
Package ‘manipulateWidget’
January 13, 2026

Type Package

Title Add Even More Interactivity to Interactive Charts

Version 0.11.2

Description Like package 'manipulate' does for static graphics, this package
helps to easily add controls like sliders, pickers, checkboxes, etc. that
can be used to modify the input data or the parameters of an interactive
chart created with package 'htmlwidgets'.

URL https://github.com/rte-antares-rpackage/manipulateWidget

License GPL (>= 2) | file LICENSE

Depends R (>= 2.10)

Imports shiny (>= 1.0.3), miniUI, htmltools, htmlwidgets, knitr,
methods, tools, base64enc, grDevices, codetools, webshot,
shinyjs

Suggests dygraphs, leaflet, plotly, xts, rmarkdown, testthat, covr

LazyData TRUE

RoxygenNote 7.2.2

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Tatiana Vargas [aut, cre],
Jalal-Edine ZAWAM [aut],
Francois Guillem [aut],
RTE [cph],
JJ Allaire [ctb],
Marion Praz [ctb] (New user interface),
Benoit Thieurmel [ctb],
Titouan Robert [ctb],
Duncan Murdoch [ctb]

Maintainer Tatiana Vargas <tatiana.vargas@rte-france.com>

Repository CRAN

Date/Publication 2026-01-13 14:10:02 UTC

1

https://github.com/rte-antares-rpackage/manipulateWidget

2 manipulateWidget-package

Contents
manipulateWidget-package . 2
combineWidgets . 4
combineWidgets-shiny . 7
compareOptions . 7
knit_print.MWController . 8
manipulateWidget . 9
mwCheckbox . 14
mwCheckboxGroup . 15
MWController-class . 16
mwDate . 17
mwDateRange . 18
mwGroup . 19
mwModule . 20
mwNumeric . 22
mwPassword . 23
mwRadio . 24
mwSelect . 25
mwSelectize . 26
mwSharedValue . 28
mwSlider . 29
mwText . 30
mwTranslations . 31
staticPlot . 32
summary.MWController . 33
worldEnergyUse . 34

Index 35

manipulateWidget-package

Add even more interactivity to interactive charts

Description

This package is largely inspired by the manipulate package from Rstudio. It can be used to easily
create graphical interface that let the user modify the data or the parameters of an interactive chart.
It also provides the combineWidgets function to easily combine multiple interactive charts in a
single view.

Details

manipulateWidget is the main function of the package. It accepts an expression that generates
an interactive chart (and more precisely an htmlwidget object. See http://www.htmlwidgets.
org/ if you have never heard about it) and a set of controls created with functions mwSlider,
mwCheckbox... which are used to dynamically change values within the expression. Each time the

http://www.htmlwidgets.org/
http://www.htmlwidgets.org/

manipulateWidget-package 3

user modifies the value of a control, the expression is evaluated again and the chart is updated.
Consider the following code:

manipulateWidget(myPlotFun(country), country = mwSelect(c("BE", "DE", "ES", "FR")))

It will generate a graphical interface with a select input on its left with options "BE", "DE", "ES",
"FR". By default, at the beginning the value of the variable country will be equal to the first choice
of the corresponding input. So the function will first execute myPlotFun("BE") and the result will
be displayed in the main panel of the interface. If the user changes the value to "FR", then the
expression myPlotFun("FR") is evaluated and the new result is displayed.

The interface also contains a button "Done". When the user clicks on it, the last chart is returned.
It can be stored in a variable, be modified by the user, saved as a html file with saveWidget from
package htmlwidgets or converted to a static image file with package webshot.

Finally one can easily create complex layouts thanks to function combineWidgets. For instance,
assume we want to see a map that displays values of some variable for a given year, but on its right
side we also want to see the distributions of three variables. Then we could write:

myPlotFun <- function(year, variable) {
combineWidgets(
ncol = 2, colSize = c(3, 1),
myMap(year, variable),
combineWidgets(
ncol = 1,
myHist(year, "V1"),
myHist(year, "V2"),
myHist(year, "V3"),

)
)

}

manipulateWidget(
myPlotFun(year, variable),
year = mwSlider(2000, 2016, value = 2000),
variable = mwSelect(c("V1", "V2", "V3"))

)

Of course, combineWidgets can be used outside of manipulateWidget. For instance, it can be
used in an Rmarkdown document to easily put together interactive charts.

For more concrete examples of usage, you should look at the documentation and especially the
examples of manipulateWidget and combineWidgets.

See Also

manipulateWidget, combineWidgets

4 combineWidgets

combineWidgets Combine several interactive plots

Description

This function combines different htmlwidgets in a unique view.

Usage

combineWidgets(
...,
list = NULL,
nrow = NULL,
ncol = NULL,
title = NULL,
rowsize = 1,
colsize = 1,
byrow = TRUE,
titleCSS = "",
header = NULL,
footer = NULL,
leftCol = NULL,
rightCol = NULL,
width = NULL,
height = NULL

)

Arguments

... htmlwidgets to combine. If this list contains objects that are not htmlwidgets,
the function tries to convert them into a character string which is interpreted as
html content.

list Instead of directly passing htmlwidgets to the function, one can pass a list of
htmlwidgets and objects coercible to character. In particular, it can be usefull if
multiple htmlwidgets have been generated using a loop function like lapply.

nrow Number of rows of the layout. If NULL, the function will automatically take a
value such that are at least as many cells in the layout as the number of htmlwid-
gets.

ncol Number of columns of the layout.If NULL, the function will automatically take
a value such that are at least as many cells in the layout as the number of html-
widgets.

title Title of the view.

