Version 0.9-6

Date 2026-01-19

Package ‘linprog’

January 19, 2026

Title Linear Programming / Optimization

Author Arne Henningsen [aut, cre]

Maintainer Arne Henningsen <arne.henningsen@gmail.com>

Depends R (>=2.4.0), IpSolve

Description Can be used to solve Linear Programming / Linear

License GPL (>=2)

Optimization problems by using the simplex algorithm.

URL http://linprog.r-forge.r-project.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-19 14:10:02 UTC

Contents

Index

print.solveLP . .
readMps
solveLP
summary.solveLP
writeMps

http://linprog.r-forge.r-project.org/

2 print.solveLP

print.solvelP Print Objects of Class solveLP

Description

This method prints the results of the Linear Programming algorithm.

Usage
S3 method for class 'solvelP'
print(x, digits=6, ...)
Arguments
X an object returned by solvelP.
digits number of digits to print.

currently ignored.

Value

print.solvelP invisibly returns the object given in argument x.

Author(s)

Arne Henningsen

See Also

solvelP, summary.solvelP, readMps, writeMps

Examples

example of Steinhauser, Langbehn and Peters (1992)
Not run: library(linprog)

Production activities
cvec <- c(1800, 600, 600) # gross margins
names(cvec) <- c("Milk"”,"Bulls”,"Pigs")

Constraints (quasi-fix factors)
bvec <- c(40, 90, 2500) # endowment

names(bvec) <- c(”"Land"”,"Stable"”,"Labor")

Needs of Production activities

Amat <- rbind(c(0.7, 0.35, 0),
c(1.5, 1, 3D,
c(50, 12.5, 20))

Maximize the gross margin

readMps 3

res <- solvelP(cvec, bvec, Amat, TRUE)

print the results
print(res)

readMps Read MPS Files

Description

This function reads MPS files - the standard format for Linear Programming problems.

Usage

readMps(file, solve=FALSE, maximum=FALSE)

Arguments
file a character string naming the file to read.
solve logical. Should the problem be solved after reading it from the file (using
solvelP)?
maximum logical. Should we maximize or minimize (the default)?
Details

Equality constraints and ’greater than’-bounds are not implemented yet.

Value

readMps returns a list containing following objects:

name the name of the Linear Programming problem.

cvec vector c.

bvec vector b.

Amat matrix A.

res if solve is TRUE, it contains the results of the solving process (an object of

class solvelP).

Author(s)

Arne Henningsen

See Also

solvelP, writeMps

4 solvelLP

Examples

example of Steinhauser, Langbehn and Peters (1992)
Production activities

cvec <- c(1800, 600, 600) # gross margins
names(cvec) <- c("Cows"”,"Bulls”,"Pigs")

Constraints (quasi-fix factors)
bvec <- c(40, 90, 2500) # endowment

names(bvec) <- c("Land"”,"Stable","Labor")

Needs of Production activities

Amat <- rbind(c(0.7, 0.35, 0),
c(1.5, 1, 3),
c(50, 12.5, 20))

Write to MPS file
writeMps("steinh.mps"”, cvec, bvec, Amat, "Steinhauser”)

delete all LP objects
rm(cvec, bvec, Amat)

Read LP data from MPS file and solve it.
1p <- readMps("steinh.mps”, TRUE, TRUE)

Print the results
lp$res

remove the MPS file
file.remove("steinh.mps”)

solvelP Solve Linear Programming / Optimization Problems

Description

Minimizes (or maximizes) ¢’z, subject to Az <= band z >= 0.

Note that the inequality signs <= of the individual linear constraints in Az <= b can be changed
with argument const.dir.

Usage

solvelLP(cvec, bvec, Amat, maximum = FALSE,
const.dir = rep("<=", length(bvec)),
maxiter = 1000, zero = 1e-9, tol = le-6, dualto

1 = tol,
1pSolve = FALSE, solve.dual = FALSE, verbose = 0)

solvelLP 5

Arguments
cvec vector ¢ (containing n elements).
bvec vector b (containing m elements).
Amat matrix A (of dimension m X n).
maximum logical. Should we maximize or minimize (the default)?
const.dir vector of character strings giving the directions of the constraints: each value
should be one of "<," "<=," "=," "=="">" or ">=". (In each pair the two values
are identical.)
maxiter maximum number of iterations.
zero numbers smaller than this value (in absolute terms) are set to zero.
tol if the constraints are violated by more than this number, the returned component
status is set to 3.
dualtol if the constraints in the dual problem are violated by more than this number, the
returned status is non-zero.
1pSolve logical. Should the package ’1pSolve’ be used to solve the LP problem?
solve.dual logical value indicating if the dual problem should also be solved.
verbose an optional integer variable to indicate how many intermediate results should be
printed (0 = no output; 4 = maximum output).
Details

This function uses the Simplex algorithm of George B. Dantzig (1947) and provides detailed results
(e.g. dual prices, sensitivity analysis and stability analysis).

