line_color = "navy",

line_opacity = 0.7
)

End(Not run)

add_markers Add markers to a Mapbox GL or Maplibre GL map

Description

Add markers to a Mapbox GL or Maplibre GL map

Usage
add_markers(
mapy
data,
color = "red”,
rotation = 0,
popup = NULL,

marker_id = NULL,
draggable = FALSE,

)
Arguments
map A map object created by the mapboxgl or maplibre functions.
data A length-2 numeric vector of coordinates, a list of length-2 numeric vectors, or
an sf POINT object.
color The color of the marker (default is "red").
rotation The rotation of the marker (default is 0).
popup A column name for popups (if data is an sf object) or a string for a single popup

(if data is a numeric vector or list of vectors).

add_markers 35

marker_id A unique ID for the marker. For lists, names will be inherited from the list
names. For sf objects, this should be a column name.
draggable A boolean indicating if the marker should be draggable (default is FALSE).

Additional options passed to the marker.

Value

The modified map object with the markers added.

Examples

Not run:
library(mapgl)
library(sf)

Create a map object

map <- mapboxgl(
style = mapbox_style("streets"),
center = c(-74.006, 40.7128),
zoom = 10

)

Add a single draggable marker with an ID
map <- add_markers(

map,
c(-74.006, 40.7128),
color = "blue”,

rotation = 45,

popup = "A marker",
draggable = TRUE,
marker_id = "marker1”

)

Add multiple markers from a named list of coordinates
coords_list <- list(marker2 = c(-74.006, 40.7128),
marker3 = c(-73.935242, 40.730610))

map <- add_markers(

map,
coords_list,
color = "green",

popup = "Multiple markers”,
draggable = TRUE
)

Create an sf POINT object
points_sf <- st_as_sf(data.frame(
id = c("marker4”, "marker5"),
lon = c(-74.006, -73.935242),
lat = c(40.7128, 40.730610)
), coords = c("lon”, "lat"), crs = 4326)
points_sf$popup <- c("Point 1", "Point 2")

36 add_navigation_control

Add multiple markers from an sf object with IDs from a column
map <- add_markers(

map,

points_sf,

color = "red”,

popup = "popup”,

draggable = TRUE,

marker_id = "id"

)

End(Not run)

add_navigation_control
Add a navigation control to a map

Description

Add a navigation control to a map

Usage

add_navigation_control(
map,
show_compass = TRUE,
show_zoom = TRUE,
visualize_pitch = FALSE,
position = "top-right"”,

orientation = "vertical”
)
Arguments
map A map object created by the mapboxgl or maplibre functions.

show_compass Whether to show the compass button.
show_zoom Whether to show the zoom-in and zoom-out buttons.
visualize_pitch

Whether to visualize the pitch by rotating the X-axis of the compass.

position The position on the map where the control will be added. Possible values are
"top-left", "top-right", "bottom-left", and "bottom-right".
orientation The orientation of the navigation control. Can be "vertical" (default) or "hori-
zontal".
Value

The updated map object with the navigation control added.

add_pmtiles_source 37

Examples

Not run:
library(mapgl)

mapboxgl() |>
add_navigation_control(visualize_pitch = TRUE)

End(Not run)

add_pmtiles_source Add a PMTiles source to a Mapbox GL or Maplibre GL map

Description

Add a PMTiles source to a Mapbox GL or Maplibre GL map

Usage
add_pmtiles_source(
map,
id,
url,
source_type = "vector”,

maxzoom = 22,
tilesize = 256,
promote_id = NULL,

Arguments
map A map object created by the mapboxgl or maplibre function.
id A unique ID for the source.
url A URL pointing to the PMTiles archive.
source_type The source type for MapLibre maps. Either "vector" (default) or "raster".
maxzoom Only used when source_type is "raster". The maximum zoom level for the
PMTiles source. Defaults to 22.
tilesize Only used when source_type is "raster". The size of the tiles in the PMTiles
source. Defaults to 256.
promote_id An optional property name to use as the feature ID. This is required for hover
effects on vector sources.
Additional arguments to be passed to the JavaScript addSource method.
Value

The modified map object with the new source added.

38 add_raster_dem_source

Examples

Not run:

Visualize the Overture Maps places data as PMTiles
Works with either “maplibre()” or “mapboxgl()"

library(mapgl)

maplibre(style = maptiler_style("basic”, variant = "dark")) |>
set_projection("globe”) |>
add_pmtiles_source(
id = "places-source”,
url = "https://overturemaps-tiles-us-west-2-beta.s3.amazonaws.com/2025-06-25/places.pmtiles”
E
add_circle_layer(
id = "places-layer”,
source = "places-source”,
source_layer = "place”,
circle_color = "cyan”,
circle_opacity = 0.7,
circle_radius = 4,
tooltip = concat(
"Name: ",
get_column("@name"),
"
Confidence: ",
number_format(get_column(”confidence”"), maximum_fraction_digits = 2)
)
)

End(Not run)

add_raster_dem_source Add a raster DEM source to a Mapbox GL or Maplibre GL map

Description

Add a raster DEM source to a Mapbox GL or Maplibre GL map

Usage

add_raster_dem_source(map, id, url, tileSize = 512, maxzoom = NULL, ...)
Arguments

map A map object created by the mapboxgl or maplibre function.

id A unique ID for the source.

url A URL pointing to the raster DEM source.

tileSize The size of the raster tiles.

add_raster_layer

maxzoom

Value

The maximum zoom level for the raster tiles.

Additional arguments to be passed to the JavaScript addSource method.

The modified map object with the new source added.

39

add_raster_layer

Add a raster layer to a Mapbox GL map

Description

Add a raster layer to a Mapbox GL map

Usage

add_raster_layer(

map,

id,

source,
source_layer

= NULL,
raster_brightness_max

NULL,

raster_brightness_min = NULL,
raster_contrast = NULL,
raster_fade_duration = NULL,
raster_hue_rotate = NULL,
raster_opacity = NULL,
raster_resampling = NULL,
raster_saturation = NULL,

visibility =
slot = NULL,

"visible”,

min_zoom = NULL,
max_zoom = NULL,
before_id = NULL

Arguments
map
id
source

source_layer

A map object created by the mapboxgl function.
A unique ID for the layer.
The ID of the source.

The source layer (for vector sources).

raster_brightness_max

The maximum brightness of the image.

raster_brightness_min

The minimum brightness of the image.

40 add_raster_layer

raster_contrast

Increase or reduce the brightness of the image.
raster_fade_duration

The duration of the fade-in/fade-out effect.
raster_hue_rotate

Rotates hues around the color wheel.

raster_opacity The opacity at which the raster will be drawn.
raster_resampling

The resampling/interpolation method to use for overscaling.
raster_saturation

Increase or reduce the saturation of the image.

visibility Whether this layer is displayed.

slot An optional slot for layer order.

min_zoom The minimum zoom level for the layer.

max_zoom The maximum zoom level for the layer.

before_id The name of the layer that this layer appears "before", allowing you to insert

layers below other layers in your basemap (e.g. labels).

Value

The modified map object with the new raster layer added.

Examples

Not run:
mapboxgl (
style = mapbox_style("dark"),
zoom = 5,
center =
e
add_image_source(
id = "radar”,
url = "https://docs.mapbox.com/mapbox-gl-js/assets/radar.gif",
coordinates = list(
c(-80.425, 46.437),
c(-71.516, 46.437),
c(-71.516, 37.936),
c(-80.425, 37.936)

c(-75.789, 41.874)

)

) 1>

add_raster_layer(
id = "radar-layer",
source = "radar”,
raster_fade_duration = @

)

End(Not run)

add_raster_source 41

add_raster_source Add a raster tile source to a Mapbox GL or Maplibre GL map

Description

Add a raster tile source to a Mapbox GL or Maplibre GL map

Usage

add_raster_source(
map,
id,
url = NULL,
tiles = NULL,
tileSize = 256,
maxzoom = 22,

)
Arguments

map A map object created by the mapboxgl or maplibre function.

id A unique ID for the source.

url A URL pointing to the raster tile source. (optional)

tiles A vector of tile URLSs for the raster source. (optional)

tileSize The size of the raster tiles.

maxzoom The maximum zoom level for the raster tiles.

Additional arguments to be passed to the JavaScript addSource method.

Value

The modified map object with the new source added.

add_reset_control Add a reset control to a map

Description
This function adds a reset control to a Mapbox GL or MapLibre GL map. The reset control allows
users to return to the original zoom level and center.

Usage

add_reset_control(map, position = "top-right”, animate = TRUE, duration = NULL)

42

Arguments

map

position

animate

duration

Value

add_scale_control

A map object created by the mapboxgl or maplibre functions.

non

The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".

Whether or not to animate the transition to the original map view; defaults to
TRUE. If FALSE, the view will "jump" to the original view with no transition.

The length of the transition from the current view to the original view, specified
in milliseconds. This argument only works with animate is TRUE.

The modified map object with the reset control added.

Examples

Not run:
library(mapgl)

mapboxgl () |>
add_reset_control(position = "top-left"”)

End(Not run)

add_scale_control Add a scale control to a map

Description

This function adds a scale control to a Mapbox GL or Maplibre GL map.

Usage
add_scale_control(
map ’
position = "bottom-left”,
unit = "metric”,
max_width = 100
)
Arguments
map A map object created by the mapboxgl or maplibre functions.
position The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "bottom-left".
unit The unit of the scale. Can be either "imperial", "metric", or "nautical". Default
is "metric".
max_width The maximum length of the scale control in pixels. Default is 100.

add_screenshot_control 43

Value

The modified map object with the scale control added.

Examples

Not run:
library(mapgl)

mapboxgl() |>
add_scale_control(position = "bottom-right”, unit = "imperial”)

End(Not run)

add_screenshot_control
Add a screenshot control to a map

Description

This function adds a screenshot control to a Mapbox GL or MapLibre GL map. The screenshot

control allows users to capture the map along with legends and attribution as a PNG image down-
load.

Usage
add_screenshot_control(
map,
position = "top-right"”,
filename = "map-screenshot”,

include_legend = TRUE,
hide_controls = TRUE,
include_scale_bar = TRUE,
image_scale = 1,

button_title = "Capture screenshot”
)
Arguments
map A map object created by the mapboxgl or maplibre functions.
position The position of the control. Can be one of "top-left", "top-right", "bottom-left",
or "bottom-right". Default is "top-right".
filename The base filename for the downloaded image (without extension). Default is

"map-screenshot".
include_legend Logical, whether to include legends in the screenshot. Default is TRUE.

hide_controls Logical, whether to hide interactive controls (navigation, fullscreen, etc.) during
screenshot capture. Default is TRUE.

44 add_screenshot_control

include_scale_bar
Logical, whether to keep the scale bar visible in the screenshot when hide_controls
= TRUE. Default is TRUE. The scale bar is the only interactive control that ren-
ders correctly and provides useful context in static images.

image_scale Numeric, the scale factor for the output image resolution. Default is 1. Higher
values (2 or 3) produce sharper text and legend elements but increase file size.
Scale 2 produces 4x larger files, scale 3 produces 9x larger files.

button_title The tooltip title for the button. Default is "Capture screenshot".

Details

The screenshot is captured using html2canvas, which renders the map container including legends
and attribution. Attribution is always included in screenshots to comply with map provider terms of
service.

Most interactive controls (navigation, fullscreen, etc.) do not render correctly in screenshots due
to SVG rendering limitations and will appear as blank boxes. The scale bar is an exception and
renders correctly, which is why it is preserved by default via include_scale_bar = TRUE.

Value

The modified map object with the screenshot control added.

Examples

Not run:
library(mapgl)

Basic usage
maplibre(style = carto_style("positron”)) |>
add_screenshot_control()

With scale control (recommended for screenshots)
maplibre() |>
add_scale_control(position = "bottom-left") |>
add_screenshot_control()

With custom filename
maplibre() |>
add_fill_layer(

id = "counties”,
source = list(type = "geojson”, data = counties_sf)
) 1>

add_legend("Median Income”, values = c("Low", "High")) [>
add_screenshot_control(

filename = "county-map”,

position = "top-left”
)

Exclude legend from screenshot
maplibre() |>
add_screenshot_control(include_legend = FALSE)

add_source 45

End(Not run)

add_source Add a GeoJSON or sf source to a Mapbox GL or Maplibre GL map

Description

Add a GeoJSON or sf source to a Mapbox GL or Maplibre GL map

Usage

add_source(map, id, data, ...)
Arguments

map A map object created by the mapboxgl or maplibre function.

id A unique ID for the source.

data An sf object or a URL pointing to a remote GeoJSON file.

Additional arguments to be passed to the JavaScript addSource method.

