
Package ‘lwgeom’
January 12, 2026

Version 0.2-15

Title Bindings to Selected 'liblwgeom' Functions for Simple Features

Description Access to selected functions found in 'liblwgeom' <https:
//github.com/postgis/postgis/tree/master/liblwgeom>, the light-
weight geometry library used by 'PostGIS' <http://postgis.net/>.

Depends R (>= 3.3.0)

Imports Rcpp, units, sf (>= 1.0-15)

Suggests covr, sp, geosphere, testthat

LinkingTo Rcpp, sf (>= 0.6-0)

SystemRequirements GEOS (>= 3.5.0), PROJ (>= 4.8.0), sqlite3

License GPL-2

Copyright file COPYRIGHTS

Encoding UTF-8

URL https://r-spatial.github.io/lwgeom/,

https://github.com/r-spatial/lwgeom

BugReports https://github.com/r-spatial/lwgeom/issues

Collate init.R RcppExports.R geohash.R split.R subdivide.R valid.R
transform.R bounding_circle.R bearing.R snap_to_grid.R
startpoint.R twkb.R perimeter.R clockwise.R geod.R wkt.R
wrap_x.R

RoxygenNote 7.3.3

NeedsCompilation yes

Author Edzer Pebesma [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8049-7069>),

Colin Rundel [ctb],
Andy Teucher [ctb],
liblwgeom developers [cph]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>

Repository CRAN

Date/Publication 2026-01-12 16:40:02 UTC

1

https://github.com/postgis/postgis/tree/master/liblwgeom
https://github.com/postgis/postgis/tree/master/liblwgeom
http://postgis.net/
https://r-spatial.github.io/lwgeom/
https://github.com/r-spatial/lwgeom
https://github.com/r-spatial/lwgeom/issues
https://orcid.org/0000-0001-8049-7069

2 bounding_circle

Contents
bounding_circle . 2
geod . 3
lwgeom_extSoftVersion . 5
lwgeom_make_valid . 5
perimeter . 5
st_astext . 6
st_as_sfc.TWKB . 6
st_force_polygon_cw . 7
st_geod_azimuth . 8
st_geohash . 8
st_is_polygon_cw . 9
st_linesubstring . 10
st_snap_to_grid . 11
st_split . 12
st_startpoint . 12
st_subdivide . 13
st_transform_proj . 14
st_wrap_x . 15

Index 16

bounding_circle Generate the minimum bounding circle

Description

Generate the minimum bounding circle

Usage

st_minimum_bounding_circle(x, nQuadSegs = 30)

st_minimum_bounding_radius(x)

Arguments

x object of class sfg, sfc or sf

nQuadSegs number of segments per quadrant (passed to st_buffer)

Details

st_minimum_bounding_circle uses the lwgeom_calculate_mbc method also used by the Post-
GIS command ST_MinimumBoundingCircle. st_minimum_bounding_radius also uses the lwgeom_calculate_mbc
method, but returns the centers (as a geometry) and the respective radii (as a column).

geod 3

Value

Object of the same class as x

Examples

library(sf)

x = st_multipoint(matrix(c(0,1,0,1),2,2))
y = st_multipoint(matrix(c(0,0,1,0,1,1),3,2))

mbcx = st_minimum_bounding_circle(x)
mbcy = st_minimum_bounding_circle(y)

if (.Platform$OS.type != "windows") {
plot(mbcx, axes=TRUE); plot(x, add=TRUE)
plot(mbcy, axes=TRUE); plot(y, add=TRUE)

}

nc = st_read(system.file("gpkg/nc.gpkg", package="sf"))
state = st_union(st_geometry(nc))

if (.Platform$OS.type != "windows") {
plot(st_minimum_bounding_circle(state), asp=1)
plot(state, add=TRUE)

