Package ‘maditr’

January 19, 2026

Type Package

Title Fast Data Aggregation, Modification, and Filtering with Pipes
and 'data.table’

Version 0.8.7

Maintainer Gregory Demin <gdemin@gmail.com>
Depends R (>=3.4.0)

Imports data.table (>= 1.18.0), magrittr (>= 1.5)
Suggests knitr, tinytest, utils, rmarkdown, stats

Description
Provides pipe-style interface for 'data.table’. Package preserves all 'data.table’ features without
significant impact on performance. 'let' and 'take' functions are simplified inter-
faces for most common data
manipulation tasks. For example, you can write 'take(mtcars, mean(mpg), by = am)' for aggrega-
tion or
"let(mtcars, hp_wt = hp/wt, hp_wt_mpg = hp_wt/mpg)' for modifica-
tion. Use 'take_if/let_if" for conditional
aggregation/modification. Additionally there are some conveniences such as auto-
matic 'data.frame’
conversion to 'data.table’.

License GPL-2
URL https://github.com/gdemin/maditr

BugReports https://github.com/gdemin/maditr/issues
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Gregory Demin [aut, cre]

Repository CRAN

Date/Publication 2026-01-19 06:50:18 UTC

https://github.com/gdemin/maditr
https://github.com/gdemin/maditr/issues

2 maditr-package

Contents
maditr-package L e 2
CoaleSCe e e e e e 7
COIUMNS o e e e e e e e 8
COPY « v v e e e e e e e e e e e e e e e e e 9
dt_count Lo e 10
de_left_join e 11
dtmutate L e e e 12
let_if e 15
query_if . . .o 22
text_expand e 27
OISt . . . e e e 28
to_long e e 31
vIooKup e 35

Index 39

maditr-package maditr: Pipe-Style Interface for ’data.table’
Description

Package provides pipe-style interface for data.table. It preserves all data.table features without
significant impact on performance. ’let’ and 'take’ functions are simplified interfaces for most
common data manipulation tasks.

Details

To select rows from data: rows(mtcars, am==0)

To select columns from data: columns(mtcars, mpg, vs:carb)

To aggregate data: take(mtcars, mean_mpg = mean(mpg), by = am)

To aggregate all non-grouping columns: take_all(mtcars, mean, by = am)

To aggregate several columns with one summary: take(mtcars, mpg, hp, fun =mean, by =
am)

To get total summary skip by argument: take_all(mtcars, mean)

Use magrittr pipe *%>%’ to chain several operations:

mtcars %>%
let(mpg_hp = mpg/hp) %>%
take(mean(mpg_hp), by = am)

To modify variables or add new variables:

mtcars %>%
let(new_var = 42,
new_var2 = new_varxhp) %>%
head()

maditr-package 3

* To modify all non-grouping variables:

iris %>%
let_all(
scaled = (.x - mean(.x))/sd(.x),
by = Species) %>%
head()

* To drop variable assign NULL: let(mtcars, am = NULL) %>% head()

* To aggregate all variables conditionally on name:

iris %>%
take_all(
mean = if(startsWith(.name, "Sepal”)) mean(.x),
median = if(startsWith(.name, "Petal”)) median(.x),
by = Species
)

* For parametric assignment use ’:=":

new_var = "my_var"

old_var = "mpg"

mtcars %>%
let((new_var) := get(old_var)*2) %>%
head()

» For more sophisticated operations see "query’/’query_if’: these functions translates its argu-
ments one-to-one to ’[.data. table’ method. Additionally there are some conveniences such
as automatic ’data.frame’ conversion to ’data.table’.

Author(s)

Maintainer: Gregory Demin <gdemin@gmail.com>

See Also
Useful links:

e https://github.com/gdemin/maditr
* Report bugs at https://github.com/gdemin/maditr/issues

Examples

examples form 'dplyr' package
data(mtcars)

Newly created variables are available immediately
mtcars %>%
let(
cyl2 = cyl * 2,

https://github.com/gdemin/maditr
https://github.com/gdemin/maditr/issues

maditr-package

cyld = cyl2 * 2
) %%
head()

You can also use let() to remove variables and
modify existing variables
mtcars %>%

let(

mpg = NULL,

disp = disp * ©.0163871 # convert to litres
) %%
head()

window functions are useful for grouped computations
mtcars %>%
let(rank = rank(-mpg, ties.method = "min"),
by = cyl) %>%
head()

You can drop variables by setting them to NULL
mtcars %>% let(cyl = NULL) %>% head()

keeps all existing variables

mtcars %>%
let(displ_1 = disp / 61.0237) %>%
head()

keeps only the variables you create
mtcars %>%
take(displ_1 = disp / 61.0237)

can refer to both contextual variables and variable names:
var = 100
mtcars %>%

let(cyl = cyl * var) %>%

head()

select rows

mtcars %>%
rows(am==0) %>%
head()

select rows with compound condition
mtcars %>%
rows(am==0 & mpg>mean(mpg))

select columns
mtcars %>%

columns(vs:carb, cyl)

mtcars %>%

maditr-package 5

columns(-am, -cyl)

regular expression pattern
columns(iris, "“Petal”) # variables which start from 'Petal’
columns(iris, "Width$") # variables which end with 'Width'

move Species variable to the front
pattern "*." matches all variables
columns(iris, Species, "*.")

[l

pattern "*.*al" means "contains 'al'”

columns(iris, "*.xal")

numeric indexing - all variables except Species
columns(iris, 1:4)

A 'take' with summary functions applied without 'by' argument returns an aggregated data
mtcars %>%
take(mean = mean(disp), n = .N)

Usually, you'll want to group first
mtcars %>%
take(mean = mean(disp), n = .N, by = cyl)

You can group by expressions:
mtcars %>%
take_all(mean, by = list(vsam = vs + am))

modify all non-grouping variables in-place
mtcars %>%
let_all((.x - mean(.x))/sd(.x), by = am) %>%
head()

modify all non-grouping variables to new variables
mtcars %>%
let_all(scaled = (.x - mean(.x))/sd(.x), by = am) %>%
head()

conditionally modify all variables

iris %>%
let_all(mean = if(is.numeric(.x)) mean(.x)) %>%
head()

modify all variables conditionally on name
iris %>%
let_all(
mean = if(startsWith(.name, "Sepal”)) mean(.x),
median = if(startsWith(.name, "Petal”)) median(.x),
by = Species
) %%
head()

aggregation with 'take_all'

mtcars %>%
take_all(mean = mean(.x), sd = sd(.x), n = .N, by = am)

conditionally aggregate all variables
iris %>%
take_all(mean = if(is.numeric(.x)) mean(.x))

aggregate all variables conditionally on name
iris %>%
take_all(
mean = if(startsWith(.name, "Sepal”)) mean(.x),
median = if(startsWith(.name, "Petal”)) median(.x),
by = Species
)

parametric evaluation:

var = quote(mean(cyl))

mtcars %>%
let(mean_cyl = eval(var)) %>%
head()

take(mtcars, eval(var))

all together

new_var = "mean_cyl”

mtcars %>%
let((new_var) := eval(var)) %>%
head()

take(mtcars, (new_var) := eval(var))

B
variable selection

range selection
iris %>%
let(
avg = rowMeans(Sepal.Length %to% Petal.Width)
) %>%
head()

multiassignment
iris %>%
let(
starts with Sepal or Petal

multipledl %to% multipled4 := cols("*(Sepal|Petal)")*2

) %%
head()

mtcars %>%
let(
text expansion

maditr-package

cols("scaled_{names(mtcars)}") := lapply(cols("{names(mtcars)}"), scale)

Y %%

coalesce 7

head()

range selection in 'by'
range selection + additional column
mtcars %>%
take(
res = sum(cols(mpg, disp %to% drat)),
by = vs %to% gear

coalesce Return first non-missing element

Description

It is an alias for data.table fcoalesce. For details see fcoalesce

Usage
coalesce(..., nan = NA)
Arguments
vectors
nan NA or NaN. For details see fcoalesce
Value

A vector the same length as the first ... argument with NA values replaced by the first non-missing
value.