Value

The modified map object with the new source added.

add_symbol_layer Add a symbol layer to a map

Description

Add a symbol layer to a map

Usage

add_symbol_layer(
map,
id,
source,
source_layer = NULL,
icon_allow_overlap = NULL,
icon_anchor = NULL,
icon_color = NULL,
icon_color_brightness_max = NULL,
icon_color_brightness_min = NULL,
icon_color_contrast = NULL,

46

icon_color_saturation = NULL,
icon_emissive_strength = NULL,
icon_halo_blur = NULL,
icon_halo_color = NULL,
icon_halo_width = NULL,
icon_ignore_placement = NULL,
icon_image = NULL,
icon_image_cross_fade = NULL,
icon_keep_upright = NULL,
icon_offset = NULL,
icon_opacity = NULL,
icon_optional = NULL,
icon_padding = NULL,
icon_pitch_alignment = NULL,
icon_rotate = NULL,

icon_rotation_alignment = NULL,

icon_size = NULL,
icon_text_fit = NULL,
icon_text_fit_padding
icon_translate = NULL,
icon_translate_anchor = NULL,
symbol_avoid_edges = NULL,
symbol_placement = NULL,
symbol_sort_key = NULL,
symbol_spacing = NULL,
symbol_z_elevate = NULL,
symbol_z_offset = NULL,
symbol_z_order = NULL,
text_allow_overlap = NULL,
text_anchor = NULL,
text_color = "black”,
text_emissive_strength = NULL,
text_field = NULL,

text_font = NULL,
text_halo_blur = NULL,
text_halo_color = NULL,
text_halo_width = NULL,
text_ignore_placement = NULL,
text_justify = NULL,
text_keep_upright = NULL,
text_letter_spacing = NULL,
text_line_height = NULL,
text_max_angle = NULL,
text_max_width = NULL,
text_offset = NULL,
text_opacity = NULL,
text_optional = NULL,
text_padding = NULL,

NULL,

add_symbol_layer

add_symbol_layer 47

text_pitch_alignment = NULL,
text_radial_offset = NULL,
text_rotate = NULL,
text_rotation_alignment = NULL,
text_size = NULL,
text_transform = NULL,
text_translate = NULL,
text_translate_anchor = NULL,
text_variable_anchor = NULL,
text_writing_mode = NULL,
visibility = "visible",

slot = NULL,

min_zoom = NULL,

max_zoom = NULL,

popup = NULL,

tooltip = NULL,

hover_options = NULL,
before_id = NULL,

filter = NULL,
cluster_options = NULL

)
Arguments
map A map object created by the mapboxgl or maplibre functions.
id A unique ID for the layer.
source The ID of the source, alternatively an sf object (which will be converted to
a GeoJSON source) or a named list that specifies type and url for a remote
source.

source_layer The source layer (for vector sources).

icon_allow_overlap
If TRUE, the icon will be visible even if it collides with other previously drawn

symbols.
icon_anchor Part of the icon placed closest to the anchor.
icon_color The color of the icon. This is not supported for many Mapbox icons; read more

athttps://docs.mapbox.com/help/troubleshooting/using-recolorable-images-in-mapbox-m
icon_color_brightness_max

The maximum brightness of the icon color.
icon_color_brightness_min

The minimum brightness of the icon color.
icon_color_contrast

The contrast of the icon color.
icon_color_saturation

The saturation of the icon color.
icon_emissive_strength

The strength of the icon’s emissive color.

https://docs.mapbox.com/help/troubleshooting/using-recolorable-images-in-mapbox-maps/

48

add_symbol_layer

icon_halo_blur The blur applied to the icon’s halo.
icon_halo_color

The color of the icon’s halo.
icon_halo_width

The width of the icon’s halo.
icon_ignore_placement

If TRUE, the icon will be visible even if it collides with other symbols.
icon_image Name of image in sprite to use for drawing an image background. To use values
in a column of your input dataset, use get_column (' YOUR_ICON_COLUMN_NAME").
Images can also be loaded with the add_image () function which should precede
the add_symbol_layer () function.
icon_image_cross_fade
The cross-fade parameter for the icon image.
icon_keep_upright
If TRUE, the icon will be kept upright.

icon_offset Offset distance of icon.
icon_opacity The opacity at which the icon will be drawn.
icon_optional If TRUE, the icon will be optional.

icon_padding Padding around the icon.
icon_pitch_alignment
Alignment of the icon with respect to the pitch of the map.
icon_rotate Rotates the icon clockwise.
icon_rotation_alignment
Alignment of the icon with respect to the map.
icon_size The size of the icon, specified relative to the original size of the image. For
example, a value of 5 would make the icon 5 times larger than the original size,
whereas a value of 0.5 would make the icon half the size of the original.
icon_text_fit Scales the text to fit the icon.
icon_text_fit_padding
Padding for text fitting the icon.
icon_translate The offset distance of the icon.
icon_translate_anchor
Controls the frame of reference for icon-translate.
symbol_avoid_edges
If TRUE, the symbol will be avoided when near the edges.
symbol_placement
Placement of the symbol on the map.
symbol_sort_key
Sorts features in ascending order based on this value.

symbol_spacing Spacing between symbols.

symbol_z_elevate
If TRUE, positions the symbol on top of a fill-extrusion layer. Requires
symbol_placement to be set to "point” and symbol-z-order to be set to
"auto”.

add_symbol_layer 49

symbol_z_offset
The elevation of the symbol, in meters. Use get_column() to get elevations
from a column in the dataset.

symbol_z_order Orders the symbol z-axis.
text_allow_overlap
If TRUE, the text will be visible even if it collides with other previously drawn

symbols.
text_anchor Part of the text placed closest to the anchor.
text_color The color of the text.

text_emissive_strength
The strength of the text’s emissive color.

text_field Value to use for a text label.
text_font Font stack to use for displaying text.

text_halo_blur The blur applied to the text’s halo.
text_halo_color

The color of the text’s halo.
text_halo_width

The width of the text’s halo.
text_ignore_placement

If TRUE, the text will be visible even if it collides with other symbols.
text_justify The justification of the text.
text_keep_upright

If TRUE, the text will be kept upright.
text_letter_spacing

Spacing between text letters.
text_line_height

Height of the text lines.
text_max_angle Maximum angle of the text.
text_max_width Maximum width of the text.
text_offset Offset distance of text.
text_opacity The opacity at which the text will be drawn.
text_optional If TRUE, the text will be optional.

text_padding Padding around the text.
text_pitch_alignment
Alignment of the text with respect to the pitch of the map.
text_radial_offset
Radial offset of the text.
text_rotate Rotates the text clockwise.
text_rotation_alignment
Alignment of the text with respect to the map.

text_size The size of the text.

text_transform Transform applied to the text.

50

add_symbol_layer

text_translate The offset distance of the text.
text_translate_anchor

Controls the frame of reference for text-translate.
text_variable_anchor

Variable anchor for the text.
text_writing_mode

Writing mode for the text.

visibility Whether this layer is displayed.

slot An optional slot for layer order.

min_zoom The minimum zoom level for the layer.

max_zoom The maximum zoom level for the layer.

popup A column name containing information to display in a popup on click. Columns

containing HTML will be parsed.

tooltip A column name containing information to display in a tooltip on hover. Columns
containing HTML will be parsed.

hover_options A named list of options for highlighting features in the layer on hover. Not all
elements of SVG icons can be styled.

before_id The name of the layer that this layer appears "before", allowing you to insert
layers below other layers in your basemap (e.g. labels).

filter An optional filter expression to subset features in the layer.

cluster_options

A list of options for clustering symbols, created by the cluster_options()
function.

Value

The modified map object with the new symbol layer added.

Examples

Not run:
library(mapgl)
library(sf)
library(dplyr)

Set seed for reproducibility
set.seed(1234)

Define the bounding box for Washington DC (approximately)
bbox <- st_bbox(

c(
xmin = -77.119759,
ymin = 38.791645,
xmax = -76.909393,
ymax = 38.995548
),

crs = st_crs(4326)

add_vector_source 51

)

Generate 30 random points within the bounding box
random_points <- st_as_sf(
data.frame(
id = 1:30,
lon = runif (30, bbox["xmin"], bbox["xmax"]),
lat = runif (30, bbox["ymin"], bbox["ymax"])

)7
coords = c("lon"”, "lat"),
crs = 4326

)

Assign random icons
icons <- c("music”, "bar", "theatre"”, "bicycle")
random_points <- random_points |>

mutate(icon = sample(icons, n(), replace = TRUE))

Map with icons
mapboxgl (style = mapbox_style("light")) |>
fit_bounds(random_points, animate = FALSE) |>
add_symbol_layer(
id = "points-of-interest”,
source = random_points,
icon_image = c("get", "icon"),
icon_allow_overlap = TRUE,
tooltip = "icon”

)

End(Not run)

add_vector_source Add a vector tile source to a Mapbox GL or Maplibre GL map

Description

Add a vector tile source to a Mapbox GL or Maplibre GL map

Usage

add_vector_source(map, id, url = NULL, tiles = NULL, promote_id = NULL, ...)
Arguments

map A map object created by the mapboxgl or maplibre function.

id A unique ID for the source.

url A URL pointing to the vector tile source.

tiles A vector of tile URLs, typically in the format "https://example.com/{z}/{x}/{y}.mvt"

or similar.

52 add_view

promote_id An optional property name to use as the feature ID. This is required for hover
effects on vector tiles.

Additional arguments to be passed to the JavaScript addSource method.

Value

The modified map object with the new source added.

add_video_source Add a video source to a Mapbox GL or Maplibre GL map

Description

Add a video source to a Mapbox GL or Maplibre GL map

Usage

add_video_source(map, id, urls, coordinates)

Arguments
map A map object created by the mapboxgl or maplibre function.
id A unique ID for the source.
urls A vector of URLs pointing to the video sources.
coordinates A list of coordinates specifying the video corners in clockwise order: top left,
top right, bottom right, bottom left.
Value

The modified map object with the new source added.

add_view Add a visualization layer to an existing map

Description

This function allows you to add additional data layers to existing maps created with mapboxgl_view()
or maplibre_view(), enabling composition of multiple datasets on a single map.

add_view

Usage

add_view(

map,
data,

color = "gold",

column = NULL,

n = NULL,

palette = viridislLite::viridis,
layer_id = NULL,

legend = FALSE,

legend_position = "bottom-left”

53

Arguments

map

data

color

column

palette

layer_id

legend

legend_position

Value

A map object created by mapboxgl_view(), maplibre_view(), mapboxgl(), or
maplibre()

An sf object, SpatRaster, or RasterLayer to visualize

The color used to visualize points, lines, or polygons if column is NULL. De-
faults to "navy".

The name of the column to visualize. If NULL (default), geometries are shown
with default styling.

Number of quantile breaks for numeric columns. If specified, uses step_expr()
instead of interpolate().

Color palette function that takes n and returns a character vector of colors. De-
faults to viridisLite::viridis.

The layer ID to use for the visualization. If NULL, a unique ID will be auto-
generated.

Logical, whether to add a legend when a column is specified. Defaults to FALSE
for subsequent layers to avoid overwriting existing legends.

The position of the legend on the map. Defaults to "bottom-left".

The map object with the new layer added

Examples

Not run:
library(sf)

nc <- st_read(system.file("shape/nc.shp”, package = "sf"))

Basic layering

mapboxgl_view(nc) |>

add_view(nc[1:1

@, 1, color = "red"”, layer_id = "subset")

54 classification_helpers

Layer different geometries

mapboxgl_view(polygons) |>
add_view(points, color = "blue") |>
add_view(lines, color = "green")

Add raster data
mapboxgl_view(boundaries) |>

add_view(elevation_raster, layer_id = "elevation")

End(Not run)

carto_style Get CARTO Style URL

Description

Get CARTO Style URL

Usage

carto_style(style_name)

Arguments

"non

style_name The name of the style (e.g., "voyager", "positron", "dark-matter").

Value

The style URL corresponding to the given style name.

classification_helpers
Extract information from classification and continuous scale objects

Description

These functions extract different components from mapgl_classification objects (created by step_equal_interval(),
step_quantile(), step_jenks()) and mapgl_continuous_scale objects (created by interpolate_palette()).

classification_helpers 55

Usage

get_legend_labels(
scale,
format = "none”,
currency_symbol = "$",
digits = 2,

n o n

big_mark = ",",

nn

suffix =)
prefix = ""

)
get_legend_colors(scale)
get_breaks(scale)

S3 method for class 'mapgl_classification'
print(x, format = "none", ...)

S3 method for class 'mapgl_continuous_scale'

print(x, format = "none", ...)
Arguments
scale A mapgl_classification or mapgl_continuous_scale object.
format A character string specifying the format type for labels. Options include:

* "none" (default): No special formatting
* "currency": Format as currency (e.g., "$1,234")
» "percent": Format as percentage (e.g., "12.3%")
* "scientific": Format in scientific notation (e.g., "1.2e+03")
* "compact": Format with abbreviated units (e.g., "1.2K", "3.4M")
currency_symbol
The currency symbol to use when format = "currency". Defaults to "$".

digits The number of decimal places to display. Defaults to 2.

big_mark The character to use as thousands separator. Defaults to ",".

suffix An optional suffix to add to all values (e.g., "km", "mph").

prefix An optional prefix to add to all values (useful for compact currency like "$1.2K").
X A mapgl_classification or mapgl_continuous_scale object to print.

Additional arguments passed to formatting functions.

Value

get_legend_labels() A character vector of formatted legend labels
get_legend_colors() A character vector of colors

get_breaks() A numeric vector of break values

56 clear controls

Examples

Not run:

Texas county income data

library(tidycensus)

tx <- get_acs(geography = "county”, variables = "B19013_001",
state = "TX", geometry = TRUE)

Classification examples

eq_class <- step_equal_interval("estimate”, tx$estimate, n = 4)
labels <- get_legend_labels(eq_class, format = "currency")
colors <- get_legend_colors(eqg_class)

breaks <- get_breaks(eqg_class)

Continuous scale examples

scale <- interpolate_palette("estimate”, tx$estimate, method = "quantile”, n = 5)
labels <- get_legend_labels(scale, format = "compact”, prefix = "$")

colors <- get_legend_colors(scale)

End(Not run)

clear_controls Clear controls from a Mapbox GL or Maplibre GL map in a Shiny app

Description

This function allows you to remove specific controls or all controls from a map. You can target
controls by their type names, which correspond to the function names used to add them (e.g., "nav-
igation" for controls added with add_navigation_control).

Usage

clear_controls(map, controls = NULL)

Arguments
map A map object created by the mapboxgl or maplibre function.
controls A character vector of control types to remove, or NULL to remove all con-
trols. Control types include: "navigation", "draw", "fullscreen", "scale", "geolo-
cate", "geocoder”, "layers", "reset", "globe_minimap", or custom control IDs. If
NULL (default), all controls will be removed.
Value

The modified map object with specified controls removed.

clear_drawn_features 57

Examples

Not run:
library(shiny)
library(mapgl)

Clear all controls
maplibre_proxy("map”) |>
clear_controls()

Clear specific controls
maplibre_proxy("map") |>
clear_controls(”navigation”)

Clear multiple controls
maplibre_proxy("map"”) |>
clear_controls(c("draw”, "navigation”))

Clear a custom control by ID
maplibre_proxy("map”) |>

clear_controls("my_custom_control™)

End(Not run)

clear_drawn_features Clear all drawn features from a map

Description
This function removes all features that have been drawn using the draw control on a Mapbox GL or
MapLibre GL map in a Shiny application.

Usage

clear_drawn_features(map)

Arguments

map A proxy object created by the mapboxgl_proxy or maplibre_proxy functions.

Value

The modified map object with all drawn features cleared.

Examples

Not run:

In a Shiny application
library(shiny)
library(mapgl)

58

ui <- fluidPage(
mapboxglOutput("map"),
actionButton("clear_btn"”, "Clear Drawn Features")

)

server <- function(input, output, session) {
output$map <- renderMapboxgl ({
mapboxgl (
style = mapbox_style("streets"),
center = c(-74.50, 40),
zoom = 9
) 1>
add_draw_control()

D

observeEvent (input$clear_btn, {
mapboxgl_proxy("map") |>
clear_drawn_features()
»
3

shinyApp(ui, server)

End(Not run)

clear_layer

clear_layer Clear layers from a map using a proxy

Description

This function allows one or more layers to be removed from an existing Mapbox GL map using a

proxy object.

