
Package ‘maotai’
January 13, 2026

Type Package

Title Tools for Matrix Algebra, Optimization and Inference

Version 0.3.0

Description Matrix is an universal and sometimes primary object/unit in applied mathemat-
ics and statistics. We provide a number of algorithms for selected problems in optimiza-
tion and statistical inference. For general exposition to the topic with focus on statistical con-
text, see the book by Banerjee and Roy (2014, ISBN:9781420095388).

Encoding UTF-8

License MIT + file LICENSE

Suggests covr, igraph, testthat (>= 3.0.0)

Imports Matrix, Rcpp, Rdpack, RSpectra, Rtsne, RANN, cluster, labdsv,
stats, utils, fastcluster, dbscan, pracma, gsignal

LinkingTo Rcpp, RcppArmadillo, RcppDist

RdMacros Rdpack

RoxygenNote 7.3.3

URL https://github.com/kisungyou/maotai

BugReports https://github.com/kisungyou/maotai/issues

Config/testthat/edition 3

NeedsCompilation yes

Author Kisung You [aut, cre] (ORCID: <https://orcid.org/0000-0002-8584-459X>)

Maintainer Kisung You <kisung.you@outlook.com>

Repository CRAN

Date/Publication 2026-01-13 06:10:23 UTC

Contents
bmds . 2
boot.mblock . 4
boot.stationary . 5

1

https://github.com/kisungyou/maotai
https://github.com/kisungyou/maotai/issues
https://orcid.org/0000-0002-8584-459X

2 bmds

bwproj . 6
cayleymenger . 7
checkdist . 8
checkmetric . 9
cmds . 10
cov2corr . 11
cov2pcorr . 11
dpmeans . 12
ecdfdist . 14
ecdfdist2 . 15
ecdfdistS . 16
epmeans . 18
kmeanspp . 19
LEiDA . 20
lyapunov . 21
matderiv . 22
metricdepth . 23
mmd2test . 24
movMF_convert . 26
movMF_info . 27
movMF_reduce_greedy . 27
movMF_reduce_partitional . 28
nef . 29
nem . 30
pdeterminant . 30
rotationS2 . 31
shortestpath . 32
sylvester . 33
trio . 34
tsne . 36
weiszfeld . 37
WLbarycenter . 38
WLmedian . 40
WLpdist . 41

Index 43

bmds Bayesian Multidimensional Scaling

Description

A Bayesian formulation of classical Multidimensional Scaling is presented. Even though this
method is based on MCMC sampling, we only return maximum a posterior (MAP) estimate that
maximizes the posterior distribution. Due to its nature without any special tuning, increasing
mc.iter requires much computation.

bmds 3

Usage

bmds(
data,
ndim = 2,
par.a = 5,
par.alpha = 0.5,
par.step = 1,
mc.iter = 8128,
verbose = TRUE

)

Arguments

data an (n× p) matrix whose rows are observations.

ndim an integer-valued target dimension.

par.a hyperparameter for conjugate prior on variance term, i.e., σ2 ∼ IG(a, b). Note
that b is chosen appropriately as in paper.

par.alpha hyperparameter for conjugate prior on diagonal term, i.e., λj ∼ IG(α, βj). Note
that βj is chosen appropriately as in paper.

par.step stepsize for random-walk, which is standard deviation of Gaussian proposal.

mc.iter the number of MCMC iterations.

verbose a logical; TRUE to show iterations, FALSE otherwise.

Value

a named list containing

embed an (n× ndim) matrix whose rows are embedded observations.

stress discrepancy between embedded and origianl data as a measure of error.

References

Oh M, Raftery AE (2001). “Bayesian Multidimensional Scaling and Choice of Dimension.” Journal
of the American Statistical Association, 96(455), 1031–1044.

Examples

use simple example of iris dataset
data(iris)
idata = as.matrix(iris[,1:4])

run Bayesian MDS
let's run 10 iterations only.
iris.cmds = cmds(idata, ndim=2)
iris.bmds = bmds(idata, ndim=2, mc.iter=5, par.step=(2.38^2))

extract coordinates and class information
cx = iris.cmds$embed # embedded coordinates of CMDS

4 boot.mblock

bx = iris.bmds$embed # BMDS
icol = iris[,5] # class information

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,1))
mc = paste0("CMDS with STRESS=",round(iris.cmds$stress,4))
mb = paste0("BMDS with STRESS=",round(iris.bmds$stress,4))
plot(cx, col=icol,pch=19,main=mc)
plot(bx, col=icol,pch=19,main=mb)
par(opar)

boot.mblock Generate Index for Moving Block Bootstrapping

Description

Assuming data being dependent with cardinality N, boot.mblock returns a vector of index that is
used for moving block bootstrapping.

Usage

boot.mblock(N, b = max(2, round(N/10)))

Arguments

N the number of observations.

b the size of a block to be drawn.

Value

a vector of length N for moving block bootstrap sampling.

References

Kunsch HR (1989). “The Jackknife and the Bootstrap for General Stationary Observations.” The
Annals of Statistics, 17(3), 1217–1241.

Examples

example : bootstrap confidence interval of mean and variances
vec.x = seq(from=0,to=10,length.out=100)
vec.y = sin(1.21*vec.x) + 2*cos(3.14*vec.x) + rnorm(100,sd=1.5)
data.mu = mean(vec.y)
data.var = var(vec.y)

apply moving block bootstrapping

boot.stationary 5

nreps = 50
vec.mu = rep(0,nreps)
vec.var = rep(0,nreps)
for (i in 1:nreps){

sample.id = boot.mblock(100, b=10)
sample.y = vec.y[sample.id]
vec.mu[i] = mean(sample.y)
vec.var[i] = var(sample.y)
print(paste("iteration ",i,"/",nreps," complete.", sep=""))

}

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(vec.x, vec.y, type="l", main="1d signal") # 1d signal
hist(vec.mu, main="mean CI", xlab="mu") # mean
abline(v=data.mu, col="red", lwd=4)
hist(vec.var, main="variance CI", xlab="sigma") # variance
abline(v=data.var, col="blue", lwd=4)
par(opar)

boot.stationary Generate Index for Stationary Bootstrapping

Description

Assuming data being dependent with cardinality N, boot.stationary returns a vector of index that
is used for stationary bootstrapping. To describe, starting points are drawn from uniform distribution
over 1:N and the size of each block is determined from geometric distribution with parameter p.

Usage

boot.stationary(N, p = 0.25)

Arguments

N the number of observations.

p parameter for geometric distribution with the size of each block.

Value

a vector of length N for moving block bootstrap sampling.

References

Politis DN, Romano JP (1994). “The Stationary Bootstrap.” Journal of the American Statistical
Association, 89(428), 1303. ISSN 01621459.

