Package ‘laminr’

January 12, 2026
Title Client for LaminDB'
Version 1.2.2

Description Interact with LaminDB'. 'LaminDB' is an open-source data
framework for biology. This package allows you to query and download
data from 'LaminDB' instances.

License Apache License (>=2)
URL https://laminr.lamin.ai, https://github.com/laminlabs/laminr

BugReports https://github.com/laminlabs/laminr/issues
Depends R (>=4.1.0)

Imports callr, cli, lifecycle, pkgload, purrr, R.utils, R6, reticulate
(>= 1.41.0), rlang, sessioninfo, utils, withr

Suggests anndata, arrow, jsonlite, knitr, magick, readr, rmarkdown,
rstudioapi, rsvg, testthat (>= 3.0.0), yaml

VignetteBuilder knitr
Config/Needs/website rmarkdown, Seurat
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Robrecht Cannoodt [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3641-729X>),
Luke Zappia [aut] (ORCID: <https://orcid.org/0000-0001-7744-8565>),
Data Intuitive [aut],
Lamin Labs [aut, cph]

Maintainer Robrecht Cannoodt <robrecht@lamin.ai>
Repository CRAN
Date/Publication 2026-01-12 16:10:02 UTC

https://laminr.lamin.ai
https://github.com/laminlabs/laminr
https://github.com/laminlabs/laminr/issues
https://orcid.org/0000-0003-3641-729X
https://orcid.org/0000-0001-7744-8565

2 get_current_lamin_settings
Contents
get_current_lamin_instance 2
get_current_lamin_settings oL e e 2
get_current_lamin_USero e e e 3
import_module e e e 3
laminr_Status e e e e e 5
lamin_cli e 5
require_module L e 8
USe_temporary_instanceo u e e e e e e e e e e 10
Index 12
get_current_lamin_instance
Get current LaminDB instance
Description
Get the currently connected LaminDB instance
Usage
get_current_lamin_instance()
Details
This is done via a get_current_lamin_settings() to avoid importing Python lamindb
Value
The slug of the current LaminDB instance, or NULL invisibly if no instance is found
get_current_lamin_settings
Get current LaminDB settings
Description
Get the current LaminDB settings as an R list
Usage

get_current_lamin_settings(minimal = FALSE)

get_current_lamin_user 3

Arguments
minimal If TRUE, quickly extract a minimal list of important settings instead of converting
the complete settings object
Details

This is done using callr: :r() to avoid importing Python 1amindb in the global environment

Value

A list of the current LaminDB settings

get_current_lamin_user
Get current LaminDB user

Description

Get the currently logged in LaminDB user

Usage

get_current_lamin_user()

Details

This is done via get_current_lamin_settings() to avoid importing Python 1amindb

Value

The handle of the current LaminDB user, or NULL invisibly if no user is found

import_module Import Python modules

Description
This function can be used to import LaminDB Python modules with additional checks and nicer
error messages.

Usage

import_module(module, ...)

4 import_module

Arguments

module The name of the Python module to import
Arguments passed on to require_module

options A vector of defined optional dependencies for the module that is being
required
version A string specifying the version of the module to require
source A source for the module requirement, for example git+https://github.com/owner/module.g

python_version A string defining the Python version to require. Passed to
reticulate: :py_require()

silent Whether to suppress the message showing what has been required

Details

Python dependencies are set using require_module () before importing the module and used to cre-
ate an ephemeral environment unless another environment is found (see vignette("versions”,
package = "reticulate”)).

Requirements for the 1amindb module can be controlled using environment variables differently,
see https://docs.lamin.ai/setup-laminr for details.

Value

An object representing a Python package

See Also

* require_module() and reticulate: :py_require() for defining Python dependencies

e vignette("versions”, package = "reticulate”) for setting the Python environment to
use (or online here)

Examples

Not run:
Import lamindb to start interacting with an instance
1n <- import_module("lamindb")

Import lamindb with optional dependencies
1n <- import_module("lamindb”, options = c("bionty”, "wetlab"))

Import other LaminDB modules
bt <- import_module("bionty"”)
wl <- import_module("wetlab")
cc <- import_module(”clinicore”)

Import any Python module
np <- import_module("numpy")

End(Not run)

https://docs.lamin.ai/setup-laminr
https://rstudio.github.io/reticulate/articles/versions.html

laminr_status 5

laminr_status laminr status

Description
Overview of the current status of the laminr package and its dependencies. Can be useful for
debugging.