Examples

examples from dplyr
x = sample(c(1:5, NA, NA, NA))
coalesce(x, 0L)

y = c(1, 2, NA, NA, 5)
z = c(NA, NA, 3, 4, 5)
coalesce(y, z)

8 columns

columns Selects columns or rows from the data set

Description

* columns: select columns from dataset. There are four ways of column selection:

1. Simply by column names

2. By variable ranges, e. g. vs:carb. Alternatively, you can use *%to%’ instead of colon: ’vs
9%t0% carb’.

3. With regular expressions. Characters which start with *»” or end with ’$’ considered as Perl-
style regular expression patterns. For example, **Petal’ returns all variables started with
"Petal’. *Width$’ returns all variables which end with *Width’. Pattern *». matches all vari-

"o

ables and pattern *A.*my_str’ is equivalent to contains "my_str"’.

4. By character variables with interpolated parts. Expression in the curly brackets inside char-
acters will be evaluated in the parent frame with text_expand. For example, a{1:3} will be
transformed to the names ’al’, ’a2’, *a3’. ’cols’ is just a shortcut for ’columns’. See examples.

* rows: select rows from dataset by logical conditions.

Usage
columns(data, ...)
cols(data, ...)
rows(data, ...)
Arguments
data data.table/data.frame
unquoted or quoted column names, regex selectors or variable ranges for ’columns’
and logical conditions for ‘rows’.
Value

data.frame/data.table

Examples

columns
mtcars %>%
columns(vs:carb, cyl)
mtcars %>%
columns(-am, -cyl)

copy 9

regular expression pattern

columns(iris, "*Petal”) %>% head() # variables which start from 'Petal’
columns(iris, "Width$") %>% head() # variables which end with 'Width'

move Species variable to the front.

pattern "*." matches all variables

columns(iris, Species, "*.") %>% head()

pattern "*.*i" means "contains 'i'"
columns(iris, "*.*i") %>% head()

numeric indexing - all variables except Species
columns(iris, 1:4) %>% head()

variable expansion
dims = c("Width"”, "Length")
columns(iris, "Petal.{dims}") %>% head()

rows

mtcars %>%
rows(am==0) %>%
head()

select rows with compound condition
mtcars %>%
rows(am==0 & mpg>mean(mpg))

copy Copy an entire object

Description

Mainly intended to copy data.table objects because by default they are modified by reference. See
example.

Usage

copy (x)

Arguments

X object

Value

copy of the object "x’

10 dt_count

Examples

data(mtcars)

dt_mtcars = as.data.table(mtcars)
dt_mtcars2 = dt_mtcars
dt_mtcars3 = copy(dt_mtcars)
let(dt_mtcars, new = 1)

head(dt_mtcars2) # we see 'new' column
head(dt_mtcars3) # no 'new' column

dt_count Additional useful functions

Description

» dt_count calculates number of cases by groups, possibly weighted. dt_add_count adds
number of cases to existing dataset.

* dt_top_n returns top n rows from each group.

Usage
dt_count(data, ..., weight = NULL, sort = FALSE, name = "n")
dt_add_count(data, ..., weight = NULL, sort = FALSE, name = "n")
dt_top_n(data, n, by, order_by = NULL)
Arguments
data data.table/data.frame data.frame will be automatically converted to data.table.
variables to group by.
weight optional. Unquoted variable name. If provided result will be the sum of this
variable by groups.
sort logical. If TRUE result will be sorted in desending order by resulting variable.
name character. Name of resulting variable.
n numeric. number of top cases. If n is negative then bottom values will be re-
turned.
by list or vector of grouping variables
order_by unquoted variable name by which result will be sorted. If not specified, defaults
to the last variable in the dataset.
Value

data.table

dt_left_join 11

Examples

data(mtcars)

dt_count
dt_count(mtcars, am, vs)
dt_add_count(mtcars, am, vs, name = "am_vs")[] # [] for autoprinting

dt_top_n
dt_top_n(mtcars, 2, by = list(am, vs))
dt_top_n(mtcars, 2, order_by = mpg, by = list(am, vs))

dt_left_join Join two data.frames by common columns.

Description

Do different versions of SQL join operations. See examples.

Usage
dt_left_join(x, y, by = NULL, suffix = c(".x", ".y"))

dt_right_join(x, y, by = NULL, suffix = c(".x", ".y"))

dt_inner_join(x, y, by = NULL, suffix = c(".x", ".y"))

dt_full_join(x, y, by = NULL, suffix = c(".x", ".y"))

dt_semi_join(x, y, by = NULL)
dt_anti_join(x, y, by = NULL)
Arguments
X data.frame or data.table
y data.frame or data.table
by a character vector of variables to join by. If NULL, the default, *_join() will do
a natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re right (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a named vector. For example, by = c("a" =
"b") will match x.a to y.b.
suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.
Value

data.table

12 dt_mutate

Examples

workers = fread(”
name company
Nick Acme
John Ajax
Daniela Ajax

II)

positions = fread(”
name position
John designer
Daniela engineer
Cathie manager

")

workers %>% dt_inner_join(positions)
workers %>% dt_left_join(positions)
workers %>% dt_right_join(positions)
workers %>% dt_full_join(positions)

filtering joins
workers %>% dt_anti_join(positions)
workers %>% dt_semi_join(positions)

To suppress the message, supply 'by' argument
workers %>% dt_left_join(positions, by = "name")

Use a named 'by' if the join variables have different names
positions2 = setNames(positions, c("worker”, "position”)) # rename first column in 'positions’

workers %>% dt_inner_join(positions2, by = c("name” = "worker"))
dt_mutate "dplyr’-like interface for data.table.
Description

Subset of ’dplyr’ verbs to work with data.table. Note that there is no group_by verb - use by or
keyby argument when needed.

* dt_mutate adds new variables or modify existing variables. If data is data.table then it mod-
ifies in-place.

* dt_summarize computes summary statistics. Splits the data into subsets, computes summary
statistics for each, and returns the result in the "data.table" form.

e dt_summarize_all is the same as dt_summarize but work over all non-grouping variables.

e dt_filter selects rows/cases where conditions are true. Rows where the condition evaluates
to NA are dropped.

dt_mutate

13

» dt_select selects column/variables from the data set. Range of variables are supported, e.
g. vs:carb. Characters which start with *A” or end with ’$’ considered as Perl-style regular
expression patterns. For example, *~Petal’ returns all variables started with *Petal’. *Width$’
returns all variables which end with *Width’. Pattern *A.” matches all variables and pattern
A *my_str’ is equivalent to contains "my_str"”. See examples.