rowsize This argument controls the relative size of each row. For instance, if the layout
has two rows and rowsize = c(2,1), then the width of the first row will be twice
the one of the second one. This argument is recycled to fit the number of rows.

combineWidgets 5

colsize Same as rowsize but for the height of the columns of the layout.

byrow If TRUE, then the layout is filled by row. Else it is filled by column.

titleCSS A character containing css properties to modify the appearance of the title of the
view.

header Content to display between the title and the combined widgets. It can be a single
character string or html tags.

footer Content to display under the combined widgets. It can be a single character
string or html tags.

leftCol Content to display on the left of the combined widgets. It can be a single char-
acter string or html tags.

rightCol Content to display on the right the combined widgets. It can be a single character
string or html tags.

width Total width of the layout (optional, defaults to automatic sizing).

height Total height of the layout (optional, defaults to automatic sizing).

Details

The function only allows table like layout : each row has the same number of columns and recip-
rocally. But it is possible to create more complex layout by nesting combined htmlwidgets. (see
examples)

Value

A htmlwidget object of class combineWidget. Individual widgets are stored in element widgets
and can be extracted or updated. This is useful when a function returns a combineWidgets object
but user wants to keep only one widget or to update one of them (see examples).

Examples

if (require(plotly)) {
data(iris)

combineWidgets(title = "The Iris dataset",
plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Sepal.Width, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Petal.Length, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Petal.Width, type = "histogram", nbinsx = 20)

)

Create a more complex layout by nesting combinedWidgets
combineWidgets(title = "The iris data set: sepals", ncol = 2, colsize = c(2,1),

plot_ly(iris, x = ~Sepal.Length, y = ~Sepal.Width, type = "scatter",
mode = "markers", color = ~Species),

combineWidgets(
plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Sepal.Width, type = "histogram", nbinsx = 20)

)
)

6 combineWidgets

combineWidgets can also be used on a single widget to easily add to it a
title and a footer.
require(shiny)
comments <- tags$div(

"Wow this plot is so ",
tags$span("amazing!!", style = "color:red;font-size:36px")

)

combineWidgets(
plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
title = "Distribution of Sepal Length",
footer = comments

)

It is also possible to combine htmlwidgets with text or other html elements
myComment <- tags$div(

style="height:100%;background-color:#eee;padding:10px;box-sizing:border-box",
tags$h2("Comment"),
tags$hr(),
"Here is a very clever comment about the awesome graphics you just saw."

)
combineWidgets(

plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Sepal.Width, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Petal.Length, type = "histogram", nbinsx = 20),
myComment

)

Updating individual widgets.
myWidget <- combineWidgets(

plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
plot_ly(iris, x = ~Sepal.Width, type = "histogram", nbinsx = 20),
ncol = 2

)
myWidget

myWidget$widgets[[1]] <- myWidget$widgets[[1]] %>%
layout(title = "Histogram of Sepal Length")

myWidget$widgets[[2]] <- myWidget$widgets[[2]] %>%
layout(title = "Histogram of Sepal Width")

myWidget

Instead of passing directly htmlwidgets to the function, one can pass
a list containing htmlwidgets. This is especially useful when the widgets
are generated using a loop function like "lapply" or "replicate".
#
The following code generates a list of 12 histograms and use combineWidgets
to display them.

combineWidgets-shiny 7

samples <- replicate(12, plot_ly(x = rnorm(100), type = "histogram", nbinsx = 20),
simplify = FALSE)

combineWidgets(list = samples, title = "12 samples of the same distribution")
}

combineWidgets-shiny Shiny bindings for combineWidgets

Description

Output and render functions for using combineWidgets within Shiny applications and interactive
Rmd documents.

Usage

combineWidgetsOutput(outputId, width = "100%", height = "400px")

renderCombineWidgets(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a combineWidgets

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

compareOptions Options for comparison mode

Description

This function generates a list of options that are used by manipulateWidget to compare multiple
charts.

Usage

compareOptions(ncharts = NULL, nrow = NULL, ncol = NULL, allowCompare = TRUE)

8 knit_print.MWController

Arguments

ncharts Number of charts to generate.

nrow Number of rows. If NULL, the function tries to pick the best number of rows
given the number of charts and columns.

ncol Number of columns. If NULL, the function tries to pick the best number of
columns given the number of charts and rows.

allowCompare If TRUE (the default), then the user can use the UI to add or remove charts and
choose which variables to compare

Value

List of options

Examples

if (require(dygraphs)) {

mydata <- data.frame(
year = 2000+1:100,
series1 = rnorm(100),
series2 = rnorm(100),
series3 = rnorm(100)

)
manipulateWidget(

dygraph(mydata[range[1]:range[2] - 2000, c("year", series)], main = title),
range = mwSlider(2001, 2100, c(2001, 2100)),
series = mwSelect(c("series1", "series2", "series3")),
title = mwText("Fictive time series"),
.compare = list(title = NULL, series = NULL),
.compareOpts = compareOptions(ncharts = 4)

)

manipulateWidget(
dygraph(mydata[range[1]:range[2] - 2000, c("year", series)], main = title),
range = mwSlider(2001, 2100, c(2001, 2100)),
series = mwSelect(c("series1", "series2", "series3")),
title = mwText("Fictive time series"),
.compare = list(title = NULL, series = NULL),
.compareOpts = compareOptions(ncharts = 3, nrow = 3)

)
}

knit_print.MWController

knit_print method for MWController object

manipulateWidget 9

Description

knit_print method for MWController object

Usage

knit_print.MWController(x, ...)