Usage

clear_layer(proxy, layer_id)

Arguments
proxy A proxy object created by mapboxgl_proxy or maplibre_proxy.
layer_id A character vector of layer IDs to be removed. Can be a single layer ID or
multiple layer IDs.
Value

The updated proxy object.

clear_legend 59

clear_legend Clear legends from a map

Description

Remove one or more legends from a Mapbox GL or MapLibre GL map in a Shiny application.

Usage

clear_legend(map, legend_ids = NULL)

Arguments
map A map proxy object created by mapboxgl_proxy () or maplibre_proxy().
legend_ids Optional. A character vector of legend IDs to clear. If not provided, all legends
will be cleared.
Value

The updated map proxy object with the specified legend(s) cleared.

Note

This function can only be used with map proxy objects in Shiny applications. It cannot be used with
static map objects.

Examples

Not run:
In a Shiny server function:

Clear all legends
observeEvent (input$clear_all, {
mapboxgl_proxy("map") %>%
clear_legend()
»

Clear specific legends by ID
observeEvent (input$clear_specific, {
mapboxgl_proxy("map") %>%
clear_legend(legend_ids = c("legend-1", "legend-2"))
»

Clear legend after removing a layer
observeEvent (input$remove_layer, {
mapboxgl_proxy("map") %>%
remove_layer("my_layer") %>%
clear_legend(legend_ids = "my_layer_legend")
»

60 cluster_options

End(Not run)

clear_markers Clear markers from a map in a Shiny session

Description

Clear markers from a map in a Shiny session

Usage

clear_markers(map)

Arguments

map A map object created by the mapboxgl_proxy or maplibre_proxy function.

Value

The modified map object with the markers cleared.

cluster_options Prepare cluster options for circle layers

Description

This function creates a list of options for clustering circle layers.

Usage

cluster_options(
max_zoom = 14,
cluster_radius = 50,
color_stops = c("#51bbd6", "#f1f0@75", "#f28ch1"),
radius_stops = c(20, 30, 40),
count_stops = c(@, 100, 750),
circle_blur = NULL,
circle_opacity = NULL,
circle_stroke_color = NULL,
circle_stroke_opacity = NULL,
circle_stroke_width = NULL,
text_color = "black”

compare 61

Arguments

max_zoom The maximum zoom level at which to cluster points.
cluster_radius The radius of each cluster when clustering points.

color_stops A vector of colors for the circle color step expression.
radius_stops A vector of radii for the circle radius step expression.
count_stops A vector of point counts for both color and radius step expressions.
circle_blur Amount to blur the circle.

circle_opacity The opacity of the circle.

circle_stroke_color

The color of the circle’s stroke.
circle_stroke_opacity

The opacity of the circle’s stroke.

circle_stroke_width
The width of the circle’s stroke.

text_color The color to use for labels on the cluster circles.

Value

A list of cluster options.

Examples

cluster_options(
max_zoom = 14,
cluster_radius = 50,
color_stops = c("#51bbd6", "#f1fQ75", "#f28cbh1"),
radius_stops = c(20, 30, 40),
count_stops = c(@, 100, 750),
circle_blur =1,
circle_opacity = 0.8,
circle_stroke_color = "#ffffff",
circle_stroke_width = 2

compare Create a Compare widget

Description

This function creates a comparison view between two Mapbox GL or Maplibre GL maps, allowing
users to either swipe between the two maps or view them side-by-side with synchronized navigation.

62 compare

Usage

compare(
map1,
map2,
width = "100%",
height = NULL,
elementId = NULL,
mousemove = FALSE,

orientation = "vertical”,
mode = "swipe"”,
swiper_color = NULL
)
Arguments
map1 A mapboxgl or maplibre object representing the first map.
map2 A mapboxgl or maplibre object representing the second map.
width Width of the map container.
height Height of the map container.
elementId An optional string specifying the ID of the container for the comparison. If
NULL, a unique ID will be generated.
mousemove A logical value indicating whether to enable swiping during cursor movement
(rather than only when clicked). Only applicable when mode="swipe".
orientation A string specifying the orientation of the swiper or the side-by-side layout, either
"horizontal" or "vertical".
mode A string specifying the comparison mode: "swipe" (default) for a swipeable
comparison with a slider, or "sync" for synchronized maps displayed next to
each other.

swiper_color An optional CSS color value (e.g., "#000000", "rgb(0,0,0)", "black") to cus-
tomize the color of the swiper handle. Only applicable when mode="swipe".

Details
Comparison modes:
The compare () function supports two modes:

* mode="swipe" (default) - Creates a swipeable interface with a slider to reveal portions of
each map

* mode="sync" - Places the maps next to each other with synchronized navigation

In both modes, navigation (panning, zooming, rotating, tilting) is synchronized between the maps.

Using the compare widget in Shiny:

The compare widget can be used in Shiny applications with the following functions:
* mapboxglCompareOutput() / renderMapboxglCompare() - For Mapbox GL comparisons
* maplibreCompareOutput() / renderMaplibreCompare() - For Maplibre GL comparisons

compare 63

Value

* mapboxgl_compare_proxy() /maplibre_compare_proxy() - For updating maps in a com-
pare widget

After creating a compare widget in a Shiny app, you can use the proxy functions to update either
the "before" (left/top) or "after" (right/bottom) map. The proxy objects work with all the regular
map update functions like set_style(), set_paint_property(), etc.

To get a proxy that targets a specific map in the comparison:

Access the left/top map
left_proxy <- maplibre_compare_proxy("compare_id", map_side = "before")

Access the right/bottom map
right_proxy <- maplibre_compare_proxy("”compare_id", map_side = "after")

The compare widget also provides Shiny input values for view state and clicks. For a compare
widget with ID "mycompare"”, you’ll have:

e input$mycompare_before_view - View state (center, zoom, bearing, pitch) of the left/top
map

e input$mycompare_after_view - View state of the right/bottom map

e input$mycompare_before_click - Click events on the left/top map

e input$mycompare_after_click - Click events on the right/bottom map

A comparison widget.

Examples

Not run:
library(mapgl)

ml <- mapboxgl(style = mapbox_style("light"))
m2 <- mapboxgl(style = mapbox_style("dark"))

#

Default swipe mode

compare(ml, m2)

Synchronized side-by-side mode
compare(ml, m2, mode = "sync")
Custom swiper color

compare(ml, m2, swiper_color = "#FFQ@00") # Red swiper

#

Shiny example

library(shiny)

ui <- fluidPage(

)

maplibreCompareQutput(”comparison™)

server <- function(input, output, session) {

64 concat

output$comparison <- renderMaplibreCompare ({
compare(
maplibre(style = carto_style("positron”)),
maplibre(style = carto_style("dark-matter")),
mode = "sync"
)
b))

Update the right map
observe({
right_proxy <- maplibre_compare_proxy("comparison”, map_side = "after")
set_style(right_proxy, carto_style("voyager"”))
b))

Example with custom swiper color
output$comparison2 <- renderMaplibreCompare({
compare(
maplibre(style = carto_style("positron”)),
maplibre(style = carto_style("dark-matter")),
swiper_color = "#3498db" # Blue swiper
)
b))
3

End(Not run)

concat Create a concatenation expression

Description
This function creates a concatenation expression that combines multiple values or expressions into
a single string. Useful for creating dynamic tooltips or labels.

Usage

concat(...)

Arguments

Values or expressions to concatenate. Can be strings, numbers, or other expres-
sions like get_column().

Value

A list representing the concatenation expression.

Examples

Create a dynamic tooltip
concat("Name:

n [l

, get_column(”"name”), "
Value: ", get_column(”value"))

ease_to 65

ease_to Ease to a given view

Description

Ease to a given view

Usage
ease_to(map, center, zoom = NULL, ...)
Arguments
map A map object created by the mapboxgl or maplibre function or a proxy object.
center A numeric vector of length 2 specifying the target center of the map (longitude,
latitude).
zoom The target zoom level.
Additional named arguments for easing to the view.
Value
The updated map object.
enable_shiny_hover Enable hover events for Shiny applications
Description

This function enables hover functionality for maplibre and mapboxgl widgets in Shiny applications,
providing _hover and _feature_hover input values.

Usage

enable_shiny_hover(map, coordinates = TRUE, features = TRUE, layer_id = NULL)

Arguments
map A maplibre or mapboxgl widget object.
coordinates Logical. If TRUE, provides general mouse coordinates via _hover input. De-
faults to TRUE.
features Logical. If TRUE, provides feature information via _feature_hover input
when hovering over map features. Defaults to TRUE.
layer_id Character. If provided, only features from the specified layer will be included

in the _feature_hover input. Defaults to NULL. For multiple layers, provide
a vector of layer IDs.

66 fit_bounds

Value

The modified map object with hover events enabled.

Examples

Not run:
library(shiny)
library(mapgl)

ui <- fluidPage(
maplibreOutput("map"”),
verbatimTextOutput("hover_info")

)

server <- function(input, output) {
output$map <- renderMaplibre({
maplibre() |>
enable_shiny_hover()

D

output$hover_info <- renderText({
paste("Mouse at:”, inputmap_hoverlng, inputmap_hoverslat)
D)
3

shinyApp(ui, server)

End(Not run)

fit_bounds Fit the map to a bounding box

Description

Fit the map to a bounding box

Usage
fit_bounds(map, bbox, animate = FALSE, ...)
Arguments
map A map object created by the mapboxgl or maplibre function or a proxy object.
bbox A bounding box specified as a numeric vector of length 4 (minLng, minLat,
maxLng, maxLat), or an sf object from which a bounding box will be calculated.
animate A logical value indicating whether to animate the transition to the new bounds.

Defaults to FALSE.

Additional named arguments for fitting the bounds.

fly_to 67

Value

The updated map object.

fly_to Fly to a given view

Description

Fly to a given view

Usage
fly_to(map, center, zoom = NULL, ...)
Arguments
map A map object created by the mapboxgl or maplibre function or a proxy object.
center A numeric vector of length 2 specifying the target center of the map (longitude,
latitude).
zoom The target zoom level.
Additional named arguments for flying to the view.
Value
The updated map object.
get_column Get column or property for use in mapping
Description

This function returns a an expression to get a specified column from a dataset (or a property from a
layer).

Usage

get_column(column)

Arguments

column The name of the column or property to get.

Value

A list representing the expression to get the column.

68 get_drawn_features

get_drawn_features Get drawn features from the map

Description

Get drawn features from the map

Usage

get_drawn_features(map)

Arguments

map A map object created by the mapboxgl function, or a mapboxgl proxy.

Value

An sf object containing the drawn features.

Examples

Not run:

In a Shiny application
library(shiny)
library(mapgl)

ui <- fluidPage(
mapboxglOutput("map”),
actionButton("get_features”, "Get Drawn Features"),
verbatimTextOutput("feature_output”)

)

server <- function(input, output, session) {
output$map <- renderMapboxgl ({
mapboxgl (
style = mapbox_style("streets"),
center = c(-74.50, 40),
zoom = 9
) 1>
add_draw_control()
»

observeEvent(input$get_features, {
drawn_features <- get_drawn_features(mapboxgl_proxy("map"”))
output$feature_output <- renderPrint({
print(drawn_features)
1))
D

get_queried_features 69

shinyApp(ui, server)

End(Not run)

get_queried_features Get queried features from a map as an sf object

Description
This function retrieves the results of a feature query triggered by query_rendered_features().

It returns the features as a deduplicated sf object. Note that only features that were visible in the
viewport at the time of the query will be included.

Usage

get_queried_features(map)

Arguments
map A map object (mapboxgl, maplibre) or proxy object (mapboxgl_proxy, mapli-
bre_proxy, mapboxgl_compare_proxy, maplibre_compare_proxy)
Value

An sf object containing the queried features, or an empty sf object if no features were found

Examples

Not run:

In a Shiny server function:

observeEvent (input$query_button, {
proxy <- maplibre_proxy("map")
query_rendered_features(proxy, layer_id = "counties”)
features <- get_queried_features(proxy)
print(nrow(features))

b

End(Not run)

70 interpolate
interpolate Create an interpolation expression
Description
This function generates an interpolation expression that can be used to style your data.
Usage
interpolate(
column = NULL,
property = NULL,
type = "linear”,
values,
stops,
na_color = NULL
)
Arguments
column The name of the column to use for the interpolation. If specified, property
should be NULL.
property The name of the property to use for the interpolation. If specified, column should
be NULL.
type The interpolation type. Can be one of "1inear”, list("exponential”, base)
where base specifies the rate at which the output increases, or 1ist("cubic-bezier”,
x1, y1, x2, y2) where you define a cubic bezier curve with control points.
values A numeric vector of values at which stops occur.
stops A vector of corresponding stops (colors, sizes, etc.) for the interpolation.
na_color The color to use for missing values. Mapbox GL JS defaults to black if this is
not supplied.
Value

A list representing the interpolation expression.

Examples
interpolate(
column = "estimate”,
type = "linear”,

values = c(1000, 200000),
stops = c("#eff3ff", "#08519c")

interpolate_palette 71

interpolate_palette Create an interpolation expression with automatic palette and break
calculation

Description

This function creates an interpolation expression by automatically calculating break points using
different methods and applying a color palette. It handles the values/stops matching automatically
and supports the same classification methods as the step functions.

Usage

interpolate_palette(
data = NULL,
column,
data_values = NULL,
method = "equal”,
n=>5,
palette = NULL,
colors = NULL,

na_color = "grey”
)
Arguments
data A data frame or sf object containing the data. If provided, data_values will be
extracted from data[[column]]. Either data or data_values must be provided.
column The name of the column to use for the interpolation.
data_values A numeric vector of the actual data values used to calculate breaks. If NULL
and data is provided, will be extracted from datal[column]].
method The method for calculating breaks. Options are "equal” (equal intervals), "quan-
tile" (quantile breaks), or "jenks" (Jenks natural breaks). Defaults to "equal".
n The number of break points to create. Defaults to 5.
palette A function that takes n and returns a character vector of colors. If NULL and
colors is also NULL, defaults to viridisLite::viridis.
colors A character vector of colors to use. If provided, these colors will be interpolated
to match the number of breaks if needed. Either palette or colors should be
provided, but not both.
na_color The color to use for missing values. Defaults to "grey".
Value

A list of class "mapgl_continuous_scale" containing the interpolation expression and metadata.