Usage

laminr_status()

Details

Provides information that can be useful for debugging. To run the function when an error occurs, set
options(error = function() { print(laminr::laminr_status() }). Note that this should
be used with some caution as it will print the status whenever any error occurs.

Value

A laminr_status object

Examples

laminr_status()

lamin_cli Lamin CLI functions

Description

[Deprecated]

Lamin CLI calls are available from R by importing the lamin_cli Python module using lc <-
import_module(”lamin_cli"). The previous CLI functions are now deprecated, see examples
for how to switch to the new syntax.

Usage

Import the module instead of using deprecated functions
1lc <- import_module("lamin_cli")

Deprecated functions
lamin_connect (instance)

lamin_disconnect()

lamin_cli

lamin_login(user = NULL, api_key = NULL)
lamin_logout ()
lamin_init(storage, name = NULL, db = NULL, modules = NULL)

lamin_init_temp(
name = "laminr-temp",
db = NULL,
modules = NULL,
add_timestamp = TRUE,
envir = parent.frame()

)

lamin_delete(instance, force = FALSE)

lamin_save(filepath, key = NULL, description = NULL, registry = NULL)

lamin_settings()

add_timestamp

Arguments

instance Either a slug giving the instance to connect to (<owner>/<name>) or an instance
URL (https://1lamin.ai/owner/name). For lamin_delete(), the slug for the
instance to delete.

user Handle for the user to login as

api_key API key for a user

storage A local directory, AWS S3 bucket or Google Cloud Storage bucket

name A name for the instance

db A Postgres database connection URL, use NULL for SQLite

modules A vector of modules to include (e.g. "bionty")

Whether to append a timestamp to name to make it unique

envir An environment passed to withr: :defer()

force Whether to force deletion without asking for confirmation
filepath Path to the file or folder to save

key The key for the saved item

description The description for the saved item

registry The registry for the saved item

Details

lamin_connect():

Running this will set the LaminDB auto-connect option to True so you auto-connect to instance
when importing Python 1amindb.

lamin_cli 7

lamin_login():
Depending on the input, one of these commands will be run (in this order):

1. If useris set then lamin login <user>

2. Else if api_key is set then set the LAMIN_API_KEY environment variable temporarily with
withr::with_envvar() and run lamin login

3. Else if there is a stored user handle run 1amin login <handle>
4. FElse if the LAMIN_API_KEY environment variable is set run lamin login

Otherwise, exit with an error

lamin_init_temp():

For lamin_init_temp(), a time stamp is appended to name (if add_timestamp = TRUE) and then
a new instance is initialised with lamin_init () using a temporary directory. A lamin_delete()
call is registered as an exit handler with withr: :defer() to clean up the instance when envir
finishes.

The lamin_init_temp() function is mostly for internal use and in most cases users will want
lamin_init().

Examples

Not run:

Import Lamin modules

lc <- import_module("lamin_cli")
1n <- import_module("lamindb")

Examples of replacing CLI functions with the lamin_cli module

End(Not run)

Not run:

Connect to a LaminDB instance
lamin_connect(instance)

->

lc$connect(instance)

End(Not run)

Not run:

Disconnect from a LaminDB instance
lamin_disconnect()

->

lc$disconnect()

End(Not run)

Not run:

Log in as a LaminDB user
lamin_login(...)

>

lc$login(...)

End(Not run)
Not run:
Log out of LaminDB

require_module

lamin_logout ()
->
1c$logout ()

End(Not run)

Not run:

Create a new LaminDB instance
lamin_init(...)

->

lc$init(...)

End(Not run)

Not run:

Create a temporary LaminDB instance
lamin_init_temp(...)

->

create_temporary_instance()

End(Not run)

Not run:

Delete a LaminDB entity
lamin_delete(...)

