
Package ‘ldmppr’
January 13, 2026

Type Package

Title Estimate and Simulate from Location Dependent Marked Point
Processes

Version 1.1.1

Maintainer Lane Drew <lanetdrew@gmail.com>

Description A suite of tools for estimating, assessing model fit, simulating from, and visualizing loca-
tion dependent marked point processes characterized by regularity in the pattern.
You provide a reference marked point process, a set of raster images containing location spe-
cific covariates, and select the estimation algorithm and type of mark model.
'ldmppr' estimates the process and mark models and allows you to check the appropriate-
ness of the model using a variety of diagnostic tools.
Once a satisfactory model fit is obtained, you can simulate from the model and visualize the re-
sults.
Documentation for the package 'ldmppr' is available in the form of a vignette.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports stats, bundle, Rcpp (>= 1.0.12), terra, doParallel, xgboost,
ranger, parsnip (>= 1.4.0), dials, recipes, rsample, tune,
workflows, magrittr, hardhat, ggplot2, spatstat.geom,
spatstat.explore, nloptr, GET, progress, future, furrr,
foreach, yardstick

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/lanedrew/ldmppr

BugReports https://github.com/lanedrew/ldmppr/issues

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0), dplyr

VignetteBuilder knitr

Depends R (>= 3.5.0)

Config/testthat/edition 3

1

https://github.com/lanedrew/ldmppr
https://github.com/lanedrew/ldmppr/issues

2 check_model_fit

NeedsCompilation yes

Author Lane Drew [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0006-5427-4092>),

Andee Kaplan [aut] (ORCID: <https://orcid.org/0000-0002-2940-889X>)

Repository CRAN

Date/Publication 2026-01-13 08:30:07 UTC

Contents
check_model_fit . 2
estimate_process_parameters . 5
extract_covars . 9
generate_mpp . 10
ldmppr_fit . 10
ldmppr_mark_model . 12
ldmppr_model_check . 14
ldmppr_sim . 15
medium_example_data . 16
plot_mpp . 17
power_law_mapping . 18
predict_marks . 18
scale_rasters . 20
simulate_mpp . 21
simulate_sc . 23
small_example_data . 24
train_mark_model . 25

Index 28

check_model_fit Check the fit of an estimated model using global envelope tests

Description

Performs global envelope tests for nonparametric L, F, G, J, E, and V summary functions (spatstat/GET).
These tests assess goodness-of-fit of the estimated model relative to a reference marked point pat-
tern. The reference marked point pattern can be supplied directly via reference_data (a marked
ppp object), or derived internally from a ldmppr_fit object.

Usage

check_model_fit(
reference_data = NULL,
t_min = 0,
t_max = 1,
process = c("self_correcting"),

https://orcid.org/0009-0006-5427-4092
https://orcid.org/0000-0002-2940-889X

check_model_fit 3

process_fit = NULL,
anchor_point = NULL,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
thinning = TRUE,
edge_correction = "none",
competition_radius = 15,
n_sim = 2500,
save_sims = TRUE,
verbose = TRUE,
seed = 0

)

Arguments

reference_data (optional) a marked ppp object for the reference dataset. If NULL, the reference
pattern is derived from process_fit when process_fit is an ldmppr_fit and
contains data_original (preferred) or data with columns (x,y,size).

t_min minimum value for time.

t_max maximum value for time.

process type of process used (currently supports "self_correcting").

process_fit either an ldmppr_fit object (from estimate_process_parameters) or a nu-
meric vector of length 8 giving the process parameters.

anchor_point (optional) vector of (x,y) coordinates of the point to condition on. If NULL, in-
ferred from the reference data (largest mark if available) or from ldmppr_fit.

raster_list a list of raster objects used for predicting marks.

scaled_rasters TRUE or FALSE indicating whether the rasters have already been scaled.

mark_model a mark model object. May be a ldmppr_mark_model or a legacy model.

xy_bounds (optional) vector of bounds as c(a_x, b_x, a_y, b_y). If NULL, will be inferred
from reference_data’s window when reference_data is provided, otherwise
from ldmppr_fit with lower bounds assumed to be 0.

include_comp_inds

TRUE or FALSE indicating whether to compute competition indices.

thinning TRUE or FALSE indicating whether to use the thinned simulated values.
edge_correction

type of edge correction to apply ("none" or "toroidal").
competition_radius

distance for competition radius if include_comp_inds = TRUE.

n_sim number of simulated datasets to generate.

save_sims TRUE or FALSE indicating whether to save and return the simulated metrics.

verbose TRUE or FALSE indicating whether to show progress of model checking.

seed integer seed for reproducibility.