}

geod liblwgeom geodetic functions

Description

liblwgeom geodetic functions for length, area, segmentizing, covers

Usage

st_geod_area(x)

st_geod_length(x)

st_geod_segmentize(x, max_seg_length)

st_geod_covers(x, y, sparse = TRUE)

st_geod_covered_by(x, y, sparse = TRUE)

st_geod_distance(x, y, tolerance = 0, sparse = FALSE)

4 geod

Arguments

x object of class sf, sfc or sfg

max_seg_length segment length in degree, radians, or as a length unit (e.g., m)

y object of class sf, sfc or sfg

sparse logical; if TRUE, return a sparse matrix (object of class sgbp), otherwise, return
a dense logical matrix.

tolerance double or length units value: if positive, the first distance less than tolerance
is returned, rather than the true distance

Details

st_area will give an error message when the area spans the equator and lwgeom is linked to a proj.4
version older than 4.9.0 (see lwgeom_extSoftVersion)

longitude coordinates returned are rescaled to [-180,180)

Note

this function should is used by st_distance, do not use it directly

Examples

library(sf)
nc = st_read(system.file("gpkg/nc.gpkg", package="sf"))
st_geod_area(nc[1:3,])
st_area(nc[1:3,])
l = st_sfc(st_linestring(rbind(c(7,52), c(8,53))), crs = 4326)
st_geod_length(l)
library(units)
pol = st_polygon(list(rbind(c(0,0), c(0,60), c(60,60), c(0,0))))
x = st_sfc(pol, crs = 4326)
seg = st_geod_segmentize(x[1], set_units(10, km))
plot(seg, graticule = TRUE, axes = TRUE)
pole = st_polygon(list(rbind(c(0,80), c(120,80), c(240,80), c(0,80))))
pt = st_point(c(0,90))
x = st_sfc(pole, pt, crs = 4326)
st_geod_covers(x[c(1,1,1)], x[c(2,2,2,2)])
pole = st_polygon(list(rbind(c(0,80), c(120,80), c(240,80), c(0,80))))
pt = st_point(c(30,70))
x = st_sfc(pole, pt, crs = 4326)
st_geod_distance(x, x)

lwgeom_extSoftVersion 5

lwgeom_extSoftVersion Provide the external dependencies versions of the libraries linked to sf

Description

Provide the external dependencies versions of the libraries linked to sf

Usage

lwgeom_extSoftVersion()

lwgeom_make_valid Make an invalid geometry valid

Description

Make an invalid geometry valid

Usage

lwgeom_make_valid(x)

Arguments

x object of class sfc

perimeter Compute perimeter from polygons or other geometries

Description

Compute perimeter from polygons or other geometries

Usage

st_perimeter_lwgeom(x)

st_perimeter_2d(x)

Arguments

x object of class sf, sfc or sfg

Value

numerical vector with perimeter for each feature (geometry), with unit of measure when possible

6 st_as_sfc.TWKB

st_astext Return Well-known Text representation of simple feature geometry

Description

Return Well-known Text representation of simple feature geometry or coordinate reference system

Usage

st_astext(x, digits = getOption("digits"), ..., EWKT = FALSE)

st_asewkt(x, digits = options("digits"))

Arguments

x object of class sfg, sfc, or sf

digits integer; number of decimal digits to print

... ignored

EWKT logical; use PostGIS Enhanced WKT (includes srid)

Details

The returned WKT representation of simple feature geometry conforms to the simple features access
specification and extensions (if EWKT = TRUE), known as EWKT, supported by PostGIS and other
simple features implementations for addition of SRID to a WKT string.

st_asewkt() returns the Well-Known Text (WKT) representation of the geometry with SRID meta
data.