Arguments

x MWController object

... arguments passed to function knit_print

manipulateWidget Add Controls to Interactive Plots

Description

This function permits to add controls to an interactive plot created with packages like dygraphs,
highcharter or plotly in order to change the input data or the parameters of the plot.

Technically, the function starts a shiny gadget. The R session is bloqued until the user clicks on
"cancel" or "done". If he clicks on "done", then the the function returns the last displayed plot so
the user can modify it and/or save it.

Usage

manipulateWidget(
.expr,
...,
.updateBtn = FALSE,
.saveBtn = TRUE,
.exportBtn = TRUE,
.exportType = c("html2canvas", "webshot"),
.viewer = c("pane", "window", "browser"),
.compare = NULL,
.compareOpts = compareOptions(),
.translations = mwTranslations(),
.return = function(widget, envs) {

widget
},
.width = NULL,
.height = NULL,
.runApp = TRUE

)

10 manipulateWidget

Arguments

.expr expression to evaluate that returns an interactive plot of class htmlwidget. This
expression is re-evaluated each time a control is modified.

... One or more named control arguments created with functions mwSlider, mwText,
etc. The name of each control is the name of the variable the controls modifies
in the expression. One can also create a group of inputs by passing a list of
such control arguments. for instance mygroup = list(txt = mwText(""), nb
= mwNumeric(0)) creates a group of inputs named mygroup with two inputs
named "txt" and "nb".

.updateBtn Should an update button be added to the controls ? If TRUE, then the graphic is
updated only when the user clicks on the update button.

.saveBtn Should an save button be added to the controls ? For saving output as html.
Does not work in RStudio Viewer

.exportBtn Should an export button be added to the controls ? For saving output as png.
Does not work in RStudio Viewer

.exportType .exportBtn, using html2canvas (default) and keeping current zoom, ... or
using webshot

.viewer Controls where the gadget should be displayed. "pane" corresponds to the Rstu-
dio viewer, "window" to a dialog window, and "browser" to an external web
browser.

.compare Sometimes one wants to compare the same chart but with two different sets of
parameters. This is the purpose of this argument. It can be a character vector
of input names or a named list whose names are the names of the inputs that
should vary between the two charts. Each element of the list must be a vector
or a list of length equal to the number of charts with the initial values of the
corresponding parameter for each chart. It can also be NULL. In this case, the
parameter is initialized with the default value for the two charts.

.compareOpts List of options created compareOptions. These options indicate the number of
charts to create and their disposition.

.translations List of translation strings created with function mwTranslations. Used to trans-
late UI titles and labels.

.return A function that can be used to modify the output of manipulateWidget. It must
take two parameters: the first one is the final widget, the second one is a list of
environments containing the input values of each individual widget. The length
of this list is one if .compare is null, two or more if it has been defined.

.width Width of the UI. Used only on Rmarkdown documents with option runtime:
shiny.

.height Height of the UI. Used only on Rmarkdown documents with option runtime:
shiny.

.runApp (advanced usage) If true, a shiny gadget is started. If false, the function returns
a MWController object. This object can be used to check with command line
instructions the behavior of the application. (See help page of MWController).
Notice that this parameter is always false in a non-interactive session (for in-
stance when running tests of a package).

manipulateWidget 11

Value

The result of the expression evaluated with the last values of the controls. It should be an object of
class htmlWidget.

Advanced Usage

The "normal" use of the function is to provide an expression that always return an htmlwidget. In
such case, every time the user changes the value of an input, the current widget is destroyed and a
new one is created and rendered.

Some packages provide functions to update a widget that has already been rendered. This is the
case for instance for package leaflet with the function leafletProxy. To use such functions,
manipulateWidget evaluates the parameter .expr with four extra variables:

.initial: TRUE if the expression is evaluated for the first time and then the widget has not been
rendered yet, FALSE if the widget has already been rendered.

.session: A shiny session object.

.output: ID of the output in the shiny interface.

.id: Id of the chart. It can be used in comparison mode to make further customization without the
need to create additional input controls.

You can take a look at the last example to see how to use these two variables to update a leaflet
widget.

Modify the returned widget

In some specific situations, a developer may want to use manipulateWidget in a function that waits
the user to click on the "Done" button and modifies the widget returned by manipulateWidget. In
such situation, parameter .return should be used so that manipulateWidget is the last function
called. Indeed, if other code is present after, the custom function will act very weird in a Rmarkdown
document with "runtime: shiny".

Examples

Basic example with fake data
if (require(dygraphs)) {

mydata <- data.frame(period = 1:100, value = rnorm(100))
manipulateWidget(dygraph(mydata[range[1]:range[2],], main = title),

range = mwSlider(1, 100, c(1, 100)),
title = mwText("Fictive time series"))

}

Let use manipulateWidget to explore the evolution of energy consumption in
the world
data("worldEnergyUse")

if (require(plotly)) {
Function that generates a chart representing the evolution of energy
consumption per country. Creating a function is not necessary. We do it
for clarity and reuse in the different examples.

12 manipulateWidget

plotEnergyUse <- function(Country, Period, lwd = 2, col = "gray") {
dataset <- subset(

worldEnergyUse,
country == Country & year >= Period[1] & year <= Period[2]

)
plot_ly(dataset) %>%

add_lines(~year, ~energy_used, line = list(width = lwd, color = col)) %>%
layout(title = paste("Energy used in", Country))

}

Launch the interactive visualisation
manipulateWidget(

plotEnergyUse(Country, Period),
Period = mwSlider(1960, 2014, c(1960, 2014)),
Country = mwSelect(sort(unique(worldEnergyUse$country)), "United States")

)

Directly start comparison mode
manipulateWidget(

plotEnergyUse(Country, Period),
Period = mwSlider(1960, 2014, c(1960, 2014)),
Country = mwSelect(sort(unique(worldEnergyUse$country))),
.compare = list(Country = c("United States", "China")),
.compareOpts = compareOptions(ncol = 2)

)

Dynamic input parameters
#-------------------------
The arguments of an input can depend on the values of other inputs.
In this example, when the user changes the region, the choices of input
"Country" are updated with the countries of that region.