4 check_model_fit

Details

This function relies on the spatstat package for the calculation of the point pattern metrics and
the GET package for the global envelope tests. The L, F, G, J, E, and V functions are a collection
of non-parametric summary statistics that describe the spatial distribution of points and marks in a
point pattern. See the documentation for Lest(), Fest(), Gest(), Jest(), Emark(), and Vmark()
for more information. Also, see the global_envelope_test() function for more information on
the global envelope tests.

Value

an object of class "ldmppr_model_check".

References

Baddeley, A., Rubak, E., & Turner, R. (2015). *Spatial Point Patterns: Methodology and Ap-
plications with R*. Chapman and Hall/CRC Press, London. ISBN 9781482210200. Available at:
https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/
Baddeley-Rubak-Turner/p/book/9781482210200.

Myllymäki, M., & Mrkvička, T. (2023). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME].
doi:10.48550/arXiv.1911.06583.

Examples

Note: The example below is provided for illustrative purposes and may take some time to run.

Load the small example data
data(small_example_data)

Load the example mark model that previously was trained on the small example data
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),

pattern = "\\.tif$", full.names = TRUE)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Generate the reference pattern
reference_data <- generate_mpp(

locations = small_example_data[, c("x", "y")],
marks = small_example_data$size,
xy_bounds = c(0, 25, 0, 25)

)

Specify the estimated parameters of the self-correcting process
Note: These would generally be estimated using estimate_process_parameters.

https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200
https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200
https://doi.org/10.48550/arXiv.1911.06583

estimate_process_parameters 5

These values are estimates from the small_example_data generating script.
estimated_parameters <- c(

0.05167978, 8.20702166, 0.02199940, 2.63236890,
1.82729512, 0.65330061, 0.86666748, 0.04681878

)

Check the model fit
example_model_fit <- check_model_fit(

reference_data = reference_data,
t_min = 0,
t_max = 1,
process = "self_correcting",
process_fit = estimated_parameters,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
thinning = TRUE,
edge_correction = "none",
competition_radius = 10,
n_sim = 100,
save_sims = FALSE,
verbose = TRUE,
seed = 90210

)

plot(example_model_fit, which = 'combined')

estimate_process_parameters

Estimate point process parameters using log-likelihood maximization

Description

Estimate spatio-temporal point process parameters by maximizing the (approximate) full log-likelihood
using nloptr. For the self-correcting process, the arrival times must be on (0, 1) and can either be
supplied directly in data as time, or constructed from size via the gentle-decay (power-law) map-
ping power_law_mapping using delta (single fit) or delta_values (delta search).

Usage

estimate_process_parameters(
data,
process = c("self_correcting"),
x_grid = NULL,
y_grid = NULL,
t_grid = NULL,

6 estimate_process_parameters

upper_bounds = NULL,
parameter_inits = NULL,
delta = NULL,
delta_values = NULL,
parallel = FALSE,
num_cores = max(1L, parallel::detectCores() - 1L),
set_future_plan = FALSE,
strategy = c("local", "global_local", "multires_global_local"),
grid_levels = NULL,
refine_best_delta = TRUE,
global_algorithm = "NLOPT_GN_CRS2_LM",
local_algorithm = "NLOPT_LN_BOBYQA",
global_options = list(maxeval = 150),
local_options = list(maxeval = 300, xtol_rel = 1e-05, maxtime = NULL),
n_starts = 1L,
jitter_sd = 0.35,
seed = 1L,
finite_bounds = NULL,
verbose = TRUE

)

Arguments

data a data.frame or matrix. Must contain either columns (time, x, y) or (x, y,
size). If a matrix is provided for delta search, it must have column names
c("x","y","size").

process character string specifying the process model. Currently supports "self_correcting".
x_grid, y_grid, t_grid

numeric vectors defining the integration grid for (x, y, t).

upper_bounds numeric vector of length 3 giving c(b_t, b_x, b_y).
parameter_inits

numeric vector of length 8 giving initialization values for the model parameters.

delta (optional) numeric scalar used only when data contains (x,y,size) but not
time.

delta_values (optional) numeric vector. If supplied, the function fits the model for each value
of delta_values (mapping size -> time via power_law_mapping) and returns
the best fit (lowest objective).

