
Package ‘hubUtils’
January 13, 2026

Version 1.2.0

Title Core 'hubverse' Utilities

Description Core set of low-level utilities common across the
'hubverse'. Used to interact with 'hubverse' schema, Hub configuration files
and model outputs and designed to be primarily used internally by other
'hubverse' packages. See Reich et al. (2022) <doi:10.2105/AJPH.2022.306831>
for an overview of Collaborative Hubs.

License MIT + file LICENSE

URL https://github.com/hubverse-org/hubUtils,

https://hubverse-org.github.io/hubUtils/

BugReports https://github.com/hubverse-org/hubUtils/issues

Depends R (>= 4.1.0)

Imports checkmate, cli, curl, fs, gh, glue, jsonlite, lifecycle,
magrittr, memoise, purrr, rlang, stats, stringr, tibble, utils

Suggests arrow (>= 17.0.0), dplyr, knitr, rmarkdown, testthat (>=
3.2.0)

Config/Needs/website hubverse-org/hubStyle

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Anna Krystalli [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2378-4915>),

Li Shandross [aut],
Nicholas G. Reich [ctb] (ORCID:

<https://orcid.org/0000-0003-3503-9899>),
Evan L. Ray [ctb],
Zhian N. Kamvar [ctb] (ORCID: <https://orcid.org/0000-0003-1458-7108>),
Consortium of Infectious Disease Modeling Hubs [cph]

1

https://doi.org/10.2105/AJPH.2022.306831
https://github.com/hubverse-org/hubUtils
https://hubverse-org.github.io/hubUtils/
https://github.com/hubverse-org/hubUtils/issues
https://orcid.org/0000-0002-2378-4915
https://orcid.org/0000-0003-3503-9899
https://orcid.org/0000-0003-1458-7108

2 Contents

Maintainer Anna Krystalli <annakrystalli@googlemail.com>

Repository CRAN

Date/Publication 2026-01-13 10:00:02 UTC

Contents

as_config . 3
as_model_out_tbl . 3
check_deprecated_schema . 5
convert_output_type . 5
create_s3_url . 7
extract_schema_version . 8
get_config_tid . 8
get_hub_timezone . 9
get_round_idx . 10
get_round_model_tasks . 12
get_round_task_id_names . 12
get_schema . 13
get_schema_url . 14
get_schema_valid_versions . 14
get_schema_version_latest . 15
get_task_id_names . 16
get_version_config . 16
hub_con_output . 18
is_github_repo_url . 18
is_github_url . 19
is_s3_base_fs . 20
is_url . 20
is_v3_config . 21
is_v3_config_file . 21
is_v3_hub . 22
is_valid_url . 23
model_id_merge . 23
read_config . 24
read_config_file . 25
std_colnames . 26
subset_task_id_cols . 27
subset_task_id_names . 28
target-data-utils . 28
validate_model_out_tbl . 30
version_equal . 31

Index 34

as_config 3

as_config Coerce a config list to a config class object

Description

Coerce a config list to a config class object

Usage

as_config(x)

Arguments

x a list representation of the contents a tasks.json config file.

Value

a config list object with subclass <config>.

Examples

config_tasks <- read_config(
hub_path = system.file("testhubs/simple", package = "hubUtils")

)
Remove all attributes except names to demonstrate functionality
attributes(config_tasks) <- attributes(config_tasks)[

names(attributes(config_tasks)) == "names"
]
Convert to config object
as_config(config_tasks)

as_model_out_tbl Convert model output to a model_out_tbl class object.

Description

Convert model output to a model_out_tbl class object.

Usage

as_model_out_tbl(
tbl,
model_id_col = NULL,
output_type_col = NULL,
output_type_id_col = NULL,
value_col = NULL,

4 as_model_out_tbl

sep = "-",
trim_to_task_ids = FALSE,
hub_con = NULL,
task_id_cols = NULL,
remove_empty = FALSE

)

Arguments

tbl a data.frame or tibble of model output data returned from a query to a <hub_connection>
object.

model_id_col character string. If a model_id column does not already exist in tbl, the tbl
column name containing model_id data. Alternatively, if both a team_abbr
and a model_abbr column exist, these will be merged automatically to create a
single model_id column.

output_type_col

character string. If an output_type column does not already exist in tbl, the
tbl column name containing output_type data.

output_type_id_col

character string. If an output_type_id column does not already exist in tbl,
the tbl column name containing output_type_id data.

value_col character string. If a value column does not already exist in tbl, the tbl column
name containing value data.

sep character string. Character used as separator when concatenating team_abbr
and model_abbr column values into a single model_id string. Only applicable
if model_id column not present and team_abbr and model_abbr columns are.

trim_to_task_ids

logical. Whether to trim tbl to task ID columns only. Task ID columns can be
specified by providing a <hub_connection> class object to hub_con or manu-
ally through task_id_cols.

hub_con a <hub_connection> class object. Only used if trim_to_task_ids = TRUE and
tasks IDs should be determined from the hub config.

task_id_cols a character vector of column names. Only used if trim_to_task_ids = TRUE
to manually specify task ID columns to retain. Overrides hub_con argument if
provided.

remove_empty Logical. Whether to remove columns containing only NA.

Value

A model_out_tbl class object.

Examples

as_model_out_tbl(hub_con_output)

check_deprecated_schema 5

check_deprecated_schema

Check whether a config file is using a deprecated schema

Description

Function compares the current schema version in a config file to a valid version, If config file
version deprecated compared to valid version, the function issues a lifecycle warning to prompt
user to upgrade.