6 bwproj

Examples

example : bootstrap confidence interval of mean and variances
vec.x = seq(from=0,to=10,length.out=100)
vec.y = sin(1.21*vec.x) + 2*cos(3.14*vec.x) + rnorm(100,sd=1.5)
data.mu = mean(vec.y)
data.var = var(vec.y)

apply stationary bootstrapping
nreps = 50
vec.mu = rep(0,nreps)
vec.var = rep(0,nreps)
for (i in 1:nreps){

sample.id = boot.stationary(100)
sample.y = vec.y[sample.id]
vec.mu[i] = mean(sample.y)
vec.var[i] = var(sample.y)
print(paste("iteration ",i,"/",nreps," complete.", sep=""))

}

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(vec.x, vec.y, type="l", main="1d signal") # 1d signal
hist(vec.mu, main="mean CI", xlab="mu") # mean
abline(v=data.mu, col="red", lwd=4)
hist(vec.var, main="variance CI", xlab="sigma") # variance
abline(v=data.var, col="blue", lwd=4)
par(opar)

bwproj Bures-Wasserstein Projection

Description

Projects a set of high-dimensional Gaussian distributions specified by their means and covariance
matrices onto a lower-dimensional subspace using the distance-preserving projection method.

Usage

bwproj(means, covs, target_dim = 2, max_iter = 100, verbose = TRUE)

Arguments

means an (n, p) matrix of Gaussian means, where n is the number of Gaussians and p
is the original dimension.

covs a (p, p, n) array of Gaussian covariance matrices.

cayleymenger 7

target_dim an integer specifying the target lower dimension d (default is 2).
max_iter an integer specifying the maximum number of iterations for the optimization

(default is 100).
verbose a logical flag indicating whether to print progress messages (default is TRUE).

Value

a named list containing

U the (p, d) projection matrix mapping original space to the lower-dimensional space.
proj_means the (n, d) matrix of projected Gaussian means.
proj_covs the (d, d, n) array of projected Gaussian covariance matrices.
iter_obj a vector of objective function values at each iteration.
iter_gnorm a vector of gradient norms at each iteration.

cayleymenger Cayley-Menger Determinant

Description

Cayley-Menger determinant is a formula of a n-dimensional simplex with respect to the squares of
all pairwise distances of its vertices.

Usage

cayleymenger(data)

Arguments

data an (n× p) matrix of row-stacked observations.

Value

a list containing

det determinant value.
vol volume attained from the determinant.

Examples

USE 'IRIS' DATASET
data(iris)
X = as.matrix(iris[,1:4])

COMPUTE CAYLEY-MENGER DETERMINANT
since k=4 < n=149, it should be zero.
cayleymenger(X)

8 checkdist

checkdist Check for Distance Matrix

Description

This function checks whether the distance matrix D := dij = d(xi, xj) satisfies three axioms to
make itself a semimetric, which are (1) dii = 0, (2) dij > 0 for i ̸= j, and (3) dij = dji.

Usage

checkdist(d)

Arguments

d "dist" object or (N ×N) matrix of pairwise distances.

Value

a logical; TRUE if it satisfies metric property, FALSE otherwise.

See Also

checkmetric

Examples

Let's use L2 distance matrix of iris dataset
data(iris)
dx = as.matrix(stats::dist(iris[,1:4]))

perturb d(i,j)
dy = dx
dy[1,2] <- dy[2,1] <- 10

run the algorithm
checkdist(dx)
checkdist(dy)

checkmetric 9

checkmetric Check for Metric Matrix

Description

This function checks whether the distance matrix D := dij = d(xi, xj) satisfies four axioms to
make itself a semimetric, which are (1) dii = 0, (2) dij > 0 for i ̸= j, (3) dij = dji, and (4)
dij ≤ dik + dkj .

Usage

checkmetric(d)

Arguments

d "dist" object or (N ×N) matrix of pairwise distances.

Value

a logical; TRUE if it satisfies metric property, FALSE otherwise.

See Also

checkdist

Examples

Let's use L2 distance matrix of iris dataset
data(iris)
dx = as.matrix(stats::dist(iris[,1:4]))

perturb d(i,j)
dy = dx
dy[1,2] <- dy[2,1] <- 10

run the algorithm
checkmetric(dx)
checkmetric(dy)

10 cmds

cmds Classical Multidimensional Scaling

Description

Classical multidimensional scaling aims at finding low-dimensional structure by preserving pair-
wise distances of data.

Usage

cmds(data, ndim = 2)

Arguments

data an (n× p) matrix whose rows are observations.

ndim an integer-valued target dimension.

Value

a named list containing

embed an (n× ndim) matrix whose rows are embedded observations.

stress discrepancy between embedded and origianl data as a measure of error.

References

Torgerson WS (1952). “Multidimensional Scaling: I. Theory and Method.” Psychometrika, 17(4),
401–419. ISSN 0033-3123, 1860-0980.

Examples

use simple example of iris dataset
data(iris)
idata = as.matrix(iris[,1:4])
icol = as.factor(iris[,5]) # class information

run Classical MDS
iris.cmds = cmds(idata, ndim=2)

visualize
opar <- par(no.readonly=TRUE)
plot(iris.cmds$embed, col=icol,

main=paste0("STRESS=",round(iris.cmds$stress,4)))
par(opar)

cov2corr 11

cov2corr Convert Covariance into Correlation Matrix

Description

Given a covariance matrix, return a correlation matrix that has unit diagonals. We strictly impose
(and check) whether the given input is a symmetric matrix of full-rank.

Usage

cov2corr(mat)

Arguments

mat a (p× p) covariance matrix.

Value

a (p× p) correlation matrix.

Examples

generate an empirical covariance scaled
prep_mat = stats::cov(matrix(rnorm(100*10),ncol=10))
prep_vec = diag(as.vector(stats::runif(10, max=5)))
prep_cov = prep_vec%*%prep_mat%*%prep_vec

compute correlation matrix
prep_cor = cov2corr(prep_cov)

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(prep_cov, axes=FALSE, main="covariance")
image(prep_cor, axes=FALSE, main="correlation")
par(opar)

cov2pcorr Convert Covariance into Partial Correlation Matrix

Description

Given a covariance matrix, return a partial correlation matrix that has unit diagonals. We strictly
impose (and check) whether the given input is a symmetric matrix of full-rank.

12 dpmeans

Usage

cov2pcorr(mat)

Arguments

mat a (p× p) covariance matrix.

Value

a (p× p) partial correlation matrix.

Examples

generate an empirical covariance scaled
prep_mat = stats::cov(matrix(rnorm(100*10),ncol=10))
prep_vec = diag(as.vector(stats::runif(10, max=5)))
prep_cov = prep_vec%*%prep_mat%*%prep_vec

compute correlation and partial correlation matrices
prep_cor = cov2corr(prep_cov)
prep_par = cov2pcorr(prep_cov)

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(prep_cov, axes=FALSE, main="covariance")
image(prep_cor, axes=FALSE, main="correlation")
image(prep_par, axes=FALSE, main="partial correlation")
par(opar)

dpmeans DP-means Algorithm for Clustering Euclidean Data

Description

DP-means is a nonparametric clustering method motivated by DP mixture model in that the number
of clusters is determined by a parameter λ. The larger the λ value is, the smaller the number of
clusters is attained. In addition to the original paper, we added an option to randomly permute
an order of updating for each observation’s membership as a common heuristic in the literature of
cluster analysis.