parallel logical. If TRUE, uses furrr/future to parallelize either (a) over delta_values
(when provided) or (b) over multi-start initializations (when delta_values is
NULL and n_starts > 1).

num_cores Integer number of workers to use when set_future_plan = TRUE.
set_future_plan

TRUE or FALSE, if TRUE, temporarily sets future::plan(multisession, workers
= num_cores) and restores the original plan on exit.

strategy Character string specifying the estimation strategy: - "local": single-level local
optimization from parameter_inits. - "global_local": single-level global

estimate_process_parameters 7

optimization (from parameter_inits) followed by local polish. - "multires_global_local":
multi-resolution fitting over grid_levels (coarsest level uses global + local;
finer levels use local polish only).

grid_levels (optional) list defining the multi-resolution grid schedule when strategy = "multires_global_local".
Each entry can be a numeric vector c(nx, ny, nt) or a list with named en-
tries list(nx=..., ny=..., nt=...). If NULL, uses the supplied (x_grid,
y_grid, t_grid) as a single level.

refine_best_delta

TRUE or FALSE, if TRUE and delta_values is supplied, performs a final refine-
ment fit at the best delta found using the full multi-resolution strategy.

global_algorithm, local_algorithm
character strings specifying the NLopt algorithms to use for the global and local
optimization stages, respectively.

global_options, local_options
named lists of options to pass to nloptr::nloptr() for the global and local
optimization stages, respectively.

n_starts integer number of multi-start initializations to use for the local optimization
stage.

jitter_sd numeric standard deviation used to jitter the multi-start initializations.

seed integer random seed used for multi-start initialization jittering.

finite_bounds (optional) list with components lb and ub giving finite lower and upper bounds
for all 8 parameters. Used only when the selected optimization algorithms re-
quire finite bounds.

verbose TRUE or FALSE, if TRUE, prints progress messages during fitting.

Details

For the self-correcting process, the log-likelihood integral is approximated using the supplied grid
(x_grid, y_grid, t_grid) over the bounded domain upper_bounds. When delta_values is
supplied, this function performs a grid search over delta values, fitting the model separately for
each mapped dataset and selecting the best objective value.

Value

an object of class "ldmppr_fit" containing the best nloptr fit and (optionally) all fits from a delta
search.

References

Møller, J., Ghorbani, M., & Rubak, E. (2016). Mechanistic spatio-temporal point process mod-
els for marked point processes, with a view to forest stand data. Biometrics, 72(3), 687–696.
doi:10.1111/biom.12466.

https://doi.org/10.1111/biom.12466

8 estimate_process_parameters

Examples

data(small_example_data)

x_grid <- seq(0, 25, length.out = 5)
y_grid <- seq(0, 25, length.out = 5)
t_grid <- seq(0, 1, length.out = 5)

parameter_inits <- c(1.5, 8.5, .015, 1.5, 3.2, .75, 3, .08)
upper_bounds <- c(1, 25, 25)

fit <- estimate_process_parameters(
data = small_example_data,
process = "self_correcting",
x_grid = x_grid,
y_grid = y_grid,
t_grid = t_grid,
upper_bounds = upper_bounds,
parameter_inits = parameter_inits,
delta = 1,
strategy = "global_local",
global_algorithm = "NLOPT_GN_CRS2_LM",
local_algorithm = "NLOPT_LN_BOBYQA",
global_options = list(maxeval = 150),
local_options = list(maxeval = 25, xtol_rel = 1e-2),
verbose = TRUE

)

coef(fit)
logLik(fit)

Delta-search example (data has x,y,size; time is derived internally for each delta)
fit_delta <- estimate_process_parameters(

data = small_example_data, # x,y,size
process = "self_correcting",
x_grid = x_grid,
y_grid = y_grid,
t_grid = t_grid,
upper_bounds = upper_bounds,
parameter_inits = parameter_inits,
delta_values = c(0.35, 0.5, 0.65, 0.9, 1.0),
parallel = TRUE,
set_future_plan = TRUE,
num_cores = 2,
strategy = "multires_global_local",
grid_levels = list(
list(nx = 5, ny = 5, nt = 5),
list(nx = 8, ny = 8, nt = 8),
list(nx = 10, ny = 10, nt = 10)
),
global_options = list(maxeval = 100),
local_options = list(maxeval = 100, xtol_rel = 1e-3),

extract_covars 9

n_starts = 3,
refine_best_delta = TRUE,
verbose = TRUE

)
plot(fit_delta)

extract_covars Extract covariate values from a set of rasters

Description

Extract covariate values from a set of rasters

Usage

extract_covars(locations, raster_list)

Arguments

locations a matrix/data.frame of (x,y) locations.

raster_list a list of SpatRaster objects.