Usage

check_deprecated_schema(
config_version,
config,
valid_version = "v2.0.0",
hubutils_version = "0.0.0.9010"

)

Arguments

config_version Character string of the schema version.

config List representation of config file.

valid_version Character string of minimum valid schema version.
hubutils_version

The version of the hubUtils package in which deprecation of the schema version
below valid_version is introduced.

Value

Invisibly, TRUE if the schema version is deprecated, FALSE otherwise. Primarily used for the side
effect of issuing a lifecycle warning.

convert_output_type Transform between output types

Description

Transform between output types for each unique combination of task IDs for each model. Con-
version must be from a single initial output type to one or more to output types, and the resulting
output will only contain the to output types. See details for supported conversions.

Usage

convert_output_type(model_out_tbl, to)

6 convert_output_type

Arguments

model_out_tbl an object of class model_out_tbl containing predictions with a single, unique
value in the output_type column.

to a named list indicating the desired output types and associated output type IDs.
List item name and value pairs may be as follows:

• mean: NA (no associated output type ID)
• median: NA (no associated output type ID)
• quantile: a numeric vector of probability levels OR a dataframe of prob-

ability levels and the task ID variables they depend upon. (See examples
section for an example of each.) Note that any task ID variable value must
appear in the associated model_out_tbl task ID column

Details

Currently, only "sample" can be converted to "mean", "median", or "quantile"

Value

object of class model_out_tbl containing (only) predictions of the to output_type(s) for each
unique combination of task IDs for each model

Examples

We illustrate the conversion between output types using normal distributions
ex_quantiles <- c(0.25, 0.5, 0.75)
model_out_tbl <- expand.grid(

stringsAsFactors = FALSE,
group1 = c(1, 2),
model_id = "A",
output_type = "sample",
output_type_id = 1:100

) |>
dplyr::mutate(value = rnorm(200, mean = group1))

Output type conversions with vector `to` elements
convert_output_type(model_out_tbl,

to = list("quantile" = ex_quantiles, "median" = NA)
)

Output type conversion with dataframe `to` element
Output type ID values (quantile levels) are determined by group1 value
quantile_levels <- rbind(

data.frame(group1 = 1, output_type_id = 0.5),
data.frame(group1 = 2, output_type_id = c(0.25, 0.5, 0.75))

)
convert_output_type(model_out_tbl,

to = list("quantile" = quantile_levels)
)

create_s3_url 7

create_s3_url Create a URL to a file in an S3 bucket

Description

Create a URL to a file in an S3 bucket

Usage

create_s3_url(base_fs, base_path)

Arguments

base_fs character string. Path of the base s3 file system (bucket) in the cloud. Can be
extracted from the object of class <SubTreeFileSystem> using the $base_fs
field, followed by the $base_path.

base_path character string. Path to the file in relation to base_fs. Can be extracted from
the object of class <SubTreeFileSystem> using the $base_path.

Value

A character string of the URL to the file in s3.

Examples

create_s3_url(
base_fs = "hubverse/hubutils/testhubs/simple/",
base_path = "hub-config/admin.json"

)

Create a URL from an object of class `<SubTreeFileSystem>` of an s3 hub
hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
create_s3_url(hub_path$base_path, "hub-config/admin.json")
config_path <- hub_path$path("hub-config/admin.json")
Create a URL from an object of class `<SubTreeFileSystem>` of the path to
a config file in an s3 hub
create_s3_url(config_path$base_fs$base_path, config_path$base_path)

8 get_config_tid

extract_schema_version

Extract the schema version from a schema id or config
schema_version property character string

Description

Extract the schema version from a schema id or config schema_version property character string

Usage

extract_schema_version(id)

Arguments

id A schema id or config schema_version property character string.

Value

The schema version number as a character string.

Examples

extract_schema_version("schema_version: v3.0.0")
extract_schema_version("refs/heads/main/v3.0.0")

get_config_tid Get the name of the output type id column based on the schema version

Description

Version can be provided either directly through the config_version argument or extracted from a
config_tasks object.

Usage

get_config_tid(config_version, config_tasks)

Arguments

config_version Character string of the schema version.

config_tasks a list version of the content’s of a hub’s tasks.json config file, accessed through
the "config_tasks" attribute of a <hub_connection> object or function read_config().

Value

character string of the name of the output type id column

get_hub_timezone 9

Examples

get_config_tid("v3.0.0")
get_config_tid("v2.0.0")

this will produce a warning because support for schema version 1.0.0
has been dropped.
get_config_tid("v1.0.0")

get_hub_timezone Get hub configuration fields

Description

Get hub configuration fields

Usage

get_hub_timezone(hub_path)

get_hub_model_output_dir(hub_path)

get_hub_file_formats(hub_path, round_id = NULL)

get_hub_derived_task_ids(hub_path, round_id = NULL)

Arguments

hub_path Either a character string path to a local Modeling Hub directory, a character
string of a URL to a GitHub repository or an object of class <SubTreeFileSystem>
created using functions arrow::s3_bucket() or arrow::gs_bucket() by pro-
viding a string S3 or GCS bucket name or path to a Modeling Hub directory
stored in the cloud. For more details consult the Using cloud storage (S3, GCS)
in the arrow package.

round_id Character string. Round identifier. If the round is set to round_id_from_variable:
true, IDs are values of the task ID defined in the round’s round_id property of
config_tasks. Otherwise should match round’s round_id value in config. Ig-
nored if hub contains only a single round.

