Package ‘kmer’

January 23, 2026

Type Package

Title Fast K-Mer Counting and Clustering for Biological Sequence
Analysis

Version 1.1.3
Author Shaun Wilkinson [aut, cre]
Maintainer Shaun Wilkinson <shaunpwilkinson@gmail.com>

Description Contains tools for rapidly computing distance matrices
and clustering large sequence datasets using fast alignment-free
k-mer counting and recursive k-means partitioning.
See Vinga and Almeida (2003) <doi:10.1093/bioinformatics/btg005>
for a review of k-mer counting methods and applications for
biological sequence analysis.

License GPL-3
Encoding UTF-8

URL https://github.com/shaunpwilkinson/kmer

BugReports https://github.com/shaunpwilkinson/kmer/issues
Imports openssl, phylogram, Repp (>=0.12.13)

Suggests ape (>=4.0), dendextend, knitr, rmarkdown, testthat
LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-23 06:40:52 UTC

Contents

cluster e e
kecount e

https://doi.org/10.1093/bioinformatics/btg005
https://github.com/shaunpwilkinson/kmer
https://github.com/shaunpwilkinson/kmer/issues

cluster

kdistance 6
kmer 8
mbed ... e e e e e 9
Ot . . o o e e e e e e 11
Index 14
cluster Divisive k-means clustering.
Description

This function recursively splits a sequence set into smaller and smaller subsets, returning a "den-
drogram" object.

Usage
cluster(x, k = 5, residues = NULL, gap = "-", ...)
Arguments
X a list or matrix of sequences, possibly an object of class "DNAbin" or "AAbin".
k integer. The k-mer size required.
residues either NULL (default; emitted residues are automatically detected from the

sequences), a case sensitive character vector specifying the residue alphabet,
or one of the character strings "RNA", "DNA", "AA", "AMINO". Note that
the default option can be slow for large lists of character vectors. Specify-
ing the residue alphabet is therefore recommended unless the sequence list is
a "DNADbin" or "AAbin" object.

gap the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.

further arguments to be passed to kmeans (not including centers).

Details

This function creates a tree by successively splitting the dataset into smaller and smaller subsets
(recursive partitioning). This is a divisive, or "top-down" approach to tree-building, as opposed
to agglomerative "bottom-up" methods such as neighbor joining and UPGMA. It is particularly
useful for large large datasets with many sequences (n > 10,000) since the need to compute a large
n * n distance matrix is circumvented. Instead, a matrix of k-mer counts is computed, and split
recursively row-wise using a k-means clustering algorithm (k = 2). This effectively reduces the
time and memory complexity from quadratic to linear, while generally maintaining comparable
accuracy.

If a more accurate tree is required, users can increase the value of nstart passed to kmeans via the
... argument. While this can increase computation time, it can improve tree accuracy considerably.

DNA and amino acid sequences can be passed to the function either as a list of non-aligned se-
quences or a matrix of aligned sequences, preferably in the "DNAbin" or "AAbin" raw-byte format

cluster 3

(Paradis et al 2004, 2012; see the ape package documentation for more information on these S3
classes). Character sequences are supported; however ambiguity codes may not be recognized or
treated appropriately, since raw ambiguity codes are counted according to their underlying residue
frequencies (e.g. the 5-mer "ACRGT" would contribute 0.5 to the tally for "ACAGT" and 0.5 to
that of "ACGGT").

To minimize computation time when counting longer k-mers (k > 3), amino acid sequences in
the raw "AAbin" format are automatically compressed using the Dayhoff-6 alphabet as detailed in
Edgar (2004). Note that amino acid sequences will not be compressed if they are supplied as a
list of character vectors rather than an "AAbin" object, in which case the k-mer length should be
reduced (k < 4) to avoid excessive memory use and computation time.

Value

Returns an object of class "dendrogram”.

Author(s)
Shaun Wilkinson

References

Edgar RC (2004) Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research, 32, 380-385.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

See Also

kcount

Examples

Not run:

Cluster the woodmouse dataset (ape package)

library(ape)

data(woodmouse)

trim gappy ends to subset global alignment

woodmouse <- woodmouse[, apply(woodmouse, 2, function(v) !any(v == 0xf0))]
build tree divisively

suppressWarnings(RNGversion("”3.5.0"))

set.seed(999)

woodmouse. tree <- cluster(woodmouse, nstart = 5)

plot tree

op <- par(no.readonly = TRUE)

par(mar = c(5, 2, 4, 8) + 0.1)

plot(woodmouse.tree, main = "Woodmouse phylogeny"”, horiz = TRUE)
par(op)

End(Not run)

kcount

kcount

K-mer counting.