Usage
dt_mutate(data, ..., by)
dt_summarize(data, ..., by, keyby, fun = NULL)
dt_summarize_all(data, fun, by, keyby)
dt_summarise(data, ..., by, keyby, fun = NULL)

dt_summarise_all(data, fun, by, keyby)

dt_select(data, ...)
dt_filter(data, ...)
Arguments
data data.table/data.frame data.frame will be automatically converted to data.table.

by

keyby

fun

Value

data.table

Examples

dt_mutate modify data.table object in-place.

List of variables or name-value pairs of summary/modifications functions. The
name will be the name of the variable in the result. In the mutate function we
canuse a = b or a : = b notation. Advantages of : = are multiassignment (c("a",
"b") :=1ist(1,2)) and parametric assignment ((a) := 2).

unquoted name of grouping variable of list of unquoted names of grouping vari-
ables. For details see data.table

Same as by, but with an additional setkey () run on the by columns of the result,
for convenience. It is common practice to use 'keyby="routinely when you wish
the result to be sorted. For details see data.table.

function which will be applied to all variables in dt_summarize and dt_summarize_all.

examples from 'dplyr'
newly created variables are available immediately

mtcars %>%
dt_mutate(
cyl2 =
cyl4 =

cyl *x 2,
cyl2 x 2

14

) %%
head()

you can also use dt_mutate() to remove variables and
modify existing variables
mtcars %>%

dt_mutate(

mpg = NULL,

disp = disp * ©.0163871 # convert to litres
) %%
head()

window functions are useful for grouped mutates
mtcars %>%

dt_mutate(
rank = rank(-mpg, ties.method = "min"),
keyby = cyl) %>%

print()

You can drop variables by setting them to NULL
mtcars %>% dt_mutate(cyl = NULL) %>% head()

A summary applied without by returns a single row
mtcars %>%

dt_summarise(mean = mean(disp), n = .N)
Usually, you'll want to group first
mtcars %>%
dt_summarise(mean = mean(disp), n = .N, by = cyl)

Multiple 'by' - variables
mtcars %>%
dt_summarise(cyl_n = .N, by = list(cyl, vs))

Newly created summaries immediately
doesn't overwrite existing variables
mtcars %>%
dt_summarise(disp = mean(disp),
sd = sd(disp),
by = cyl)

You can group by expressions:
mtcars %>%
dt_summarise_all(mean, by = list(vsam = vs + am))

filter by condition
mtcars %>%
dt_filter (am==0)

dt_mutate

let_if 15

filter by compound condition
mtcars %>%
dt_filter(am==0, mpg>mean(mpg))

select
mtcars %>% dt_select(vs:carb, cyl)
mtcars %>% dt_select(-am, -cyl)

regular expression pattern

dt_select(iris, "“Petal”) # variables which start from 'Petal’
dt_select(iris, "Width$") # variables which end with 'Width'

move Species variable to the front.

pattern "*." matches all variables

dt_select(iris, Species, "*.")

pattern "*.*i" means "contains 'i
dt_select(iris, "*.*xi")
dt_select(iris, 1:4) # numeric indexing - all variables except Species

rn

let_if Modify, aggregate, select or filter data.frame/data.table

Description

* let adds new variables or modify existing variables. ’let_if’ make the same thing on the
subset of rows.

* take/take_if aggregate data or aggregate subset of the data.

» let_all applies expressions to all variables in the dataset. It is also possible to modify the
subset of the variables.

» take_all aggregates all variables in the dataset. It is also possible to aggregate the subset of
the variables.

All functions return data.table. Expression in the ’take_all’ and ’let_all’ can use predefined
variables: ’.x’ is a value of current variable , *.name’ is a name of the variable and ’.index’ is
sequential number of the variable. *.value’ is is an alias to *.x.

¢ Add new variables: let(mtcars, new_var =42, new_var2 = new_varxhp)

* Select variables: take(mtcars, am, vs, mpg)

* Aggregate data: take(mtcars, mean_mpg = mean(mpg), by = am)

* Aggregate all non-grouping columns: take_all(mtcars, mean =mean(.x), sd =sd(.x),
n=_.N, by =am)

* Aggregate all numeric columns: take_all(iris, if(is.numeric(.x)) mean(.x))

* To modify all non-grouping variables:

16 let_if

iris %>%
let_all(
scaled = (.x - mean(.x))/sd(.x),
by = Species) %>%
head()

» Aggregate specific columns: take_all(iris, if(startsWith(.name, "Sepal”)) mean(.x))

You can use ’columns’ inside expression in the "take’/’let’. *columns’ will be replaced with data.table

with selected columns. In ’let’ in the expressions with *:=’, ’cols’ or *%to%’ can be placed in the
left part of the expression. It is usefull for multiple assignment. There are four ways of column
selection:

1. Simply by column names

2. By variable ranges, e. g. vs:carb. Alternatively, you can use *%to%’ instead of colon: ’vs
9t0% carb’.

3. With regular expressions. Characters which start with *** or end with ’$’ considered as Perl-
style regular expression patterns. For example, *"Petal’ returns all variables started with
"Petal’. *Width$’ returns all variables which end with *Width’. Pattern *».” matches all vari-

"s

ables and pattern . *my_str’ is equivalent to contains "my_str"’.

4. By character variables with interpolated parts. Expression in the curly brackets inside char-
acters will be evaluated in the parent frame with text_expand. For example, a{1:3} will be
transformed to the names *al’, a2’, ’a3’. ’cols’ is just a shortcut for ’columns’. See examples.

Usage
let_if(data, i, ..., by, keyby)
take_if(data, i, ..., by, keyby, .SDcols, autoname = TRUE, fun = NULL)
take(data, ..., by, keyby, .SDcols, autoname = TRUE, fun = NULL)
let(data, ..., by, keyby)

S3 method for class 'data.frame'
let(data, ..., by, keyby, i)

S3 method for class 'etable'
let(data, ..., by, keyby, i)
let_all(data, ..., by, keyby, .SDcols, suffix = TRUE, sep = "_", i)

take_all(data, ..., by, keyby, .SDcols, suffix = TRUE, sep = "_", i)

let_if

Arguments

data

by

keyby

.SDcols

autoname

fun

suffix

sep

Value

17

data.table/data.frame data.frame will be automatically converted to data.table.
let modify data.table object in-place.

integer/logical vector. Supposed to use to subset/conditional modifications of
data. For details see data.table

List of variables or name-value pairs of summary/modifications functions. The
name will be the name of the variable in the result. In the 1et and take functions
we can use a = b or a := b notation. Advantages of : = is parametric assignment,
e. g. (a) := 2 create variable with name which are stored in a. In let := can
be used for multiassignment (c("a", "b") :=1ist(1,2)). Expression in the
"take_all’ and ’let_all’ can use predefined variables: ’.x’ is a value of current
variable, *.name’ is a name of the variable and ’.index’ is sequential number of
the variable. ’.value’ is is an alias to ".x’.

unquoted name of grouping variable of list of unquoted names of grouping vari-
ables. For details see data.table

Same as by, but with an additional setkey () run on the by columns of the result,
for convenience. It is common practice to use keyby=" routinely when you wish
the result to be sorted. For details see data.table.