Value

a data.frame of covariates (no ID column; unique names).

Examples

Load example raster data
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),

pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load example locations
locations <- small_example_data %>%

dplyr::select(x, y) %>%
as.matrix()

Extract covariates
example_covars <- extract_covars(locations, scaled_raster_list)
head(example_covars)

10 ldmppr_fit

generate_mpp Generate a marked process given locations and marks

Description

Creates an object of class "ppp" that represents a marked point pattern in the two-dimensional plane.

Usage

generate_mpp(locations, marks = NULL, xy_bounds = NULL)

Arguments

locations a data.frame of (x,y) locations with names "x" and "y".

marks a vector of marks.

xy_bounds a vector of domain bounds (2 for x, 2 for y).

Value

a ppp object with marks.

Examples

Load example data
data(small_example_data)

Generate a marked point process
generate_mpp(

locations = small_example_data %>% dplyr::select(x, y),
marks = small_example_data$size,
xy_bounds = c(0, 25, 0, 25)

)

ldmppr_fit Fitted point-process model object

Description

Objects of class ldmppr_fit are returned by estimate_process_parameters. They contain the
best-fitting optimization result (and optionally multiple fits, e.g. from a delta search) along with
metadata used to reproduce the fit.

ldmppr_fit 11

Usage

S3 method for class 'ldmppr_fit'
print(x, ...)

S3 method for class 'ldmppr_fit'
coef(object, ...)

S3 method for class 'ldmppr_fit'
logLik(object, ...)

S3 method for class 'ldmppr_fit'
summary(object, ...)

S3 method for class 'summary.ldmppr_fit'
print(x, ...)

S3 method for class 'ldmppr_fit'
plot(x, ...)

as_nloptr(x, ...)

S3 method for class 'ldmppr_fit'
as_nloptr(x, ...)

Arguments

x an object of class ldmppr_fit.

... additional arguments (not used).

object an object of class ldmppr_fit.

Details

A ldmppr_fit is a list with (at minimum):

• process: process name (e.g. "self_correcting")

• fit: best optimization result (currently an nloptr object)

• mapping: mapping information (e.g. chosen delta, objectives)

• grid: grid definitions used by likelihood approximation

Value

print() prints a brief summary of the fit.

coef() returns the estimated parameter vector.

logLik() returns the log-likelihood at the optimum.

summary() returns a summary.ldmppr_fit.

plot() plots diagnostics for multi-fit runs, if available.

12 ldmppr_mark_model

Methods (by generic)

• print(ldmppr_fit): Print a brief summary of a fitted model.

• coef(ldmppr_fit): Extract the estimated parameter vector.

• logLik(ldmppr_fit): Log-likelihood at the optimum.

• summary(ldmppr_fit): Summarize a fitted model.

• plot(ldmppr_fit): Plot diagnostics for a fitted model.

• as_nloptr(ldmppr_fit): Extract the underlying nloptr result.

Functions

• print(summary.ldmppr_fit): Print a summary produced by summary.ldmppr_fit.

• as_nloptr(): Extract the underlying nloptr result.

ldmppr_mark_model Mark model object

Description

ldmppr_mark_model objects store a fitted mark model and preprocessing information used to pre-
dict marks at new locations and times. These objects are typically returned by train_mark_model
and can be saved/loaded with save_mark_model and load_mark_model.

Usage

ldmppr_mark_model(
engine,
fit_engine = NULL,
xgb_raw = NULL,
recipe = NULL,
outcome = "size",
feature_names = NULL,
info = list()

)

S3 method for class 'ldmppr_mark_model'
print(x, ...)

predict.ldmppr_mark_model(object, new_data, ...)

save_mark_model(object, path, ...)

S3 method for class 'ldmppr_mark_model'
save_mark_model(object, path, ...)

load_mark_model(path)

ldmppr_mark_model 13

Arguments

engine character string (currently "xgboost" and "ranger").

fit_engine fitted engine object (e.g. xgb.Booster or a ranger fit).

xgb_raw raw xgboost payload (e.g. UBJ) used for rehydration.

recipe a prepped recipes object used for preprocessing new data.

outcome outcome column name (default "size").

feature_names (optional) vector of predictor names required at prediction time.

info (optional) list of metadata.

x a ldmppr_mark_model object.