Description

Count all k-letter words in a sequence or set of sequences with a sliding window of length k.

Usage

kcount
X)
k =5,

residues = NULL,

gap =

named = TRUE,

n_n

’

compress = TRUE,

encode

Arguments

X

residues

gap
named

compress

encode

FALSE

a matrix of aligned sequences, a list of unaligned sequences, or a vector repre-
senting a single sequence. Accepted modes are "character" and "raw" (the latter
being applicable for "DNAbin" and "AAbin" objects).

integer representing the k-mer size. Defaults to 5. Note that high values of k
may be slow to compute and use a lot of memory due to the large numbers of
calculations required, particularly when the residue alphabet is also large.

either NULL (default; the residue alphabet is automatically detected from the
sequences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINO". Note that the
default option can be slow for large lists of character vectors. Specifying the
residue alphabet is therefore recommended unless x is a "DNAbin" or "AAbin"
object.

the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin" and "AAbin" objects. Defaults to "-" otherwise.

logical. Should the k-mers be returned as column names in the returned matrix?
Defaults to TRUE.

logical indicating whether to compress AAbin sequences using the Dayhoff(6)
alphabet for k-mer sizes exceeding 4. Defaults to TRUE to avoid memory over-
flow and excessive computation time.

logical indicating if the resulting matrix should be encoded in raw bytes (output
matrix can be decoded with kmer: : :.decodekc()). Note that the output will
be rounded and have maximum k-mer count of 15.

kcount 5

Details

This function computes a vector or matrix of k-mer counts from a sequence or set of sequences using
a sliding a window of length k. DNA and amino acid sequences can be passed to the function either
as a list of non-aligned sequences or a matrix of aligned sequences, preferably in the "DNAbin" or
"AAbin" raw-byte format (Paradis et al 2004, 2012; see the ape package documentation for more
information on these S3 classes). Character sequences are supported; however ambiguity codes
may not be recognized or treated appropriately, since raw ambiguity codes are counted according
to their underlying residue frequencies (e.g. the 5-mer "ACRGT" would contribute 0.5 to the tally
for "ACAGT" and 0.5 to that of "ACGGT").

To minimize computation time when counting longer k-mers (k > 3), amino acid sequences in
the raw "AAbin" format are automatically compressed using the Dayhoff-6 alphabet as detailed in
Edgar (2004). Note that amino acid sequences will not be compressed if they are supplied as a
list of character vectors rather than an "AAbin" object, in which case the k-mer length should be
reduced (k < 4) to avoid excessive memory use and computation time.

Value

Returns a matrix of k-mer counts with one row for each sequence and n”*k columns (where 7 is the
size of the residue alphabet and k is the k-mer size)

Author(s)
Shaun Wilkinson

References

Edgar RC (2004) Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research, 32, 380-385.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

See Also

kdistance for k-mer distance matrix computation.

Examples

compute a matrix of k-mer counts for the woodmouse
data (ape package) using a k-mer size of 3
library(ape)

data(woodmouse)

x <- kcount(woodmouse, k = 3)

X

64 columns for nucleotide 3-mers AAA, AAC, ... TTT
convert to AAbin object and repeat the operation

y <- kcount(ape::trans(woodmouse, 2), k = 2)

y

400 columns for amino acid 2-mers AA, AB, ... , YY

kdistance

kdistance K-mer distance matrix computation.

Description

Computes the matrix of k-mer distances between all pairwise comparisons of a set of sequences.