Usage

dpmeans(
data,
lambda = 1,

dpmeans 13

maxiter = 1234,
abstol = 1e-06,
permute.order = FALSE

)

Arguments

data an (n× p) data matrix for each row being an observation.

lambda a threshold to define a new cluster.

maxiter maximum number of iterations.

abstol stopping criterion

permute.order a logical; TRUE if random order for permutation is used, FALSE otherwise.

Value

a named list containing

cluster an (n× ndim) matrix whose rows are embedded observations.

centers a list containing information for out-of-sample prediction.

References

Kulis B, Jordan MI (2012). “Revisiting K-Means: New Algorithms via Bayesian Nonparamet-
rics.” In Proceedings of the 29th International Coference on International Conference on Machine
Learning, ICML’12, 1131–1138. ISBN 978-1-4503-1285-1.

Examples

define data matrix of two clusters
x1 = matrix(rnorm(50*3,mean= 2), ncol=3)
x2 = matrix(rnorm(50*3,mean=-2), ncol=3)
X = rbind(x1,x2)
lab = c(rep(1,50),rep(2,50))

run dpmeans with several lambda values
solA <- dpmeans(X, lambda= 5)$cluster
solB <- dpmeans(X, lambda=10)$cluster
solC <- dpmeans(X, lambda=20)$cluster

visualize the results
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X,col=lab, pch=19, cex=.8, main="True", xlab="x", ylab="y")
plot(X,col=solA, pch=19, cex=.8, main="dpmeans lbd=5", xlab="x", ylab="y")
plot(X,col=solB, pch=19, cex=.8, main="dpmeans lbd=10", xlab="x", ylab="y")
plot(X,col=solC, pch=19, cex=.8, main="dpmeans lbd=20", xlab="x", ylab="y")
par(opar)

let's find variations by permuting orders of update

14 ecdfdist

used setting : lambda=20, we will 8 runs
sol8 <- list()
for (i in 1:8){

sol8[[i]] = dpmeans(X, lambda=20, permute.order=TRUE)$cluster
}

let's visualize
vpar <- par(no.readonly=TRUE)
par(mfrow=c(2,4), pty="s")
for (i in 1:8){

pm = paste("permute no.",i,sep="")
plot(X,col=sol8[[i]], pch=19, cex=.8, main=pm, xlab="x", ylab="y")

}
par(vpar)

ecdfdist Distance Measures between Multiple Empirical Cumulative Distribu-
tion Functions

Description

We measure distance between two empirical cumulative distribution functions (ECDF). For sim-
plicity, we only take an input of ecdf objects from stats package.

Usage

ecdfdist(
elist,
method = c("KS", "Lp", "Wasserstein"),
p = 2,
as.dist = FALSE,
useR = TRUE

)

Arguments

elist a length N list of ecdf objects.

method name of the distance/dissimilarity measure. Case insensitive (default: ks).

p exponent for Lp or Wasserstein distance.

as.dist a logical; TRUE to return dist object, FALSE to return an (N × N) symmetric
matrix of pairwise distances (default: FALSE).

useR a logical; TRUE to use R implementation, FALSE to use C++ implementation
(default: TRUE).

ecdfdist2 15

Value

either dist object of an (N ×N) symmetric matrix of pairwise distances by as.dist argument.

See Also

ecdf

Examples

toy example : 10 of random and uniform distributions
mylist = list()
for (i in 1:10){

mylist[[i]] = stats::ecdf(stats::rnorm(50, sd=2))
}
for (i in 11:20){

mylist[[i]] = stats::ecdf(stats::runif(50, min=-5))
}

compute Kolmogorov-Smirnov distance
dm = ecdfdist(mylist, method="KS")

visualize
mks =" KS distances of 2 Types"
opar = par(no.readonly=TRUE)
par(pty="s")
image(dm[,nrow(dm):1], axes=FALSE, main=mks)
par(opar)

ecdfdist2 Pairwise Measures for Two Sets of Empirical CDFs

Description

We measure distance between two sets of empirical cumulative distribution functions (ECDF). For
simplicity, we only take an input of ecdf objects from stats package.

Usage

ecdfdist2(elist1, elist2, method = c("KS", "Lp", "Wasserstein"), p = 2)

Arguments

elist1 a length M list of ecdf objects.

elist2 a length N list of ecdf objects.

method name of the distance/dissimilarity measure. Case insensitive.

p exponent for Lp or Wasserstein distance.

16 ecdfdistS

Value

an (M ×N) matrix of pairwise distances.

See Also

ecdf ecdfdist

Examples

toy example
first list : 10 of random and uniform distributions
mylist1 = list()
for (i in 1:10){ mylist1[[i]] = stats::ecdf(stats::rnorm(50, sd=2))}
for (i in 11:20){mylist1[[i]] = stats::ecdf(stats::runif(50, min=-5))}

second list : 15 uniform and random distributions
mylist2 = list()
for (i in 1:15){ mylist2[[i]] = stats::ecdf(stats::runif(50, min=-5))}
for (i in 16:30){mylist2[[i]] = stats::ecdf(stats::rnorm(50, sd=2))}

compute Kolmogorov-Smirnov distance
dm2ks = ecdfdist2(mylist1, mylist2, method="KS")
dm2lp = ecdfdist2(mylist1, mylist2, method="lp")
dm2wa = ecdfdist2(mylist1, mylist2, method="wasserstein")
nrs = nrow(dm2ks)

visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(dm2ks[,nrs:1], axes=FALSE, main="Kolmogorov-Smirnov")
image(dm2lp[,nrs:1], axes=FALSE, main="L2")
image(dm2wa[,nrs:1], axes=FALSE, main="Wasserstein")
par(opar)

ecdfdistS Distance Measures between Samples through Empirical Cumulative
Distribution Functions

Description

We measure distance between two empirical cumulative distribution functions of the data. Unlike
ecdfdist, this function takes raw data samples as input, and internally computes the empirical
cumulative distribution functions (ECDF) for distance calculations.

ecdfdistS 17

Usage

ecdfdistS(
veclist,
method = c("KS", "Lp", "Wasserstein"),
p = 1,
as.dist = FALSE

)

Arguments

veclist a length N list of vectors.

method name of the distance/dissimilarity measure. Case insensitive (default: ks).

p exponent for Lp or Wasserstein distance (default: p=1).

as.dist a logical; TRUE to return dist object, FALSE to return an (N × N) symmetric
matrix of pairwise distances (default: FALSE).

Value

either dist object of an (N ×N) symmetric matrix of pairwise distances by as.dist argument.

Examples

toy example : 10 of random and uniform distributions
mylist = list()
for (i in 1:10){

mylist[[i]] = stats::rnorm(50, sd=2)
}
for (i in 11:20){

mylist[[i]] = stats::runif(50, min=-5)
}

compute three distances
d_KS = ecdfdistS(mylist, method="KS")
d_LP = ecdfdistS(mylist, method="Lp")
d_OT = ecdfdistS(mylist, method="Wasserstein")

visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(d_KS[,nrow(d_KS):1], axes=FALSE, main="Kolmogorov-Smirnov")
image(d_LP[,nrow(d_LP):1], axes=FALSE, main="Lp (p=1)")
image(d_OT[,nrow(d_OT):1], axes=FALSE, main="Wasserstein (p=1)")
par(opar)

18 epmeans

epmeans EP-means Algorithm for Clustering Empirical Distributions

Description

EP-means is a variant of k-means algorithm adapted to cluster multiple empirical cumulative distri-
bution functions under metric structure induced by Earth Mover’s Distance.