... passed to methods.

object a ldmppr_mark_model object.

new_data a data frame of predictors (and possibly outcome columns).

path path to an .rds created by save_mark_model (or legacy objects).

Details

The model may be backed by different engines (currently "xgboost" and "ranger"). For "xgboost",
the object can store a serialized booster payload to make saving/loading robust across R sessions.

Value

print() prints a brief summary.

predict() returns numeric predictions for new data.

an object of class "ldmppr_mark_model".

Methods (by generic)

• print(ldmppr_mark_model): Print a brief summary of the mark model.

• save_mark_model(ldmppr_mark_model): Save method for ldmppr_mark_model.

Functions

• ldmppr_mark_model(): Create a mark model container.

• predict.ldmppr_mark_model(): Predict marks for new data.

• save_mark_model(): Save a mark model to disk.

• load_mark_model(): Load a saved mark model from disk.

14 ldmppr_model_check

ldmppr_model_check Model fit diagnostic object

Description

Objects of class ldmppr_model_check are returned by check_model_fit. They contain global
envelope test results and curve sets for multiple summary functions/statistics.

Usage

S3 method for class 'ldmppr_model_check'
print(x, ...)

S3 method for class 'ldmppr_model_check'
summary(object, ...)

S3 method for class 'summary.ldmppr_model_check'
print(x, ...)

S3 method for class 'ldmppr_model_check'
plot(x, which = c("combined", "L", "F", "G", "J", "E", "V"), ...)

Arguments

x an object of class ldmppr_model_check.

... additional arguments passed to the underlying plot() method (e.g., from **GET**).

object an object of class ldmppr_model_check.

which which envelope to plot. "combined" plots the global envelope; otherwise one of
"L", "F", "G", "J", "E", "V".

Details

An ldmppr_model_check is a list with components such as:

• combined_env: a global envelope test object (typically from **GET**)

• envs: named list of envelope test objects (e.g., L, F, G, J, E, V)

• curve_sets: named list of curve set objects

• settings: list of settings used when generating envelopes (e.g., n_sim, thinning)

Value

print() prints a brief summary of the diagnostic object.

summary() returns a summary.ldmppr_model_check object.

plot() plots the combined envelope or a selected statistic envelope.

ldmppr_sim 15

Methods (by generic)

• print(ldmppr_model_check): Print a brief summary of the diagnostic results.

• summary(ldmppr_model_check): Summarize p-values from the combined and individual en-
velopes.

• plot(ldmppr_model_check): Plot the combined envelope or a selected statistic.

Functions

• print(summary.ldmppr_model_check): Print a summary produced by summary.ldmppr_model_check.

ldmppr_sim Simulated marked point process object

Description

ldmppr_sim objects are returned by simulate_mpp. They contain the simulated realization, an
associated marked point pattern object, and metadata used to reproduce or inspect the simulation.

Usage

S3 method for class 'ldmppr_sim'
print(x, ...)

S3 method for class 'ldmppr_sim'
as.data.frame(x, ...)

S3 method for class 'ldmppr_sim'
nobs(object, ...)

S3 method for class 'ldmppr_sim'
plot(x, pattern_type = "simulated", ...)

mpp.ldmppr_sim(x, ...)

Arguments

x a ldmppr_sim object.

... additional arguments (not used).

object a ldmppr_sim object.

pattern_type type of pattern to plot "simulated" (default).

16 medium_example_data

Details

An ldmppr_sim is a list with at least:

• process: process name (e.g. "self_correcting")
• mpp: a marked point pattern object
• realization: data.frame with columns time, x, y, marks
• params, bounds, and other metadata

Value

For methods:

print() prints a summary of the simulation.
plot() returns a ggplot visualization of the marked point pattern.
as.data.frame() returns the simulated realization as a data.frame.
nobs() returns the number of points in the realization.
mpp() returns the marked point pattern object.

Methods (by generic)

• print(ldmppr_sim): Print a brief summary of the simulation.
• as.data.frame(ldmppr_sim): Coerce to a data.frame of the simulated realization.
• nobs(ldmppr_sim): Number of simulated points.
• plot(ldmppr_sim): Plot the simulated marked point pattern.