72 jump_to

Examples

Not run:
Create continuous color scale - using palette function
my_data <- data.frame(value = c(10, 25, 30, 45, 60, 75, 90))
scalel <- interpolate_palette(data = my_data, column = "value”,
method = "equal”, n = 5, palette = viridisLite::plasma)

Using specific colors (will interpolate to 5 if needed)
scale2 <- interpolate_palette(data = my_data, column = "value”,
method = "equal”, n = 5, colors = c("red”, "yellow”, "blue"))

Or with piping
scale3 <- my_data |> interpolate_palette(”value”, method = "equal”, n = 5)

Use in a layer
add_fill_layer(map, fill_color = scalel$expression)

Extract legend information

labels <- get_legend_labels(scalel, format = "currency")
colors <- scalel$colors

End(Not run)

jump_to Jump to a given view

Description

Jump to a given view

Usage
jump_to(map, center, zoom = NULL, ...)
Arguments
map A map object created by the mapboxgl or maplibre function or a proxy object.
center A numeric vector of length 2 specifying the target center of the map (longitude,
latitude).
zoom The target zoom level.
Additional named arguments for jumping to the view.
Value

The updated map object.

legend_style 73

legend_style Create custom styling for map legends

Description

This function creates a styling object that can be passed to legend functions to customize the ap-
pearance of legends, including colors, fonts, borders, and shadows.

Usage

legend_style(
background_color = NULL,
background_opacity = NULL,
border_color = NULL,
border_width = NULL,
border_radius = NULL,
text_color = NULL,
text_size = NULL,
title_color = NULL,
title_size = NULL,
font_family = NULL,
title_font_family = NULL,
font_weight = NULL,
title_font_weight = NULL,
element_border_color = NULL,
element_border_width = NULL,
shadow = NULL,
shadow_color = NULL,
shadow_size = NULL,
padding = NULL

Arguments

background_color

Background color for the legend container (e.g., "white", "#{fffff").
background_opacity

Opacity of the legend background (0-1, where 1 is fully opaque).

border_color Color of the legend border (e.g., "black”, "#000000").
border_width Width of the legend border in pixels.

border_radius Border radius for rounded corners in pixels.
text_color Color of the legend text (e.g., "black"”, "#000000").
text_size Size of the legend text in pixels.

title_color Color of the legend title text.

title_size Size of the legend title text in pixels.

74 legend_style

font_family Font family for legend text (e.g., "Arial", "Times New Roman", "Open Sans").
title_font_family
Font family for legend title (defaults to font_family if not specified).
font_weight Font weight for legend text (e.g., "normal”, "bold", "lighter", or numeric like
400, 700).
title_font_weight
Font weight for legend title (defaults to font_weight if not specified).
element_border_color
Color for borders around legend elements (color bar for continuous, patches/circles
for categorical).
element_border_width
Width in pixels for borders around legend elements.

shadow Logical, whether to add a drop shadow to the legend.
shadow_color Color of the drop shadow (e.g., "black”, "rgba(0,0,0,0.3)").
shadow_size Size/blur radius of the drop shadow in pixels.
padding Internal padding of the legend container in pixels.

Value

A list of class "mapgl_legend_style" containing the styling options.

Examples

Not run:

Create a dark theme legend style

dark_style <- legend_style(
background_color = "#2c3e50",
text_color = "white",
title_color = "white”,
font_family = "Arial”,
title_font_weight = "bold"”,
element_border_color = "white"”,
element_border_width = 1,
shadow = TRUE,
shadow_color = "rgba(0,0,0,0.3)",
shadow_size = 6

)

Use the style in a legend
add_categorical_legend(
map = map,
legend_title = "Categories”,
values = c("A", "B", "C"),
colors = c("red”, "green", "blue"),
style = dark_style
)

Create a minimal style with just borders
minimal_style <- legend_style(

mapboxgl

element_border_color
element_border_width

)

End(Not run)

- ngrayn ,

1
—

75

mapboxgl

Initialize a Mapbox GL Map

Description

Initialize a Mapbox GL Map

Usage

mapboxgl (
style = NULL,
center =
zoom = O,
bearing = 0,
pitch = 0,

c(o, 0),

projection = "globe",

parallels = NULL,

access_token = NULL,
bounds = NULL,
width = "100%",
height = NULL,
)
Arguments
style The Mapbox style to use.
center A numeric vector of length 2 specifying the initial center of the map.
zoom The initial zoom level of the map.
bearing The initial bearing (rotation) of the map, in degrees.
pitch The initial pitch (tilt) of the map, in degrees.
projection The map projection to use (e.g., "mercator”, "globe").
parallels A vector of two numbers representing the standard parallels of the projection.

Only available when the projection is "albers" or "lambertConformalConic".

access_token Your Mapbox access token.

bounds The bounding box to fit the map to. Accepts one of the following:

* sf object;
* output of st_bbox();

76

mapboxglCompareQOutput

¢ unnamed numeric vector of the form c(xmin, ymin, xmax, ymax).
width The width of the output htmlwidget.
height The height of the output htmlwidget.

Additional named parameters to be passed to the Mapbox GL JS Map. See
the Mapbox GL JS documentation for a full list of options: https://docs.
mapbox . com/mapbox-gl-js/api/map/#map-parameters. Common options
include:
¢ minZoom / maxZoom: Minimum and maximum zoom levels (0-24).
* maxBounds: Restrict panning to a bounding box, specified as 1ist(c(sw_1lng,
sw_lat), c(ne_lng, ne_lat)).
* dragRotate: If FALSE, disables rotation via mouse drag (default TRUE).
* touchZoomRotate: If FALSE, disables pinch-to-rotate on touch (default
TRUE).
e scrollZoom: If FALSE, disables scroll wheel zoom (default TRUE).

Value

An HTML widget for a Mapbox GL map.

Examples

Not run:
Basic map
mapboxgl (projection = "globe")

Constrained map with zoom limits and disabled rotation

mapboxgl (
bounds = my_sf_object,
minZoom = 5,

maxZoom = 12,

dragRotate = FALSE,

touchZoomRotate = FALSE
)

End(Not run)

mapboxglCompareOQutput Create a Mapbox GL Compare output element for Shiny

Description

Create a Mapbox GL Compare output element for Shiny

Usage

mapboxglCompareOutput (outputId, width = "100%", height = "400px")

https://docs.mapbox.com/mapbox-gl-js/api/map/#map-parameters
https://docs.mapbox.com/mapbox-gl-js/api/map/#map-parameters

mapboxglOutput 77

Arguments
outputId The output variable to read from
width The width of the element
height The height of the element

Value

A Mapbox GL Compare output element for use in a Shiny Ul

mapboxglOutput Create a Mapbox GL output element for Shiny

Description

Create a Mapbox GL output element for Shiny

Usage

mapboxglOutput (outputId, width = "100%", height = "400px")

Arguments
outputId The output variable to read from
width The width of the element
height The height of the element

Value

A Mapbox GL output element for use in a Shiny UI

mapboxgl_compare_proxy
Create a proxy object for a Mapbox GL Compare widget in Shiny

Description

This function allows updates to be sent to an existing Mapbox GL Compare widget in a Shiny
application.

Usage

mapboxgl_compare_proxy (
compareld,
session = shiny::getDefaultReactiveDomain(),
map_side = "before"

)

78 mapboxgl_view

Arguments

compareld The ID of the compare output element.

session The Shiny session object.

map_side Which map side to target in the compare widget, either "before" or "after".
Value

A proxy object for the Mapbox GL Compare widget.

mapboxgl_proxy Create a proxy object for a Mapbox GL map in Shiny

Description

This function allows updates to be sent to an existing Mapbox GL map in a Shiny application
without redrawing the entire map.

Usage

mapboxgl_proxy(mapIld, session = shiny::getDefaultReactiveDomain())

Arguments
mapId The ID of the map output element.
session The Shiny session object.

Value

A proxy object for the Mapbox GL map.

mapboxgl_view Quick visualization of geometries with Mapbox GL

Description

This function provides a quick way to visualize sf geometries and raster data using Mapbox GL JS.
It automatically detects the geometry type and applies appropriate styling.

mapboxgl_view

Usage

mapboxgl_view(

data,

79

color = "navy",

column =
n = NULL,

palette

NULL,

viridisLite::viridis,

style = mapbox_style("light"),
layer_id = "quickview”,
legend = TRUE,

legend_position = "top-left”,
interactive_legend = FALSE,

Arguments

data

color

column

palette

style
layer_id
legend

legend_position

An sf object, SpatRaster, or RasterLayer to visualize

The color used to visualize points, lines, or polygons if column is NULL. De-
faults to "navy"”.

The name of the column to visualize. If NULL (default), geometries are shown
with default styling.

Number of quantile breaks for numeric columns. If specified, uses step_expr()
instead of interpolate().

Color palette function that takes n and returns a character vector of colors. De-
faults to viridisLite::viridis.

The Mapbox style to use. Defaults to mapbox_style("light").
The layer ID to use for the visualization. Defaults to "quickview".

Logical, whether to add a legend when a column is specified. Defaults to TRUE.

The position of the legend on the map. Defaults to "top-left".

interactive_legend

Value

Logical, whether to make the legend interactive. When TRUE, categorical leg-
ends allow clicking to toggle visibility, and continuous legends show a range
slider. Defaults to FALSE.

Additional arguments passed to mapboxgl()

A Mapbox GL map object

Examples

Not run:
library(sf)

nc <- st_read(system.file("shape/nc.shp”, package = "sf"))

80 maplibre

Basic view
mapboxgl_view(nc)

View with column visualization
mapboxgl_view(nc, column = "AREA")

View with quantile breaks
mapboxgl_view(nc, column = "AREA", n = 5)

Custom palette examples

mapboxgl_view(nc, column = "AREA", palette = viridisLite::mako)

mapboxgl_view(nc, column = "AREA", palette = function(n) RColorBrewer: :brewer.pal(n, "RdY1Bu"))
mapboxgl_view(nc, column = "AREA", palette = colorRampPalette(c("red”, "white”, "blue")))

End(Not run)

mapbox_style Get Mapbox Style URL

Description

Get Mapbox Style URL

Usage

mapbox_style(style_name)

Arguments

style_name The name of the style (e.g., "standard", "streets", "outdoors", etc.).

Value

The style URL corresponding to the given style name.

maplibre Initialize a Maplibre GL Map

Description

Initialize a Maplibre GL Map

maplibre

Usage

maplibre(

81

style = carto_style("voyager"),
center = c(0, 0),

zoom =
bearing = 0,
pitch = 0,

projection = "globe",
bounds = NULL,
width = "100%",
height = NULL,

Arguments

style
center
zoom
bearing
pitch
projection

bounds

width
height

Value

The style JSON to use.
A numeric vector of length 2 specifying the initial center of the map.
The initial zoom level of the map.
The initial bearing (rotation) of the map, in degrees.
The initial pitch (tilt) of the map, in degrees.
The map projection to use (e.g., "mercator”, "globe").
The bounding box to fit the map to. Accepts one of the following:
* sf object;
* output of st_bbox();
¢ unnamed numeric vector of the form c(xmin, ymin, xmax, ymax).
The width of the output htmlwidget.
The height of the output htmlwidget.

Additional named parameters to be passed to the MapLibre GL JS Map. See the
MapLibre GL JS documentation for a full list of options: https://maplibre.
org/maplibre-gl-js/docs/API/type-aliases/MapOptions/. Common op-
tions include:

¢ minZoom / maxZoom: Minimum and maximum zoom levels (0-24).

* maxBounds: Restrict panning to a bounding box, specified as 1ist(c(sw_1ng,

sw_lat), c(ne_lng, ne_lat)).
e dragRotate: If FALSE, disables rotation via mouse drag (default TRUE).

* touchZoomRotate: If FALSE, disables pinch-to-rotate on touch (default
TRUE).

e scrollZoom: If FALSE, disables scroll wheel zoom (default TRUE).

An HTML widget for a MapLibre GL map.

https://maplibre.org/maplibre-gl-js/docs/API/type-aliases/MapOptions/
https://maplibre.org/maplibre-gl-js/docs/API/type-aliases/MapOptions/

82 maplibreCompareQOutput

Examples

Not run:
Basic map
maplibre()

Constrained map with zoom limits and disabled rotation

maplibre(
bounds = my_sf_object,
minZoom = 5,

maxZoom = 12,

dragRotate = FALSE,

touchZoomRotate = FALSE
)

End(Not run)

maplibreCompareOQutput Create a Maplibre GL Compare output element for Shiny

Description

Create a Maplibre GL Compare output element for Shiny

Usage

maplibreCompareOQutput (outputId, width = "100%", height = "400px")

Arguments
outputId The output variable to read from
width The width of the element
height The height of the element

Value

A Maplibre GL Compare output element for use in a Shiny Ul

maplibreOutput 83

maplibreOutput Create a Maplibre GL output element for Shiny

Description

Create a Maplibre GL output element for Shiny

Usage
maplibreQOutput (outputId, width = "100%", height = "400px")

Arguments
outputId The output variable to read from
width The width of the element
height The height of the element

Value

A Maplibre GL output element for use in a Shiny Ul

maplibre_compare_proxy
Create a proxy object for a Maplibre GL Compare widget in Shiny

Description

This function allows updates to be sent to an existing Maplibre GL Compare widget in a Shiny

application.
Usage
maplibre_compare_proxy(
compareld,
session = shiny::getDefaultReactiveDomain(),
map_side = "before"
)
Arguments
compareld The ID of the compare output element.
session The Shiny session object.
map_side Which map side to target in the compare widget, either "before" or "after".
Value

A proxy object for the Maplibre GL Compare widget.

84 maplibre_view

maplibre_proxy Create a proxy object for a Maplibre GL map in Shiny

Description
This function allows updates to be sent to an existing Maplibre GL map in a Shiny application
without redrawing the entire map.

Usage

maplibre_proxy(mapld, session = shiny::getDefaultReactiveDomain())

Arguments
mapId The ID of the map output element.
session The Shiny session object.

Value

A proxy object for the Maplibre GL map.

maplibre_view Quick visualization of geometries with MapLibre GL

Description

This function provides a quick way to visualize sf geometries and raster data using MapLibre GL
JS. It automatically detects the geometry type and applies appropriate styling.