Usage

epmeans(elist, k = 2)

Arguments

elist a length N list of either vector or ecdf objects.

k the number of clusters.

Value

a named list containing

cluster an integer vector indicating the cluster to which each ecdf is allocated.

centers a length k list of centroid ecdf objects.

References

Henderson K, Gallagher B, Eliassi-Rad T (2015). “EP-MEANS: An Efficient Nonparametric Clus-
tering of Empirical Probability Distributions.” In Proceedings of the 30th Annual ACM Symposium
on Applied Computing - SAC ’15, 893–900. ISBN 978-1-4503-3196-8.

Examples

two sets of 1d samples, 10 each and add some noise
set 1 : mixture of two gaussians
set 2 : single gamma distribution

generate data
elist = list()
for (i in 1:10){

elist[[i]] = stats::ecdf(c(rnorm(100, mean=-2), rnorm(50, mean=2)))
}
for (j in 11:20){

elist[[j]] = stats::ecdf(rgamma(100,1) + rnorm(100, sd=sqrt(0.5)))
}

run EP-means with k clusters
change the value below to see different settings
myk = 2
epout = epmeans(elist, k=myk)

kmeanspp 19

visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,myk))
for (k in 1:myk){

idk = which(epout$cluster==k)
for (i in 1:length(idk)){
if (i<2){

pm = paste("class ",k," (size=",length(idk),")",sep="")
plot(elist[[idk[i]]], verticals=TRUE, lwd=0.25, do.points=FALSE, main=pm)

} else {
plot(elist[[idk[i]]], add=TRUE, verticals=TRUE, lwd=0.25, do.points=FALSE)

}
plot(epout$centers[[k]], add=TRUE, verticals=TRUE, lwd=2, col="red", do.points=FALSE)

}
}
par(opar)

kmeanspp K-Means++ Clustering Algorithm

Description

k-means++ algorithm is known to be a smart, careful initialization technique. It is originally in-
tended to return a set of k points as initial centers though it can still be used as a rough clustering
algorithm by assigning points to the nearest points.

Usage

kmeanspp(data, k = 2)

Arguments

data an (n× p) matrix whose rows are observations.

k the number of clusters.

Value

a length-n vector of class labels.

References

Arthur D, Vassilvitskii S (2007). “K-Means++: The Advantages of Careful Seeding.” In In Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.

20 LEiDA

Examples

use simple example of iris dataset
data(iris)
mydata = as.matrix(iris[,1:4])
mycol = as.factor(iris[,5])

find the low-dimensional embedding for visualization
my2d = cmds(mydata, ndim=2)$embed

apply 'kmeanspp' with different numbers of k's.
k2 = kmeanspp(mydata, k=2)
k3 = kmeanspp(mydata, k=3)
k4 = kmeanspp(mydata, k=4)
k5 = kmeanspp(mydata, k=5)
k6 = kmeanspp(mydata, k=6)

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3))
plot(my2d, col=k2, main="k=2", pch=19, cex=0.5)
plot(my2d, col=k3, main="k=3", pch=19, cex=0.5)
plot(my2d, col=k4, main="k=4", pch=19, cex=0.5)
plot(my2d, col=k5, main="k=5", pch=19, cex=0.5)
plot(my2d, col=k6, main="k=6", pch=19, cex=0.5)
plot(my2d, col=mycol, main="true cluster", pch=19, cex=0.5)
par(opar)

LEiDA Leading Eigenvector Dynamics Analysis

Description

Compute the leading eigenvector dynamics analysis (LEiDA) of a multivariate time series as ap-
pearing in computational neuroscience.

Usage

LEiDA(X, TR, bp = c(0.01, 0.1), b_ord = 2)

Arguments

X A (T,N) matrix of multivariate time series data, where T is the number of time
points and N is the number of ROIs.

TR Repetition time (in secounds)

bp Bandpass filter, a vector of length 2 with the lower and upper bounds of the
bandpass filter in Hz. Default is c(0.01, 0.10).

b_ord Butterworth order, a positive integer. Default is 2.

lyapunov 21

Value

a list containing

V A (T,N) matrix of the leading eigenvector time series.

FCD_cos A (T, T) matrix of the functional connectivity dynamics (FCD) using cosine similarity.

FCD_cor A (T, T) matrix of the functional connectivity dynamics (FCD) using Pearson correla-
tion.

lyapunov Solve Lyapunov Equation

Description

The Lyapunov equation is of form

AX +XA⊤ = Q

where A and Q are square matrices of same size. Above form is also known as continuous form.
This is a wrapper of armadillo’s sylvester function.

Usage

lyapunov(A, Q)

Arguments

A a (p× p) matrix as above.

Q a (p× p) matrix as above.

Value

a solution matrix X of size (p× p).

References

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear Algebra.”
The Journal of Open Source Software, 1(2), 26.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063.

22 matderiv

Examples

simulated example
generate square matrices
A = matrix(rnorm(25),nrow=5)
X = matrix(rnorm(25),nrow=5)
Q = A%*%X + X%*%t(A)

solve using 'lyapunov' function
solX = lyapunov(A,Q)
Not run:
pm1 = "* Experiment with Lyapunov Solver"
pm2 = paste("* Absolute Error : ",norm(solX-X,"f"),sep="")
pm3 = paste("* Relative Error : ",norm(solX-X,"f")/norm(X,"f"),sep="")
cat(paste(pm1,"\n",pm2,"\n",pm3,sep=""))

End(Not run)

matderiv Numerical Approximation to Gradient of a Function with Matrix Ar-
gument

Description

For a given function f : Rn×p → R, we use finite difference scheme that approximates a gradient
at a given point x. In Riemannian optimization, this can be used as a proxy for ambient gradient.
Use with care since it may accumulate numerical error.

Usage

matderiv(fn, x, h = 0.001)

Arguments

fn a function that takes a matrix of size (n× p) and returns a scalar value.

x an (n× p) matrix where the gradient is to be computed.

h step size for centered difference scheme.

Value

an approximate numerical gradient matrix of size (n× p).