Functions

• mpp.ldmppr_sim(): Extract the underlying marked point pattern object.

medium_example_data Medium Example Data

Description

A medium sized example dataset consisting of 111 observations in a (50m x 50m) square domain.

Usage

data("medium_example_data")

Format

medium_example_data A data frame with 111 rows and 3 columns:

x x coordinate
y y coordinate
size Size ...

plot_mpp 17

Details

The dataset was generated using the Snodgrass dataset available at https://data.ess-dive.lbl.gov/view/doi:10.15485/2476543.

The full code to generate this dataset is available in the package’s data_raw directory.

Source

Real example dataset. Code to generate it can be found in data_raw/medium_example_data.R.

plot_mpp Plot a marked point process

Description

Plot a marked point process

Usage

plot_mpp(mpp_data, pattern_type = c("reference", "simulated"))

Arguments

mpp_data ppp object with marks or data frame with columns (x, y, size).

pattern_type type of pattern to plot ("reference" or "simulated").

Value

a ggplot object of the marked point process.

Examples

Load example data
data(small_example_data)
mpp_data <- generate_mpp(

locations = small_example_data %>% dplyr::select(x, y),
marks = small_example_data$size,
xy_bounds = c(0, 25, 0, 25)

)

Plot the marked point process
plot_mpp(mpp_data, pattern_type = "reference")

18 predict_marks

power_law_mapping Gentle decay (power-law) mapping function from sizes to arrival times

Description

Gentle decay (power-law) mapping function from sizes to arrival times

Usage

power_law_mapping(sizes, delta)

Arguments

sizes vector of sizes to be mapped to arrival times.
delta numeric value (greater than 0) for the exponent in the mapping function.

Value

vector of arrival times.

Examples

Generate a vector of sizes
sizes <- runif(100, 0, 100)

Map the sizes to arrival times using a power-law mapping with delta = .5
power_law_mapping(sizes, .5)

predict_marks Predict values from the mark distribution

Description

Predict values from the mark distribution

Usage

predict_marks(
sim_realization,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
competition_radius = 15,
edge_correction = "none"

)

predict_marks 19

Arguments

sim_realization

a data.frame containing a thinned or unthinned realization from simulate_mpp
(or simulate_sc).

raster_list a list of raster objects.

scaled_rasters TRUE or FALSE indicating whether the rasters have been scaled.

mark_model a mark model object. May be a ldmppr_mark_model or a legacy model.

xy_bounds a vector of domain bounds (2 for x, 2 for y).
include_comp_inds

TRUE or FALSE indicating whether to generate and use competition indices as
covariates.

competition_radius

distance for competition radius if include_comp_inds is TRUE.
edge_correction

type of edge correction to apply ("none" or "toroidal").

Value

a vector of predicted mark values.

Examples

Simulate a realization
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)
M_n <- c(10, 14)
generated_locs <- simulate_sc(

t_min = 0,
t_max = 1,
sc_params = generating_parameters,
anchor_point = M_n,
xy_bounds = c(0, 25, 0, 25)

)

Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),

pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

Predict the mark values
predict_marks(

20 scale_rasters

sim_realization = generated_locs$thinned,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,
edge_correction = "none"

)

scale_rasters Scale a set of rasters

Description

Scale a set of rasters

Usage

scale_rasters(raster_list, reference_resolution = NULL)

Arguments

raster_list a list of raster objects.
reference_resolution

the resolution to resample the rasters to.

Value

a list of scaled raster objects.

Examples

Create two example rasters
rast_a <- terra::rast(

ncol = 10, nrow = 10,
xmin = 0, xmax = 10,
ymin = 0, ymax = 10,
vals = runif(100)

)

rast_b <- terra::rast(
ncol = 10, nrow = 10,
xmin = 0, xmax = 10,
ymin = 0, ymax = 10,
vals = runif(100)

)

simulate_mpp 21

Scale example rasters in a list
rast_list <- list(rast_a, rast_b)
scale_rasters(rast_list)

simulate_mpp Simulate a realization of a location dependent marked point process

Description

Simulate a realization of a location dependent marked point process

Usage

simulate_mpp(
process = c("self_correcting"),
process_fit = NULL,
t_min = 0,
t_max = 1,
anchor_point = NULL,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
competition_radius = 15,
edge_correction = "none",
thinning = TRUE,
seed = NULL

)

Arguments

process type of process used (currently supports "self_correcting").

process_fit either (1) a ldmppr_fit object returned by estimate_process_parameters, or
(2) a numeric vector of length 8 giving self-correcting parameters: (α1, β1, γ1, α2, β2, α3, β3, γ3)
(alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).

t_min minimum value for time.

t_max maximum value for time.

anchor_point (optional) vector of (x,y) coordinates of the point to condition on. If NULL, in-
ferred from the reference data (largest mark if available) or from process_fit$data_original
(largest size).

raster_list a list of raster objects used for predicting marks.

scaled_rasters TRUE or FALSE indicating whether the rasters have already been scaled.

mark_model a mark model object. May be a ldmppr_mark_model or a legacy model.