Specifies the columns of x to be included in the special symbol .SD which stands
for Subset of data.table. May be character column names or numeric positions.
For details see data.table.

logical. TRUE by default. Should we create names for unnamed expressions in
take?

Function which will be applied to all variables in take. If there are no variables
in take then it will be applied to all non-grouping variables in the data.

logical TRUE by default. For ’let_all’/’take_all’. If TRUE than we append
summary name to the end of the variable name. If FALSE summary name will
be added at the begining of the variable name.

character. "_" by default. Separator between the old variables name and prefix
or suffix for ’let_all’ and ’take_all’.

data.table. let returns its result invisibly.

Examples

examples form 'dplyr' package

data(mtcars)

Newly created variables are available immediately

mtcars %>%
let(

cyl2 = cyl * 2,
cyld = cyl2 * 2

) %>% head()

18

let_if

You can also use let() to remove variables and
modify existing variables
mtcars %>%
let(
mpg = NULL,
disp = disp * ©.0163871 # convert to litres
) %>% head()

window functions are useful for grouped computations
mtcars %>%
let(rank = rank(-mpg, ties.method = "min"),
by = cyl) %>%
head()

You can drop variables by setting them to NULL
mtcars %>% let(cyl = NULL) %>% head()

keeps all existing variables

mtcars %>%
let(displ_1 = disp / 61.0237) %>%
head()

keeps only the variables you create
mtcars %>%
take(displ_1 = disp / 61.0237)

can refer to both contextual variables and variable names:
var = 100
mtcars %>%

let(cyl = cyl * var) %>%

head()

A 'take' with summary functions applied without 'by' argument returns an aggregated data
mtcars %>%
take(mean = mean(disp), n = .N)

Usually, you'll want to group first
mtcars %>%
take(mean = mean(disp), n = .N, by = cyl)

You can group by expressions:
mtcars %>%
take_all(mean, by = list(vsam = vs + am))

modify all non-grouping variables in-place
mtcars %>%
let_all((.x - mean(.x))/sd(.x), by = am) %>%
head()

let_if

modify all non-grouping variables to new variables
mtcars %>%
let_all(scaled = (.x - mean(.x))/sd(.x), by = am) %>%
head()

conditionally modify all variables

iris %>%
let_all(mean = if(is.numeric(.x)) mean(.x)) %>%
head()

modify all variables conditionally on name
iris %>%
let_all(
mean = if(startsWith(.name, "Sepal”)) mean(.x),
median = if(startsWith(.name, "Petal”)) median(.x),
by = Species
) %%
head()

aggregation with 'take_all'
mtcars %>%
take_all(mean = mean(.x), sd = sd(.x), n = .N, by = am)

conditionally aggregate all variables
iris %>%
take_all(mean = if(is.numeric(.x)) mean(.x))

aggregate all variables conditionally on name
iris %>%
take_all(
mean = if(startsWith(.name, "Sepal”)) mean(.x),
median = if(startsWith(.name, "Petal”)) median(.x),
by = Species
)

parametric evaluation:

var = quote(mean(cyl))

mtcars %>%
let(mean_cyl = eval(var)) %>%
head()

take(mtcars, eval(var))

all together

new_var = "mean_cyl”

mtcars %>%
let((new_var) := eval(var)) %>%
head()

take(mtcars, (new_var) := eval(var))

AR

variable selection

19

20

range selection
iris %>%
let(

let_if

avg = rowMeans(Sepal.lLength %to% Petal.Width)

) %>%
head()

multiassignment
iris %>%
let(

starts with Sepal or Petal
multipledl %to% multipled4 := cols("*(Sepal|Petal)”)*2

) %>%
head()

mtcars %>%
let(
text expansion

cols("scaled_{names(mtcars)}") := lapply(cols("{names(mtcars)}"), scale)

) %%
head()

range selection in 'by'

range selection + additional column

mtcars %>%
take(

res = sum(cols(mpg, disp %to% drat)),

by = vs %to% gear

HHHHHBHRHHBHAAERHREHERHREHHRHAERHREREHR

examples from data.table
dat = data.table(

x=rep(c("b","a","c"), each=3),

y=c(1,3,6),
v=1:9
)

basic row subset operations

take_if(dat, 2)
take_if(dat, 3:2)
take_if(dat, order(x))
take_if(dat, y>2)
take_if(dat, y>2 & v>5)
take_if(dat, !2:4)
take_if(dat, -(2:4))

select|compute columns
take(dat, v)

take(dat, sum(v))
take(dat, sv = sum(v))

2nd row

3rd and 2nd row

no need for order(dat$x)

all rows where dat$y > 2

compound logical expressions
all rows other than 2:4

same

v column (as data.table)
return data.table with sum of v (column autonamed 'sum(v)')
same, but column named "sv"

let_if 21

take(dat, v, v*2) # return two column data.table, v and v*2

subset rows and select|compute
take_if(dat, 2:3, sum(v)) # sum(v) over rows 2 and 3
take_if(dat, 2:3, sv = sum(v)) # same, but return data.table with column sv

grouping operations

take(dat, sum(v), by = x) # ad hoc by, order of groups preserved in result
take(dat, sum(v), keyby = x) # same, but order the result on by cols

all together now
take_if(dat, x!="a", sum(v), by=x) # get sum(v) by "x" for each x != "a"

more on special symbols, see also ?"data.table::special-symbols”

take_if(dat, .N) # last row

take(dat, .N) # total number of rows in DT

take(dat, .N, by=x) # number of rows in each group

take(dat, .I[1]1, by=x) # row number in DT corresponding to each group

add/update/delete by reference
[] at the end of expression is for autoprinting

let(dat, grp = .GRP, by=x)[] # add a group counter column

let(dat, z = 42L)[] # add new column by reference

let(dat, z = NULL)[] # remove column by reference

let_if(dat, x=="a", v = 42L)[] # subassign to existing v column by reference
let_if(dat, x=="b", v2 = 84L)[] # subassign to new column by reference (NA padded)

let(dat, m = mean(v), by=x)[] # add new column by reference by group

advanced usage
dat = data.table(x=rep(c("b","a","c"), each=3),
V=C(1»171:27211:17212)1

y=c(1,3,6),
a=1:9,
b=9:1)
take(dat, sum(v), by=list(y%%2)) # expressions in by
take(dat, sum(v), by=list(bool = y%%2)) # same, using a named list to change by column name
take_all(dat, sum, by=x) # sum of all (other) columns for each group
take(dat,
MySum=sum(v),
MyMin=min(v),
MyMax=max(v),
by = list(x, y%%2) # by 2 expressions

)

take(dat, seq = min(a):max(b), by=x) # j is not limited to just aggregations
dat %>%

take(V1 = sum(v), by=x) %>%

take_if(V1<20) # compound query

22 query_if

query_if One-to-one interface for data.table ’[’ method

Description

Quote from data.table:
query(data, j, by) # + extra arguments

| == > grouped by what?
——————— > what to do?

or,
query_if(data, i, j, by) # + extra arguments
L

| | == > grouped by what?
I

——————— > what to do?
--=> on which rows?