First we create a list that contains for each region the countries in that
retion
refRegions <- by(worldEnergyUse$country, worldEnergyUse$region,

function(x) as.character(sort(unique(x))))

manipulateWidget(
plotEnergyUse(Country, Period),
Period = mwSlider(1960, 2014, c(1960, 2014)),
Region = mwSelect(sort(unique(worldEnergyUse$region))),
Country = mwSelect(choices = refRegions[[Region]])

)

Grouping inputs
#----------------
Inputs can be visually grouped with function mwGroup()
manipulateWidget(

plotEnergyUse(Country, Period, lwd, col),
Period = mwSlider(1960, 2014, c(1960, 2014)),
Country = mwSelect(sort(unique(worldEnergyUse$country)), "United States"),
`Graphical Parameters` = mwGroup(

lwd = mwSlider(1,10, 2, label = "Line Width"),

manipulateWidget 13

col = mwSelect(choices = c("gray", "black", "red"))
)

)

Conditional inputs
#-------------------
Inputs can be displayed or hidden depending on the state of other inputs.
In this example, user can choose to display the level of aggregation
(region or country). Depending on the choixe, the application displays
input Region or input Country.
plotEnergyUseRegion <- function(Region, Period, lwd = 2, col = "gray") {

dataset <- subset(
worldEnergyUse,
region == Region & year >= Period[1] & year <= Period[2]

)
dataset <- aggregate(energy_used ~ year, sum, data = dataset)

plot_ly(dataset) %>%
add_lines(~year, ~energy_used, line = list(width = lwd, color = col)) %>%
layout(title = paste("Energy used in", Region))

}

manipulateWidget(
{

if (Level == "Region") {
plotEnergyUseRegion(Region, Period)

} else {
plotEnergyUse(Country, Period)

}
},
Period = mwSlider(1960, 2014, c(1960, 2014)),
Level = mwSelect(c("Region", "Country")),
Region = mwSelect(sort(unique(worldEnergyUse$region)),

.display = Level == "Region"),
Country = mwSelect(sort(unique(worldEnergyUse$country)),

.display = Level == "Country")
)

}

Advanced Usage

When .expr is evaluated with tehnical variables:
.initial: is it the first evaluation?
.outputId: integer representing the id of the chart
.output: shiny output id
.session: shiny session
They can be used to update an already rendered widget instead of replacing
it each time an input value is modified.
#
In this example, we represent on a map, the energy use of countries.
When the user changes an input, the map is not redrawn. Only the circle
markers are updated.

14 mwCheckbox

if (require(leaflet)) {
plotMap <- function(Year, MaxRadius = 30, .initial, .session, .output) {
dataset <- subset(worldEnergyUse, year == Year)
radius <- sqrt(dataset$energy_used) /

max(sqrt(worldEnergyUse$energy_used), na.rm = TRUE) * MaxRadius

if (.initial) { # map has not been rendered yet
map <- leaflet() %>% addTiles()

} else { # map already rendered
map <- leafletProxy(.output, .session) %>% clearMarkers()

}

map %>% addCircleMarkers(dataset$long, dataset$lat, radius = radius,
color = "gray", weight = 0, fillOpacity = 0.7)

}

manipulateWidget(
plotMap(Year, MaxRadius, .initial, .session, .output),
Year = mwSlider(1960, 2014, 2014),
MaxRadius = mwSlider(10, 50, 20)

)
}

mwCheckbox Add a checkbox to a manipulateWidget gadget

Description

Add a checkbox to a manipulateWidget gadget

Usage

mwCheckbox(value = FALSE, label = NULL, ..., .display = TRUE)

Arguments

value Initial value of the input.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functioncheckboxInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

mwCheckboxGroup 15

See Also

Other controls: mwCheckboxGroup(), mwDateRange(), mwDate(), mwGroup(), mwNumeric(), mwPassword(),
mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

Examples

if(require(plotly)) {
manipulateWidget(
{

plot_ly(iris, x = ~Sepal.Length, y = ~Sepal.Width,
color = ~Species, type = "scatter", mode = "markers") %>%

layout(showlegend = legend)
},
legend = mwCheckbox(TRUE, "Show legend")

)
}

mwCheckboxGroup Add a group of checkboxes to a manipulateWidget gadget

Description

Add a group of checkboxes to a manipulateWidget gadget

Usage

mwCheckboxGroup(choices, value = c(), label = NULL, ..., .display = TRUE)

Arguments

choices Vector or list of choices. If it is named, then the names rather than the values are
displayed to the user.

value Vector containing the values initially selected

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functioncheckboxGroupInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckbox(), mwDateRange(), mwDate(), mwGroup(), mwNumeric(), mwPassword(),
mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

16 MWController-class

Examples

if (require(plotly)) {
manipulateWidget(
{

if (length(species) == 0) mydata <- iris
else mydata <- iris[iris$Species %in% species,]

plot_ly(mydata, x = ~Sepal.Length, y = ~Sepal.Width,
color = ~droplevels(Species), type = "scatter", mode = "markers")

},
species = mwCheckboxGroup(levels(iris$Species))

)
}

MWController-class Controller object of a manipulateWidget application

Description

MWController is a reference class that is used to manage interaction with data and update of the
view created by manipulateWidget. Only users who desire to create automatic tests for applications
created with manipulateWidget should care about this object.