22 simulate_mpp

xy_bounds (optional) vector of bounds as c(a_x, b_x, a_y, b_y). If NULL, will be inferred
from reference_data’s window when reference_data is provided, otherwise
from ldmppr_fit with lower bounds assumed to be 0.

include_comp_inds

TRUE or FALSE indicating whether to compute competition indices.
competition_radius

distance for competition radius if include_comp_inds = TRUE.
edge_correction

type of edge correction to apply ("none" or "toroidal").

thinning TRUE or FALSE indicating whether to use the thinned simulated values.

seed integer seed for reproducibility.

Value

an object of class "ldmppr_sim".

Examples

Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

Specify an anchor point
M_n <- c(10, 14)

Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),

pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

Simulate a realization
example_mpp <- simulate_mpp(

process = "self_correcting",
process_fit = generating_parameters,
t_min = 0,
t_max = 1,
anchor_point = M_n,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,

simulate_sc 23

edge_correction = "none",
thinning = TRUE

)

Plot the realization and provide a summary
plot(example_mpp, pattern_type = "simulated")
summary(example_mpp)

simulate_sc Simulate from the self-correcting model

Description

Allows the user to simulate a realization from the self-correcting model given a set of parameters
and a point to condition on.

Usage

simulate_sc(
t_min = 0,
t_max = 1,
sc_params = NULL,
anchor_point = NULL,
xy_bounds = NULL

)

Arguments

t_min minimum value for time.

t_max maximum value for time.

sc_params Vector of parameter values corresponding to (α1, β1, γ1, α2, β2, α3, β3, γ3) (i.e.,
alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).

anchor_point vector of (x,y) coordinates of point to condition on.

xy_bounds a vector of domain bounds (2 for x, 2 for y).

Value

a list containing the thinned and unthinned simulation realizations.

Examples

Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

Specify an anchor point
M_n <- c(10, 14)

24 small_example_data

Simulate the self-correcting process
generated_locs <- simulate_sc(

t_min = 0,
t_max = 1,
sc_params = generating_parameters,
anchor_point = M_n,
xy_bounds = c(0, 25, 0, 25)

)

small_example_data Small Example Data

Description

A small example dataset for testing and examples consisting of 121 observations in a (25m x 25m)
square domain.

Usage

data("small_example_data")

Format

small_example_data A data frame with 121 rows and 3 columns:

x x coordinate

y y coordinate

size Size ...

Details

The dataset was generated using the example raster data and an exponential decay size function.

The full code to generate this dataset is available in the package’s data_raw directory.

Source

Simulated dataset. Code to generate it can be found in data_raw/small_example_data.R.

train_mark_model 25

train_mark_model Train a flexible model for the mark distribution

Description

Trains a predictive model for the mark distribution of a spatio-temporal process. data may be ei-
ther (1) a data.frame containing columns x, y, size and time, (2) a data.frame containing x, y, size
(time will be derived via delta), or (3) a ldmppr_fit object returned by estimate_process_parameters.
Allows the user to incorporate location specific information and competition indices as covariates
in the mark model.

Usage

train_mark_model(
data,
raster_list = NULL,
scaled_rasters = FALSE,
model_type = "xgboost",
xy_bounds = NULL,
delta = NULL,
save_model = FALSE,
save_path = NULL,
parallel = TRUE,
n_cores = NULL,
include_comp_inds = FALSE,
competition_radius = 15,
edge_correction = "none",
selection_metric = "rmse",
cv_folds = 5,
tuning_grid_size = 200,
verbose = TRUE

)

Arguments

data a data.frame or a ldmppr_fit object. See Description.

raster_list a list of raster objects.

scaled_rasters TRUE or FALSE indicating whether the rasters have been scaled.

model_type the machine learning model type ("xgboost" or "random_forest").

xy_bounds a vector of domain bounds (2 for x, 2 for y). If data is an ldmppr_fit and
xy_bounds is NULL, defaults to c(0, b_x, 0, b_y) derived from fit.

delta (optional) numeric scalar used only when data contains (x,y,size) but not
time. If data is an ldmppr_fit and time is missing, the function will infer the
delta value from the fit.

save_model TRUE or FALSE indicating whether to save the generated model.