References

Kincaid D, Cheney EW (2009). Numerical Analysis: Mathematics of Scientific Computing, num-
ber 2 in Pure and Applied Undergraduate Texts, 3. ed edition. American Mathematical Society,
Providence, RI.

metricdepth 23

Examples

function f(X) = <a,Xb> for two vectors 'a' and 'b'
derivative w.r.t X is ab'
take an example of (5x5) symmetric positive definite matrix

problem settings
a <- rnorm(5)
b <- rnorm(5)
ftn <- function(X){

return(sum(as.vector(X%*%b)*a))
} # function to be taken derivative
myX <- matrix(rnorm(25),nrow=5) # point where derivative is evaluated
myX <- myX%*%t(myX)

main computation
sol.true <- base::outer(a,b)
sol.num1 <- matderiv(ftn, myX, h=1e-1) # step size : 1e-1
sol.num2 <- matderiv(ftn, myX, h=1e-5) # 1e-3
sol.num3 <- matderiv(ftn, myX, h=1e-9) # 1e-5

visualize/print the results
expar = par(no.readonly=TRUE)
par(mfrow=c(2,2),pty="s")
image(sol.true, main="true solution")
image(sol.num1, main="h=1e-1")
image(sol.num2, main="h=1e-5")
image(sol.num3, main="h=1e-9")
par(expar)

ntrue = norm(sol.true,"f")
cat('* Relative Errors in Frobenius Norm ')
cat(paste("* h=1e-1 : ",norm(sol.true-sol.num1,"f")/ntrue,sep=""))
cat(paste("* h=1e-5 : ",norm(sol.true-sol.num2,"f")/ntrue,sep=""))
cat(paste("* h=1e-9 : ",norm(sol.true-sol.num3,"f")/ntrue,sep=""))

metricdepth Metric Depth

Description

Compute the metric depth proposed by Geenens et al. (2023), which is one generalization of sta-
tistical depth function onto the arbitrary metric space. Our implementation assumes that given the
multivariate data it computes the (empirical) depth for all observations using under the Euclidean
regime.

Usage

metricdepth(data)

24 mmd2test

Arguments

data an (n× p) matrix whose rows are observations.

Value

a length-n vector of empirical metric depth values.

References

Geenens G, Nieto-Reyes A, Francisci G (2023). “Statistical Depth in Abstract Metric Spaces.”
Statistics and Computing, 33(2), 46. ISSN 0960-3174, 1573-1375.

Examples

Not run:
use simple example of iris dataset
data(iris)
X <- as.matrix(iris[,1:4])
y <- as.factor(iris[,5])

compute the metric depth
mdX <- metricdepth(X)

visualize
2-d embedding for plotting by MDS
X2d <- maotai::cmds(X, ndim=2)$embed

get a color code for the metric depth
pal = colorRampPalette(c("yellow","red"))

draw
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(X2d, pch=19, main="by class", xlab="", ylab="", col=y)
plot(X2d, pch=19, main="by depth", xlab="", ylab="", col=pal(150)[order(mdX)])
legend("bottomright", col=pal(2), pch=19, legend=round(range(mdX), 2))
par(opar)

End(Not run)

mmd2test Kernel Two-sample Test with Maximum Mean Discrepancy

Description

Maximum Mean Discrepancy (MMD) as a measure of discrepancy between samples is employed as
a test statistic for two-sample hypothesis test of equal distributions. Kernel matrix K is a symmetric
square matrix that is positive semidefinite.

mmd2test 25

Usage

mmd2test(K, label, method = c("b", "u"), mc.iter = 999)

Arguments

K kernel matrix or an object of kernelMatrix class from kernlab package.

label label vector of class indices.

method type of estimator to be used. "b" for biased and "u" for unbiased estimator of
MMD.

mc.iter the number of Monte Carlo resampling iterations.

Value

a (list) object of S3 class htest containing:

statistic a test statistic.

p.value p-value under H0.

alternative alternative hypothesis.

method name of the test.

data.name name(s) of provided kernel matrix.

References

Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012). “A Kernel Two-Sample Test.”
J. Mach. Learn. Res., 13, 723–773. ISSN 1532-4435.

Examples

small test for CRAN submission
dat1 <- matrix(rnorm(60, mean= 1), ncol=2) # group 1 : 30 obs of mean 1
dat2 <- matrix(rnorm(50, mean=-1), ncol=2) # group 2 : 25 obs of mean -1

dmat <- as.matrix(dist(rbind(dat1, dat2))) # Euclidean distance matrix
kmat <- exp(-(dmat^2)) # build a gaussian kernel matrix
lab <- c(rep(1,30), rep(2,25)) # corresponding label

mmd2test(kmat, lab) # run the code !

Not run:
WARNING: computationally heavy.
Let's compute empirical Type 1 error at alpha=0.05
niter = 496
pvals1 = rep(0,niter)
pvals2 = rep(0,niter)
for (i in 1:niter){

dat = matrix(rnorm(200),ncol=2)
lab = c(rep(1,50), rep(2,50))
lbd = 0.1
kmat = exp(-lbd*(as.matrix(dist(dat))^2))

26 movMF_convert

pvals1[i] = mmd2test(kmat, lab, method="b")$p.value
pvals2[i] = mmd2test(kmat, lab, method="u")$p.value
print(paste("iteration ",i," complete..",sep=""))

}

Visualize the above at multiple significance levels
alphas = seq(from=0.001, to=0.999, length.out=100)
errors1 = rep(0,100)
errors2 = rep(0,100)
for (i in 1:100){

errors1[i] = sum(pvals1<=alphas[i])/niter
errors2[i] = sum(pvals2<=alphas[i])/niter

}

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(alphas, errors1, "b", main="Biased Estimator Error",

xlab="alpha", ylab="error", cex=0.5)
abline(a=0,b=1, lwd=1.5, col="red")
plot(alphas, errors2, "b", main="Unbiased Estimator Error",

xlab="alpha", ylab="error", cex=0.5)
abline(a=0,b=1, lwd=1.5, col="blue")
par(opar)

End(Not run)

movMF_convert Convert ’movMF’ object

Description

Given an output from the movMF package’s movMF function, convert them into the standard mix-
ture parameter format.

Usage

movMF_convert(movMF_object)

Arguments

movMF_object a movMF object of K components in d dimensions.

Value

a named list containing

means a (K × d) matrix of means
concentrations a K vector of concentrations
weights a K vector of weights

movMF_info 27

movMF_info Extract meaningful information from the von Mises-Fisher mixture
model

Description

Given a mixture of von Mises-Fisher distributions, this function computes several related quantities
of the data on the unit hypersphere with respect to the specified model.

Usage

movMF_info(data, means, concentrations, weights)

Arguments

data an (n× d) data matrix.

means an (k × d) matrix of means.

concentrations a vector of length k of concentration parameters.

weights a vector of length k of mixing weights.

Value

a named list containing

densities a vector of length n of the densities of the data points.

clustering a vector of length n of the hard clustering results.

loglkd the log-likelihood of the data.

AIC the Akaike information criterion.

BIC the Bayesian information criterion.

HQIC the Hannan-Quinn information criterion.

movMF_reduce_greedy von Mises-Fisher mixture model reduction - Greedy method

Description

When given parameters of the von Mises-Fisher mixture model, this function aims at mixture model
reduction using a greedy method.

Usage

movMF_reduce_greedy(means, concentrations, weights, target.num = 2)

28 movMF_reduce_partitional

Arguments

means a (K × p) matrix of means of the von Mises-Fisher components.

concentrations a K vector of concentrations of the von Mises-Fisher components.

weights a K vector of weights of the von Mises-Fisher components.

target.num a desired number of components after reduction. Default is 2.