Examples

library(sf)
pt <- st_sfc(st_point(c(1.0002,2.3030303)), crs = 4326)
st_astext(pt, 3)
st_asewkt(pt, 3)

st_as_sfc.TWKB create sfc object from tiny well-known binary (twkb)

Description

create sfc object from tiny well-known binary (twkb)

Usage

S3 method for class 'TWKB'
st_as_sfc(x, ...)

https://www.ogc.org/standards/sfa/
http://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT

st_force_polygon_cw 7

Arguments

x list with raw vectors, of class TWKB

... ignored

See Also

https://github.com/TWKB/Specification/blob/master/twkb.md

Examples

l = structure(list(as.raw(c(0x02, 0x00, 0x02, 0x02, 0x02, 0x08, 0x08))), class = "TWKB")
library(sf) # load generic
st_as_sfc(l)

st_force_polygon_cw Force a POLYGON or MULTIPOLYGON to be clockwise

Description

Check if a POLYGON or MULTIPOLYGON is clockwise, and if not make it so. According to the
’Right-hand-rule’, outer rings should be clockwise, and inner holes should be counter-clockwise

Usage

st_force_polygon_cw(x)

Arguments

x object with polygon geometries

Value

object of the same class as x

Examples

library(sf)
polys <- st_sf(cw = c(FALSE, TRUE),

st_as_sfc(c('POLYGON ((0 0, 1 0, 1 1, 0 0))',
'POLYGON ((1 1, 2 2, 2 1, 1 1))')))

st_force_polygon_cw(polys)
st_force_polygon_cw(st_geometry(polys))
st_force_polygon_cw(st_geometry(polys)[[1]])

8 st_geohash

st_geod_azimuth compute azimuth between sequence of points

Description

compute azimuth between sequence of points

Usage

st_geod_azimuth(x, y = NULL)

Arguments

x object of class sf, sfc or sfg

y object of class sf, sfc or sfg, or NULL

Examples

library(sf)
p = st_sfc(st_point(c(7,52)), st_point(c(8,53)), crs = 4326)
st_geod_azimuth(p)

st_geohash compute geohash from (average) coordinates

Description

compute geohash from (average) coordinates

Usage

st_geohash(x, precision = 0)

st_geom_from_geohash(
hash,
precision = -1,
crs = st_crs("OGC:CRS84"),
raw = FALSE

)

st_is_polygon_cw 9

Arguments

x object of class sf, sfc or sfg

precision integer; precision (length) of geohash returned. From the liblwgeom source:
“where the precision is non-positive, a precision based on the bounds of the
feature. Big features have loose precision. Small features have tight precision.”

hash character vector with geohashes

crs object of class ‘crs‘

raw logical; if ‘TRUE‘, return a matrix with bounding box coordinates on each row

Details

see https://en.wikipedia.org/wiki/Geohash.

Value

‘st_geohash‘ returns a character vector with geohashes; empty or full geometries result in ‘NA‘

‘st_geom_from_geohash‘ returns a (bounding box) polygon for each geohash if ‘raw‘ is ‘FALSE‘,
if ‘raw‘ is ‘TRUE‘ a matrix is returned with bounding box coordinates on each row.

Examples

library(sf)
lwgeom::st_geohash(st_sfc(st_point(c(1.5,3.5)), st_point(c(0,90))), 2)
lwgeom::st_geohash(st_sfc(st_point(c(1.5,3.5)), st_point(c(0,90))), 10)
st_geom_from_geohash(c('9qqj7nmxncgyy4d0dbxqz0', 'up'), raw = TRUE)
o = options(digits = 20) # for printing purposes
st_geom_from_geohash(c('9qqj7nmxncgyy4d0dbxqz0', 'u1hzz631zyd63zwsd7zt'))
st_geom_from_geohash('9qqj7nmxncgyy4d0dbxqz0', 4)
st_geom_from_geohash('9qqj7nmxncgyy4d0dbxqz0', 10)
options(o)

st_is_polygon_cw Check if a POLYGON or MULTIPOLYGON is clockwise

Description

Check if a POLYGON or MULTIPOLYGON is clockwise. According to the ’Right-hand-rule’,
outer rings should be clockwise, and inner holes should be counter-clockwise

Usage

st_is_polygon_cw(x)