Value

• get_hub_timezone: The timezone of the hub

• get_hub_model_output_dir: The model output directory name

• get_hub_file_formats: character vector accepted hub or round level file formats. If round_id
is NULL or the round does not have a round level file_format setting, returns the hub level
file_format setting.

https://arrow.apache.org/docs/r/articles/fs.html

10 get_round_idx

• get_hub_derived_task_ids: character vector of hub or round level derived task ID names.
If round_id is NULL or the round does not have a round level derived_tasks_ids setting,
returns the hub level derived_tasks_ids setting.

Functions

• get_hub_timezone(): Get the hub timezone

• get_hub_model_output_dir(): Get the model output directory name

• get_hub_file_formats(): Get the hub or round level file formats

• get_hub_derived_task_ids(): Get the hub or round level derived_tasks_ids

Examples

hub_path <- system.file("testhubs", "flusight", package = "hubUtils")
get_hub_timezone(hub_path)
get_hub_model_output_dir(hub_path)
get_hub_file_formats(hub_path)
get_hub_file_formats(hub_path, "2022-12-12")

get_round_idx Utilities for accessing round ID metadata

Description

Utilities for accessing round ID metadata

Usage

get_round_idx(config_tasks, round_id)

get_round_ids(
config_tasks,
flatten = c("all", "model_task", "task_id", "none")

)

Arguments

config_tasks a list version of the content’s of a hub’s tasks.json config file, accessed through
the "config_tasks" attribute of a <hub_connection> object or function read_config().

round_id Character string. Round identifier. If the round is set to round_id_from_variable:
true, IDs are values of the task ID defined in the round’s round_id property of
config_tasks. Otherwise should match round’s round_id value in config. Ig-
nored if hub contains only a single round.

flatten Character. Whether and how much to flatten output.

• "all": Complete flattening. Returns a character vector of unique round
IDs across all rounds.

get_round_idx 11

• "model_task": Flatten model tasks. Returns a list with an element for each
round. Each round element contains a character vector of unique round IDs
across all round model tasks. Only applicable if round_id_from_variable
is TRUE.

• "task_id": Flatten task ID. Returns a nested list with an element for
each round. Each round element contains a list with an element for each
model task. Each model task element contains a character vector of unique
round IDs. across required and optional properties. Only applicable if
round_id_from_variable is TRUE

• "none": No flattening. If round_id_from_variable is TRUE, returns a
nested list with an element for each round. Each round element contains a
nested element for each model task. Each model task element contains a
nested list of required and optional character vectors of round IDs. If
round_id_from_variable is FALSE,a list with a round ID for each round
is returned.

Value

the integer index of the element in config_tasks$rounds that a character round identifier maps to

a list or character vector of hub round IDs

• A character vector is returned only if flatten = "all"

• A list is returned otherwise (see flatten for more details)

Functions

• get_round_idx(): Get an integer index of the element in config_tasks$rounds that a char-
acter round identifier maps to.

• get_round_ids(): Get a list or character vector of hub round IDs. For each round, if
round_id_from_variable is TRUE, round IDs returned are the values of the task ID defined
in the round_id property. Otherwise, if round_id_from_variable is FALSE, the value of the
round_id property is returned.

Examples

config_tasks <- read_config(
hub_path = system.file("testhubs/simple", package = "hubUtils")

)
Get round IDs
get_round_ids(config_tasks)
get_round_ids(config_tasks, flatten = "model_task")
get_round_ids(config_tasks, flatten = "task_id")
get_round_ids(config_tasks, flatten = "none")
Get round integer index using a round_id
get_round_idx(config_tasks, "2022-10-01")
get_round_idx(config_tasks, "2022-10-29")

12 get_round_task_id_names

get_round_model_tasks Get the model tasks for a given round

Description

Get the model tasks for a given round

Usage

get_round_model_tasks(config_tasks, round_id)

Arguments

config_tasks a list version of the content’s of a hub’s tasks.json config file, accessed through
the "config_tasks" attribute of a <hub_connection> object or function read_config().

round_id Character string. Round identifier. If the round is set to round_id_from_variable:
true, IDs are values of the task ID defined in the round’s round_id property of
config_tasks. Otherwise should match round’s round_id value in config. Ig-
nored if hub contains only a single round.

Value

a list representation of model tasks for a given round.

Examples

hub_path <- system.file("testhubs/simple", package = "hubUtils")
config_tasks <- read_config(hub_path, "tasks")
get_round_model_tasks(config_tasks, round_id = "2022-10-08")
get_round_model_tasks(config_tasks, round_id = "2022-10-15")

get_round_task_id_names

Get task ID names for a given round

Description

Get task ID names for a given round

Usage

get_round_task_id_names(config_tasks, round_id)

get_schema 13

Arguments

config_tasks a list version of the content’s of a hub’s tasks.json config file, accessed through
the "config_tasks" attribute of a <hub_connection> object or function read_config().

round_id Character string. Round identifier. If the round is set to round_id_from_variable:
true, IDs are values of the task ID defined in the round’s round_id property of
config_tasks. Otherwise should match round’s round_id value in config. Ig-
nored if hub contains only a single round.

Value

a character vector of task ID names

Examples

hub_path <- system.file("testhubs/simple", package = "hubUtils")
config_tasks <- read_config(hub_path, "tasks")
get_round_task_id_names(config_tasks, round_id = "2022-10-08")
get_round_task_id_names(config_tasks, round_id = "2022-10-15")

get_schema Download a schema

Description

Download a schema

Usage

get_schema(schema_url)

Arguments

schema_url The download URL for a given config schema version.