Fields

ncharts Number of charts in the application

nrow Number of rows.

ncol Number of columns.

autoUpdate Boolean indicating if charts should be automatically updated when a value changes.
list with value and initBtn (not autoUpdate, if want first charts on init)

Methods

getParams(name, chartId = 1) Get parameters of an input for a given chart

getValue(name, chartId = 1) Get the value of a variable for a given chart.

getValues(chartId = 1) Get all values for a given chart.

isVisible(name, chartId = 1) Indicates if a given input is visible

returnCharts() Return all charts.

setValue(name, value, chartId = 1, updateHTML = FALSE, reactive = FALSE) Update the value
of a variable for a given chart.

setValueAll(name, value, updateHTML = TRUE) Update the value of an input for all charts

updateCharts() Update all charts.

mwDate 17

Testing a manipulateWidget application

When manipulateWidget is used in a test script, it returns a MWController object instead of start-
ing a shiny gadget. This object has methods to modify inputs values and check the state of the
application. This can be useful to automatically checks if your application behaves like desired.
Here is some sample code that uses package testthat:

library("testthat")

controller <- manipulateWidget(
x + y,
x = mwSlider(0, 10, 5),
y = mwSlider(0, x, 0),
.compare = "y"

)

test_that("Two charts are created", {
expect_equal(controller$ncharts, 2)

})

test_that("Parameter 'max' of 'y' is updated when 'x' changes", {
expect_equal(controller$getParams("y", 1)$max, 5)
expect_equal(controller$getParams("y", 2)$max, 5)
controller$setValue("x", 3)
expect_equal(controller$getParams("y", 1)$max, 3)
expect_equal(controller$getParams("y", 2)$max, 3)

})

mwDate Add a date picker to a manipulateWidget gadget

Description

Add a date picker to a manipulateWidget gadget

Usage

mwDate(value = NULL, label = NULL, ..., .display = TRUE)

Arguments

value Default value of the input.
label Display label for the control. If NULL, the name of the corresponding variable is

used.
... Other arguments passed to functiondateInput
.display expression that evaluates to TRUE or FALSE, indicating when the input control

should be shown/hidden.

18 mwDateRange

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwGroup(), mwNumeric(),
mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

Examples

if (require(dygraphs) && require(xts)) {
mydata <- xts(rnorm(365), order.by = as.Date("2017-01-01") + 0:364)

manipulateWidget(
dygraph(mydata) %>% dyEvent(date, "Your birthday"),
date = mwDate("2017-03-27", label = "Your birthday date",

min = "2017-01-01", max = "2017-12-31")
)

}

mwDateRange Add a date range picker to a manipulateWidget gadget

Description

Add a date range picker to a manipulateWidget gadget

Usage

mwDateRange(
value = c(Sys.Date(), Sys.Date() + 1),
label = NULL,
...,
.display = TRUE

)

Arguments

value Vector containing two dates (either Date objects pr a string in yyy-mm-dd for-
mat) representing the initial date range selected.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functiondateRangeInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

mwGroup 19

Value

An Input object

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDate(), mwGroup(), mwNumeric(), mwPassword(),
mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

Examples

if (require(dygraphs) && require(xts)) {
mydata <- xts(rnorm(365), order.by = as.Date("2017-01-01") + 0:364)

manipulateWidget(
dygraph(mydata) %>% dyShading(from=period[1], to = period[2], color = "#CCEBD6"),
period = mwDateRange(c("2017-03-01", "2017-04-01"),

min = "2017-01-01", max = "2017-12-31")
)

}

mwGroup Group inputs in a collapsible box

Description

This function generates a collapsible box containing inputs. It can be useful when there are a lot of
inputs and one wants to group them.

Usage

mwGroup(..., label = NULL, .display = TRUE)

Arguments

... inputs that will be grouped in the box

label label of the group inputs

.display expression that evaluates to TRUE or FALSE, indicating when the group should
be shown/hidden.

Value

Input of type "group".

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwNumeric(),
mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

20 mwModule

Examples

if(require(dygraphs)) {
mydata <- data.frame(x = 1:100, y = rnorm(100))
manipulateWidget(
dygraph(mydata[range[1]:range[2],],

main = title, xlab = xlab, ylab = ylab),
range = mwSlider(1, 100, c(1, 100)),
"Graphical parameters" = mwGroup(

title = mwText("Fictive time series"),
xlab = mwText("X axis label"),
ylab = mwText("Y axis label")

)
)

}

mwModule Add a manipulateWidget to a shiny application

Description

These two functions can be used to include a manipulateWidget object in a shiny application.
mwModuleUI must be used in the UI to generate the required HTML elements and add javascript
and css dependencies. mwModule must be called once in the server function of the application.

Usage

mwModule(id, controller, fillPage = FALSE, ...)

mwModuleUI(
id,
border = TRUE,
okBtn = FALSE,
saveBtn = TRUE,
exportBtn = TRUE,
updateBtn = FALSE,
allowCompare = TRUE,
margin = 0,
width = "100%",
height = 400,
header = NULL,
footer = NULL

)

Arguments

id A unique string that identifies the module

mwModule 21

controller Object of class MWController returned by manipulateWidget when parameter
.runApp is FALSE.

fillPage : logical. Render in a fillPage or not ? Defaut to FALSE

... named arguments containing reactive values. They can be used to send data
from the main shiny application to the module.

border Should a border be added to the module ?

okBtn Should the UI contain the OK button ?

saveBtn Should the UI contain the save button ? For saving output as html

exportBtn Should an export button be added to the controls ? For saving output as png

updateBtn Should the updateBtn be added to the UI ?

allowCompare If TRUE (the default), then the user can use the UI to add or remove charts and
choose which variables to compare

margin Margin to apply around the module UI. Should be one two or four valid css
units.

width Width of the module UI.

height Height of the module UI.

header Tag or list of tags to display as a common header above all tabPanels.

footer Tag or list of tags to display as a common footer below all tabPanels

Value

mwModuleUI returns the required HTML elements for the module. mwModule is only used for its
side effects.