Usage

maplibre_view(
data,
color = "navy",
column = NULL,
n = NULL,
palette = viridisLite::viridis,
style = carto_style("positron”),
layer_id = "quickview",
legend = TRUE,
legend_position = "top-left”,
interactive_legend = FALSE,

maplibre_view 85

Arguments

data An sf object, SpatRaster, or RasterLayer to visualize

color The color used to visualize points, lines, or polygons if column is NULL. De-
faults to "navy".

column The name of the column to visualize. If NULL (default), geometries are shown
with default styling.

n Number of quantile breaks for numeric columns. If specified, uses step_expr()
instead of interpolate().

palette Color palette function that takes n and returns a character vector of colors. De-
faults to viridisLite::viridis.

style The MapLibre style to use. Defaults to carto_style("positron").

layer_id The layer ID to use for the visualization. Defaults to "quickview".

legend Logical, whether to add a legend when a column is specified. Defaults to TRUE.

legend_position

The position of the legend on the map. Defaults to "top-left".
interactive_legend

Logical, whether to make the legend interactive. When TRUE, categorical leg-

ends allow clicking to toggle visibility, and continuous legends show a range
slider. Defaults to FALSE.

Additional arguments passed to maplibre()

Value

A MapLibre GL map object

Examples

Not run:
library(sf)
nc <- st_read(system.file("shape/nc.shp”, package = "sf"))

Basic view
maplibre_view(nc)

View with column visualization
maplibre_view(nc, column = "AREA")

View with quantile breaks
maplibre_view(nc, column = "AREA", n = 5)

Custom palette examples

maplibre_view(nc, column = "AREA", palette = viridisLite::mako)

maplibre_view(nc, column = "AREA", palette = function(n) RColorBrewer: :brewer.pal(n, "RdY1Bu"))
maplibre_view(nc, column = "AREA", palette = colorRampPalette(c("red”, "white”, "blue")))

End(Not run)

86 map_legends

maptiler_style Get MapTiler Style URL

Description

Get MapTiler Style URL

Usage
maptiler_style(style_name, variant = NULL, api_key = NULL)

Arguments
style_name The name of the style (e.g., "basic", "streets", "toner", etc.).
variant The color variant of the style. Options are "dark", "light", or "pastel". Default is
NULL (standard variant). Not all styles support all variants.
api_key Your MapTiler API key (required)
Value

The style URL corresponding to the given style name and variant.

map_legends Add legends to Mapbox GL and MapLibre GL maps

Description

These functions add categorical and continuous legends to maps. Use legend_style() to cus-
tomize appearance and clear_legend() to remove legends.

Usage

add_legend(
map,
legend_title,
values = NULL,
colors = NULL,
type = c("continuous”, "categorical”),
circular_patches = FALSE,
patch_shape = "square"”,
position = "top-left”,
sizes = NULL,
add = FALSE,
unique_id = NULL,
width = NULL,

map_legends

layer_id = NULL,
margin_top = NULL,
margin_right = NULL,
margin_bottom = NULL,
margin_left = NULL,
style = NULL,
target = NULL,
interactive = FALSE,
filter_column = NULL,
filter_values = NULL,
classification = NULL,
breaks = NULL

)

add_categorical_legend(
map,
legend_title,
values,
colors,
circular_patches = FALSE,
patch_shape = "square"”,
position = "top-left”,
unique_id = NULL,

sizes = NULL,
add = FALSE,
width = NULL,

layer_id = NULL,
margin_top = NULL,
margin_right = NULL,
margin_bottom = NULL,
margin_left = NULL,
style = NULL,
interactive = FALSE,
filter_column = NULL,
filter_values = NULL,
breaks = NULL

)

add_continuous_legend(
map,
legend_title,
values,
colors,
position = "top-left”,
unique_id = NULL,
add = FALSE,
width = NULL,
layer_id = NULL,

88

)

margin_top = NULL,
margin_right = NULL,
margin_bottom = NULL,
margin_left = NULL,
style = NULL,
interactive = FALSE,
filter_column = NULL,
filter_values = NULL

S3 method for class 'mapboxgl_compare'
add_legend(

)

map,
legend_title,

values,

colors,

type = c("continuous”, "categorical”),
circular_patches = FALSE,
patch_shape = "square"”,
position = "top-left”,
sizes = NULL,

add = FALSE,

unique_id = NULL,

width = NULL,

layer_id = NULL,
margin_top = NULL,
margin_right = NULL,
margin_bottom = NULL,
margin_left = NULL,

style = NULL,

target = "compare”,
interactive = FALSE,
filter_column = NULL,
filter_values = NULL,
classification = NULL,
breaks = NULL

S3 method for class 'maplibre_compare'
add_legend(

map,

legend_title,

values,

colors,

type = c("continuous”, "categorical”),
circular_patches = FALSE,

patch_shape = "square"”,

position = "top-left”,

map_legends

map_legends

sizes = NULL,
add = FALSE,

89

unique_id = NULL,

width = NULL,

layer_id = NULL,
margin_top = NULL,
margin_right = NULL,

margin_bottom = NULL,
margin_left = NULL,
style = NULL,

target = "compare”,
interactive = FALSE,
filter_column = NULL,
filter_values = NULL,

classification = NULL,

breaks = NULL

Arguments

map
legend_title

values

colors

type

A map object created by the mapboxgl or maplibre function.
The title of the legend.

The values being represented on the map (either a vector of categories or a vector
of stops).

The corresponding colors for the values (either a vector of colors, a single color,
or an interpolate function).

One of "continuous" or "categorical" (for add_legend only).

circular_patches

patch_shape

position

sizes

add

unique_id

width

(Deprecated) Logical, whether to use circular patches in the legend. Use patch_shape
= "circle” instead.

Character or sf object, the shape of patches to use in categorical legends. Can be

one of the built-in shapes ("square", "circle", "line", "hexagon"), a custom SVG
string, or an sf object with POLYGON or MULTIPOLYGON geometry (which

will be automatically converted to SVG). Default is "square".
The position of the legend on the map (one of "top-left", "bottom-left", "top-
right", "bottom-right").

An optional numeric vector of sizes for the legend patches, or a single numeric
value (only for categorical legends). For line patches, this controls the line thick-
ness.

Logical, whether to add this legend to existing legends (TRUE) or replace exist-
ing legends (FALSE). Default is FALSE.

Optional. A unique identifier for the legend. If not provided, a random ID will
be generated.

The width of the legend. Can be specified in pixels (e.g., "250px") or as "auto".
Default is NULL, which uses the built-in default.

90

layer_id

margin_top

margin_right
margin_bottom
margin_left
style

target

interactive

filter_column

filter_values

classification

breaks

Value

map_legends

The ID of the layer that this legend is associated with. If provided, the legend
will be shown/hidden when the layer visibility is toggled.

Custom top margin in pixels, allowing for fine control over legend positioning.
Default is NULL (uses standard positioning).

Custom right margin in pixels. Default is NULL.

Custom bottom margin in pixels. Default is NULL.

Custom left margin in pixels. Default is NULL.

Optional styling options created by legend_style() or a list of style options.

For compare objects only: where to place the legend. Can be "compare" (at-
tached to compare container, persists during swipe), "before" (attached to left/top
map), or "after" (attached to right/bottom map). Default is "compare".

Logical, whether to make the legend interactive. For categorical legends, click-
ing on legend items will toggle the visibility of the corresponding features. For
continuous legends, a range slider will appear allowing users to filter features
by value. Default is FALSE. Note: interactive legends are not yet supported for
compare maps.

Character, the name of the data column to use for filtering when interactive is
TRUE. If NULL (default), the column will be auto-detected from the layer’s
paint expression.

For interactive legends, the actual data values to filter on. For categorical leg-
ends, use this when your display labels differ from the data values (e.g., val-
ues = c¢("Music", "Bar") for display, filter_values = c("music", "bar") for filter-
ing). For continuous legends, provide numeric break values when using for-
matted display labels (e.g., values = get_legend_labels(scale), filter_values =
get_breaks(scale)). If NULL (default), uses values.

A mapgl_classification object (from step_quantile, step_equal_interval, etc.) to
use for the legend. When provided, values and colors will be automatically
extracted. For interactive legends, range-based filtering will be used based on
the classification breaks.

Numeric vector of break points for filtering with classification-based legends.
Typically extracted automatically from the classification object. Only needed if
you want to override the default breaks.

The updated map object with the legend added.

Examples

Not run:

Basic categorical legend
add_legend(map, "Population”,

values
colors
type =

= c("Low”, "Medium”, "High"),
= c("blue”, "yellow”, "red"),

"categorical”)

map_legends

Continuous legend with custom styling
add_legend(map, "Income”,
values = c(0, 50000, 100000),

colors = c("blue”, "yellow”, "red"),
type = "continuous”,
style = list(

background_color = "white”,

background_opacity = 0.9,
border_width = 2,

border_color = "navy”,
text_color = "darkblue",
font_family = "Times New Roman”,

title_font_weight = "bold”
)

Legend with custom styling using a list
add_legend(map, "Temperature”,
values = c(0, 50, 100),
colors = c("blue”, "yellow”, "red"),
type = "continuous”,
style = list(
background_color = "#fofofe",
title_size = 16,
text_size = 12,
shadow = TRUE,
shadow_color = "rgba(0,0,0,0.1)",
shadow_size = 8

)

Dark legend with white element borders
add_legend(map, "Elevation”,
values = c(@, 1000, 2000, 3000),
colors = c("#2c7bb6", "#abd9e9", "#fdae61"”, "#d7191c"),
type = "continuous”,
style = list(
background_color = "#2c3e50",

text_color = "white",
title_color = "white”,
element_border_color = "white",

element_border_width = 1

)

Categorical legend with circular patches
add_categorical_legend(

map = map,

legend_title = "Population”,

values = c("Low"”, "Medium”, "High"),

colors = c("#FED976", "#FEB24C", "#FD8D3C"),
patch_shape = "circle”,

sizes = c(10, 15, 20),

style = list(
background_opacity = 0.95,
border_width = 1,

91

map_legends

border_color = "gray",
title_color = "navy”,
element_border_color = "black”,
element_border_width = 1

)

Legend with line patches for line layers
add_categorical _legend(

map = map,
legend_title = "Road Type",

values = c("Highway"”, "Primary", "Secondary"”),
colors = c("#000000", "#333333", "#666666"),
patch_shape = "line"”,

sizes = ¢c(5, 3, 1) # Line thickness in pixels

Legend with hexagon patches (e.g., for H3 data)
add_categorical_legend(

map = map,
legend_title = "H3 Hexagon Categories”,
values = c("Urban”, "Suburban”, "Rural"),
colors = c("#8B000Q", "#FF6347", "#9QEE90"),
patch_shape = "hexagon”,

sizes = 25

)

Custom SVG shapes - star
add_categorical_legend(
map = map,
legend_title = "Ratings”,
values = c("5 Star”, "4 Star”, "3 Star"),
colors = c("#FFD700", "#FFA500", "#FF6347"),
patch_shape = paste@('<path d="M50,5 L61,35 L95,35 L68,57 L79,91 L50,70 ',
'L21,91 L32,57 L5,35 L39,35 z" />')
)

Using sf objects directly as patch shapes

library(sf)

nc <- st_read(system.file("shape/nc.shp”, package = "sf"))
county_shape <- nc[1, 1 # Get first county

add_categorical_legend(

map = map,
legend_title = "County Types”,
values = c("Rural”, "Urban"”, "Suburban"),

colors = c("#228B22", "#8B000Q", "#FFD700"),
patch_shape = county_shape # sf object automatically converted to SVG

For advanced users needing custom conversion options
custom_svg <- mapgl:::.sf_to_svg(county_shape, simplify = TRUE,
tolerance = 0.001, fit_viewbox = TRUE)

match_expr 93

add_categorical_legend(
map = map,
legend_title = "Custom Converted Shape”,
values = c("Type A"),
colors = c("#4169E1"),
patch_shape = custom_svg

)

Compare view legends
compare_view <- compare(mapl, map2)

Add persistent legend (stays visible during swipe)
compare_view [>
add_legend("Persistent Legend”,
values = c("Low", "High"),

colors = c("blue”, "red"),
type = "categorical”,
target = "compare”,

position = "top-left"”)

Add legends to specific maps
compare_view [>
add_legend("Left Map”,
values = c("A", "B"),

colors = c("green", "orange"),
type = "categorical”,
target = "before”,

position = "bottom-left"”) |>
add_legend("Right Map”,

values = c("X", "Y"),

colors = c("purple”, "yellow"),

type = "categorical”,

target = "after”,

position = "bottom-right")

End(Not run)

match_expr Create a match expression

Description

This function generates a match expression that can be used to style your data.

Usage

match_expr(column = NULL, property = NULL, values, stops, default = "#cccccc")

94 move_layer

Arguments
column The name of the column to use for the match expression. If specified, property
should be NULL.
property The name of the property to use for the match expression. If specified, column
should be NULL.
values A vector of values to match against.
stops A vector of corresponding stops (colors, etc.) for the matched values.
default A default value to use if no matches are found.
Value

A list representing the match expression.

Examples

match_expr(
column = "category",
VaerS = C("A"’ IVBII, ”C"),
stops = c("#ff0000", "#00ff00", "#0000ff"),
default = "#ccccec”

move_layer Move a layer to a different z-position

Description

This function allows a layer to be moved to a different z-position in a Mapbox GL or Maplibre GL
map. For initial maps, the operation is queued and executed during map initialization. For proxy
objects, the operation is executed immediately.

Usage
move_layer(map, layer_id, before_id = NULL)

Arguments
map A map object created by mapboxgl or maplibre, or a proxy object created by
mapboxgl_proxy or maplibre_proxy.
layer_id The ID of the layer to move.
before_id The ID of an existing layer to insert the new layer before. Important: this means
that the layer will appear immediately behind the layer defined in before_id.
If omitted, the layer will be appended to the end of the layers array and appear
above all other layers.
Value

The updated map or proxy object.

number_format 95

number_format Create a number formatting expression

Description

This function creates a number formatting expression that formats numeric values according to
locale-specific conventions. It can be used in tooltips, popups, and text fields for symbol layers.

Usage

number_format (
column,
locale = "en-US",
style = "decimal”,
currency = NULL,
unit = NULL,
minimum_fraction_digits = NULL,
maximum_fraction_digits = NULL,
minimum_integer_digits = NULL,
use_grouping = NULL,
notation = NULL,
compact_display = NULL

)
Arguments
column The name of the column containing the numeric value to format. Can also be an
expression that evaluates to a number.
locale A string specifying the locale to use for formatting (e.g., "en-US", "de-DE",
"fr-FR"). Defaults to "en-US".
style The formatting style to use. Options include:
* "decimal" (default): Plain number formatting
 "currency": Currency formatting (requires currency parameter)
* "percent": Percentage formatting (multiplies by 100 and adds %)
* "unit": Unit formatting (requires unit parameter)
currency For style = "currency", the ISO 4217 currency code (e.g., "USD", "EUR", "GBP").
unit For style = "unit", the unit to use (e.g., "kilometer", "mile", "liter").

minimum_fraction_digits

The minimum number of fraction digits to display.
maximum_fraction_digits

The maximum number of fraction digits to display.
minimum_integer_digits

The minimum number of integer digits to display.

