
Package ‘hmcdm’
January 14, 2026

Type Package

Title Hidden Markov Cognitive Diagnosis Models for Learning

Version 2.1.3

Description Fitting hidden Markov models of learning under the cognitive diagnosis framework.
The estimation of the hidden Markov diagnostic classification model,
the first order hidden Markov model, the reduced-reparameterized unified learning model,
and the joint learning model for responses and response times.

License GPL (>= 2)

URL https://github.com/tmsalab/hmcdm

BugReports https://github.com/tmsalab/hmcdm/issues

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.0), stats (>= 3.0.0), bayesplot (>= 1.9.0),
rstantools (>= 1.0.0)

LinkingTo Rcpp, RcppArmadillo, progress

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Susu Zhang [aut],
Shiyu Wang [aut],
Yinghan Chen [aut],
Sunbeom Kwon [aut, cre]

Maintainer Sunbeom Kwon <sunbeom2@illinois.edu>

Repository CRAN

Date/Publication 2026-01-14 15:10:02 UTC

1

https://github.com/tmsalab/hmcdm
https://github.com/tmsalab/hmcdm/issues

2 hmcdm-package

Contents

hmcdm-package . 2
Design_array . 3
ETAmat . 4
hmcdm . 4
inv_bijectionvector . 6
L_real_array . 6
OddsRatio . 7
pp_check.hmcdm . 8
print.summary.hmcdm . 9
Q_list_g . 10
Q_matrix . 10
random_Q . 11
rOmega . 11
sim_alphas . 12
sim_hmcdm . 14
sim_RT . 16
Test_order . 17
Test_versions . 18
TPmat . 19
Y_real_array . 19

Index 21

hmcdm-package hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning

Description

Fitting hidden Markov models of learning under the cognitive diagnosis framework. The estimation
of the hidden Markov diagnostic classification model, the first order hidden Markov model, the
reduced-reparameterized unified learning model, and the joint learning model for responses and
response times.

Author(s)

Maintainer: Sunbeom Kwon <sunbeom2@illinois.edu>

Authors:

• Susu Zhang <szhan105@illinois.edu>

• Shiyu Wang <swang44@uga.edu>

• Yinghan Chen <yinghanc@unr.edu >

Design_array 3

References

Wang, S., Yang, Y., Culpepper, S. A., & Douglas, J. A. (2018) doi:10.3102/1076998617719727
"Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov
Model With Covariates."

Chen, Y., Culpepper, S. A., Wang, S., & Douglas, J. (2018) doi:10.1177/0146621617721250 "A
hidden Markov model for learning trajectories in cognitive diagnosis with application to spatial
rotation skills."

Wang, S., Zhang, S., Douglas, J., & Culpepper, S. (2018) doi:10.1080/15366367.2018.1435105
"Using Response Times to Assess Learning Progress: A Joint Model for Responses and Response
Times."

Zhang, S., Douglas, J. A., Wang, S. & Culpepper, S. A. (2019) doi:10.1007/9783030055844_24
"Reduced Reparameterized Unified Model Applied to Learning Spatial Rotation Skills."

See Also

Useful links:

• https://github.com/tmsalab/hmcdm

• Report bugs at https://github.com/tmsalab/hmcdm/issues

Design_array Design array

Description

Design_array contains item administration information at all time points in the Spatial Rotation
Learning Program.

Usage

Design_array

Format

An array of dimension N-by-J-by-L, containing each subject’s item administration.

Details

The data object "Design_array" contains an array of dimension N-by-J-by-L indicating the items
assigned (1/0) to each subject at each time point.

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

https://doi.org/10.3102/1076998617719727
https://doi.org/10.1177/0146621617721250
https://doi.org/10.1080/15366367.2018.1435105
https://doi.org/10.1007/978-3-030-05584-4_24
https://github.com/tmsalab/hmcdm
https://github.com/tmsalab/hmcdm/issues

4 hmcdm

ETAmat Generate ideal response matrix

Description

Based on the Q matrix and the latent attribute space, generate the ideal response matrix for each
skill pattern

Usage

ETAmat(K, J, Q)

Arguments

K An int of the number of attributes

J An int of the number of items

Q A J-by-K Q matrix

Value

A J-by-2^K ideal response matrix

Examples

Q = random_Q(15,4)
ETA = ETAmat(4,15,Q)

hmcdm Gibbs sampler for learning models

Description

Runs MCMC to estimate parameters of any of the listed learning models.

Usage

hmcdm(
Response,
Q_matrix,
model,
Design_array = NULL,
Test_order = NULL,
Test_versions = NULL,
chain_length = 100L,
burn_in = 50L,

hmcdm 5

G_version = NA_integer_,
theta_propose = 0,
Latency_array = NULL,
deltas_propose = NULL,
R = NULL

)

Arguments

Response An array of dichotomous item responses. t-th slice is an N-by-J matrix of
responses at time t.