If you don’t need ’i’ argument, use "query’. In this case you can avoid printing leading comma
inside brackets to denote empty *i’.

Usage

query_if(
data,
i,
i,
by,
keyby,
with = TRUE,
nomatch = getOption("datatable.nomatch"),
mult = "all”,
roll = FALSE,
rollends = if (roll == "nearest”) c(TRUE, TRUE) else if (roll >= @) c(FALSE, TRUE) else
c(TRUE, FALSE),
which = FALSE,
.SDcols,
verbose = getOption("datatable.verbose"),
allow.cartesian = getOption("datatable.allow.cartesian"),
drop = NULL,
on = NULL

query_if 23

query (
data,
3,
by,
keyby,
with = TRUE,
nomatch = getOption("datatable.nomatch”),
mult = "all"”,
roll = FALSE,
rollends = if (roll == "nearest"”) c(TRUE, TRUE) else if (roll >= @) c(FALSE, TRUE) else
c(TRUE, FALSE),
which = FALSE,
.SDcols,
verbose = getOption("datatable.verbose"),
allow.cartesian = getOption("datatable.allow.cartesian”),

drop = NULL,
on = NULL

)

Arguments

data data.table/data.frame data.frame will be automatically converted to data.table.

i Integer, logical or character vector, single column numeric matrix, expression
of column names, list, data.frame or data.table. integer and logical vectors work
the same way they do in [.data.frame except logical NAs are treated as FALSE.
expression is evaluated within the frame of the data.table (i.e. it sees column
names as if they are variables) and can evaluate to any of the other types. For
details see data.table

j When with=TRUE (default), j is evaluated within the frame of the data.table;
i.e., it sees column names as if they are variables. This allows to not just select
columns in j, but also compute on them e.g., x[,a] and x[, sum(a)] returns x$a
and sum(x$a) as a vector respectively. x[, .(a, b)] and x[, . (sa=sum(a),
sb=sum(b))] returns a two column data.table each, the first simply selecting
columns a, b and the second computing their sums. For details see data.table.

by unquoted name of grouping variable of list of unquoted names of grouping vari-
ables. For details see data.table

keyby Same as by, but with an additional setkey () run on the by columns of the result,
for convenience. It is common practice to use 'keyby="routinely when you wish
the result to be sorted. For details see data.table

with logical. For details see data.table.

nomatch Same as nomatch in match. For details see data.table.

mult For details see data.table.

roll For details see data.table.

rollends For details see data.table.

which For details see data.table.

24

.SDcols

verbose

query_if

Specifies the columns of x to be included in the special symbol .SD which stands
for Subset of data.table. May be character column names or numeric positions.
For details see data.table.

logical. For details see data.table.

allow.cartesian

drop

on

Value

For details see data.table.
For details see data.table.

For details see data.table.

It depends. For details see data.table.

Examples

examples from data.table
dat = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)

dat

basic row subset operations

query_if(dat,
query_if(dat,
query_if(dat,
query_if(dat,
query_if(dat,
query_if(dat,
query_if(dat,

2) # 2nd row

3:2) # 3rd and 2nd row

order(x)) # no need for order(dat$x)
y>2) # all rows where dat$y > 2

y>2 & v>5) # compound logical expressions
12:4) # all rows other than 2:4
-(2:4)) # same

select|compute columns data.table way

query(dat, v)

v column (as vector)

query(dat, list(v)) # v column (as data.table)

query(dat, sum(v)) # sum of column v, returned as vector

query(dat, list(sum(v))) # same, but return data.table (column autonamed V1)
query(dat, list(v, v*2)) # return two column data.table, v and vx*2

subset rows and select|compute data.table way

query_if(dat,
query_if(dat,
query_if(dat,
query_if(dat,

2:3, sum(v)) # sum(v) over rows 2 and 3, return vector

2:3, list(sum(v))) # same, but return data.table with column V1
2:3, list(sv=sum(v))) # same, but return data.table with column sv
2:5, cat(v, "\n")) # just for j's side effect

select columns the data.frame way

query(dat, 2, with=FALSE) # 2nd column, returns a data.table always
colNum = 2
query(dat, colNum, with=FALSE) # same, equivalent to DT[, .SD, .SDcols=colNum]

grouping operations - j and by
query(dat, sum(v), by=x) # ad hoc by, order of groups preserved in result
query(dat, sum(v), keyby=x) # same, but order the result on by cols
query(dat, sum(v), by=x) %>%

query_if(order(x)) # same but by chaining expressions together

query_if 25

fast ad hoc row subsets (subsets as joins)

same as x == "a" but uses binary search (fast)
query_if(dat, "a", on="x")

same, for convenience, no need to quote every column
query_if(dat, "a", on=list(x))

query_if(dat, .("a"), on="x") # same
same, single "==" internally optimised to use binary search (fast)
query_if(dat, x=="a")

not yet optimized, currently vector scan subset
query_if(dat, x!="b" | y!=3)

join on columns x,y of 'dat'; uses binary search (fast)
query_if(dat, .("b", 3), on=c("x", "y"))

query_if(dat, .("b", 3), on=list(x, y)) # same, but using on=list()
query_if(dat, .("b", 1:2), on=c("x", "y")) # no match returns NA
query_if(dat, .("b", 1:2), on=.(x, y), nomatch=0) # no match row is not returned

locf, nomatch row gets rolled by previous row

query_if(dat, .("b", 1:2), on=c("x", "y"), roll=Inf)

query_if(dat, .("b", 1:2), on=.(x, y), roll=-Inf) # nocb, nomatch row gets rolled by next row
on rows where dat$x=="b", calculate sum(vxy)

query_if(dat, "b", sum(v*y), on="x")

all together now

query_if(dat, x!="a", sum(v), by=x) # get sum(v) by "x" for each i != "a"
query_if(dat, !"a", sum(v), by=.EACHI, on="x") # same, but using subsets-as-joins
query_if(dat, c("b","c"), sum(v), by=.EACHI, on="x") # same

query_if(dat, c("b","c"), sum(v), by=.EACHI, on=.(x)) # same, using on=.()

joins as subsets
X = data.table(x=c("c","b"), v=8:7, foo=c(4,2))

X

query_if(dat, X, on="x") # right join
query_if (X, dat, on="x") # left join

query_if(dat, X, on="x", nomatch=0) # inner join
query_if(dat, !X, on="x") # not join

join using column "y" of 'dat' with column "v" of X

—_n,n

query_if(dat, X, on=c(y="v"))

query_if(dat,X, on="y==v") # same as above (v1.9.8+)
query_if(dat, X, on = .(y<=fo00)) # NEW non-equi join (v1.9.8+)
query_if(dat, X, on="y<=foo0") # same as above

query_if(dat, X, on=c("y<=fo0")) # same as above

query_if(dat, X, on=.(y>=fo0)) # NEW non-equi join (v1.9.8+)
query_if(dat, X, on=.(x, y<=foo)) # NEW non-equi join (v1.9.8+)
query_if(dat, X, .(x,y,x.y,v), on=.(x, y>=foo)) # Select x's join columns as well
query_if(dat, X, on="x", mult="first") # first row of each group
query_if(dat, X, on="x", mult="last") # last row of each group
query_if(dat, X, sum(v), by=.EACHI, on="x") # join and eval j for each row in i
query_if(dat, X, sum(v)*foo, by=.EACHI, on="x") # join inherited scope

query_if(dat, X, sum(v)*i.v, by=.EACHI, on="x") # 'i,v' refers to X's v column
query_if(dat, X, on=.(x, v>=v), sum(y)*foo, by=.EACHI) # NEW non-equi join with by=.EACHI (v1.9.8+)