96 on_section

use_grouping Whether to use grouping separators (e.g., thousands separators). Defaults to
TRUE.

notation The formatting notation. Options include:

 "standard" (default): Regular notation

* "scientific": Scientific notation

* "engineering": Engineering notation

* "compact": Compact notation (e.g., "1.2K", "3.4M")

compact_display
For notation = "compact", whether to use "short" (default) or "long" form.

Value

A list representing the number-format expression.

Examples

Basic number formatting with thousands separators
number_format("population”)

Currency formatting
number_format("income"”, style = "currency”, currency = "USD")

Percentage with 1 decimal place
number_format("rate”, style = "percent”, maximum_fraction_digits = 1)

Compact notation for large numbers
number_format("population”, notation = "compact"”)

Using within a tooltip
concat("Population: ", number_format("population”, notation = "compact”))

Using with get_column()

number_format(get_column(”value”), style = "currency”, currency = "EUR")
on_section Observe events on story map section transitions
Description

For a given story_section(), you may want to trigger an event when the section becomes visible.
This function wraps shiny: :observeEvent() to allow you to modify the state of your map or
invoke other Shiny actions on user scroll.

Usage

on_section(map_id, section_id, handler)

openfreemap_style 97

Arguments
map_id The ID of your map output
section_id The ID of the section to trigger on, defined in story_section()
handler Expression to execute when section becomes visible.
openfreemap_style Get OpenFreeMap Style URL
Description

Get OpenFreeMap Style URL

Usage

openfreemap_style(style_name)

Arguments

style_name The name of the style (e.g., "bright", "positron”, "liberty", "dark", or "fiord").

Value

The style URL corresponding to the given style name.

palette_to_lut Convert R color palette to mapgl LUT

Description

This function takes an R color palette and converts it into a base64-encoded LUT (Look-Up Table)
image that can be used with Mapbox GL JS v3+ for custom map themes. The LUT applies color
transformations to the basemap.

Usage
palette_to_lut(
colors,
n =25,
method = c("tint”, "replace”, "duotone”, "tritone"”, "luminosity"),

intensity = 0.5,
lut_size = 32,
reverse = FALSE

98 palette_to_lut

Arguments
colors Character vector of colors (hex or R color names) or a function that generates
colors (like viridis)
n Number of colors to sample from the palette (if colors is a function)
method Method for applying colors to the LUT:
e "tint": Applies palette as a color tint/overlay
* "replace"”: Maps grayscale values to palette colors
* "duotone”: Creates duotone effect with first two colors
e "tritone": Creates tritone effect with first three colors
e "luminosity”: Applies palette based on pixel luminosity
intensity Strength of the effect (0-1)
lut_size Size of the LUT (16, 32, or 64)
reverse Logical; whether to reverse the color palette
Value

Base64-encoded PNG data URI string

Examples

Not run:
Using viridis palette
theme_data <- palette_to_lut(viridisLite::viridis(5))

Using a palette function directly
theme_data <- palette_to_lut(viridisLite::plasma, n = 7)

Using RColorBrewer
theme_data <- palette_to_lut(RColorBrewer::brewer.pal(9, "Y10rRd"))

Use in mapboxgl (requires Mapbox GL JS v3+)
mapboxgl (
center = ¢(139.7, 35.7),
zoom = 10,
config = list(
basemap = list(
theme = "custom”,
"theme-data” = theme_data
)
)
)

End(Not run)

query_rendered_features 99

query_rendered_features
Query rendered features on a map in a Shiny session

Description

This function queries features that are currently rendered (visible) in the map viewport. Only fea-
tures within the current viewport bounds will be returned - features outside the visible area or hidden
due to zoom constraints will not be included. Use get_queried_features() to retrieve the results
as an sf object, or use the callback parameter to handle results automatically when they’re ready.

Usage

query_rendered_features(
proxy,
geometry = NULL,
layer_id = NULL,
filter = NULL,
callback = NULL

)
Arguments
proxy A MapboxGL or Maplibre proxy object, defined with mapboxgl_proxy (), maplibre_proxy(),
mapboxgl_compare_proxy(), or maplibre_compare_proxy()
geometry The geometry to query. Can be:
* NULL (default): Query the entire viewport
* A length-2 vector c(x, y): Query at a single point in pixel coordinates
* A length-4 vector c(xmin, ymin, xmax, ymax): Query within a bounding
box in pixel coordinates
layer_id A character vector of layer names to include in the query. Can be a single layer
name or multiple layer names. If NULL (default), all layers are queried.
filter A filter expression used to filter features in the query. Should be a list repre-
senting a Mapbox GL expression. Using this parameter applies the filter during
the query WITHOUT changing the map display, avoiding race conditions. If
you’ve called set_filter() separately, you must pass the same filter here to
get aligned results.
callback A function to execute when results are ready. The function will receive the sf
object as its argument. If provided, this avoids timing issues by automatically
handling results when they’re available.
Details

Viewport Limitation:

100 query_rendered_features

This function only queries features that are currently rendered in the map viewport. Features
outside the visible area will not be returned, even if they exist in the data source. This includes
features that are:

* Outside the current map bounds
¢ Hidden due to zoom level constraints (minzoom/maxzoom)
* Not yet loaded (if using vector tiles)

Avoiding Race Conditions:
IMPORTANT: set_filter() is asynchronous while query_rendered_features() is synchronous.

Calling query_rendered_features() immediately after set_filter () will return features from
the PREVIOUS filter state, not the new one.

Safe Usage Patterns::
Pattern 1: Query First, Then Filter (Recommended)

query_rendered_features(proxy, layer_id = "counties”, callback = function(features) {
Process features, then update map based on results
proxy |> set_filter("highlight"”, list("in", "id", features$id))

b))

Pattern 2: Use Filter Parameter Instead
Query with filter without changing map display
query_rendered_features(proxy, filter = list(">=", "population”, 1000),
callback = function(features) {
Process filtered results without race condition

D
What NOT to Do::

WRONG - This will return stale results!
proxy |> set_filter("layer"”, new_filter)
query_rendered_features(proxy, layer_id = "layer") # Gets OLD filter results

Value

The proxy object (invisibly). Use get_queried_features() to retrieve the query results manually,
or provide a callback function to handle results automatically.

Examples

Not run:
Pattern 1: Query first, then filter (RECOMMENDED)
proxy <- maplibre_proxy("map")
query_rendered_features(proxy, layer_id = "counties"”, callback = function(features) {
if (nrow(features) > @) {
Filter map based on query results - no race condition
proxy |> set_filter("selected”, list("in", "id", features$id))
3
»

Pattern 2: Use filter parameter to avoid race conditions
query_rendered_features(proxy,
filter = list(">=", "population”, 50000),

renderMapboxgl 101

callback = function(features) {
These results are guaranteed to match the filter
print(paste(”Found”, nrow(features), "high population areas"))

b

Query specific bounding box with callback
query_rendered_features(proxy, geometry = c(100, 100, 200, 200),
layer_id = "counties”, callback = function(features) {

print(paste(”Found”, nrow(features), "features"))

b
ANTI-PATTERN - Don't do this!

proxy |> set_filter("layer"”, new_filter)
query_rendered_features(proxy, layer_id = "layer”) # Will get stale results!

End(Not run)

renderMapboxgl Render a Mapbox GL output element in Shiny

Description

Render a Mapbox GL output element in Shiny

Usage

renderMapboxgl (expr, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that generates a Mapbox GL map
env The environment in which to evaluate expr
quoted Is expr a quoted expression

Value

A rendered Mapbox GL map for use in a Shiny server

102 renderMaplibre

renderMapboxglCompare Render a Mapbox GL Compare output element in Shiny

Description

Render a Mapbox GL Compare output element in Shiny

Usage

renderMapboxglCompare(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that generates a Mapbox GL Compare map
env The environment in which to evaluate expr
quoted Is expr a quoted expression

Value

A rendered Mapbox GL Compare map for use in a Shiny server

renderMaplibre Render a Maplibre GL output element in Shiny

Description

Render a Maplibre GL output element in Shiny

Usage

renderMaplibre(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that generates a Maplibre GL map
env The environment in which to evaluate expr
quoted Is expr a quoted expression

Value

A rendered Maplibre GL map for use in a Shiny server

renderMaplibreCompare 103

renderMaplibreCompare Render a Maplibre GL Compare output element in Shiny

Description

Render a Maplibre GL Compare output element in Shiny

Usage

renderMaplibreCompare(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that generates a Maplibre GL Compare map
env The environment in which to evaluate expr
quoted Is expr a quoted expression

Value

A rendered Maplibre GL Compare map for use in a Shiny server

set_config_property Set a configuration property for a Mapbox GL map

Description

Set a configuration property for a Mapbox GL map

Usage

set_config_property(map, import_id, config_name, value)

Arguments
map A map object created by the mapboxgl function or a proxy object defined with
mapboxgl_proxy().
import_id The name of the imported style to set the config for (e.g., ’basemap’).
config_name The name of the configuration property from the style.
value The value to set for the configuration property.
Value

The updated map object with the configuration property set.

104 set_fog

set_filter Set a filter on a map layer

Description

This function sets a filter on a map layer, working with both regular map objects and proxy objects.

Usage

set_filter(map, layer_id, filter)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to which the filter will be applied.
filter The filter expression to apply.
Value
The updated map object.
set_fog Set fog on a Mapbox GL map
Description
Set fog on a Mapbox GL map
Usage
set_fog(
map,
range = NULL,
color = NULL,

horizon_blend = NULL,
high_color = NULL,
space_color = NULL,
star_intensity = NULL

set_layout_property 105

Arguments
map A map object created by the mapboxgl function or a proxy object.
range A numeric vector of length 2 defining the minimum and maximum range of the
fog.
color A string specifying the color of the fog.

horizon_blend A number between O and 1 controlling the blending of the fog at the horizon.
high_color A string specifying the color of the fog at higher elevations.
space_color A string specifying the color of the fog in space.

star_intensity A number between 0 and 1 controlling the intensity of the stars in the fog.

Value

The updated map object.

set_layout_property Set a layout property on a map layer

Description

Set a layout property on a map layer

Usage

set_layout_property(map, layer_id = NULL, name, value, layer = NULL)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to update.
name The name of the layout property to set.
value The value to set the property to.
layer Deprecated. Use layer_id instead.
Value

The updated map object.

106 set_popup

set_paint_property Set a paint property on a map layer

Description

Set a paint property on a map layer

Usage

set_paint_property(map, layer_id = NULL, name, value, layer = NULL)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to update.
name The name of the paint property to set.
value The value to set the property to.
layer Deprecated. Use layer_id instead.
Value
The updated map object.
set_popup Set popup on a map layer
Description

Set popup on a map layer

Usage

set_popup(map, layer_id = NULL, popup, layer = NULL)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to update.
popup The name of the popup property or an expression to set.
layer Deprecated. Use layer_id instead.
Value

The updated map object.

set_projection 107

set_projection Set Projection for a Mapbox/Maplibre Map

Description

This function sets the projection dynamically after map initialization.

Usage

set_projection(map, projection)

Arguments
map A map object created by mapboxgl() or maplibre() functions, or their respective
proxy objects
projection A string representing the projection name (e.g., "mercator”, "globe", "albers",
"equalEarth", etc.)
Value
The modified map object
set_rain Set rain effect on a Mapbox GL map
Description

Set rain effect on a Mapbox GL map

Usage

set_rain(
map,
density = 0.5,
intensity = 1,
color = "#a8adbc”,
opacity = 0.7,
center_thinning = 0.57,
direction = c(@, 80),
droplet_size = c(2.6, 18.2),
distortion_strength = 0.7,
vignette = 1,
vignette_color = "#464646",
remove = FALSE

108 set_rain

Arguments
map A map object created by the mapboxgl function or a proxy object.
density A number between 0 and 1 controlling the rain particles density. Default is 0.5.
intensity A number between 0 and 1 controlling the rain particles movement speed. De-
fault is 1.
color A string specifying the color of the rain droplets. Default is "#a8adbc".
opacity A number between 0 and 1 controlling the rain particles opacity. Default is 0.7.

center_thinning
A number between 0 and 1 controlling the thinning factor of rain particles from
center. Default is 0.57.

direction A numeric vector of length 2 defining the azimuth and polar angles of the rain
direction. Default is c(0, 80).

droplet_size A numeric vector of length 2 controlling the rain droplet size (x - normal to
direction, y - along direction). Default is ¢(2.6, 18.2).

distortion_strength
A number between 0 and 1 controlling the rain particles screen-space distortion
strength. Default is 0.7.

vignette A number between 0 and 1 controlling the screen-space vignette rain tinting
effect intensity. Default is 1.0.

vignette_color A string specifying the rain vignette screen-space corners tint color. Default is

"#464646".
remove A logical value indicating whether to remove the rain effect. Default is FALSE.
Value
The updated map object.
Examples
Not run:

Add rain effect with default values
mapboxgl(...) |> set_rain()

Add rain effect with custom values
mapboxgl (
style = mapbox_style("”standard"),
center = c(24.951528, 60.169573),
zoom = 16.8,
pitch = 74,
bearing = 12.8
) 1>
set_rain(
density = 0.5,
opacity = 0.7,
color = "#a8adbc"

set_snow

109

Remove rain effect (useful in Shiny)
map_proxy |> set_rain(remove = TRUE)

End(Not run)

set_snow

Set snow effect on a Mapbox GL map

Description

Set snow effect on a Mapbox GL map

Usage

set_snow(
mapy

density = 0.85,
intensity = 1,
color = "#ffffff",

opacity =1,

center_thinning = 0.4,

direction
flake_size

c(0, 50),
0.71,

vignette = 0.3,
vignette_color = "#ffffff",

remove =

Arguments

map

density

intensity

color

opacity

center_thinning

direction

flake_size

FALSE

A map object created by the mapboxgl function or a proxy object.

A number between 0 and 1 controlling the snow particles density. Default is
0.85.

A number between 0 and 1 controlling the snow particles movement speed. De-
fault is 1.0.

A string specifying the color of the snow particles. Default is "#{fffff".