Examples

if (interactive() & require("dygraphs")) {
require("shiny")
ui <- fillPage(
fillRow(
flex = c(NA, 1),
div(

textInput("title", label = "Title", value = "glop"),
selectInput("series", "series", choices = c("series1", "series2", "series3"))

),
mwModuleUI("ui", height = "100%")

))

server <- function(input, output, session) {
mydata <- data.frame(

year = 2000+1:100,
series1 = rnorm(100),
series2 = rnorm(100),
series3 = rnorm(100)

)

c <- manipulateWidget(

22 mwNumeric

{
dygraph(mydata[range[1]:range[2] - 2000, c("year", series)], main = title)

},
range = mwSlider(2001, 2100, c(2001, 2050)),
series = mwSharedValue(),
title = mwSharedValue(), .runApp = FALSE,
.compare = "range"

)
#
mwModule("ui", c, title = reactive(input$title), series = reactive(input$series))

}

shinyApp(ui, server)

}

mwNumeric Add a numeric input to a manipulateWidget gadget

Description

Add a numeric input to a manipulateWidget gadget

Usage

mwNumeric(value, label = NULL, ..., .display = TRUE)

Arguments

value Initial value of the numeric input.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionnumericInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

mwPassword 23

Examples

if (require(plotly)) {
manipulateWidget({

plot_ly(data.frame(x = 1:10, y = rnorm(10, mean, sd)), x=~x, y=~y,
type = "scatter", mode = "markers")

},
mean = mwNumeric(0),
sd = mwNumeric(1, min = 0, step = 0.1)

)
}

mwPassword Add a password to a manipulateWidget gadget

Description

Add a password to a manipulateWidget gadget

Usage

mwPassword(value = "", label = NULL, ..., .display = TRUE)

Arguments

value Default value of the input.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionpasswordInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

24 mwRadio

Examples

if (require(plotly)) {
manipulateWidget(
{

if (passwd != 'abc123') {
plot_ly(type = "scatter", mode="markers") %>%

layout(title = "Wrong password. True password is 'abc123'")
} else {
plot_ly(data.frame(x = 1:10, y = rnorm(10)), x=~x, y=~y, type = "scatter", mode = "markers")
}

},
user = mwText(label = "Username"),
passwd = mwPassword(label = "Password")

)
}

mwRadio Add radio buttons to a manipulateWidget gadget

Description

Add radio buttons to a manipulateWidget gadget

Usage

mwRadio(choices, value = NULL, label = NULL, ..., .display = TRUE)

Arguments

choices Vector or list of choices. If it is named, then the names rather than the values are
displayed to the user.

value Initial value of the input. If not specified, the first choice is used.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionradioButtons

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

mwSelect 25

Examples

if (require(plotly)) {
mydata <- data.frame(x = 1:100, y = rnorm(100))

manipulateWidget(
{

mode <- switch(type, points = "markers", lines = "lines", both = "markers+lines")
plot_ly(mydata, x=~x, y=~y, type = "scatter", mode = mode)

},
type = mwRadio(c("points", "lines", "both"))

)
}

mwSelect Add a Select list input to a manipulateWidget gadget

Description

Add a Select list input to a manipulateWidget gadget

Usage

mwSelect(
choices = value,
value = NULL,
label = NULL,
...,
multiple = FALSE,
.display = TRUE

)

Arguments

choices Vector or list of choices. If it is named, then the names rather than the values are
displayed to the user.

value Initial value of the input. If not specified, the first choice is used.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionselectInput.

multiple Is selection of multiple items allowed?

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

26 mwSelectize

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwRadio(), mwSelectize(), mwSharedValue(), mwSlider(), mwText()

Examples

if (require(plotly)) {
mydata <- data.frame(x = 1:100, y = rnorm(100))

manipulateWidget(
{

mode <- switch(type, points = "markers", lines = "lines", both = "markers+lines")
plot_ly(mydata, x=~x, y=~y, type = "scatter", mode = mode)

},
type = mwSelect(c("points", "lines", "both"))

)

Sys.sleep(0.5)

Select multiple values
manipulateWidget(

{
if (length(species) == 0) mydata <- iris
else mydata <- iris[iris$Species %in% species,]

plot_ly(mydata, x = ~Sepal.Length, y = ~Sepal.Width,
color = ~droplevels(Species), type = "scatter", mode = "markers")

},
species = mwSelect(levels(iris$Species), multiple = TRUE)

)
}

mwSelectize Add a Select list input to a manipulateWidget gadget

Description

Add a Select list input to a manipulateWidget gadget

Usage

mwSelectize(
choices = value,
value = NULL,
label = NULL,
...,
multiple = FALSE,
options = NULL,

mwSelectize 27

.display = TRUE
)

Arguments

choices Vector or list of choices. If it is named, then the names rather than the values are
displayed to the user.

value Initial value of the input. If not specified, the first choice is used.