If the solution = = 0 is not feasible, a 2-phase procedure is applied.

Values of the simplex tableau that are actually zero might get small (positive or negative) numbers
due to rounding errors, which might lead to artificial restrictions. Therefore, all values that are
smaller (in absolute terms) than the value of zero (default is 1e-10) are set to 0.

Solving the Linear Programming problem by the package 1pSolve (of course) requires the instal-
lation of this package, which is available on CRAN (https://cran.r-project.org/package=
1pSolve). Since the 1pSolve package uses C-code and this (1inprog) package is not optimized for
speed, the former is much faster. However, this package provides more detailed results (e.g. dual
values, stability and sensitivity analysis).

This function has not been tested extensively and might not solve all feasible problems (or might
even lead to wrong results). However, you can export your LP to a standard MPS file via writeMps
and check it with other software (e.g. 1p_solve, see https://1lpsolve.sourceforge.net/5.5/).
Equality constraints are not implemented yet.

Value
solvelP returns a list of the class solvelP containing following objects:
opt optimal value (minimum or maximum) of the objective function.

solution vector of optimal values of the variables.

iter1 iterations of Simplex algorithm in phase 1.

https://cran.r-project.org/package=lpSolve
https://cran.r-project.org/package=lpSolve
https://lpsolve.sourceforge.net/5.5/

6 solvelLP

iter2 iterations of Simplex algorithm in phase 2.
basvar vector of basic (=non-zero) variables (at optimum).
con matrix of results regarding the constraints:

1st column = maximum values (=vector b);

2nd column = actual values;

3rd column = differences between maximum and actual values;
4th column = dual prices (shadow prices);

5th column = valid region for dual prices.

allvar matrix of results regarding all variables (including slack variables):
Ist column = optimal values;
2nd column = values of vector c;
3rd column = minimum of vector c that does not change the solution;
4th column = maximum of vector c that does not change the solution;
5th column = derivatives to the objective function;
6th column = valid region for these derivatives.

status numeric. Indicates if the optimization did succeed:
0 = success; 1 = IpSolve did not succeed; 2 = solving the dual problem did
not succeed; 3 = constraints are violated at the solution (internal error or large
rounding errors); 4 = simplex algorithm phase 1 did not find a solution within
the number of iterations specified by argument maxiter; 5 = simplex algorithm
phase 2 did not find the optimal solution within the number of iterations speci-
fied by argument maxiter.

1pStatus numeric. Return code of 1p (only if argument 1pSolve is TRUE).
dualStatus numeric. Return code from solving the dual problem (only if argument solve.dual
is TRUE).
maximum logical. Indicates whether the objective function was maximized or minimized.
Tab final *Tableau’ of the Simplex algorith.
1pSolve logical. Has the package ’1pSolve’ been used to solve the LP problem.
solve.dual logical. Argument solve.dual.
maxiter numeric. Argument maxiter.
Author(s)

Arne Henningsen

References

Dantzig, George B. (1951), Maximization of a linear function of variables subject to linear inequal-
ities, in Koopmans, T.C. (ed.), Activity analysis of production and allocation, John Wiley & Sons,
New York, p. 339-347.

Steinhauser, Hugo; Cay Langbehn and Uwe Peters (1992), Einfuehrung in die landwirtschaftliche
Betriebslehre. Allgemeiner Teil, 5th ed., Ulmer, Stuttgart.

Witte, Thomas; Joerg-Frieder Deppe and Axel Born (1975), Lineare Programmierung. Einfuehrung
fuer Wirtschaftswissenschaftler, Gabler-Verlag, Wiesbaden.

solvelLP

See Also

readMps and writeMps

Examples

example of Steinhauser, Langbehn and Peters (1992)

Production activities
cvec <- c(1800, 600, 600) # gross margins

names(cvec) <-

Constraints

c("Cows"”,"Bulls”,"Pigs")

(quasi-fix factors)

bvec <- c(40, 90, 2500) # endowment

names(bvec) <-

c("Land","Stable", "Labor")

Needs of Production activities

Amat <- rbind(

c(0.7, 0.35, ©),
c(1.5, 1, 3),
c(50, 12.5, 20))

Maximize the gross margin

solvelP(cvec,

example 1.1.

bvec, Amat, TRUE)