Usage

kdistance(
X’
k =5,

method = "edgar",
residues = NULL,

n_n

gap =)
compress = TRUE,

Arguments

X

method

residues

gap

compress

a matrix of aligned sequences or a list of unaligned sequences. Accepted modes
are "character" and "raw" (the latter being applicable for "DNAbin" and "AAbin"
objects).

integer representing the k-mer size to be used for calculating the distance matrix.
Defaults to 5. Note that high values of k may be slow to compute and use a lot
of memory due to the large numbers of calculations required, particularly when
the residue alphabet is also large.

a character string giving the k-mer distance measure to be used. Currently the
available options are "edgar” (default; see Edgar (2004) for details) and the
standard methods available for the base function "dist" ("euclidean", "maxi-

non "non

mum", "manhattan", "canberra", "binary" and "minkowski").

either NULL (default; the residue alphabet is automatically detected from the
sequences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINOQO". Note that the
default option can be slow for large lists of character vectors. Specifying the
residue alphabet is therefore recommended unless x is a "DNAbin" or "AAbin"
object.

the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin" or "AAbin" objects. Defaults to "-" otherwise.

logical indicating whether to compress AAbin sequences using the Dayhoff(6)
alphabet for k-mer sizes exceeding 4. Defaults to TRUE to avoid memory over-
flow and excessive computation time.

further arguments to be passed to "as.dist".

kdistance 7

Details

This function computes the n * n k-mer distance matrix (where n is the number of sequences),
returning an object of class "dist”. DNA and amino acid sequences can be passed to the func-
tion either as a list of non-aligned sequences or as a matrix of aligned sequences, preferably in the
"DNAbin" or "AAbin" raw-byte format (Paradis et al 2004, 2012; see the ape package documenta-
tion for more information on these S3 classes). Character sequences are supported; however ambi-
guity codes may not be recognized or treated appropriately, since raw ambiguity codes are counted
according to their underlying residue frequencies (e.g. the 5-mer "ACRGT" would contribute 0.5 to
the tally for "ACAGT" and 0.5 to that of "ACGGT").

To minimize computation time when counting longer k-mers (k > 3), amino acid sequences in
the raw "AAbin" format are automatically compressed using the Dayhoff-6 alphabet as detailed in
Edgar (2004). Note that amino acid sequences will not be compressed if they are supplied as a
list of character vectors rather than an "AAbin" object, in which case the k-mer length should be
reduced (k < 4) to avoid excessive memory use and computation time.

Value

an object of class "dist".

Author(s)
Shaun Wilkinson

References

Edgar RC (2004) Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research, 32, 380-385.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

See Also

kcount for k-mer counting, and mbed for leaner distance matrices

Examples

compute a k-mer distance matrix for the woodmouse
dataset (ape package) using a k-mer size of 5

library(ape)

data(woodmouse)

subset global alignment by removing gappy ends

woodmouse <- woodmouse[, apply(woodmouse, 2, function(v) !any(v == 0xf0))]

compute the distance matrix

woodmouse.dist <- kdistance(woodmouse, k = 5)

cluster and plot UPGMA tree

woodmouse. tree <- as.dendrogram(hclust(woodmouse.dist, "average"))
plot(woodmouse. tree)

8 kmer

kmer Fast K-mer Counting and Clustering for Biological Sequence Analy-
SIS.

Description

The kmer package contains tools for rapidly computing distance matrices, building large trees,
and clustering operational taxonomic units using fast alignment-free k-mer counting and divisive
clustering techniques.

Functions

A breif description of the primary kmer functions are provided with links to their help pages below.

K-mer counting

* kcount counts all k-letter words in a sequence or set of sequences using a sliding window of
length k

Distance matrix computation

* kdistance calculates pairwise distances between sequences based on k-mer counts

* mbed embeds sequences as vectors of k-mer distances to a set of seed’” sequences

Alignment-free clustering

» cluster builds a phylogenetic tree by successively splitting a set of sequences (recursive
partitioning) based on k-mer counts

* otu heirarchically clusters a set of sequences until a predefined furthest neighbor dissimilarity
threshold is reached.

Author(s)

Maintainer: Shaun Wilkinson <shaunpwilkinson@gmail.com>

See Also

Useful links:

* https://github.com/shaunpwilkinson/kmer

» Report bugs at https://github.com/shaunpwilkinson/kmer/issues

https://github.com/shaunpwilkinson/kmer
https://github.com/shaunpwilkinson/kmer/issues

mbed

mbed

Convert sequences to vectors of distances to a subset of seed se-
quences.

Description

This function computes a matrix of distances from each sequence to a subset of ’seed’ sequences
using the method outlined in Blacksheilds et al (2010).