26

query_if
more on special symbols, see also ?"special-symbols”
query_if(dat, .N) # last row
query(dat, .N) # total number of rows in DT
query(dat, .N, by=x) # number of rows in each group
query(dat, .SD, .SDcols=x:y) # select columns 'x' and 'y'
query(dat, .SD[1]) # first row of all columns
query(dat, .SD[1], by=x) # first row of 'y' and 'v' for each group in 'x'
query(dat, c(.N, lapply(.SD, sum)), by=x) # get rows *xandx sum columns 'v' and 'y' by group
query(dat, .I[1]1, by=x) # row number in DT corresponding to each group
query(dat, grp := .GRP, by=x) %>% head() # add a group counter column
query(X, query_if(dat, .BY, y, on="x"), by=x) # join within each group

add/update/delete by reference (see ?assign)
query(dat, z:=42L) %>% head() # add new column by reference
query(dat, z:=NULL) %>% head() # remove column by reference

nan nyn

query_if(dat, "a", v:=42L, on="x") %>% head() # subassign to existing v column by reference

query_if(dat, "b", v2:=84L, on="x") %>% head() # subassign to new column by reference (NA padded)

NB: postfix [] is shortcut to print()
query(dat, m:=mean(v), by=x)[] # add new column by reference by group

advanced usage
dat = data.table(x=rep(c(”"b","a","c"),each=3),
v=c(1,1,1,2,2,1,1,2,2),

y=c(1,3,6),
a=1:9,
b=9:1)
dat
query(dat, sum(v), by=.(y%%2)) # expressions in by
query(dat, sum(v), by=. (bool = y%%2)) # same, using a named list to change by column name
query(dat, .SD[2], by=x) # get 2nd row of each group
query(dat, tail(.SD,2), by=x) # last 2 rows of each group
query(dat, lapply(.SD, sum), by=x) # sum of all (other) columns for each group
query(dat, .SDLwhich.min(v)1, by=x) # nested query by group

query(dat, list(MySum=sum(v),
MyMin=min(v),
MyMax=max(v)),

by=.(x, y%%2)

) # by 2 expressions
query(dat, .(a = .(a), b = .(b)), by=x) # list columns
query(dat, .(seq = min(a):max(b)), by=x) # j is not limited to just aggregations

query(dat, sum(v), by=x) %>%
query_if(V1<20) # compound query
query(dat, sum(v), by=x) %>%
setorder(-V1) %>%
head() # ordering results
query(dat, c(.N, lapply(.SD,sum)), by=x) # get number of observations and sum per group

anonymous lambda in 'j', j accepts any valid
expression. TO REMEMBER: every element of

text_expand 27

the list becomes a column in result.
query(dat,

{tmp = mean(y);

.(a = a-tmp, b = b-tmp)

+

by=x)

using rleid, get max(y) and min of all cols in .SDcols for each consecutive run of 'v'
query(dat,

c(. (y=max(y)), lapply(.SD, min)),

by=rleid(v),

.SDcols=v:b
)
Not run:
pdf ("new.pdf")
query(dat, plot(a,b), by=x) # can also plot in 'j'
dev.off()

End(Not run)

text_expand Evaluate expressions in curly brackets inside strings

Description
text_expand is simple string interpolation function. It searches in its arguments expressions in
curly brackets {expr}, evaluate them and substitute with the result of evaluation. See examples.
Usage

text_expand(..., delim = c("\\{", "\\}"))

Arguments
character vectors
delim character vector of length 2 - pair of opening and closing delimiters for the
templating tags. By default it is curly brackets. Note that delim will be used in
the perl-style regular expression so you need to escape special characters, e. g.
use "\\{" instead of "{".
Value

Vector of characters

28 to_list

Examples

i=1:5
text_expand("q{i}")

i=1:3
j=1:3
text_expand("q1_{i}_{j}")

data(iris)
text_expand(

"

iris' has {nrow(iris)} rows.")

to_list Apply an expression to each element of a list or vector

Description

e to_list always returns a list, each element of which is the result of expression expr on the
elements of data. By default, NULL’s will be removed from the result. You can change this
behavior with skip_null argument.

e to_vec is the same as to_list but tries to convert its result to vector via unlist.

* to_df and to_dfr try to combine its results to data.table by rows.

* to_dfc tries to combine its result to data.table by columns.

Expression can use predefined variables: *.x’ is a value of current list element, ’.name’ is a name of
the element and ’.index’ is sequential number of the element.

Usage

to_list(
data,
expr = NULL,

skip_null = TRUE,
trace = FALSE,
trace_step = 1L

to_vec(
data,
expr = NULL,

skip_null = TRUE,
trace = FALSE,
trace_step = 1L,

to_list 29

recursive = TRUE,
use.names = TRUE

)

to_df(
data,
expr = NULL,
trace = FALSE,
trace_step = 1L,
idvalue = NULL,

idname = "item_id"
)
to_dfr(

data,

expr = NULL,

trace = FALSE,
trace_step = 1L,
idvalue = NULL,

idname = "item_id"
)
to_dfc(data, expr = NULL, ..., trace = FALSE, trace_step = 1)
Arguments

data data.frame/list/vector

expr expression or function. Expression can use predefined variables: ’.x’ is a value
of current list element, *.name’ is a name of the element and ’.index’ is sequen-
tial number of the element.

e further arguments provided if "expr’ is function.

skip_null logical Should we skip NULL’s from result? Default is TRUE

trace FALSE by default. Should we report progress during execution? Possible values
are TRUE, FALSE, "pb" (progress bar) or custom expression in ’quote’, e. g.
’quote(print(.x))’. Expression can contain ’.x’, *.name’, and ’.index’ variables.

trace_step integer. 1 by default. Step for reporting progress. Ignored if ’trace’ argument is
equal to FALSE.

recursive logical. Should unlisting be applied to list components of x? For details see
unlist.

use.names logical. TRUE by default. Should names of source list be preserved? Setting
it to FALSE in some cases can greatly increase performance. For details see
unlist.

idvalue expression for calculation id column. Usually it is just unquoted symbols: one

of the *.name’, ’.index’ or ’.x’.

idname character, ’item_id’ by default. Name for the id column.