Arguments

x object with polygon geometries

https://en.wikipedia.org/wiki/Geohash

10 st_linesubstring

Value

logical with length the same number of features in ‘x‘

Examples

library(sf)
polys <- st_sf(cw = c(FALSE, TRUE),

st_as_sfc(c('POLYGON ((0 0, 1 0, 1 1, 0 0))',
'POLYGON ((1 1, 2 2, 2 1, 1 1))')))

st_is_polygon_cw(polys)
st_is_polygon_cw(st_geometry(polys))
st_is_polygon_cw(st_geometry(polys)[[1]])

st_linesubstring get substring from linestring

Description

get substring from linestring

Usage

st_linesubstring(x, from, to, tolerance, ...)

Arguments

x object of class sfc, sf or sfg

from relative distance from origin (in [0,1])

to relative distance from origin (in [0,1])

tolerance tolerance parameter, when to snap to line node node

... ignored

Value

object of class sfc

Examples

library(sf)
lines = st_sfc(st_linestring(rbind(c(0,0), c(1,2), c(2,0))), crs = 4326)
spl = st_linesubstring(lines, 0.2, 0.8) # should warn
plot(st_geometry(lines), col = 'red', lwd = 3)
plot(spl, col = 'black', lwd = 3, add = TRUE)
st_linesubstring(lines, 0.49999, 0.8) # three points
st_linesubstring(lines, 0.49999, 0.8, 0.001) # two points: snap start to second node

st_snap_to_grid 11

st_snap_to_grid Snap geometries to a grid

Description

Snap geometries to a grid

Usage

st_snap_to_grid(x, size, origin)

Arguments

x object with geometries to be snapped

size numeric or (length) units object; grid cell size in x-, y- (and possibly z- and m-)
directions

origin numeric; origin of the grid

Value

object of the same class as x

Examples

obtain data
library(sf)
x = st_read(system.file("gpkg/nc.gpkg", package="sf"), quiet = TRUE)[1,] %>%

st_geometry %>%
st_transform(3395)

snap to a grid of 5000 m
err = try(y <- st_snap_to_grid(x, 5000))

plot data for visual comparison
if (!inherits(err, "try-error")) {
opar = par(mfrow = c(1, 2))
plot(x, main = "orginal data")
plot(y, main = "snapped to 5000 m")
par(opar)

}

12 st_startpoint

st_split Return a collection of geometries resulting by splitting a geometry

Description

Return a collection of geometries resulting by splitting a geometry

Usage

st_split(x, y)

Arguments

x object with geometries to be splitted

y object split with (blade); if y contains more than one feature geometry, the ge-
ometries are st_combine ’d

Value

object of the same class as x

Examples

library(sf)
l = st_as_sfc('MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))')
pt = st_sfc(st_point(c(30,30)))
st_split(l, pt)

st_startpoint Return the start and end points from lines

Description

Return the start and end points from lines

Usage

st_startpoint(x)

st_endpoint(x)

Arguments

x line of class sf, sfc or sfg

st_subdivide 13

Details

see https://postgis.net/docs/ST_StartPoint.html and https://postgis.net/docs/ST_
EndPoint.html.

Value

sf object representing start and end points

Examples

library(sf)
m = matrix(c(0, 1, 2, 0, 1, 4), ncol = 2)
l = st_sfc(st_linestring(m))
lwgeom::st_startpoint(l)
lwgeom::st_endpoint(l)
l2 = st_sfc(st_linestring(m), st_linestring(m[3:1,]))
lwgeom::st_startpoint(l2)
lwgeom::st_endpoint(l2)

st_subdivide Return a collection of geometries resulting by subdividing a geometry

Description

Return a collection of geometries resulting by subdividing a geometry

Usage

st_subdivide(x, max_vertices)

Arguments

x object with geometries to be subdivided

max_vertices integer; maximum size of the subgeometries (at least 8)

Value

object of the same class as x

Examples

library(sf)
demo(nc, ask = FALSE, echo = FALSE)
x = st_subdivide(nc, 10)
plot(x[1])

https://postgis.net/docs/ST_StartPoint.html
https://postgis.net/docs/ST_EndPoint.html
https://postgis.net/docs/ST_EndPoint.html

14 st_transform_proj

st_transform_proj Transform or convert coordinates of simple features directly with
Proj.4 (bypassing GDAL)

Description

Transform or convert coordinates of simple features directly with Proj.4 (bypassing GDAL)

Usage

st_transform_proj(x, crs, ...)