26 train_mark_model

save_path path for saving the generated model.

parallel TRUE or FALSE indicating whether to use parallelization in model training.

n_cores number of cores to use in parallel model training (if parallel is TRUE).
include_comp_inds

TRUE or FALSE indicating whether to generate and use competition indices as
covariates.

competition_radius

distance for competition radius if include_comp_inds is TRUE.
edge_correction

type of edge correction to apply ("none", "toroidal", or "truncation").
selection_metric

metric to use for identifying the optimal model ("rmse", "mae", or "rsq").

cv_folds number of cross-validation folds to use in model training. If cv_folds <= 1,
tuning is skipped and the model is fit once with default hyperparameters.

tuning_grid_size

size of the tuning grid for hyperparameter tuning.

verbose TRUE or FALSE indicating whether to show progress of model training.

Value

an object of class "ldmppr_mark_model" containing the trained mark model.

Examples

Load the small example data
data(small_example_data)

Load example raster data
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),

pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Train the model
mark_model <- train_mark_model(

data = small_example_data,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
model_type = "xgboost",
xy_bounds = c(0, 25, 0, 25),
delta = 1,
parallel = FALSE,
include_comp_inds = FALSE,
competition_radius = 10,

train_mark_model 27

edge_correction = "none",
selection_metric = "rmse",
cv_folds = 3,
tuning_grid_size = 2,
verbose = TRUE

)

print(mark_model)

Index

∗ datasets
medium_example_data, 16
small_example_data, 24

as.data.frame.ldmppr_sim (ldmppr_sim),
15

as_nloptr (ldmppr_fit), 10

check_model_fit, 2, 14
coef.ldmppr_fit (ldmppr_fit), 10

Emark(), 4
estimate_process_parameters, 5, 10, 21,

25
extract_covars, 9

Fest(), 4

generate_mpp, 10
Gest(), 4
GET, 2, 4
global_envelope_test(), 4

Jest(), 4

ldmppr_fit, 10
ldmppr_mark_model, 12
ldmppr_model_check, 14
ldmppr_sim, 15
Lest(), 4
load_mark_model, 12
load_mark_model (ldmppr_mark_model), 12
logLik.ldmppr_fit (ldmppr_fit), 10

medium_example_data, 16
mpp.ldmppr_sim (ldmppr_sim), 15

nloptr, 5
nobs.ldmppr_sim (ldmppr_sim), 15

plot.ldmppr_fit (ldmppr_fit), 10

plot.ldmppr_model_check
(ldmppr_model_check), 14

plot.ldmppr_sim (ldmppr_sim), 15
plot_mpp, 17
power_law_mapping, 5, 6, 18
predict.ldmppr_mark_model

(ldmppr_mark_model), 12
predict_marks, 18
print.ldmppr_fit (ldmppr_fit), 10
print.ldmppr_mark_model

(ldmppr_mark_model), 12
print.ldmppr_model_check

(ldmppr_model_check), 14
print.ldmppr_sim (ldmppr_sim), 15
print.summary.ldmppr_fit (ldmppr_fit),

10
print.summary.ldmppr_model_check

(ldmppr_model_check), 14

save_mark_model, 12, 13
save_mark_model (ldmppr_mark_model), 12
scale_rasters, 20
simulate_mpp, 15, 21
simulate_sc, 23
small_example_data, 24
spatstat, 2, 4
summary.ldmppr_fit, 12
summary.ldmppr_fit (ldmppr_fit), 10
summary.ldmppr_model_check, 15
summary.ldmppr_model_check

(ldmppr_model_check), 14

train_mark_model, 12, 25

Vmark(), 4

28

	check_model_fit
	estimate_process_parameters
	extract_covars
	generate_mpp
	ldmppr_fit
	ldmppr_mark_model
	ldmppr_model_check
	ldmppr_sim
	medium_example_data
	plot_mpp
	power_law_mapping
	predict_marks
	scale_rasters
	simulate_mpp
	simulate_sc
	small_example_data
	train_mark_model
	Index