Value

Contents of the JSON schema as a character string.

See Also

Other functions supporting config file validation: get_schema_url(), get_schema_valid_versions()

Examples

schema_url <- get_schema_url(config = "tasks", version = "v0.0.0.9")
get_schema(schema_url)

14 get_schema_valid_versions

get_schema_url Get the JSON schema download URL for a given config file version

Description

Get the JSON schema download URL for a given config file version

Usage

get_schema_url(
config = c("tasks", "admin", "model", "target-data"),
version,
branch = "main"

)

Arguments

config Name of config file to validate. One of "tasks", "admin", "model" or "target-data".

version A valid version of hubverse schema (e.g. "v0.0.1").

branch The branch of the hubverse schemas repository from which to fetch schema.
Defaults to "main".

Value

The JSON schema download URL for a given config file version.

See Also

Other functions supporting config file validation: get_schema(), get_schema_valid_versions()

Examples

get_schema_url(config = "tasks", version = "v0.0.0.9")

get_schema_valid_versions

Get a vector of valid schema version

Description

Get a vector of valid schema version

Usage

get_schema_valid_versions(branch = "main")

https://github.com/hubverse-org/schemas
https://github.com/hubverse-org/schemas

get_schema_version_latest 15

Arguments

branch The branch of the hubverse schemas repository from which to fetch schema.
Defaults to "main".

Value

a character vector of valid versions of hubverse schema.

See Also

Other functions supporting config file validation: get_schema(), get_schema_url()

Examples

get_schema_valid_versions()

get_schema_version_latest

Get the latest schema version

Description

Get the latest schema version from the schema repository if "latest" requested (default) or ignore if
specific version provided.

Usage

get_schema_version_latest(schema_version = "latest", branch = "main")

Arguments

schema_version A character vector. Either "latest" or a valid schema version.

branch The branch of the hubverse schemas repository from which to fetch schema.
Defaults to "main".

Value

a schema version string. If schema_version is "latest", the latest schema version from the schema
repository. If specific version provided to schema_version, the same version is returned.

Examples

Get the latest version of the schema

get_schema_version_latest()
get_schema_version_latest(schema_version = "v3.0.0")

https://github.com/hubverse-org/schemas
https://github.com/hubverse-org/schemas
https://github.com/hubverse-org/schemas

16 get_version_config

get_task_id_names Get hub task IDs

Description

Get hub task IDs

Usage

get_task_id_names(config_tasks)

Arguments

config_tasks a list version of the content’s of a hub’s tasks.json config file, accessed through
the "config_tasks" attribute of a <hub_connection> object or function read_config().

Value

a character vector of all unique task ID names across all rounds.

Examples

hub_path <- system.file("testhubs/simple", package = "hubUtils")
config_tasks <- read_config(hub_path, "tasks")
get_task_id_names(config_tasks)

get_version_config Get hub config schema versions

Description

Get hub config schema versions

Usage

get_version_config(config)

get_version_file(config_path)

get_version_hub(hub_path, config_type = c("tasks", "admin", "target-data"))

get_version_config 17

Arguments

config A <config> class object. Usually the output of read_config or read_config_file.

config_path Either a character string of a path to a local JSON config file, a character string of
the URL to the raw contents of a JSON config file (e.g on GitHub) or an object
of class <SubTreeFileSystem> created using functions arrow::s3_bucket()
and associated methods for creating paths to JSON config files within the bucket.

hub_path Either a character string path to a local Modeling Hub directory, a character
string of a URL to a GitHub repository or an object of class <SubTreeFileSystem>
created using functions arrow::s3_bucket() or arrow::gs_bucket() by pro-
viding a string S3 or GCS bucket name or path to a Modeling Hub directory
stored in the cloud. For more details consult the Using cloud storage (S3, GCS)
in the arrow package.

config_type Character vector specifying the type of config file to read. One of "tasks", "ad-
min" or "target-data". Default is "tasks".

Value

The schema version number as a character string.

Functions

• get_version_config(): Get schema version from config list representation.

• get_version_file(): Get schema version from config file at specific path.

• get_version_hub(): Get schema version from config file at specific path.

Examples

config <- read_config_file(
system.file("config", "tasks.json", package = "hubUtils")

)
get_version_config(config)
config_path <- system.file("config", "tasks.json", package = "hubUtils")
get_version_file(config_path)
Get version from a URL of a hub config file
url <- paste0(

"https://raw.githubusercontent.com/hubverse-org/",
"example-simple-forecast-hub/refs/heads/main/hub-config/tasks.json"

)
get_version_file(url)

Get version from an AWS S3 cloud hub config file
hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
config_path <- hub_path$path("hub-config/admin.json")
get_version_file(config_path)

hub_path <- system.file("testhubs/simple", package = "hubUtils")
get_version_hub(hub_path)
get_version_hub(hub_path, "admin")

https://arrow.apache.org/docs/r/articles/fs.html

18 is_github_repo_url

Get version from an AWS S3 cloud hub config file
hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
get_version_hub(hub_path)

hub_con_output Example Hub model output data

Description

A subset of model output data accessed using hubData from the simple example hub contained in
the hubUtils package. The subset consists of "quantile" output type data for "US" location and
the most recent forecast date.