30

Value

’to_list’ returns list, "to_vec’ tries to return vector and other functions return data.table

Examples

1:5 %>%
to_list(rnorm(n = 3, .x))

or in 'lapply' style

1:5 %>%
to_list(rnorm, n = 3) %>%
to_vec(mean)

or use an anonymous function
1:5 %>%
to_list(function(x) rnorm(3, x))

Use to_vec() to reduce output to a vector instead
of a list:

filtering - return only even numbers

to_vec(1:10, if(.x %% 2 == @) .x)

filtering - calculate mean only on the numeric columns
to_vec(iris, if(is.numeric(.x)) mean(.x))

mean for numerics, number of distincts for others
to_vec(iris, if(is.numeric(.x)) mean(.x) else uniqueN(.x))

means for Sepal
to_vec(iris, if(startsWith(.name, "Sepal”)) mean(.x))

A more realistic example: split a data frame into pieces, fit a

model to each piece, summarise and extract R*2
mtcars %>%
split(.$cyl) %>%
to_list(summary(lm(mpg ~ wt, data = .x))) %>%
to_vec(.x$r.squared)

If each element of the output is a data frame, use
to_df to row-bind them together:
mtcars %>%

split(.$cyl) %>%

to_list(Im(mpg ~ wt, data = .x)) %>%

to_df (c(cyl = .name, coef(.x)))

Not run:
read all csv files in "data” to data.frame

all_files = dir("data”, pattern = "csv$”, full.names = TRUE) %>%

to_df (fread,
idvalue = basename(.x),
idname = "filename”,
trace = "pb”

to_list

to_long 31

)

End(Not run)

to_long Convert data to long or to wide form

Description

to_long increases number of rows in the dataset and reduce number of columns. to_wide makes
invert transformation. You can use cols for selecting variables in the arguments. See examples.

Usage
to_long(
data,
columns = NULL,
keep = NULL,
names_in = "variable”,
values_in = "value”,

drop_na = FALSE,
names_factor = TRUE,
value_factor = FALSE,

to_wide(
data,
keep = NULL,
names_in = variable,
values_in = value,
fun = identity,

n o n

sep = _,
fill = NA,
missing_comb = c("none”, "rows"”, "columns”, "all"),
)
Arguments
data A data.frame to convert
columns unquoted names of variables for stacking. When missing, we will stack all
columns outside keep columns.
keep unquoted names of columns which will be kept as is, e. g. only recycled or

deduplicated. If missing, it is all columns except stacked or unstacked. If FALSE
then nothing will be kept.

32 to_long

names_in name of the stacked variable names column. The default name is ’variable’. It is
quoted in the to_long and unquoted in to_wide. If FALSE in the to_wide than
nothing will be widening.

values_in name(-s) of the stacked data values column(s). The default name is ’value’.
Multiple names can be provided here for the case when columns is a list, though
note well that the names provided in columns take precedence. It is quoted in
the to_long and unqoted in to_wide

drop_na If TRUE, NA values will be removed from the stacked data.

names_factor If TRUE, the column with names will be converted to factor, else it will be a
character column. TRUE by default.

value_factor If TRUE, the value column will be converted to factor, else the stacked values
type is left unchanged. FALSE by default.

other arguments passed to data.table: :melt/data.table: :dcast

fun Should the data be aggregated before casting? By default, it is identity - no
aggregation. To use multiple aggregation functions, pass a list; see Examples.

sep Character vector of length 1, indicating the separating character in variable
names generated during casting. Default is "_".

fill Value with which to fill missing cells. NA by default. If fun is present, takes the
value by applying the function on a 0-length vector.

missing_comb One of "none" (the default), "rows" - include missing combinations in rows,
"columns" - include missing combinations in columns, and "all" include all
missing combinations.

Value

data.table in the wide or long form.
Examples

data(iris)

'to_long'

long_iris = iris %>%
to_long(keep = Species)

long_iris
iris_with_stat = long_iris %>%

take(mean = mean(value),
sd = sd(value),

n = .Nx1.0,
by = .(Species, variable)
) %%
to_long(columns = c(mean, sd, n), names_in = "stat")

'to_wide' - table with multiple stats
iris_with_stat %>%

to_long

to_wide()
iris_with_stat %>%
to_wide(names_in = c(variable, stat))

iris_with_stat %>%
to_wide(names_in = c(variable, Species))

'to_wide' - aggregation function
long_iris %>%
to_wide(fun = list(Mean = mean, SD = sd, N = length))

'%to%' selector - example from tidyr::pivot_longer

data(anscombe)
anscombe %>%
to_long(
list(x = x1 %to% x4, y =yl %to% y4),
names_in = "set”
)

B S S s s
Examples from data.table melt/dcast
I

set.seed(45)
DT = data.table(
i_1 = c(1:5, NA)x1.0,
_2 = c(NA,6,7,8,9,10)*1.0,
_1 = factor(sample(c(letters[1:3], NA), 6, TRUE)),
_2 = factor(c("z", "a", "x", "c", "x", "x"), ordered=TRUE),
_1 = sample(c(letters[1:3], NA), 6, TRUE),
_1 = as.Date(c(1:3,NA,4:5), origin="2013-09-01"),
_2 = as.Date(6:1, origin="2012-01-01")

O 0 0 —h—hHoH

id, values as character/integer/numeric vectors

to_long(DT, f_1, keep = 1:2)

to_long(DT, f_1, keep = c(i_1, i_2))

to_long(DT, f_1, keep = i_1 %to% i_2)

to_long(DT, f_1, keep = cols(i_1:i_2), names_factor = FALSE)

to_long(DT, f_1, keep = cols("i_{1:2}"))

to_long(DT, f_1, keep = cols("*i_"))

to_long(DT, f_1, keep = cols("*i_"), names_in = "var”, values_in = "val")
col_var = "*i_"

to_long(DT, 3, keep = cols(col_var))

to_long(DT, cols("*f_"), keep = cols("*i_"), value_factor = TRUE)

to_long

to_long(mtcars)

to_long(mtcars, keep = am)

to_long(mtcars, columns = c(am, vs, mpg))

to_long(mtcars, columns = c(am, vs, mpg), keep = FALSE)

to_long(DT, keep = f_1, columns = c(i_1, i_2), drop_na = TRUE)

to_long(DT, keep=1:2, columns = list(cols("*f_"), cols(”*d_")), value_factor=TRUE)

data("ChickWeight")
names(ChickWeight) = tolower(names(ChickWeight))
DT = to_long(ChickWeight, keep=2:4)

to_wide(DT, keep = time, fun = mean)

to_wide(DT, keep = FALSE, fun = mean)

to_wide(DT, keep = diet, fun = mean)

to_wide(DT, keep = c(diet, chick), names_in = time, missing_comb = "all")
to_wide(DT, keep = c(diet, chick), names_in = time, missing_comb = "all”, fill = @)
to_wide(DT, chick, time, fun = mean)

using FALSE

DT = data.table(vl = rep(1:2, each = 6),
v2 = rep(rep(1:3, 2), each = 2),
v3 = rep(1:2, 6),
v4 = rnorm(6))

for each combination of (v1, v2), add up all values of v4
to_wide (DT,

cols("*v(1|2)"),

names_in = FALSE,

values_in = v4,

fun = sum

)

multiple values_in and multiple fun

DT = data.table(x=sample(5,20,TRUE),
y=sample(2,20,TRUE),
z=sample(letters[1:2], 20,TRUE),
dl = runif(20),
d2=1L)

multiple values_in

to_wide (DT,
keep = c(x, y),
names_in = z,
values_in = c(d1, d2),
fun = sum,
fill = @)

multiple funs
to_wide(DT,
keep = c(x, y),
names_in = z,

vlookup 35

values_in = d1,
fun = list(sum = sum, mean = mean),
fill = NULL)

multiple fun and values_in (all combinations)
to_wide(DT,

keep = c(x, y),

names_in = z,

values_in = c(d1, d2),

fun = list(sum = sum, mean = mean)

)

multiple fun and values_in (one-to-one)
to_wide(DT,

keep = c(x, y),

names_in = z,

values_in = list(d1, d2),

fun = list(sum = sum, mean = mean)

vlookup Look up values in dictionary.