A number between 0 and 1 controlling the snow particles opacity. Default is 1.0.

A number between 0 and 1 controlling the thinning factor of snow particles from
center. Default is 0.4.

A numeric vector of length 2 defining the azimuth and polar angles of the snow
direction. Default is c(0, 50).

A number between 0 and 5 controlling the snow flake particle size. Default is
0.71.

110 set_source

vignette A number between 0 and 1 controlling the snow vignette screen-space effect.
Default is 0.3.

vignette_color A string specifying the snow vignette screen-space corners tint color. Default is

"HFEEEE .
remove A logical value indicating whether to remove the snow effect. Default is FALSE.
Value
The updated map object.
Examples
Not run:

Add snow effect with default values
mapboxgl(...) |> set_snow()

Add snow effect with custom values
mapboxgl (
style = mapbox_style("standard"),

center = c(24.951528, 60.169573),
zoom = 16.8,
pitch = 74,
bearing = 12.8
) 1>
set_snow(

density = 0.85,

flake_size = 0.71,

color = "#ffffff"
)

Remove snow effect (useful in Shiny)
map_proxy |> set_snow(remove = TRUE)

End(Not run)

set_source Set source of a map layer

Description

Set source of a map layer

Usage

set_source(map, layer_id = NULL, source, layer = NULL)

set_style 111

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to update.
source An sf object (which will be converted to a GeoJSON source).
layer Deprecated. Use layer_id instead.
Value
The updated map object.
set_style Update the style of a map
Description

Update the style of a map

Usage

set_style(map, style, config = NULL, diff = TRUE, preserve_layers = TRUE)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
style The new style URL to be applied to the map.
config A named list of options to be passed to the style config.
diff A boolean that attempts a diff-based update rather than re-drawing the full style.

Not available for all styles.
preserve_layers

A boolean that indicates whether to preserve user-added sources and layers when
changing styles. Defaults to TRUE.

Value

The modified map object.

Examples

Not run:
map <- mapboxgl(
style = mapbox_style("streets"),
center = c(-74.006, 40.7128),
zoom = 10,
access_token = "your_mapbox_access_token"

112

Update the map style in a Shiny app
observeEvent (input$change_style, {
mapboxgl_proxy("map”, session) %>%

set_terrain

set_style(mapbox_style("dark"”), config = list(showlLabels = FALSE), diff = TRUE)

»

End(Not run)

set_terrain Set terrain properties on a map

Description

Set terrain properties on a map

Usage

set_terrain(map, source, exaggeration = 1)

Arguments
map A map object created by the mapboxgl or maplibre functions.
source The ID of the raster DEM source.

exaggeration The terrain exaggeration factor.

Value

The modified map object with the terrain settings applied.

Examples

Not run:
library(mapgl)

mapboxgl (
style = mapbox_style("”standard-satellite"),
center = c(-114.26608, 32.7213),

zoom = 14,
pitch = 80,
bearing = 41
) 1>
add_raster_dem_source(
id = "mapbox-dem”,
url = "mapbox://mapbox.mapbox-terrain-dem-v1",

tileSize = 512,
maxzoom = 14

) 1>

set_terrain(
source = "mapbox-dem”,

set_tooltip 113

exaggeration = 1.5

)

End(Not run)

set_tooltip Set tooltip on a map layer

Description

Set tooltip on a map layer

Usage
set_tooltip(map, layer_id = NULL, tooltip, layer = NULL)

Arguments
map A map object created by the mapboxgl or maplibre function, or a proxy object.
layer_id The ID of the layer to update.
tooltip The name of the tooltip to set.
layer Deprecated. Use layer_id instead.
Value
The updated map object.
set_view Set the map center and zoom level
Description

Set the map center and zoom level

Usage

set_view(map, center, zoom)

Arguments
map A map object created by the mapboxgl or maplibre function or a proxy object.
center A numeric vector of length 2 specifying the center of the map (longitude, lati-
tude).
zoom The zoom level.
Value

The updated map object.

114 step_classification

step_classification Step expressions with automatic classification

Description

These functions create step expressions using different classification methods, similar to choropleth
mapping in GIS software. They automatically calculate break points and generate appropriate step
expressions for styling map layers.

Usage
step_equal_interval(
data = NULL,
column,
data_values = NULL,
n=>5,

palette = NULL,
colors = NULL,
na_color = "grey"

)

step_quantile(
data = NULL,
column,
data_values = NULL,
n =25,
palette = NULL,
colors = NULL,
na_color = "grey"

)

step_jenks(
data = NULL,
column,
data_values = NULL,
n =25,
palette = NULL,
colors = NULL,

na_color = "grey"
)
Arguments
data A data frame or sf object containing the data. If provided, data_values will be

extracted from datal[[column]]. Either data or data_values must be provided.

column The name of the column to use for the step expression.

step_classification 115

data_values A numeric vector of the actual data values used to calculate breaks. If NULL
and data is provided, will be extracted from data[[column]].

n The number of classes/intervals to create. Defaults to 5.

palette A function that takes n and returns a character vector of colors. If NULL and
colors is also NULL, defaults to viridisLite::viridis.

colors A character vector of colors to use. Must have exactly n colors for step classifi-
cation functions. Either palette or colors should be provided, but not both.
na_color The color to use for missing values. Defaults to "grey".
Details

step_equal_interval() Creates equal interval breaks by dividing the data range into equal parts

step_quantile() Creates quantile breaks ensuring approximately equal numbers of observations in
each class

step_jenks() Creates Jenks natural breaks using Fisher-Jenks optimization to minimize within-
class variance

Value

A list of class "mapgl_classification" containing the step expression and metadata.

See Also

interpolate_palette() for continuous color scales

Examples

Not run:

Texas county income data

library(tidycensus)

tx <- get_acs(geography = "county”, variables = "B19013_001",
state = "TX", geometry = TRUE)

Using palette function (recommended)

eq_class <- step_equal_interval(data = tx, column = "estimate”, n = 5,
palette = viridislLite::plasma)

Or with piping

eq_class <- tx |> step_equal_interval("estimate”, n = 5)

Using specific colors
gt_class <- step_quantile(data = tx, column = "estimate”, n = 3,
colors = c("red”, "yellow”, "blue"))

Jenks natural breaks with default viridis
jk_class <- step_jenks(data = tx, column = "estimate”, n = 5)

Use in a map with formatted legend
maplibre() |>
add_fill_layer(source = tx, fill_color = eq_class$expression) |>

116 step_expr

add_legend(
legend_title = "Median Income”,
values = get_legend_labels(eg_class, format = "currency"”),
colors = get_legend_colors(eq_class),
type = "categorical”

)

Compare different methods
print(eq_class, format = "currency"”)
print(qt_class, format = "compact”, prefix = "$")

End(Not run)

step_expr Create a step expression

Description

This function generates a step expression that can be used in your styles.

Usage

step_expr(column = NULL, property = NULL, base, values, stops, na_color = NULL)

Arguments
column The name of the column to use for the step expression. If specified, property
should be NULL.
property The name of the property to use for the step expression. If specified, column
should be NULL.
base The base value to use for the step expression.
values A numeric vector of values at which steps occur.
stops A vector of corresponding stops (colors, sizes, etc.) for the steps.
na_color The color to use for missing values. Mapbox GL JS defaults to black if this is
not supplied.
Value

A list representing the step expression.

Examples

step_expr(
column = "value",
base = "#ffffff",
values = c(1000, 5000, 10000),
stops = c("#ff0000", "#00ff00", "#0000ff")

story_leaflet 117

story_leaflet Create a scrollytelling story map with Leaflet

Description

Create a scrollytelling story map with Leaflet

Usage

story_leaflet(
map_id,
sections,
root_margin = "-20% Qpx -20% @px",
threshold = 0,
styles = NULL,
bg_color = "rgba(255,255,255,0.9)",
text_color = "#34495e",
font_family = NULL

)
Arguments

map_id The ID of your mapboxgl, maplibre, or leaflet output defined in the server, e.g.
n ma p n

sections A named list of story_section objects. Names will correspond to map events
defined within the server using on_section().

root_margin The margin around the viewport for triggering sections by the intersection ob-
server. Should be specified as a string, e.g. "-20% Opx -20% Qpx".

threshold A number that indicates the visibility ratio for a story * panel to be used to trigger
a section; should be a number between 0 and 1. Defaults to 0, meaning that the
section is triggered as soon as the first pixel is visible.

styles Optional custom CSS styles. Should be specified as a character string within
shiny::tags$style().

bg_color Default background color for all sections

text_color Default text color for all sections

font_family Default font family for all sections

118

story_map

story_map

Create a scrollytelling story map

Description

Create a scrollytelling story map

Usage
story_map(
map_id,
sections,
map_type = c("mapboxgl”, "maplibre”, "leaflet”),
root_margin = "-20% @Qpx -20% Opx",
threshold = 0,
styles = NULL,
bg_color "rgba(255,255,255,0.9)",
text_color "#34495e",
font_family = NULL
)
Arguments
map_id The ID of your mapboxgl, maplibre, or leaflet output defined in the server, e.g.
n ma p n
sections A named list of story_section objects. Names will correspond to map events
defined within the server using on_section().
map_type One of "mapboxgl”, "maplibre”, or "leaflet”. This will use either mapboxglOutput(),

root_margin

threshold

styles

bg_color
text_color

font_family

maplibreOutput(), or leafletOutput () respectively, and must correspond to
the appropriate render=() function used in the server.

The margin around the viewport for triggering sections by the intersection ob-
server. Should be specified as a string, e.g. "-20% Opx —20% Qpx".

A number that indicates the visibility ratio for a story * panel to be used to trigger
a section; should be a number between 0 and 1. Defaults to 0, meaning that the
section is triggered as soon as the first pixel is visible.

Optional custom CSS styles. Should be specified as a character string within
shiny::tags$style().

Default background color for all sections
Default text color for all sections

Default font family for all sections

story_maplibre

119

story_maplibre

Create a scrollytelling story map with MapLibre

Description

Create a scrollytelling story map with MapLibre

Usage

story_maplibre(

map_id,
sections,

root_margin = "-20% Qpx -20% 0px",

threshold =

0,

styles = NULL,

bg_color = "rgba(255,255,255,0.9)",
text_color = "#34495e",

font_family = NULL

Arguments

map_id

sections

root_margin

threshold

styles

bg_color
text_color

font_family

The ID of your mapboxgl, maplibre, or leaflet output defined in the server, e.g.

n n

map

A named list of story_section objects. Names will correspond to map events
defined within the server using on_section().

The margin around the viewport for triggering sections by the intersection ob-
server. Should be specified as a string, e.g. "-20% Qpx -20% Qpx".

A number that indicates the visibility ratio for a story * panel to be used to trigger
a section; should be a number between 0 and 1. Defaults to 0, meaning that the
section is triggered as soon as the first pixel is visible.

Optional custom CSS styles. Should be specified as a character string within
shiny::tags$style().

Default background color for all sections
Default text color for all sections

Default font family for all sections

120

turf_area

story_section

Create a story section for story maps

Description

Create a story section for story maps

Usage

story_section(

title,
content,

position = c("left”, "center"”, "right"),

width = 400,
NULL,

bg_color

text_color = NULL,
font_family = NULL

Arguments

title
content
position
width
bg_color
text_color

font_family

Section title

Section content - can be text, HTML, or Shiny outputs
Position of text block ("left", "center", "right")

Width of text block in pixels (default: 400)
Background color (with alpha) for text block

Text color

Font family for the section

turf_area

Calculate area of geometries

Description

This function calculates the area of polygons in a layer or sf object. Note: This function only works
with proxy objects as it returns a numeric value to R.

Usage

turf_area(proxy, layer_id = NULL, data = NULL, input_id = "turf_area_result"”)

turf_buffer 121

Arguments
proxy A mapboxgl_proxy or maplibre_proxy object.
layer_id The ID of the layer or source containing the polygons (mutually exclusive with
data).
data An sf object containing polygons (mutually exclusive with layer_id).
input_id Character string specifying the Shiny input ID suffix for storing the area result.
Default is "turf_area_result". Result will be available as input[[paste@(map_id,
"_turf_", input_id)]].
Value

The proxy object for method chaining.

turf_buffer Turf.js Geospatial Operations for mapgl

Description

This module provides client-side geospatial operations using the turf.js library. All operations work
with both mapboxgl and maplibre proxies. Create a buffer around geometries

Usage
turf_buffer(
ma p ’
layer_id = NULL,
data = NULL,
coordinates = NULL,
radius,
units = "meters”,
source_id,
input_id = NULL
)
Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of a layer or source to buffer (mutually exclusive with data and coordi-
nates).
data An sf object to buffer (mutually exclusive with layer_id and coordinates).
coordinates A numeric vector of length 2 with Ing/lat coordinates to create a point and buffer
(mutually exclusive with layer_id and data).
radius The buffer distance.
units The units for the buffer distance. One of "meters", "kilometers", "miles", "feet",

>
"non non non "non

"inches", "yards", "centimeters", "millimeters", "degrees", "radians".

122 turf_center_of _mass
source_id The ID for the new source containing the buffered results. Required.
input_id Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]1].
Details

This function creates a buffer around geometries at a specified distance. The operation is performed
client-side using turf.js. The result is added as a source to the map, which can then be styled using
add_fill_layer(), add_line_layer(), etc.

Value

The map or proxy object for method chaining.

Examples

Not run:

Buffer existing layer

map |>

turf_buffer(layer_id = "points”, radius = 1000, units = "meters”,

source_id = "point_buffers") |>

add_fill_layer(id = "buffers"”, source = "point_buffers”, fill_color = "blue")

Buffer sf object

map |>

turf_buffer(data = sf_points, radius = 0.5, units = "miles”,

source_id = "buffers”) |>
add_fill_layer(id = "buffer_layer”, source = "buffers")

Buffer coordinates (great for hover events)
maplibre_proxy("map”) |>
turf_buffer(coordinates = c(-122.4, 37.7), radius = 500, units = "meters”,
source_id = "hover_buffer”)

End(Not run)

turf_center_of_mass Calculate center of mass

Description

This function calculates the center of mass (geometric centroid) for each feature. Uses turf.centerOfMass
which provides more accurate centroids than turf.centroid, matching the behavior of sf::st_centroid()

and PostGIS ST_Centroid. The result is added as a source to the map, which can then be styled
using add_circle_layer(), etc.

turf_centroid

Usage

123

turf_center_of_mass(

map,

layer_id = NULL,
data = NULL,
coordinates = NULL,
source_id,

input_id = NULL

Arguments
map
layer_id
data

coordinates

source_id

input_id

Value

A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
The ID of a layer or source (mutually exclusive with data and coordinates).
An sf object (mutually exclusive with layer_id and coordinates).