Usage

hub_con_output

Format

A tbl with 92 rows and 8 columns:

• forecast_date: Origin date of the forecast.

• horizon: Forecast horizon relative to the forecast_date.

• target: Target variable.

• location: Location of the forecast.

• output_type: Output type of forecast.

• output_type_id: Forecast output type level/identifier. In this case, quantile level.

• value: Forecast value.

• model_id: Model identifier.

is_github_repo_url Detect if a URL is a GitHub repository URL

Description

Detect if a URL is a GitHub repository URL

Usage

is_github_repo_url(url)

Arguments

url character string of the URL to check.

is_github_url 19

Value

Logical. TRUE if the URL is a GitHub repository URL, FALSE otherwise.

Examples

is_github_repo_url("https://github.com/hubverse-org/example-simple-forecast-hub")
raw_url <- paste0(

"https://raw.githubusercontent.com/hubverse-org/",
"example-simple-forecast-hub/refs/heads/main/hub-config/tasks.json"

)
is_github_repo_url(raw_url)
url_to_blob <- "https://github.com/hubverse-org/example-simple-forecast-hub/blob/main/README.md"
is_github_repo_url(url_to_blob)

is_github_url Detect a URL on github.com

Description

Detect a URL on github.com

Usage

is_github_url(url)

Arguments

url character string of the URL to check.

Value

Logical. TRUE if the URL on github.com, FALSE otherwise.

Examples

Returns TRUE
is_github_url("https://github.com/hubverse-org/example-simple-forecast-hub")
is_github_url("https://github.com/hubverse-org/schemas/tree/main/v5.0.0")
Returns FALSE
is_github_url("https://gitlab.com/hubverse-org/schemas/tree/main/v5.0.0")
raw_url <- paste0(

"https://raw.githubusercontent.com/hubverse-org/",
"example-simple-forecast-hub/refs/heads/main/hub-config/tasks.json"

)
is_github_url(raw_url)

20 is_url

is_s3_base_fs Detect whether An object of class <SubTreeFileSystem> represents
the base path of an S3 file system (i.e. the root of a cloud hub)

Description

Detect whether An object of class <SubTreeFileSystem> represents the base path of an S3 file
system (i.e. the root of a cloud hub)

Usage

is_s3_base_fs(s3_fs)

Arguments

s3_fs An object of class <SubTreeFileSystem>.

Value

Logical. TRUE if the object represents the base path of an S3 file, FALSE otherwise.

Examples

hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
config_path <- hub_path$path("hub-config/admin.json")
is_s3_base_fs(hub_path)
is_s3_base_fs(config_path)

is_url Determine if a string is a URL

Description

Determine if a string is a URL

Usage

is_url(x)

Arguments

x character string to check if it is a URL. Must contain a protocol to be considered
a URL.

is_v3_config 21

Value

Logical. TRUE if x is a URL, FALSE otherwise.

Examples

is_url("https://docs.hubverse.io")
is_url("www.hubverse.io")

is_v3_config Is config list representation using v3.0.0 schema?

Description

Is config list representation using v3.0.0 schema?

Usage

is_v3_config(config)

Arguments

config List representation of the JSON config file.

Value

Logical, whether the config list representation is using v3.0.0 schema or greater.

Examples

config <- read_config_file(
system.file("config", "tasks.json", package = "hubUtils")

)
is_v3_config(config)

is_v3_config_file Is config file using v3.0.0 schema?

Description

Is config file using v3.0.0 schema?

Usage

is_v3_config_file(config_path)

22 is_v3_hub

Arguments

config_path Either a character string of a path to a local JSON config file, a character string of
the URL to the raw contents of a JSON config file (e.g on GitHub) or an object
of class <SubTreeFileSystem> created using functions arrow::s3_bucket()
and associated methods for creating paths to JSON config files within the bucket.

Value

Logical, whether the config file is using v3.0.0 schema or greater.

Examples

config_path <- system.file("config", "tasks.json", package = "hubUtils")
is_v3_config_file(config_path)

is_v3_hub Is hub configured using v3.0.0 schema?

Description

Is hub configured using v3.0.0 schema?

Usage

is_v3_hub(hub_path, config = c("tasks", "admin", "target-data"))

Arguments

hub_path Either a character string path to a local Modeling Hub directory, a character
string of a URL to a GitHub repository or an object of class <SubTreeFileSystem>
created using functions arrow::s3_bucket() or arrow::gs_bucket() by pro-
viding a string S3 or GCS bucket name or path to a Modeling Hub directory
stored in the cloud. For more details consult the Using cloud storage (S3, GCS)
in the arrow package.

config Type of config file to read. One of "tasks", "admin" or "model-metadata-schema".
Default is "tasks".

Value

Logical, whether the hub is configured using v3.0.0 schema or greater.

Examples

is_v3_hub(hub_path = system.file("testhubs", "flusight", package = "hubUtils"))

https://arrow.apache.org/docs/r/articles/fs.html

is_valid_url 23

is_valid_url Determine if a URL is valid and reachable

Description

Determine if a URL is valid and reachable

Usage

is_valid_url(url)

Arguments

url character string of the URL to check.

Value

Logical. TRUE if the URL is valid and reachable, FALSE otherwise.