3 of Witte, Deppe and Born (1975)

Two types of Feed

cvec <- c¢(2.5,
names(cvec) <-

Constraints
bvec <- c(-10,
names(bvec) <-

Matrix A
Amat <- rbind(

2) # prices of feed
c("Feed1”,"Feed2")

(minimum (<@) and maximum (>@) contents)

-1.5, 12)
c("Protein”,"Fat"”,"Fibre")

Minimize the cost

solvelP(cvec,

c(-1.6, -2.4),
c(-0.5, -0.2),
c(2.0, 2.0))
bvec, Amat)

the same optimisation using argument const.dir

solvelP(cvec, abs(bvec), abs(Amat), const.dir

c(">=", ">=ork="))

There are also several other ways to put the data into the arrays, e.g.:

bvec <- c(Protein = -10.0,
Fat = -1.5,
Fibre = 12.0)

cvec <- c(Feedl = 2.5,
Feed2 = 2.0)

Amat <- matrix(@, length(bvec), length(cvec))

rownames (Amat)

<- names(bvec)

8 summary.solveLP

colnames(Amat) <- names(cvec)

Amat["Protein”, "Feedl1”] <- -1.6
Amat["Fat”, "Feed1”] <- -0.5
Amat["Fibre", "Feed1”] <- 2.0
Amat["Protein”, "Feed2"] <- -2.4
Amat["Fat”, "Feed2"] <- -0.2
Amat["Fibre", "Feed2"] <- 2.0

solvelLP(cvec, bvec, Amat)

summary.solvelLP Summary Results for Objects of Class solveLP

Description

These methods prepare and print summary results of the Linear Programming algorithm.

Usage
S3 method for class 'solvelP'
summary (object,...)
S3 method for class 'summary.solvelP'
print(x,...)
Arguments
object an object returned by solvelP.
X an object returned by summary.solvelP.

currently ignored.

Value

summary.solvelP returns an object of class summary.solvelP. print.summary.solvelP invisi-
bly returns the object given in argument x.

Author(s)

Arne Henningsen

See Also

solvelP, print.solvelP, readMps, writeMps

writeMps 9

Examples

example of Steinhauser, Langbehn and Peters (1992)
Not run: library(linprog)

Production activities
cvec <- c(1800, 600, 600) # gross margins
names(cvec) <- c("Milk"”,"Bulls”,"Pigs")

Constraints (quasi-fix factors)
bvec <- c(40, 90, 2500) # endowment

names(bvec) <- c("Land"”,"Stable","Labor")

Needs of Production activities

Amat <- rbind(c(0.7, 0.35, 0),
c(1.5, 1, 3),
c(50, 12.5, 20))

Maximize the gross margin
res <- solvelLP(cvec, bvec, Amat, TRUE)

prepare and print the summary results
summary(res)

writeMps Write MPS Files

Description

This function writes MPS files - the standard format for Linear Programming problems.

Usage

writeMps(file, cvec, bvec, Amat, name="LP")

Arguments

file a character string naming the file to write.

cvec vector c.

bvec vector b.

Amat matrix A.

name an optional name for the Linear Programming problem.
Details

The exported LP can be solved by running other software on this MPS file (e.g. 1p_solve, see
https://1lpsolve.sourceforge.net/5.5/).

https://lpsolve.sourceforge.net/5.5/

10 writeMps

Author(s)

Arne Henningsen

See Also

solvelP, readMps

Examples

example of Steinhauser, Langbehn and Peters (1992)
Production activities

cvec <- c(1800, 600, 600) # gross margins
names(cvec) <- c("Cows"”,"Bulls”,"Pigs")

Constraints (quasi-fix factors)
bvec <- c(40, 90, 2500) # endowment
names(bvec) <- c(”Land"”,"Stable","Labor")

Needs of Production activities

Amat <- rbind(c(0.7, 0.35, 0
c(1.5, 1, 3
c(50, 12.5, 20

Write to MPS file
writeMps("steinh.mps"”, cvec, bvec, Amat, "Steinhauser”)

remove the MPS file
file.remove("steinh.mps”)

Index

* optimize
print.solvelP, 2
readMps, 3
solvelP, 4
summary.solvelP, 8
writeMps, 9

1p, 6

print.solvelP, 2,8
print.summary.solvelP
(summary.solvelP), 8

readMps, 2, 3,7, 8, 10

solvelP, 2, 3, 4,8, 10
summary.solvelP, 2, 8

writeMps, 2, 3,5,7, 8,9

11

	print.solveLP
	readMps
	solveLP
	summary.solveLP
	writeMps
	Index