S3 method for class 'sfc'
st_transform_proj(x, crs, ...)

S3 method for class 'sf'
st_transform_proj(x, crs, ...)

S3 method for class 'sfg'
st_transform_proj(x, crs, ...)

Arguments

x object of class sf, sfc or sfg

crs character; target CRS, or, in case of a length 2 character vector, source and target
CRS

... ignored

Details

Transforms coordinates of object to new projection, using PROJ directly rather than the GDAL API
used by st_transform.

If crs is a single CRS, it forms the target CRS, and in that case the source CRS is obtained as
st_crs(x). Since this presumes that the source CRS is accepted by GDAL (which is not always
the case), a second option is to specify the source and target CRS as two proj4strings in argument
crs. In the latter case, st_crs(x) is ignored and may well be NA.

The st_transform_proj method for sfg objects assumes that the CRS of the object is available as
an attribute of that name.

Examples

library(sf)
p1 = st_point(c(7,52))
p2 = st_point(c(-30,20))
sfc = st_sfc(p1, p2, crs = 4326)
sfc

st_wrap_x 15

st_transform_proj(sfc, "+proj=wintri")
library(sf)
nc = st_read(system.file("shape/nc.shp", package="sf"))
st_transform_proj(nc[1,], "+proj=wintri +over")
st_transform_proj(structure(p1, proj4string = "+init=epsg:4326"), "+init=epsg:3857")

st_wrap_x Splits input geometries by a vertical line and moves components
falling on one side of that line by a fixed amount

Description

Splits input geometries by a vertical line and moves components falling on one side of that line by
a fixed amount

Usage

st_wrap_x(x, wrap, move)

Arguments

x object with geometries to be split

wrap x value of split line

move amount by which geometries falling to the left of the line should be translated to
the right

Value

object of the same class as x

Examples

library(sf)
demo(nc, ask = FALSE, echo = FALSE)
x = st_wrap_x(nc, -78, 10)
plot(x[1])

Index

bounding_circle, 2

geod, 3

lwgeom_extSoftVersion, 4, 5
lwgeom_make_valid, 5

perimeter, 5

st_as_sfc.TWKB, 6
st_asewkt (st_astext), 6
st_astext, 6
st_combine, 12
st_distance, 4
st_endpoint (st_startpoint), 12
st_force_polygon_cw, 7
st_geod_area (geod), 3
st_geod_azimuth, 8
st_geod_covered_by (geod), 3
st_geod_covers (geod), 3
st_geod_distance (geod), 3
st_geod_length (geod), 3
st_geod_segmentize (geod), 3
st_geohash, 8
st_geom_from_geohash (st_geohash), 8
st_is_polygon_cw, 9
st_linesubstring, 10
st_minimum_bounding_circle

(bounding_circle), 2
st_minimum_bounding_radius

(bounding_circle), 2
st_perimeter_2d (perimeter), 5
st_perimeter_lwgeom (perimeter), 5
st_snap_to_grid, 11
st_split, 12
st_startpoint, 12
st_subdivide, 13
st_transform, 14
st_transform_proj, 14
st_wrap_x, 15

16

	bounding_circle
	geod
	lwgeom_extSoftVersion
	lwgeom_make_valid
	perimeter
	st_astext
	st_as_sfc.TWKB
	st_force_polygon_cw
	st_geod_azimuth
	st_geohash
	st_is_polygon_cw
	st_linesubstring
	st_snap_to_grid
	st_split
	st_startpoint
	st_subdivide
	st_transform_proj
	st_wrap_x
	Index