Examples

is_valid_url("https://docs.hubverse.io")
is_valid_url("https://docs.hubverse.io/invalid")

model_id_merge Merge/Split model output tbl model_id column

Description

Merge/Split model output tbl model_id column

Usage

model_id_merge(tbl, sep = "-")

model_id_split(tbl, sep = "-")

Arguments

tbl a data.frame or tibble of model output data returned from a query to a <hub_connection>
object.

sep character string. Character used as separator when concatenating team_abbr
and model_abbr values into a single model_id string or splitting model_id into
component team_abbr and model_abbr. When splitting, if multiple instances
of the separator exist in a model_id stringing, splitting occurs occurs on the first
instance.

24 read_config

Value

tbl with either team_abbr and model_abbr merged into a single model_id column or model_id
split into columns team_abbr and model_abbr.

a tibble with model_id column split into separate team_abbr and model_abbr columns

Functions

• model_id_merge(): merge team_abbr and model_abbr into a single model_id column.

• model_id_split(): split model_id column into separate team_abbr and model_abbr columns.

Examples

tbl_split <- model_id_split(hub_con_output)
tbl_split

Merge model_id
tbl_merged <- model_id_merge(tbl_split)
tbl_merged

Split / Merge using custom separator
tbl_sep <- hub_con_output
tbl_sep$model_id <- gsub("-", "_", tbl_sep$model_id)
tbl_sep <- model_id_split(tbl_sep, sep = "_")
tbl_sep
tbl_sep <- model_id_merge(tbl_sep, sep = "_")
tbl_sep

read_config Read a hub config file into R

Description

Read a hub config file into R

Usage

read_config(
hub_path,
config = c("tasks", "admin", "model-metadata-schema", "target-data"),
silent = TRUE

)

read_config_file 25

Arguments

hub_path Either a character string path to a local Modeling Hub directory, a character
string of a URL to a GitHub repository or an object of class <SubTreeFileSystem>
created using functions arrow::s3_bucket() or arrow::gs_bucket() by pro-
viding a string S3 or GCS bucket name or path to a Modeling Hub directory
stored in the cloud. For more details consult the Using cloud storage (S3, GCS)
in the arrow package.

config Type of config file to read. One of "tasks", "admin" or "model-metadata-schema".
Default is "tasks".

silent Logical. If TRUE, suppress warnings. Default is FALSE.

Value

The contents of the config file as an R list. If possible, the output is further converted to a <config>
class object before returning. Note that "model-metadata-schema" files are never converted to a
<config> object.

Examples

Read config files from local hub
hub_path <- system.file("testhubs/simple", package = "hubUtils")
read_config(hub_path, "tasks")
read_config(hub_path, "admin")

Read config file from a GitHub hub repository
github_url <- "https://github.com/hubverse-org/example-simple-forecast-hub"
read_config(github_url)
read_config(github_url, "admin")

Read config file from AWS S3 bucket hub
hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
read_config(hub_path, "admin")

read_config_file Read a JSON config file from a path

Description

Read a JSON config file from a path

Usage

read_config_file(config_path, silent = TRUE)

https://arrow.apache.org/docs/r/articles/fs.html

26 std_colnames

Arguments

config_path Either a character string of a path to a local JSON config file, a character string of
the URL to the raw contents of a JSON config file (e.g on GitHub) or an object
of class <SubTreeFileSystem> created using functions arrow::s3_bucket()
and associated methods for creating paths to JSON config files within the bucket.

silent Logical. If TRUE, suppress warnings. Default is FALSE.

Value

The contents of the config file as an R list. If possible, the output is further converted to a <config>
class object before returning. Note that "model-metadata-schema" files are never converted to a
<config> object.

Examples

Read local config file
read_config_file(system.file("config", "tasks.json", package = "hubUtils"))
Read config file from URL
url <- paste0(

"https://raw.githubusercontent.com/hubverse-org/",
"example-simple-forecast-hub/refs/heads/main/hub-config/tasks.json"

)
read_config_file(url)

Read config file from AWS S3 bucket hub
hub_path <- arrow::s3_bucket("hubverse/hubutils/testhubs/simple/")
config_path <- hub_path$path("hub-config/admin.json")
read_config_file(config_path)

std_colnames Hubverse model output standard column names

Description

A named character string of standard column names used in hubverse model output data files. The
terms currently used for standard column names in the hubverse are English. In future, however,
this could be expanded to provide the basis for hub terminology localisation.

Usage

std_colnames

Format

An object of class character of length 4.

subset_task_id_cols 27

subset_task_id_cols Subset a model_out_tbl or submission tbl.

Description

Subset a model_out_tbl or submission tbl.

Usage

subset_task_id_cols(model_out_tbl)

subset_std_cols(model_out_tbl)

Arguments

model_out_tbl A model_out_tbl or submission tbl object. Must inherit from class data.frame.

Value

• subset_task_id_cols: an object of the same class as model_out_tbl which contains only
task ID columns.

• subset_std_cols: an object of the same class as model_out_tbl which contains only hub-
verse standard columns (i.e. columns that are not task_id columns).

Functions

• subset_task_id_cols(): subset a model_out_tbl or submission tbl to only include task_id
columns

• subset_std_cols(): subset a model_out_tbl or submission tbl to only include hubverse
standard columns (i.e. columns that are not task_id columns)

Examples

model_out_tbl_path <- system.file("testhubs", "v4", "simple",
"model-output", "hub-baseline", "2022-10-15-hub-baseline.parquet",
package = "hubUtils"

)
model_out_tbl <- arrow::read_parquet(model_out_tbl_path)
subset_task_id_cols(model_out_tbl)
subset_std_cols(model_out_tbl)

28 target-data-utils

subset_task_id_names Subset a vector of column names to only include task IDs

Description

Subset a vector of column names to only include task IDs

Usage

subset_task_id_names(x)

Arguments

x character vector of column names

Value

a character vector of task ID names

Examples

x <- c(
"origin_date", "horizon", "target_date",
"location", "output_type", "output_type_id", "value"

)
subset_task_id_names(x)

target-data-utils Get target data configuration properties

Description

Utility functions for extracting properties from target-data.json configuration files (v6.0.0 schema).
These functions handle defaults and inheritance patterns for target data configuration.