->

lc$delete(...)

End(Not run)

Not run:

Save to a LaminDB instance
lamin_save(...)

->

lc$save(...)

End(Not run)

Not run:

Access Lamin settings
lamin_settings()

->

In$setup$settings

OR

In$settings

Alternatively
get_current_lamin_settings()

End(Not run)

require_module Require a Python module

require_module

Description

This function can be used to require that Python modules are available for laminr with additional
checks and nicer error messages.

Usage

require_module(

module,
options =
version =

NULL,
NULL,

source = NULL,
python_version = NULL,
silent = FALSE

Arguments

module
options
version

source

python_version

silent

Details

The name of the Python module to require

A vector of defined optional dependencies for the module that is being required

A string specifying the version of the module to require

A source for the module requirement, for example git+https://github.com/owner/module.git
A string defining the Python version to require. Passed to reticulate: :py_require()

Whether to suppress the message showing what has been required

Python dependencies are set using reticulate: :py_require(). If a connection to Python is al-
ready initialized and the requested module is already in the list of requirements then a further call to
reticulate: :py_require() will not be made to avoid errors/warnings. This means that required
versions etc. need to be set before Python is initialized.

Arguments:

* Setting options = c("opt1”, "opt2") results in "modulelopt1,opt2]”

e Setting version = ">=1.0.0" results in "module>=1.0.0"

 Setting source = "my_source” results in "module @ my_source”

* Setting all of the above results in "module[opt1,opt2]>=1.0.0 @ my_source”

Value

The result of reticulate::py_require

See Also

reticulate::py_require()

10 use_temporary_instance

Examples

Not run:
Require lamindb
require_module("lamindb")

Require a specific version of lamindb
require_module("”lamindb”, version = ">=2.0.0")

Require require lamindb with options
require_module(”lamindb"”, options = c("bionty”, "wetlab"))

Require the development version of lamindb from GitHub
require_module("”lamindb"”, source = "git+https://github.com/laminlabs/lamindb.git")

Require lamindb with a specific Python version
require_module(”lamindb"”, python_version = "3.12")

End(Not run)

use_temporary_instance
Use a temporary LaminDB instance

Description

Create and connect to a temporary LaminDB instance to use for the current session. This function
is primarily intended for developers to use during testing and documentation but can also be useful
for users to debug issues or create reproducible examples.

Usage

use_temporary_instance(
name = "laminr-temp",
modules = NULL,
add_timestamp = TRUE,
envir = parent.frame()

)
Arguments
name A name for the temporary instance
modules A vector of modules to include (e.g. "bionty")

add_timestamp Whether to append a time stamp to name to make it unique

envir An environment passed to withr: :defer()

use_temporary_instance 11

Details

This function creates and connects to a temporary LaminDB instance. A temporary storage folder
is created and used to initialize a new instance. An exit handler is registered with withr: :defer ()
that deletes the instance and storage, then reconnects to the previous instance when envir finishes.

Switching to a temporary instance is not possible when another instance is already connected.

Index

callr::r(), 3

get_current_lamin_instance, 2
get_current_lamin_settings, 2
get_current_lamin_settings(), 2, 3
get_current_lamin_user, 3

import_module, 3

lamin_cli, 5

lamin_connect (lamin_cli), 5
lamin_delete (lamin_cli), 5
lamin_delete(), 7
lamin_disconnect (lamin_cli), 5
lamin_init (lamin_cli), 5
lamin_init(), 7
lamin_init_temp (lamin_cli), 5
lamin_init_temp(), 7
lamin_login (lamin_cli), 5
lamin_logout (lamin_cli), 5
lamin_save (lamin_cli), 5
lamin_settings (lamin_cli), 5
laminr_status, 5

require_module, 4, 8
require_module(), 4
reticulate: :py_require, 9
reticulate::py_require(), 4, 9

use_temporary_instance, 10

withr::defer(), 6, 7, 10, 11

12

	get_current_lamin_instance
	get_current_lamin_settings
	get_current_lamin_user
	import_module
	laminr_status
	lamin_cli
	require_module
	use_temporary_instance
	Index