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionselectInput.

multiple Is selection of multiple items allowed?

options A list of options. See the documentation of selectize.js for possible options

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwRadio(), mwSelect(), mwSharedValue(), mwSlider(), mwText()

Examples

if (require(plotly)) {
mydata <- data.frame(x = 1:100, y = rnorm(100))

Select multiple values
manipulateWidget(
{

if (length(species) == 0) mydata <- iris
else mydata <- iris[iris$Species %in% species,]

plot_ly(mydata, x = ~Sepal.Length, y = ~Sepal.Width,
color = ~droplevels(Species), type = "scatter", mode = "markers")

},
species = mwSelectize(c("Select one or two species : " = "", levels(iris$Species)),

multiple = TRUE, options = list(maxItems = 2))
)

}

28 mwSharedValue

mwSharedValue Shared Value

Description

This function creates a virtual input that can be used to store a dynamic shared variable that is
accessible in inputs as well as in output.

Usage

mwSharedValue(expr = NULL)

Arguments

expr Expression used to compute the value of the input.

Value

An Input object of type "sharedValue".

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSlider(), mwText()

Examples

if (require(plotly)) {
Plot the characteristics of a car and compare with the average values for
cars with same number of cylinders.
The shared variable 'subsetCars' is used to avoid subsetting multiple times
the data: this value is updated only when input 'cylinders' changes.
colMax <- apply(mtcars, 2, max)

plotCar <- function(cardata, carName) {
carValues <- unlist(cardata[carName,])
carValuesRel <- carValues / colMax

avgValues <- round(colMeans(cardata), 2)
avgValuesRel <- avgValues / colMax

plot_ly() %>%
add_bars(x = names(cardata), y = carValuesRel, text = carValues,

hoverinfo = c("x+text"), name = carName) %>%
add_bars(x = names(cardata), y = avgValuesRel, text = avgValues,

hoverinfo = c("x+text"), name = "average") %>%
layout(barmode = 'group')

}

c <- manipulateWidget(

mwSlider 29

plotCar(subsetCars, car),
cylinders = mwSelect(c("4", "6", "8")),
subsetCars = mwSharedValue(subset(mtcars, cylinders == cyl)),
car = mwSelect(choices = row.names(subsetCars))

)
}

mwSlider Add a Slider to a manipulateWidget gadget

Description

Add a Slider to a manipulateWidget gadget

Usage

mwSlider(min, max, value, label = NULL, ..., .display = TRUE)

Arguments

min The minimum value that can be selected.

max The maximum value that can be selected.

value Initial value of the slider A numeric vector of length one will create a regular
slider; a numeric vector of length two will create a double-ended range slider

label Display label for the control. If NULL, the name of the corresponding variable is
used.

... Other arguments passed to functionsliderInput

.display expression that evaluates to TRUE or FALSE, indicating when the input control
should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwText()

30 mwText

Examples

if (require(plotly)) {

myWidget <- manipulateWidget(
plot_ly(data.frame(x = 1:n, y = rnorm(n)), x=~x, y=~y, type = "scatter", mode = "markers"),
n = mwSlider(1, 100, 10, label = "Number of values")

)

Sys.sleep(0.5)

Create a double ended slider to choose a range instead of a single value
mydata <- data.frame(x = 1:100, y = rnorm(100))

manipulateWidget(
plot_ly(mydata[n[1]:n[2],], x=~x, y=~y, type = "scatter", mode = "markers"),
n = mwSlider(1, 100, c(1, 10), label = "Number of values")

)

}

mwText Add a text input to a manipulateWidget gadget

Description

Add a text input to a manipulateWidget gadget

Usage

mwText(value = "", label = NULL, ..., .display = TRUE)

Arguments

value Initial value of the text input.
label Display label for the control. If NULL, the name of the corresponding variable is

used.
... Other arguments passed to functiontextInput
.display expression that evaluates to TRUE or FALSE, indicating when the input control

should be shown/hidden.

Value

A function that will generate the input control.

See Also

Other controls: mwCheckboxGroup(), mwCheckbox(), mwDateRange(), mwDate(), mwGroup(),
mwNumeric(), mwPassword(), mwRadio(), mwSelectize(), mwSelect(), mwSharedValue(), mwSlider()

mwTranslations 31

Examples

if (require(plotly)) {
mydata <- data.frame(x = 1:100, y = rnorm(100))
manipulateWidget({

plot_ly(mydata, x=~x, y=~y, type = "scatter", mode = "markers") %>%
layout(title = mytitle)

},
mytitle = mwText("Awesome title !")

)
}

mwTranslations Translate UI titles and labels

Description

Creates a list of translation strings that can be passed to function manipulateWidget to translate
some UI elements.

Usage

mwTranslations(
settings = "Settings",
chart = "Chart",
compare = "Compare",
compareVars = "Variables to compare",
ncol = "Nb Columns",
ncharts = "Nb Charts"

)

Arguments

settings Title of the settings panel.

chart Title of the chart panel.

compare Label of the checkbox that activate the comparison mode.

compareVars Label of the input containing the list of variables to compare.

ncol Label of the input that sets the number of columns.

ncharts Label of the input that sets the number of charts.

Value

Named list of translation strings.

32 staticPlot

Examples

translations <- mwTranslations(
settings = "Parametres", chart = "Graphique", compare = "Comparaison",
compareVars = "Variable de comparaison", ncharts = "Nb graph.", ncol = "Nb col."