Usage

get_date_col(config_target_data)

get_observable_unit(
config_target_data,
dataset = c("time-series", "oracle-output")

)

get_versioned(config_target_data, dataset = c("time-series", "oracle-output"))

target-data-utils 29

get_has_output_type_ids(config_target_data)

get_non_task_id_schema(config_target_data)

has_target_data_config(hub_path)

Default S3 method:
has_target_data_config(hub_path)

S3 method for class 'SubTreeFileSystem'
has_target_data_config(hub_path)

Arguments

config_target_data

A target-data config object created by read_config(hub_path, "target-data").

dataset Character string specifying the dataset type: either "time-series" or "oracle-output".
Used for functions that extract dataset-specific properties.

hub_path Path to a hub. Can be a local directory path or cloud URL (S3, GCS).

Details

Inheritance and Defaults:
Some properties can be specified at both the global level and the dataset level:

• observable_unit: Dataset-specific values override global when specified, otherwise the global
value is used.

• versioned: Dataset-specific values override global when specified, otherwise inherits from
global (default FALSE if not specified anywhere).

Other properties are dataset-specific only:

• has_output_type_ids: Only for oracle-output dataset (default FALSE)
• non_task_id_schema: Only for time-series dataset (default NULL)

Value

get_date_col() returns a character string: the name of the date column that stores the date on
which observed data actually occurred.

get_observable_unit() returns a character vector: column names whose unique value combina-
tions define the minimum observable unit.

get_versioned() returns a logical value: whether the dataset is versioned using as_of dates.

get_has_output_type_ids() returns a logical value: whether oracle-output data has output_type
and output_type_id columns (default FALSE if not specified).

get_non_task_id_schema() returns a named list: key-value pairs of non-task ID column names
and their data types, or NULL if not specified.

has_target_data_config() returns a logical value: TRUE if the target-data.json file exists in the
hub-config directory of the hub, FALSE otherwise.

30 validate_model_out_tbl

Functions

• get_date_col(): Get the name of the date column across hub data.

• get_observable_unit(): Get observable unit column names. Returns dataset-specific ob-
servable_unit if configured, otherwise falls back to global.

• get_versioned(): Get whether target data is versioned for the specified dataset. Returns
dataset-specific setting if configured, otherwise inherits from global (default FALSE if not spec-
ified).

• get_has_output_type_ids(): Get whether oracle-output data has output_type/output_type_id
columns.

• get_non_task_id_schema(): Get the schema for non-task ID columns in time-series data.

• has_target_data_config(): Check if target data config file exists in hub.

Examples

hub_path <- system.file("testhubs/v6/target_dir", package = "hubUtils")
config <- read_config(hub_path, "target-data")

Get the date column name
get_date_col(config)

Get observable unit (uses dataset-specific or falls back to global)
get_observable_unit(config, dataset = "time-series")
get_observable_unit(config, dataset = "oracle-output")

Get versioned setting (inherits from global if not specified)
get_versioned(config, dataset = "time-series")

Get oracle-output specific property
get_has_output_type_ids(config)

Get time-series specific property
get_non_task_id_schema(config)

Check if target data config exists
has_target_data_config(hub_path)
no_config_hub <- system.file("testhubs/v5/target_file/", package = "hubUtils")
has_target_data_config(no_config_hub)

validate_model_out_tbl

Validate a model_out_tbl object.

Description

Validate a model_out_tbl object.

version_equal 31

Usage

validate_model_out_tbl(tbl)

Arguments

tbl a model_out_tbl S3 class object.

Value

If valid, returns a model_out_tbl class object. Otherwise, throws an error.

Examples

md_out <- as_model_out_tbl(hub_con_output)
validate_model_out_tbl(md_out)

version_equal Compare hub config schema_versions to specific version numbers
from a variety of sources

Description

Compare hub config schema_versions to specific version numbers from a variety of sources

Usage

version_equal(
version,
config = NULL,
config_path = NULL,
hub_path = NULL,
schema_version = NULL

)

version_gte(
version,
config = NULL,
config_path = NULL,
hub_path = NULL,
schema_version = NULL

)

version_gt(
version,
config = NULL,
config_path = NULL,
hub_path = NULL,

32 version_equal

schema_version = NULL
)

version_lte(
version,
config = NULL,
config_path = NULL,
hub_path = NULL,
schema_version = NULL

)

version_lt(
version,
config = NULL,
config_path = NULL,
hub_path = NULL,
schema_version = NULL

)

Arguments

version Character string. Version number to compare against, must be in the format
"v#.#.#".

config A <config> class object. Usually the output of read_config or read_config_file.

config_path Either a character string of a path to a local JSON config file, a character string of
the URL to the raw contents of a JSON config file (e.g on GitHub) or an object
of class <SubTreeFileSystem> created using functions arrow::s3_bucket()
and associated methods for creating paths to JSON config files within the bucket.

hub_path Either a character string path to a local Modeling Hub directory, a character
string of a URL to a GitHub repository or an object of class <SubTreeFileSystem>
created using functions arrow::s3_bucket() or arrow::gs_bucket() by pro-
viding a string S3 or GCS bucket name or path to a Modeling Hub directory
stored in the cloud. For more details consult the Using cloud storage (S3, GCS)
in the arrow package.

schema_version Character string. A config schema_version property to compare against.