Value

a named list of the reduced mixture model containing

means a (target.num× p) matrix of means of the von Mises-Fisher components.

concentrations a target.num vector of concentrations of the von Mises-Fisher components.

weights a target.num vector of weights of the von Mises-Fisher components.

movMF_reduce_partitional

von Mises-Fisher mixture model reduction - partitional method

Description

When given parameters of the von Mises-Fisher mixture model, this function aims at mixture model
reduction using a partitional method.

Usage

movMF_reduce_partitional(
means,
concentrations,
weights,
target.num = 2,
method = c("hclust", "kmedoids")

)

Arguments

means a (K × p) matrix of means of the von Mises-Fisher components.

concentrations a K vector of concentrations of the von Mises-Fisher components.

weights a K vector of weights of the von Mises-Fisher components.

target.num a desired number of components after reduction. Default is 2.

method a clustering method to be used. Default is "hclust".

nef 29

Value

a named list of the reduced mixture model containing

means a (target.num× p) matrix of means of the von Mises-Fisher components.

concentrations a target.num vector of concentrations of the von Mises-Fisher components.

weights a target.num vector of weights of the von Mises-Fisher components.

nef Negative Eigenfraction

Description

Negative Eigenfraction (NEF) is a measure of distortion for the data whether they are lying in
Euclidean manner or not. When the value is exactly 0, it means the data is Euclidean. On the other
hand, when NEF is far away from 0, it means not Euclidean. The concept of NEF is closely related
to the definiteness of a Gram matrix.

Usage

nef(data)

Arguments

data an (n× p) matrix whose rows are observations.

Value

a nonnegative NEF value.

References

Pękalska E, Harol A, Duin RPW, Spillmann B, Bunke H (2006). “Non-Euclidean or Non-Metric
Measures Can Be Informative.” In Yeung D, Kwok JT, Fred A, Roli F, de Ridder D (eds.), Struc-
tural, Syntactic, and Statistical Pattern Recognition, 871–880. ISBN 978-3-540-37241-7.

Examples

use simple example of iris dataset
data(iris)
mydat = as.matrix(iris[,1:4])

calculate NEF
nef(mydat)

30 pdeterminant

nem Negative Eigenvalue Magnitude

Description

Negative Eigenvalue Magnitude (NEM) is a measure of distortion for the data whether they are
lying in Euclidean manner or not. When the value is exactly 0, it means the data is Euclidean. On
the other hand, when NEM is far away from 0, it means not Euclidean. The concept of NEM is
closely related to the definiteness of a Gram matrix.

Usage

nem(data)

Arguments

data an (n× p) matrix whose rows are observations.

Value

a nonnegative NEM value.

References

Pękalska E, Harol A, Duin RPW, Spillmann B, Bunke H (2006). “Non-Euclidean or Non-Metric
Measures Can Be Informative.” In Yeung D, Kwok JT, Fred A, Roli F, de Ridder D (eds.), Struc-
tural, Syntactic, and Statistical Pattern Recognition, 871–880. ISBN 978-3-540-37241-7.

Examples

use simple example of iris dataset
data(iris)
mydat = as.matrix(iris[,1:4])

calculate NEM
nem(mydat)

pdeterminant Calculate the Pseudo-Determinant of a Matrix

Description

When a given square matrix A is rank deficient, determinant is zero. Still, we can compute the
pseudo-determinant by multiplying all non-zero eigenvalues. Since thresholding to determine near-
zero eigenvalues is subjective, we implemented the function as of original limit problem. When
matrix is non-singular, it coincides with traditional determinant.

rotationS2 31

Usage

pdeterminant(A)

Arguments

A a square matrix whose pseudo-determinant be computed.

Value

a scalar value for computed pseudo-determinant.

References

Holbrook A (2018). “Differentiating the Pseudo Determinant.” Linear Algebra and its Applications,
548, 293–304.

Examples

show the convergence of pseudo-determinant
settings
n = 10
A = cov(matrix(rnorm(5*n),ncol=n)) # (n x n) matrix
k = as.double(Matrix::rankMatrix(A)) # rank of A

iterative computation
ntry = 11
del.vec = exp(-(1:ntry))
det.vec = rep(0,ntry)
for (i in 1:ntry){

del = del.vec[i]
det.vec[i] = det(A+del*diag(n))/(del^(n-k))

}

visualize the results
opar <- par(no.readonly=TRUE)
plot(1:ntry, det.vec, main=paste("true rank is ",k," out of ",n,sep=""),"b", xlab="iterations")
abline(h=pdeterminant(A),col="red",lwd=1.2)
par(opar)

rotationS2 Compute a Rotation on the 2-dimensional Sphere

Description

A vector of unit norm is an element on the hypersphere. When two unit-norm vectors x and y in
3-dimensional space are given, this function computes a rotation matrix Q on the 2-dimensional
sphere such that

y = Qx

.

32 shortestpath

Usage

rotationS2(x, y)

Arguments

x a length-3 vector. If ∥x∥ ≠ 1, normalization is applied.

y a length-3 vector. If ∥y∥ ≠ 1, normalization is applied.

Value

a (3× 3) rotation matrix.

Examples

generate two data points
one randomly and another on the north pole
x = stats::rnorm(3)
x = x/sqrt(sum(x^2))
y = c(0,0,1)

compute the rotation
Q = rotationS2(x,y)

compare
Qx = as.vector(Q%*%x)

print
printmat = rbind(Qx, y)
rownames(printmat) = c("rotated:", "target:")
print(printmat)

shortestpath Find Shortest Path using Floyd-Warshall Algorithm

Description

This is a fast implementation of Floyd-Warshall algorithm to find the shortest path in a pairwise
sense using RcppArmadillo. A logical input is also accepted. The given matrix should contain
pairwise distance values di,j where 0 means there exists no path for node i and j.

Usage

shortestpath(dist)

Arguments

dist either an (n× n) matrix or a dist class object.

sylvester 33

Value

an (n× n) matrix containing pairwise shortest path length.

References

Floyd RW (1962). “Algorithm 97: Shortest Path.” Communications of the ACM, 5(6), 345.

Warshall S (1962). “A Theorem on Boolean Matrices.” Journal of the ACM, 9(1), 11–12.

Examples

simple example : a ring graph
edges exist for pairs
A = array(0,c(10,10))
for (i in 1:9){

A[i,i+1] = 1
A[i+1,i] = 1

}
A[10,1] <- A[1,10] <- 1

compute shortest-path and show the matrix
sdA <- shortestpath(A)

visualize
opar <- par(no.readonly=TRUE)
par(pty="s")
image(sdA, main="shortest path length for a ring graph")
par(opar)

sylvester Solve Sylvester Equation

Description

The Sylvester equation is of form
AX +XB = C

where X is the unknown and others are given. Though it’s possible to have non-square A and B
matrices, we currently support square matrices only. This is a wrapper of armadillo’s sylvester
function.

Usage

sylvester(A, B, C)

Arguments

A a (p× p) matrix as above.
B a (p× p) matrix as above.
C a (p× p) matrix as above.

34 trio

Value

a solution matrix X of size (p× p).

References

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear Algebra.”
The Journal of Open Source Software, 1(2), 26.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063.