Usage

mbed(x, seeds

Arguments

X

seeds

residues

gap

counts

Details

NULL, k = 5, residues = NULL, gap = "-", counts = FALSE)

a matrix of aligned sequences or a list of unaligned sequences. Accepted modes
are "character" and "raw" (the latter is for "DNAbin" and "AAbin" objects).

optional integer vector indicating which sequences should be used as the seed
sequences. If seeds =NULL a set of log(n, 2)*2 non-identical sequences is ran-
domly selected from the sequence set (where # is the number of sequences; see
Blacksheilds et al. 2010). Alternatively, if seeds = 'all’' a standard n * n dis-
tance matrix is computed.

integer representing the k-mer size to be used for calculating the distance matrix.
Defaults to 5. Note that high values of k may be slow to compute and use a lot
of memory due to the large numbers of calculations required, particularly when
the residue alphabet is also large.

either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINO". Note that the
default option can be slow for large lists of character vectors. Specifying the
residue alphabet is therefore recommended unless x is a "DNAbin" or "AAbin"
object.

the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.

logical indicating whether the (usually large) matrix of k-mer counts should be
returned as an attribute of the returned object. Defaults to FALSE.

This function computes a n * log(n, 2)*2 k-mer distance matrix (where n is the number of se-
quences), returning an object of class "mbed"”. If the number of sequences is less than or equal to
19, the full n * n distance matrix is produced (since the rounded up value of log(/9, 2)*2 is 19).
Currently the only distance measure supported is that of Edgar (2004).

For maximum information retention following the embedding process it is generally desirable to
select the seed sequences based on their uniqueness, rather than simply selecting a random subset

10 mbed

(Blackshields et al. 2010). Hence if ’seeds’ is set to NULL (the default setting) the the ‘mbed’
function selects the subset by clustering the sequence set into ¢ groups using the k-means algorithm
(k = 1), and choosing one representative from each group. Users can alternatively pass an integer
vector (as in the above example) to specify the seeds manually. See Blackshields et al (2010) for
other seed selection options.

DNA and amino acid sequences can be passed to the function either as a list of non-aligned se-
quences or as a matrix of aligned sequences, preferably in the "DNAbin" or "AAbin" raw-byte
format (Paradis et al 2004, 2012; see the ape package documentation for more information on these
S3 classes). Character sequences are supported; however ambiguity codes may not be recognized or
treated appropriately, since raw ambiguity codes are counted according to their underlying residue
frequencies (e.g. the 5-mer "ACRGT" would contribute 0.5 to the tally for "ACAGT" and 0.5 to
that of "ACGGT").

To minimize computation time when counting longer k-mers (k > 3), amino acid sequences in
the raw "AAbin" format are automatically compressed using the Dayhoff-6 alphabet as detailed in
Edgar (2004). Note that amino acid sequences will not be compressed if they are supplied as a
list of character vectors rather than an "AAbin" object, in which case the k-mer length should be
reduced (k < 4) to avoid excessive memory use and computation time.

Note that agglomerative (bottom-up) tree-building methods such as neighbor-joining and UPGMA
depend on a full n * n distance matrix. See the kdistance function for details on computing
symmetrical distance matrices.

Value

Returns an object of class "mbed”, whose primary object is an n * log(n, 2)*2 matrix (where n is the
number of sequences). The returned object contains additional attributes including an integer vector
of seed sequence indices ("seeds"), a logical vector identifying the duplicated sequences ("dupli-
cates"), an integer vector giving the matching indices of the non-duplicated sequences ("pointers"), a
character vector of MD5 digests of the sequences ("hashes"), an integer vector of sequence lengths
("seqlengths"), and if counts = TRUE, the matrix of k-mer counts ("kcounts"; see kcount for de-
tails).

Author(s)
Shaun Wilkinson

References

Blackshields G, Sievers F, Shi W, Wilm A, Higgins DG (2010) Sequence embedding for fast con-
struction of guide trees for multiple sequence alignment. Algorithms for Molecular Biology, S,
21.

Edgar RC (2004) Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research, 32, 380-385.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

otu 11

See Also

kdistance for full n * n distance matrix computation.

Examples

compute an embedded k-mer distance matrix for the woodmouse
dataset (ape package) using a k-mer size of 5
library(ape)

data(woodmouse)

randomly select three sequences as seeds
suppressWarnings(RNGversion(”3.5.0"))

set.seed(999)

seeds <- sample(1:15, size = 3)

embed the woodmouse dataset in three dimensions
woodmouse.mbed <- mbed(woodmouse, seeds = seeds, k = 5)
print the distance matrix (without attributes)
print(woodmouse.mbed[,], digits = 2)

otu Cluster sequences into operational taxonomic units.