Description

vlookup function is inspired by VLOOKUP spreadsheet function. It looks for a 1ookup_value in
the 1lookup_column of the dict, and then returns values in the same rows from result_column.
xlookup is simplified version of vlookup. It searches for a lookup_value in the lookup_vector
and return values in the same position from the result_vector.

Usage

vlookup(
lookup_value,
dict,
result_column =
lookup_column
no_match = NA

In 1
- N

xlookup(lookup_value, lookup_vector, result_vector, no_match = NA)

Arguments

lookup_value Vector of looked up values
dict data.frame. Dictionary.

result_column numeric or character. Resulting columns in the dict. Default value for result_column
is 2 - for frequent case of dictionary with keys in the first column and results in
the second column.

36 vlookup

lookup_column Column of dict in which lookup value will be searched. By default, it is the
first column of the dict.

no_match vector of length one. NA by default. Where a valid match is not found, return
the 'no_match’ value you supply.

lookup_vector vector in which ’lookup_value’ will be searched during ’xlookup’.

result_vector vector with resulting values for *xlookup’.

Value

x1lookup always return vector, vlookup returns vector if the result_column is single value. In the
opposite case data.frame will be returned.

Examples

with data.frame

dict = data.frame(num=1:26, small=letters, cap=LETTERS)

vlookup(1:3, dict)

vlookup(c(45,1:3,58), dict, result_column='cap')

vlookup(c(45,1:3,58), dict, result_column='cap', no_match = "Not found")

the same with xlookup

xlookup(1:3, dict$num, dict$small)

xlookup(c(45,1:3,58), dict$num, dict$cap)

xlookup(c(45,1:3,58), dict$num, dict$cap, no_match = "Not found")

example from base 'merge'

authors = data.table(
surname = c("Tukey”, "Venables", "Tierney"”, "Ripley”, "McNeil"),
nationality = c("US"”, "Australia”, "US", "UK", "Australia"),
deceased = c("yes"”, rep("no", 4))

books = data.table(
surname = c("Tukey”, "Venables", "Tierney”,
"Ripley”, "Ripley"”, "McNeil”, "R Core"),
title = c("Exploratory Data Analysis”,
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics”, "Stochastic Simulation”,
"Interactive Data Analysis”,
"An Introduction to R")
)

let(books,
c("author_nationality”, "author_deceased”) := vlookup(surname,
dict = authors,
result_column = 2:3

)1

vlookup 37

Just for fun. Examples borrowed from Microsoft Excel.
It is not the R way of doing things.

Example 2

ex2 = fread(”
Item_ID Item Cost Markup
ST-340 Stroller 145.67 .30
BI-567 Bib 3.56 0.40
DI-328 Diapers 21.45 0.35
WI-989 Wipes 5.12 0.40
AS-469 Aspirator 2.56 0.45
")

Calculates the retail price of diapers by adding the markup percentage to the cost.
vlookup("DI-328", ex2, 3) * (1 + vlookup("DI-328", ex2, 4)) # 28.9575

Calculates the sale price of wipes by subtracting a specified discount from
the retail price.
(vlookup("WI-989", ex2, "Cost") * (1 + vlookup(”"WI-989", ex2, "Markup”))) * (1 - 0.2) #5.7344

A2
A3

ex2[["Item_ID"]11[1]
ex2[["Item_ID"]11[2]

If the cost of an item is greater than or equal to $20.00, displays the string
"Markup is nn%"; otherwise, displays the string "Cost is under $20.00".
ifelse(vlookup(A2, ex2, "Cost") >= 20,

paste@("Markup is " , 100 x vlookup(A2, ex2, "Markup"),"%"),

"Cost is under $20.00") # Markup is 30%

If the cost of an item is greater than or equal to $20.00, displays the string
Markup is nn%"; otherwise, displays the string "Cost is $n.nn".
ifelse(vlookup(A3, ex2, "Cost") >= 20,
paste@("Markup is: " , 100 * vlookup(A3, ex2, "Markup”) , "%"),
paste@("Cost is $", vlookup(A3, ex2, "Cost"))) #Cost is $3.56

Example 3

ex3 = fread('

ID Last_name First_name Title Birth_date
Davis Sara "Sales Rep."” 12/8/1968
Fontana Olivier "V.P. of Sales” 2/19/1952
Leal Karina "Sales Rep.” 8/30/1963
Patten Michael "Sales Rep.” 9/19/1958
Burke Brian "Sales Mgr." 3/4/1955
Sousa Luis "Sales Rep."” 7/2/1963

o U A w N =

®,

If there is an employee with an ID of 5, displays the employee's last name;
otherwise, displays the message "Employee not found”.
vlookup(5, ex3, "Last_name”, no_match = "Employee not found") # Burke

38

Many employees
vlookup(1:10, ex3, "Last_name”, no_match = "Employee not found")

For the employee with an ID of 4, concatenates the values of three cells into

a complete sentence.

paste@(vlookup(4, ex3, "First_name"”), " ",
vlookup(4, ex3, "Last_name"), " is a
vlookup(4, ex3, "Title")) # Michael Patten is a Sales Rep.

n
’

vlookup

Index

coalesce, 7
cols, 31

cols (columns), 8
columns, 8
copy, 9

data.table, 13, 17,22-24
dt_add_count (dt_count), 10
dt_anti_join (dt_left_join), 11
dt_count, 10

dt_filter (dt_mutate), 12
dt_full_join (dt_left_join), 11
dt_inner_join (dt_left_join), 11
dt_left_join, 11

dt_mutate, 12

dt_right_join (dt_left_join), 11
dt_select (dt_mutate), 12
dt_semi_join (dt_left_join), 11
dt_summarise (dt_mutate), 12
dt_summarise_all (dt_mutate), 12
dt_summarize (dt_mutate), 12
dt_summarize_all (dt_mutate), 12
dt_top_n (dt_count), 10

fcoalesce, 7

let (let_if), 15
let_all (let_if), 15
let_if, 15

maditr (maditr-package), 2
maditr-package, 2

query (query_if), 22
query_if, 22

rows (columns), 8

take (let_if), 15
take_all (let_if), 15
take_if (let_if), 15

39

text_expand, 8, 16, 27
to_df (to_list), 28
to_dfc (to_list), 28
to_dfr (to_list), 28
to_list, 28
to_long, 31

to_vec (to_list), 28
to_wide (to_long), 31

unlist, 28, 29
vlookup, 35

xlookup (vlookup), 35

	maditr-package
	coalesce
	columns
	copy
	dt_count
	dt_left_join
	dt_mutate
	let_if
	query_if
	text_expand
	to_list
	to_long
	vlookup
	Index