Examples

simulated example
generate square matrices
A = matrix(rnorm(25),nrow=5)
X = matrix(rnorm(25),nrow=5)
B = matrix(rnorm(25),nrow=5)
C = A%*%X + X%*%B

solve using 'sylvester' function
solX = sylvester(A,B,C)
pm1 = "* Experiment with Sylvester Solver"
pm2 = paste("* Absolute Error : ",norm(solX-X,"f"),sep="")
pm3 = paste("* Relative Error : ",norm(solX-X,"f")/norm(X,"f"),sep="")
cat(paste(pm1,"\n",pm2,"\n",pm3,sep=""))

trio Trace Ratio Optimation

Description

This function provides several algorithms to solve the following problem

max
tr(V ⊤AV)

tr(V ⊤BV)
such that V ⊤CV = I

where V is a projection matrix, i.e., V ⊤V = I . Trace ratio optimization is pertained to various
linear dimension reduction methods. It should be noted that when C = I , the above problem
is often reformulated as a generalized eigenvalue problem since it’s an easier proxy with faster
computation.

trio 35

Usage

trio(
A,
B,
C,
dim = 2,
method = c("2003Guo", "2007Wang", "2009Jia", "2012Ngo"),
maxiter = 1000,
eps = 1e-10

)

Arguments

A a (p× p) symmetric matrix in the numerator term.

B a (p× p) symmetric matrix in the denomiator term.

C a (p×p) symmetric constraint matrix. If not provided, it is set as identical matrix
automatically.

dim an integer for target dimension. It can be considered as the number of loadings.

method the name of algorithm to be used. Default is 2003Guo.

maxiter maximum number of iterations to be performed.

eps stopping criterion for iterative algorithms.

Value

a named list containing

V a (p× dim) projection matrix.

tr.val an attained maximum scalar value.

References

Guo Y, Li S, Yang J, Shu T, Wu L (2003). “A Generalized Foley–Sammon Transform Based on
Generalized Fisher Discriminant Criterion and Its Application to Face Recognition.” Pattern Recog-
nition Letters, 24(1-3), 147–158.

Wang H, Yan S, Xu D, Tang X, Huang T (2007). “Trace Ratio vs. Ratio Trace for Dimensionality
Reduction.” In 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8.

Yangqing Jia, Feiping Nie, Changshui Zhang (2009). “Trace Ratio Problem Revisited.” IEEE
Transactions on Neural Networks, 20(4), 729–735.

Ngo TT, Bellalij M, Saad Y (2012). “The Trace Ratio Optimization Problem.” SIAM Review, 54(3),
545–569.

Examples

simple test
problem setting
p = 5

36 tsne

mydim = 2
A = matrix(rnorm(p^2),nrow=p); A=A%*%t(A)
B = matrix(runif(p^2),nrow=p); B=B%*%t(B)
C = diag(p)

approximate solution via determinant ratio problem formulation
eigAB = eigen(solve(B,A))
V = eigAB$vectors[,1:mydim]
eigval = sum(diag(t(V)%*%A%*%V))/sum(diag(t(V)%*%B%*%V))

solve using 4 algorithms
m12 = trio(A,B,dim=mydim, method="2012Ngo")
m09 = trio(A,B,dim=mydim, method="2009Jia")
m07 = trio(A,B,dim=mydim, method="2007Wang")
m03 = trio(A,B,dim=mydim, method="2003Guo")

print the results
line1 = '* Evaluation of the cost function'
line2 = paste("* approx. via determinant : ",eigval,sep="")
line3 = paste("* trio by 2012Ngo : ",m12$tr.val, sep="")
line4 = paste("* trio by 2009Jia : ",m09$tr.val, sep="")
line5 = paste("* trio by 2007Wang : ",m07$tr.val, sep="")
line6 = paste("* trio by 2003Guo : ",m03$tr.val, sep="")
cat(line1,"\n",line2,"\n",line3,"\n",line4,"\n",line5,"\n",line6)

tsne t-SNE Embedding

Description

This function is a simple wrapper of Rtsne function for t-Stochastic Neighbor Embedding for find-
ing low-dimensional structure of the data embedded in the high-dimensional space.

Usage

tsne(data, ndim = 2, ...)

Arguments

data an (n× p) matrix whose rows are observations.
ndim an integer-valued target dimension.
... extra parameters to be used in Rtsne function.

Value

a named list containing

embed an (n× ndim) matrix whose rows are embedded observations.
stress discrepancy between embedded and origianl data as a measure of error.

weiszfeld 37

Examples

use simple example of iris dataset
data(iris)
mydat = as.matrix(iris[,1:4])
mylab = as.factor(iris[,5])

run t-SNE and MDS for comparison
iris.cmds = cmds(mydat, ndim=2)
iris.tsne = tsne(mydat, ndim=2)

extract coordinates and class information
cx = iris.cmds$embed # embedded coordinates of CMDS
tx = iris.tsne$embed # t-SNE

visualize
main title
mc = paste("CMDS with STRESS=",round(iris.cmds$stress,4),sep="")
mt = paste("tSNE with STRESS=",round(iris.tsne$stress,4),sep="")

draw a figure
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(cx, col=mylab, pch=19, main=mc)
plot(tx, col=mylab, pch=19, main=mt)
par(opar)

weiszfeld Weiszfeld Algorithm for Computing L1-median

Description

Geometric median, also known as L1-median, is a solution to the following problem

argmin
n∑

i=1

∥xi − y∥2

for a given data x1, x2, . . . , xn ∈ Rp.

Usage

weiszfeld(X, weights = NULL, maxiter = 496, abstol = 1e-06)

Arguments

X an (n× p) matrix for p-dimensional signal. If vector is given, it is assumed that
p = 1.

weights NULL for equal weight rep(1/n,n); otherwise, it has to be a vector of length n.

38 WLbarycenter

maxiter maximum number of iterations.

abstol stopping criterion

Examples

generate sin(x) data with noise for 100 replicates
set.seed(496)
t = seq(from=0,to=10,length.out=20)
X = array(0,c(100,20))
for (i in 1:100){

X[i,] = sin(t) + stats::rnorm(20, sd=0.5)
}

compute L1-median and L2-mean
vecL2 = base::colMeans(X)
vecL1 = weiszfeld(X)

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
matplot(t(X[1:5,]), type="l", main="5 generated data", ylim=c(-2,2))
plot(t, vecL2, type="l", col="blue", main="L2-mean", ylim=c(-2,2))
plot(t, vecL1, type="l", col="red", main="L1-median", ylim=c(-2,2))
par(opar)

WLbarycenter Barycenter of vMF Distributions Under a Wasserstein-Like Geometry

Description

Given a collection of von Mises-Fisher (vMF) distributions, each characterized by a mean direction
µ and a concentration parameter κ, this function solves the geometric mean problem to compute the
barycentric vMF distribution under an approximate Wasserstein geometry.

Usage

WLbarycenter(means, concentrations, weights = NULL)

Arguments

means An (n × p) matrix where each row represents the mean direction of one of the
n vMF distributions.

concentrations A length-n vector of nonnegative concentration parameters.

weights A weight vector of length n. If NULL, equal weights (rep(1/n, n)) are used.