Description

This function performs divisive heirarchical clustering on a set of DNA sequences using sequential
k-means partitioning, returning an integer vector of OTU membership.

Usage
otu(
X ’
k =5,
threshold = 0.97,
method = "central”,
residues = NULL,
gap - n_n ,
)
Arguments
X a "DNADbin" object.
k integer giving the k-mer size used to generate the input matrix for k-means clus-

tering.

threshold numeric between 0 and 1 giving the OTU identity cutoff. Defaults to 0.97.

12 otu

method the maximum distance criterion to use for terminating the recursive partitioning
procedure. Accepted options are "central" (splitting stops if the similarity be-
tween the central sequence and its farthest neighbor within the cluster is greater
than the threshold), "centroid" (splitting stops if the similarity between the cen-
troid and its farthest neighbor within the cluster is greater than the threshold),
and "farthest" (splitting stops if the similarity between the two farthest sequences
within the cluster is greater than the threshold). Defaults to "central".

residues either NULL (default; emitted residues are automatically detected from the
sequences), a case sensitive character vector specifying the residue alphabet,
or one of the character strings "RNA", "DNA", "AA", "AMINO". Note that
the default option can be slow for large lists of character vectors. Specify-
ing the residue alphabet is therefore recommended unless the sequence list is
a "DNADbin" or "AAbin" object.

gap the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.

further arguments to be passed to kmeans (not including centers).

Details

This function clusters sequences into OTUs by first generating a matrix of k-mer counts, and then
splitting the matrix into two subsets (row-wise) using the k-means algorithm (k = 2). The splitting
continues recursively until the farthest k-mer distance in every cluster is below the threshold value.

This is a divisive, or "top-down" approach to OTU clustering, as opposed to agglomerative "bottom-
up" methods. It is particularly useful for large large datasets with many sequences (n > 10, 000)
since the need to compute a large n * n distance matrix is circumvented. This effectively reduces
the time and memory complexity from quadratic to linear, while generally maintaining comparable
accuracy.

It is recommended to increase the value of nstart passed to kmeans via the . . . argument to at least
20. While this can increase computation time, it can improve clustering accuracy considerably.

DNA and amino acid sequences can be passed to the function either as a list of non-aligned se-
quences or a matrix of aligned sequences, preferably in the "DNAbin" or "AAbin" raw-byte format
(Paradis et al 2004, 2012; see the ape package documentation for more information on these S3
classes). Character sequences are supported; however ambiguity codes may not be recognized or
treated appropriately, since raw ambiguity codes are counted according to their underlying residue
frequencies (e.g. the 5-mer "ACRGT" would contribute 0.5 to the tally for "ACAGT" and 0.5 to
that of "ACGGT").

To minimize computation time when counting longer k-mers (k > 3), amino acid sequences in
the raw "AAbin" format are automatically compressed using the Dayhoff-6 alphabet as detailed in
Edgar (2004). Note that amino acid sequences will not be compressed if they are supplied as a
list of character vectors rather than an "AAbin" object, in which case the k-mer length should be
reduced (k < 4) to avoid excessive memory use and computation time.

Value

a named integer vector of cluster membership with values ranging from 1 to the total number of
OTUs. Asterisks indicate the representative sequence within each cluster.

otu 13

Author(s)
Shaun Wilkinson

References

Edgar RC (2004) Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research, 32, 380-385.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

Examples

Not run:

Cluster the woodmouse dataset (from the ape package) into OTUs
library(ape)

data(woodmouse)

trim gappy ends to subset global alignment

woodmouse <- woodmouse[, apply(woodmouse, 2, function(v) !any(v == 0xf0))]
cluster sequences into OTUs at 0.97 threshold with kmer size =5
suppressWarnings (RNGversion(”3.5.0"))

set.seed(999)

woodmouse.0TUs <- otu(woodmouse, k = 5, threshold = 0.97, nstart = 20)
woodmouse.0TUs

End(Not run)

Index

ape, 3,5,7,10, 12
cluster, 2, 8

kcount, 3,4, 7, 8, 10
kdistance, 5,6, 8, 10, 11

kmer, 8
kmer-package (kmer), 8

mbed, 7, 8, 9

otu, 8, 11

14

	cluster
	kcount
	kdistance
	kmer
	mbed
	otu
	Index