)

if (require(dygraphs)) {
mydata <- data.frame(year = 2000+1:100, value = rnorm(100))
manipulateWidget(dygraph(mydata[range[1]:range[2] - 2000,], main = title),

range = mwSlider(2001, 2100, c(2001, 2100)),
title = mwText("Fictive time series"),
.translations = translations)

}

staticPlot Include a static image in a combinedWidgets

Description

staticPlot is a function that generates a static plot and then return the HTML code needed to
include the plot in a combinedWidgets. staticImage is a more general function that generates the
HTML code necessary to include any image file.

Usage

staticPlot(expr, width = 600, height = 400)

staticImage(file, style = "max-width:100%%;max-height:100%%")

Arguments

expr Expression that creates a static plot.

width Width of the image to create.

height Height of the image to create.

file path of the image to include.

style CSS style to apply to the image.

Value

a shiny.tag object containing the HTML code required to include the image or the plot in a
combinedWidgets object.

summary.MWController 33

Examples

staticPlot(hist(rnorm(100)))

if (require(plotly)) {
data(iris)

combineWidgets(
plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
staticPlot(hist(iris$Sepal.Length, breaks = 20), height = 300)

)

You can also embed static images in the header, footer, left or right
columns of a combinedWidgets. The advantage is that the space allocated
to the static plot will be constant when the window is resized.

combineWidgets(
plot_ly(iris, x = ~Sepal.Length, type = "histogram", nbinsx = 20),
footer = staticPlot(hist(iris$Sepal.Length, breaks = 20), height = 300)

)
}

summary.MWController summary method for MWController object

Description

summary method for MWController object

Usage

S3 method for class 'MWController'
summary(object, ...)

Arguments

object MWController object

... Not use

34 worldEnergyUse

worldEnergyUse Evolution of energy use per country

Description

Data.frame containing energy consumption per country from 1960 to 2014. The data comes from
the World Bank website. It contains one line per couple(country, year) and has the following
columns:

Usage

worldEnergyUse

Format

An object of class data.frame with 9375 rows and 15 columns.

Details

• country Country name

• iso2c Country code in two characters

• year Year

• population Population of the country

• energy_used_per_capita Energy used per capita in kg of oil equivalent (EG.USE.PCAP.KG.OE)

• energy_imported_prop Proportion of energy used that has been imported (EG.IMP.CONS.ZS)

• energy_fossil_prop Fossil fuel energy consumption in proportion of total consumption (EG.USE.COMM.FO.ZS)

• energy_used Energy consumption in kg of oil equivalent

• energy_fossil Fossil fuel energy consumption in kg of oil equivalent

• prop_world_energy_used Share of the country in the world energy consumption

• prop_world_energy_fossil Share of the country in the world fossil energy consumption

• prop_world_population Share of the country in the world population

• long Longitude of the country

• lat Lattitude of the country

• region Region of the country

Author(s)

François Guillem <guillem.francois@gmail.com>

References

https://data.worldbank.org/indicator

https://data.worldbank.org/indicator

Index

∗ controls
mwCheckbox, 14
mwCheckboxGroup, 15
mwDate, 17
mwDateRange, 18
mwGroup, 19
mwNumeric, 22
mwPassword, 23
mwRadio, 24
mwSelect, 25
mwSelectize, 26
mwSharedValue, 28
mwSlider, 29
mwText, 30

∗ datasets
worldEnergyUse, 34

checkboxGroupInput, 15
checkboxInput, 14
combineWidgets, 2, 3, 4
combineWidgets-shiny, 7
combineWidgetsOutput

(combineWidgets-shiny), 7
compareOptions, 7, 10

dateInput, 17
dateRangeInput, 18

knit_print.MWController, 8

lapply, 4
leafletProxy, 11

manipulateWidget, 2, 3, 7, 9, 16, 17, 21, 31
manipulateWidget-package, 2
mwCheckbox, 14, 15, 18, 19, 22–24, 26–30
mwCheckboxGroup, 15, 15, 18, 19, 22–24,

26–30
MWController, 10, 21
MWController (MWController-class), 16
MWController-class, 16

mwDate, 15, 17, 19, 22–24, 26–30
mwDateRange, 15, 18, 18, 19, 22–24, 26–30
mwGroup, 15, 18, 19, 19, 22–24, 26–30
mwModule, 20
mwModuleUI (mwModule), 20
mwNumeric, 15, 18, 19, 22, 23, 24, 26–30
mwPassword, 15, 18, 19, 22, 23, 24, 26–30
mwRadio, 15, 18, 19, 22, 23, 24, 26–30
mwSelect, 15, 18, 19, 22–24, 25, 27–30
mwSelectize, 15, 18, 19, 22–24, 26, 26, 28–30
mwSharedValue, 15, 18, 19, 22–24, 26, 27, 28,

29, 30
mwSlider, 10, 15, 18, 19, 22–24, 26–28, 29, 30
mwText, 10, 15, 18, 19, 22–24, 26–29, 30
mwTranslations, 10, 31

numericInput, 22

passwordInput, 23

radioButtons, 24
renderCombineWidgets

(combineWidgets-shiny), 7

saveWidget, 3
selectInput, 25, 27
sliderInput, 29
staticImage (staticPlot), 32
staticPlot, 32
summary.MWController, 33

textInput, 30

worldEnergyUse, 34

35

	manipulateWidget-package
	combineWidgets
	combineWidgets-shiny
	compareOptions
	knit_print.MWController
	manipulateWidget
	mwCheckbox
	mwCheckboxGroup
	MWController-class
	mwDate
	mwDateRange
	mwGroup
	mwModule
	mwNumeric
	mwPassword
	mwRadio
	mwSelect
	mwSelectize
	mwSharedValue
	mwSlider
	mwText
	mwTranslations
	staticPlot
	summary.MWController
	worldEnergyUse
	Index