A list of coordinate pairs list(c(Ing,lat), c(Ing,lat), ...) for multiple points (mutu-
ally exclusive with layer_id and data).

The ID for the new source containing the center of mass points. Required.

Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]1].

The map or proxy object for method chaining.

turf_centroid

Calculate centroid of geometries

Description

This function calculates the centroid of geometries in a layer or sf object. The result is added as a
source to the map, which can then be styled using add_circle_layer(), etc.

Usage

turf_centroid(

map,

layer_id = NULL,

data = NULL,
coordinates
source_id,

NULL,

input_id = NULL

124

Arguments
map
layer_id
data
coordinates
source_id
input_id

Value

turf_concave_hull

A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.

The ID of a layer or source containing geometries (mutually exclusive with data
and coordinates).

An sf object containing geometries (mutually exclusive with layer_id and coor-
dinates).

A list of coordinate pairs list(c(Ing,lat), c(Ing,lat), ...) for multiple points (mutu-
ally exclusive with layer_id and data).

The ID for the new source containing the centroid. Required.

Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)1].

The map or proxy object for method chaining.

turf_concave_hull

Create concave hull

Description

This function creates a concave hull around a set of points. The result is added as a source to the
map, which can then be styled using add_fill_layer(), etc.

Usage

turf_concave_hull(

map,

layer_id = NULL,

data = NULL,

coordinates = NULL,

max_edge = NULL,
units = "kilometers”,
source_id,
input_id = NULL
)
Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of a layer or source containing points (mutually exclusive with data and
coordinates).
data An sf object containing points (mutually exclusive with layer_id and coordi-

nates).

turf_convex_hull 125

coordinates A list of coordinate pairs list(c(Ing,lat), c(Ing,lat), ...) for multiple points (mutu-
ally exclusive with layer_id and data).

max_edge The maximum edge length for the concave hull. If NULL (default), an optimal
value is calculated automatically.

units The units for max_edge. One of "meters", "kilometers", "miles", etc.

source_id The ID for the new source containing the concave hull. Required.

input_id Optional. Character string specifying the Shiny input ID suffix for storing re-

sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)1].
Details

If max_edge is too small and no concave hull can be computed, the function will automatically
calculate an optimal max_edge value based on point distances. If that fails, it falls back to a convex
hull to ensure a result is always returned.

Value

The map or proxy object for method chaining.

turf_convex_hull Create convex hull

Description

This function creates a convex hull around a set of points. The result is added as a source to the
map, which can then be styled using add_fill_layer(), etc.

Usage
turf_convex_hull(
map,
layer_id = NULL,
data = NULL,
coordinates = NULL,
source_id,
input_id = NULL
)
Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of a layer or source containing points (mutually exclusive with data and
coordinates).
data An sf object containing points (mutually exclusive with layer_id and coordi-

nates).

126

coordinates

source_id

input_id

Value

turf_difference

A list of coordinate pairs list(c(Ing,lat), c(Ing,lat), ...) for multiple points (mutu-
ally exclusive with layer_id and data).

The ID for the new source containing the convex hull. Required.

Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]].

The map or proxy object for method chaining.

turf_difference

Find difference between two geometries

Description

This function subtracts the second geometry from the first. The result is added as a source to the
map, which can then be styled using add_fill_layer(), etc.

Usage

turf_difference(

map,

layer_id = NULL,
layer_id_2 = NULL,

data = NULL,

data_2 = NULL,

source_id,

input_id = NULL

Arguments

map

layer_id

layer_id_2

data
data_2
source_id

input_id

A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.

The ID of the first layer or source (geometry to subtract from, mutually exclusive
with data).

The ID of the second layer or source (geometry to subtract, mutually exclusive
with data_2).

An sf object for the first geometry (mutually exclusive with layer_id).
An sf object for the second geometry (mutually exclusive with layer_id_2).
The ID for the new source containing the difference result. Required.

Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]1].

turf_distance 127

Value

The map or proxy object for method chaining.

turf_distance Calculate distance between two features

Description

This function calculates the distance between the first features of two layers or coordinates. Note:
This function only works with proxy objects as it returns a numeric value to R.

Usage

turf_distance(
proxy,
layer_id = NULL,
layer_id_2 = NULL,
data = NULL,
coordinates = NULL,
coordinates_2 = NULL,

units = "kilometers”,
input_id = "turf_distance_result”
)
Arguments
proxy A mapboxgl_proxy or maplibre_proxy object.
layer_id The ID of the first layer or source (mutually exclusive with data and coordi-
nates).
layer_id_2 The ID of the second layer or source (required if layer_id is used).
data An sf object for the first geometry (mutually exclusive with layer_id and coor-
dinates).
coordinates A numeric vector of length 2 with Ing/lat coordinates for the first point (mutually

exclusive with layer_id and data).

coordinates_2 A numeric vector of length 2 with Ing/lat coordinates for the second point (re-
quired if coordinates is used).

units The units for the distance calculation. One of "meters", "kilometers", "miles",
etc.
input_id Character string specifying the Shiny input ID suffix for storing the distance re-

sult. Default is "turf_distance_result". Result will be available as input[[paste@(map_id,

"_turf_", input_id)]].

Value

The proxy object for method chaining.

128 turf_filter

turf_filter Spatial filter features by predicate

Description

This function filters features from the first layer based on their spatial relationship with features in
the second layer using various spatial predicates.

Usage

turf_filter(
map,
layer_id = NULL,
filter_layer_id = NULL,

data = NULL,
filter_data = NULL,
predicate = c("intersects”, "within"”, "contains”, "crosses"”, "disjoint"),
source_id,
input_id = NULL
)
Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of the layer or source to filter (mutually exclusive with data).

filter_layer_id
The ID of the layer or source to filter against (mutually exclusive with fil-

ter_data).
data An sf object containing features to filter (mutually exclusive with layer_id).
filter_data An sf object containing the filter geometry (mutually exclusive with filter_layer_id).
predicate The spatial relationship to test. One of: "intersects", "within", "contains", "crosses",
"disjoint".
source_id The ID for the new source containing the filtered results. Required.
input_id Optional. Character string specifying the Shiny input ID suffix for storing re-

sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]].

Value

The map or proxy object for method chaining.

turf_intersect 129

turf_intersect Find intersection of two geometries

Description

This function finds the intersection between geometries in two layers or sf objects. The result is
added as a source to the map, which can then be styled using add_fill_layer(), etc.

Usage

turf_intersect(
map,
layer_id = NULL,
layer_id_2 = NULL,

data = NULL,
data_2 = NULL,
source_id,
input_id = NULL
)
Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of the first layer or source (mutually exclusive with data).
layer_id_2 The ID of the second layer or source (mutually exclusive with data_2).
data An sf object for the first geometry (mutually exclusive with layer_id).
data_2 An sf object for the second geometry (mutually exclusive with layer_id_2).
source_id The ID for the new source containing the intersection result. Required.
input_id Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]].
Value

The map or proxy object for method chaining.

130 turf_voronoi

turf_union Union geometries

Description
This function unions all polygons in a layer into a single geometry. The result is added as a source
to the map, which can then be styled using add_fill_layer(), etc.

Usage
turf_union(map, layer_id = NULL, data = NULL, source_id, input_id = NULL)

Arguments
map A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
layer_id The ID of a layer or source to union (mutually exclusive with data).
data An sf object to union (mutually exclusive with layer_id).
source_id The ID for the new source containing the union result. Required.
input_id Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]1].
Value

The map or proxy object for method chaining.

turf_voronoi Create Voronoi diagram

Description

This function creates a Voronoi diagram from a set of points. The result is added as a source to the
map, which can then be styled using add_fill_layer(), etc.

Usage

turf_voronoi (
map,
layer_id = NULL,
data = NULL,
coordinates = NULL,
bbox = NULL,
property = NULL,
source_id,
input_id = NULL

turf_voronoi

Arguments
map
layer_id
data
coordinates
bbox
property
source_id
input_id

Value

131

A mapboxgl, maplibre, mapboxgl_proxy, or maplibre_proxy object.
The ID of a layer or source containing points (mutually exclusive with data and
coordinates).

An sf object containing points (mutually exclusive with layer_id and coordi-
nates).

A list of coordinate pairs list(c(Ing,lat), c(Ing,lat), ...) for multiple points (mutu-
ally exclusive with layer_id and data).

Optional. Can be: (1) A numeric vector of length 4, in format ‘c(xmin, ymin,
xmax, ymax)’, (2) An sf object to extract bbox from, or (3) A layer_id string to
extract bbox from and clip results to.

Optional. Character string specifying a column name from the input points to
transfer to the Voronoi polygons using spatial collection.

The ID for the new source containing the Voronoi diagram. Required.

Optional. Character string specifying the Shiny input ID suffix for storing re-
sults. If NULL (default), no input is registered. For proxy operations, the result
will be available as input[[paste@(map_id, "_turf_", input_id)]1].

The map or proxy object for method chaining.

Index

add_categorical_legend (map_legends), 86
add_circle_layer, 4
add_continuous_legend (map_legends), 86
add_control, 7
add_draw_control, 9
add_features_to_draw, 11
add_fill_extrusion_layer, 12
add_fill_layer, 14
add_fullscreen_control, 17
add_geocoder_control, 17
add_geolocate_control, 19
add_globe_control, 20
add_globe_minimap, 21
add_h3j_source, 22
add_heatmap_layer, 23
add_image, 25
add_image_source, 26
add_layer, 27
add_layers_control, 29
add_legend (map_legends), 86
add_line_layer, 31
add_markers, 34
add_navigation_control, 36
add_pmtiles_source, 37
add_raster_dem_source, 38
add_raster_layer, 39
add_raster_source, 41
add_reset_control, 41
add_scale_control, 42
add_screenshot_control, 43
add_source, 45
add_symbol_layer, 45
add_vector_source, 51
add_video_source, 52
add_view, 52

carto_style, 54
classification_helpers, 54
clear_controls, 56
clear_drawn_features, 57

132

clear_layer, 58
clear_legend, 59
clear_markers, 60
cluster_options, 60
compare, 61
concat, 64

ease_to, 65
enable_shiny_hover, 65

fit_bounds, 66
fly_to, 67

get_breaks (classification_helpers), 54

get_column, 67

get_drawn_features, 68

get_legend_colors
(classification_helpers), 54

get_legend_labels
(classification_helpers), 54

get_queried_features, 69

interpolate, 70
interpolate_palette, 71
interpolate_palette(), /15

jump_to, 72
legend_style, 73

map_legends, 86
mapbox_style, 80
mapboxgl, 75
mapboxgl_compare_proxy, 77
mapboxgl_proxy, 78
mapboxgl_view, 78
mapboxglCompareQutput, 76
mapboxglOutput, 77
maplibre, 80
maplibre_compare_proxy, 83
maplibre_proxy, 84

INDEX

maplibre_view, 84
maplibreCompareOutput, 82
maplibreQutput, 83
maptiler_style, 86
match_expr, 93
move_layer, 94

number_format, 95

on_section, 96
openfreemap_style, 97

palette_to_lut, 97

print.mapgl_classification
(classification_helpers), 54

print.mapgl_continuous_scale
(classification_helpers), 54

query_rendered_features, 99

renderMapboxgl, 101
renderMapboxglCompare, 102
renderMaplibre, 102
renderMaplibreCompare, 103

set_config_property, 103

set_filter, 104

set_fog, 104

set_layout_property, 105

set_paint_property, 106

set_popup, 106

set_projection, 107

set_rain, 107

set_snow, 109

set_source, 110

set_style, 111

set_terrain, 112

set_tooltip, 113

set_view, 113

step_classification, 114

step_equal_interval
(step_classification), 114

step_expr, 116

step_jenks (step_classification), 114

step_quantile (step_classification), 114

story_leaflet, 117

story_map, 118

story_maplibre, 119

story_section, 120

133

turf_area, 120
turf_buffer, 121
turf_center_of_mass, 122
turf_centroid, 123
turf_concave_hull, 124
turf_convex_hull, 125
turf_difference, 126
turf_distance, 127
turf_filter, 128
turf_intersect, 129
turf_union, 130
turf_voronoi, 130

	add_circle_layer
	add_control
	add_draw_control
	add_features_to_draw
	add_fill_extrusion_layer
	add_fill_layer
	add_fullscreen_control
	add_geocoder_control
	add_geolocate_control
	add_globe_control
	add_globe_minimap
	add_h3j_source
	add_heatmap_layer
	add_image
	add_image_source
	add_layer
	add_layers_control
	add_line_layer
	add_markers
	add_navigation_control
	add_pmtiles_source
	add_raster_dem_source
	add_raster_layer
	add_raster_source
	add_reset_control
	add_scale_control
	add_screenshot_control
	add_source
	add_symbol_layer
	add_vector_source
	add_video_source
	add_view
	carto_style
	classification_helpers
	clear_controls
	clear_drawn_features
	clear_layer
	clear_legend
	clear_markers
	cluster_options
	compare
	concat
	ease_to
	enable_shiny_hover
	fit_bounds
	fly_to
	get_column
	get_drawn_features
	get_queried_features
	interpolate
	interpolate_palette
	jump_to
	legend_style
	mapboxgl
	mapboxglCompareOutput
	mapboxglOutput
	mapboxgl_compare_proxy
	mapboxgl_proxy
	mapboxgl_view
	mapbox_style
	maplibre
	maplibreCompareOutput
	maplibreOutput
	maplibre_compare_proxy
	maplibre_proxy
	maplibre_view
	maptiler_style
	map_legends
	match_expr
	move_layer
	number_format
	on_section
	openfreemap_style
	palette_to_lut
	query_rendered_features
	renderMapboxgl
	renderMapboxglCompare
	renderMaplibre
	renderMaplibreCompare
	set_config_property
	set_filter
	set_fog
	set_layout_property
	set_paint_property
	set_popup
	set_projection
	set_rain
	set_snow
	set_source
	set_style
	set_terrain
	set_tooltip
	set_view
	step_classification
	step_expr
	story_leaflet
	story_map
	story_maplibre
	story_section
	turf_area
	turf_buffer
	turf_center_of_mass
	turf_centroid
	turf_concave_hull
	turf_convex_hull
	turf_difference
	turf_distance
	turf_filter
	turf_intersect
	turf_union
	turf_voronoi
	Index