WLbarycenter 39

Value

A named list containing:

mean A length-p vector representing the barycenter direction.

concentration A scalar representing the barycenter concentration.

Examples

Set seed for reproducibility
set.seed(123)

Number of vMF distributions
n <- 5

Generate mean directions concentrated around a specific angle (e.g., 45 degrees)
base_angle <- pi / 4 # 45 degrees in radians
angles <- rnorm(n, mean = base_angle, sd = pi / 20) # Small deviation from base_angle
means <- cbind(cos(angles), sin(angles)) # Convert angles to unit vectors

Generate concentration parameters with large magnitudes (tight distributions)
concentrations <- rnorm(n, mean = 50, sd = 5) # Large values around 50

Compute the barycenter under the Wasserstein-like geometry
barycenter <- WLbarycenter(means, concentrations)

Convert barycenter mean direction to an angle
bary_angle <- atan2(barycenter$mean[2], barycenter$mean[1])

Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

Plot the unit circle
plot(cos(seq(0, 2 * pi, length.out = 200)), sin(seq(0, 2 * pi, length.out = 200)),

type = "l", col = "gray", lwd = 2, xlab = "x", ylab = "y",
main = "Barycenter of vMF Distributions on S^1")

Add input mean directions
points(means[,1], means[,2], col = "blue", pch = 19, cex = 1.5)

Add the computed barycenter
points(cos(bary_angle), sin(bary_angle), col = "red", pch = 17, cex = 2)

Add legend
legend("bottomleft", legend = c("vMF Means", "Barycenter"), col = c("blue", "red"),

pch = c(19, 17), cex = 1)

Plot the concentration parameters
hist(concentrations, main = "Concentration Parameters", xlab = "Concentration")
abline(v=barycenter$concentration, col="red", lwd=2)
par(opar)

40 WLmedian

WLmedian Geometric Median of vMF Distributions Under a Wasserstein-Like
Geometry

Description

Given a collection of von Mises-Fisher (vMF) distributions, each characterized by a mean direction
µ and a concentration parameter κ, this function solves the geometric median problem to compute
the vMF distribution that minimizes the weighted sum of distances under an approximate Wasser-
stein geometry.

Usage

WLmedian(means, concentrations, weights = NULL)

Arguments

means An (n × p) matrix where each row represents the mean direction of one of the
n vMF distributions.

concentrations A length-n vector of nonnegative concentration parameters.

weights A weight vector of length n. If NULL, equal weights (rep(1/n, n)) are used.

Value

A named list containing:

mean A length-p vector representing the median direction.

concentration A scalar representing the median concentration.

Examples

Set seed for reproducibility
set.seed(123)

Number of vMF distributions
n <- 5

Generate mean directions concentrated around a specific angle (e.g., 45 degrees)
base_angle <- pi / 4 # 45 degrees in radians
angles <- rnorm(n, mean = base_angle, sd = pi / 20) # Small deviation from base_angle
means <- cbind(cos(angles), sin(angles)) # Convert angles to unit vectors

Generate concentration parameters with large magnitudes (tight distributions)
concentrations <- rnorm(n, mean = 50, sd = 5) # Large values around 50

Compute the median under the Wasserstein-like geometry

WLpdist 41

barycenter <- WLmedian(means, concentrations)

Convert median mean direction to an angle
bary_angle <- atan2(barycenter$mean[2], barycenter$mean[1])

Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

Plot the unit circle
plot(cos(seq(0, 2 * pi, length.out = 200)), sin(seq(0, 2 * pi, length.out = 200)),

type = "l", col = "gray", lwd = 2, xlab = "x", ylab = "y",
main = "Median of vMF Distributions on S^1")

Add input mean directions
points(means[,1], means[,2], col = "blue", pch = 19, cex = 1.5)

Add the computed barycenter
points(cos(bary_angle), sin(bary_angle), col = "red", pch = 17, cex = 2)

Add legend
legend("bottomleft", legend = c("vMF Means", "Median"), col = c("blue", "red"),

pch = c(19, 17), cex = 1)

Plot the concentration parameters
hist(concentrations, main = "Concentration Parameters", xlab = "Concentration")
abline(v=barycenter$concentration, col="red", lwd=2)
par(opar)

WLpdist Pairwise Wasserstein-like Distance between two vMF distributions

Description

Given a collection of von Misees-Fisher (vMF) distributions, compute the pairwise distance using
the Wasserstein-like distance from an approximate Wasserstein geometry.

Usage

WLpdist(means, concentrations)

Arguments

means An (n × p) matrix where each row represents the mean direction of one of the
n vMF distributions.

concentrations A length-n vector of nonnegative concentration parameters.

42 WLpdist

Value

An (n× n) matrix of pairwise distances.

Examples

Set seed for reproducibility
set.seed(123)

Generate two classes of mean directions around north and south poles
means1 = array(0,c(50,2)); means1[,2] = rnorm(50, mean=1, sd=0.25)
means2 = array(0,c(50,2)); means2[,2] = rnorm(50, mean=-1, sd=0.25)
means1 = means1/sqrt(rowSums(means1^2))
means2 = means2/sqrt(rowSums(means2^2))

Concatenate the mean directions
data_means = rbind(means1, means2)

Generate concentration parameters
data_concentrations = rnorm(100, mean=20, sd=1)

Compute the pairwise distance matrix
pdmat = WLpdist(data_means, data_concentrations)

Visualise the pairwise distance matrix
opar <- par(no.readonly=TRUE)
image(pdmat, main="Pairwise Wasserstein-like Distance")
par(opar)

Index

bmds, 2
boot.mblock, 4
boot.stationary, 5
bwproj, 6

cayleymenger, 7
checkdist, 8, 9
checkmetric, 8, 9
cmds, 10
cov2corr, 11
cov2pcorr, 11

dpmeans, 12

ecdf, 14–16
ecdfdist, 14, 16
ecdfdist2, 15
ecdfdistS, 16
epmeans, 18

kmeanspp, 19

LEiDA, 20
lyapunov, 21

matderiv, 22
metricdepth, 23
mmd2test, 24
movMF_convert, 26
movMF_info, 27
movMF_reduce_greedy, 27
movMF_reduce_partitional, 28

nef, 29
nem, 30

pdeterminant, 30

rotationS2, 31
Rtsne, 36

shortestpath, 32

sylvester, 33

trio, 34
tsne, 36

weiszfeld, 37
WLbarycenter, 38
WLmedian, 40
WLpdist, 41

43

	bmds
	boot.mblock
	boot.stationary
	bwproj
	cayleymenger
	checkdist
	checkmetric
	cmds
	cov2corr
	cov2pcorr
	dpmeans
	ecdfdist
	ecdfdist2
	ecdfdistS
	epmeans
	kmeanspp
	LEiDA
	lyapunov
	matderiv
	metricdepth
	mmd2test
	movMF_convert
	movMF_info
	movMF_reduce_greedy
	movMF_reduce_partitional
	nef
	nem
	pdeterminant
	rotationS2
	shortestpath
	sylvester
	trio
	tsne
	weiszfeld
	WLbarycenter
	WLmedian
	WLpdist
	Index