Value

TRUE or FALSE depending on how the schema version compares to the version number specified.

Functions

• version_equal(): Check whether a schema version property is equal to a specific version
number.

• version_gte(): Check whether a schema version property is equal to or greater than a spe-
cific version number.

• version_gt(): Check whether a schema version property is greater than a specific version
number.

https://arrow.apache.org/docs/r/articles/fs.html

version_equal 33

• version_lte(): Check whether a schema version property is equal to or less than a specific
version number.

• version_lt(): Check whether a schema version property is less than a specific version num-
ber.

Examples

Actual version "v2.0.0"
hub_path <- system.file("testhubs/simple", package = "hubUtils")
Actual version "v3.0.0"
config_path <- system.file("config", "tasks.json", package = "hubUtils")
config <- read_config_file(config_path)
schema_version <- config$schema_version
Check whether schema_version equal to v3.0.0
version_equal("v3.0.0", config = config)
version_equal("v3.0.0", config_path = config_path)
version_equal("v3.0.0", hub_path = hub_path)
version_equal("v3.0.0", schema_version = schema_version)
Check whether schema_version equal to or greater than v3.0.0
version_gte("v3.0.0", config = config)
version_gte("v3.0.0", config_path = config_path)
version_gte("v3.0.0", hub_path = hub_path)
version_gte("v3.0.0", schema_version = schema_version)
Check whether schema_version greater than v3.0.0
version_gt("v3.0.0", config = config)
version_gt("v3.0.0", config_path = config_path)
version_gt("v3.0.0", hub_path = hub_path)
version_gt("v3.0.0", schema_version = schema_version)
Check whether schema_version equal to or less than v3.0.0
version_lte("v3.0.0", config = config)
version_lte("v3.0.0", config_path = config_path)
version_lte("v3.0.0", hub_path = hub_path)
version_lte("v3.0.0", schema_version = schema_version)
Check whether schema_version less than v3.0.0
version_lt("v3.0.0", config = config)
version_lt("v3.0.0", config_path = config_path)
version_lt("v3.0.0", hub_path = hub_path)
version_lt("v3.0.0", schema_version = schema_version)

Index

∗ datasets
hub_con_output, 18
std_colnames, 26

∗ functions supporting config file validation
get_schema, 13
get_schema_url, 14
get_schema_valid_versions, 14

arrow::gs_bucket(), 9, 17, 22, 25, 32
arrow::s3_bucket(), 9, 17, 22, 25, 26, 32
as_config, 3
as_model_out_tbl, 3

check_deprecated_schema, 5
convert_output_type, 5
create_s3_url, 7

extract_schema_version, 8

get_config_tid, 8
get_date_col (target-data-utils), 28
get_has_output_type_ids

(target-data-utils), 28
get_hub_derived_task_ids

(get_hub_timezone), 9
get_hub_file_formats

(get_hub_timezone), 9
get_hub_model_output_dir

(get_hub_timezone), 9
get_hub_timezone, 9
get_non_task_id_schema

(target-data-utils), 28
get_observable_unit

(target-data-utils), 28
get_round_ids (get_round_idx), 10
get_round_idx, 10
get_round_model_tasks, 12
get_round_task_id_names, 12
get_schema, 13, 14, 15
get_schema_url, 13, 14, 15

get_schema_valid_versions, 13, 14, 14
get_schema_version_latest, 15
get_task_id_names, 16
get_version_config, 16
get_version_file (get_version_config),

16
get_version_hub (get_version_config), 16
get_versioned (target-data-utils), 28

has_target_data_config
(target-data-utils), 28

hub_con_output, 18

is_github_repo_url, 18
is_github_url, 19
is_s3_base_fs, 20
is_url, 20
is_v3_config, 21
is_v3_config_file, 21
is_v3_hub, 22
is_valid_url, 23

model_id_merge, 23
model_id_split (model_id_merge), 23

read_config, 24
read_config(), 8, 10, 12, 13, 16
read_config_file, 25

std_colnames, 26
subset_std_cols (subset_task_id_cols),

27
subset_task_id_cols, 27
subset_task_id_names, 28

target-data-utils, 28
tibble, 24

validate_model_out_tbl, 30
version_equal, 31
version_gt (version_equal), 31

34

INDEX 35

version_gte (version_equal), 31
version_lt (version_equal), 31
version_lte (version_equal), 31

	as_config
	as_model_out_tbl
	check_deprecated_schema
	convert_output_type
	create_s3_url
	extract_schema_version
	get_config_tid
	get_hub_timezone
	get_round_idx
	get_round_model_tasks
	get_round_task_id_names
	get_schema
	get_schema_url
	get_schema_valid_versions
	get_schema_version_latest
	get_task_id_names
	get_version_config
	hub_con_output
	is_github_repo_url
	is_github_url
	is_s3_base_fs
	is_url
	is_v3_config
	is_v3_config_file
	is_v3_hub
	is_valid_url
	model_id_merge
	read_config
	read_config_file
	std_colnames
	subset_task_id_cols
	subset_task_id_names
	target-data-utils
	validate_model_out_tbl
	version_equal
	Index