Q_matrix A J-by-K Q-matrix.

model A charactor of the type of model fitted with the MCMC sampler, possible
selections are "DINA_HO": Higher-Order Hidden Markov Diagnostic Classifi-
cation Model with DINA responses; "DINA_HO_RT_joint": Higher-Order Hid-
den Markov DCM with DINA responses, log-Normal response times, and joint
modeling of latent speed and learning ability; "DINA_HO_RT_sep": Higher-
Order Hidden Markov DCM with DINA responses, log-Normal response times,
and separate modeling of latent speed and learning ability; "rRUM_indept":
Simple independent transition probability model with rRUM responses "NIDA_indept":
Simple independent transition probability model with NIDA responses "DINA_FOHM":
First Order Hidden Markov model with DINA responses

Design_array An array of dimension N-by-J-by-L indicating the items assigned (1/0) to each
subject at each time point. Either ’Design_array’ or both ’Test_order’ & ’Test_versions’
need to be provided to run HMCDM.

Test_order Optional. A matrix of the order of item blocks for each test version.

Test_versions Optional. A vector of the test version of each learner.

chain_length An int of the MCMC chain length.

burn_in An int of the MCMC burn-in chain length.

G_version Optional. An int of the type of covariate for increased fluency (1: G is dichoto-
mous depending on whether all skills required for current item are mastered; 2:
G cumulates practice effect on previous items using mastered skills; 3: G is a
time block effect invariant across subjects with different attribute trajectories)

theta_propose Optional. A scalar for the standard deviation of theta’s proposal distribution in
the MH sampling step.

Latency_array Optional. A array of the response times. t-th slice is an N-by-J matrix of
response times at time t.

deltas_propose Optional. A vector for the band widths of each lambda’s proposal distribution
in the MH sampling step.

R Optional. A reachability matrix for the hierarchical relationship between at-
tributes.

Value

A list of parameter samples and Metropolis-Hastings acceptance rates (if applicable).

6 L_real_array

Author(s)

Susu Zhang

Examples

output_FOHM = hmcdm(Y_real_array, Q_matrix, "DINA_FOHM", Design_array, 100, 30)

inv_bijectionvector Convert integer to attribute pattern

Description

Based on the bijective relationship between natural numbers and sum of powers of two, convert
integer between 0 and 2^K-1 to K-dimensional attribute pattern.

Usage

inv_bijectionvector(K, CL)

Arguments

K An int for the number of attributes

CL An int between 0 and 2^K-1

Value

A vec of the K-dimensional attribute pattern corresponding to CL.

Examples

inv_bijectionvector(4,0)

L_real_array Observed response times array

Description

L_real_array contains the observed latencies of responses of all subjects to all questions in the
Spatial Rotation Learning Program.

Usage

L_real_array

OddsRatio 7

Format

An array of dimensions N-by-J-by-L. Each slice of the array is an N-by-J matrix, containing the
subjects’ response times in seconds to each item at time point l.

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

OddsRatio Compute item pairwise odds ratio

Description

Based on a response matrix, calculate the item pairwise odds-ratio according do (n11n00)/(n10n01),
where nij is the number of people answering both item i and item j correctly

Usage

OddsRatio(N, J, Yt)

Arguments

N An int of the sample size

J An int of the number of items

Yt An N-by-J response matrix

Value

A J-by-J upper-triangular matrix of the item pairwise odds ratios

Examples

N = dim(Y_real_array)[1]
J = nrow(Q_matrix)
OddsRatio(N,J,Y_real_array[,,1])

8 pp_check.hmcdm

pp_check.hmcdm Graphical posterior predictive checks for hidden Markov cognitive di-
agnosis model

Description

pp_check method for class hmcdm.

Usage

S3 method for class 'hmcdm'
pp_check(object, plotfun = "dens_overlay", type = "total_score", ...)

Arguments

object a fitted model object of class "hmcdm".

plotfun A character string naming the type of plot. The list of available plot functions in-
clude "dens_overlay", "hist", "stat_2d", "scatter_avg", "error_scatter_avg".
The default function is "dens_overlay".

type A character string naming the statistic to be used for obtaining posterior pre-
dictive distribution plot. The list of available types include "total_score",
"item_mean", "item_OR", "latency_mean", and "latency_total". The de-
fault type is "total_score" which examines total scores of subjects. Type
"item_mean" is related to the first order moment and examines mean scores of
all the items included in the test. Type "item_OR" is related to the second or-
der moment and examines odds ratios of all item pairs. Types "latency_mean"
and "total_latency" are available only for hmcdm objects that include item
response time information (i.e., hmcdm object fitted with "DINA_HO_RT" model).

... Additional arguments

Value

Plots for checking the posterior predictive distributions. The default Plotfun "dens_overlay"
plots density of each dataset are overlaid with the distribution of the observed values.

References

Zhang, S., Douglas, J. A., Wang, S. & Culpepper, S. A. (2019) <doi:10.1007/9783030055844_24>

See Also

bayesplot::ppc_dens_overlay() bayesplot::ppc_stat() bayesplot::ppc_stat_2d() bayesplot::ppc_scatter_avg()
bayesplot::ppc_error_scatter_avg()

https://doi.org/10.1007/978-3-030-05584-4_24

print.summary.hmcdm 9

Examples

output_FOHM = hmcdm(Y_real_array,Q_matrix,"DINA_FOHM",Design_array,1000,500)
library(bayesplot)
pp_check(output_FOHM)
pp_check(output_FOHM, plotfun="hist", type="item_mean")

print.summary.hmcdm Summarizing Hidden Markov Cognitive Diagnosis Model Fits

Description

summary method for class "hmcdm" or "summary.hmcdm".

Usage

S3 method for class 'summary.hmcdm'
print(x, ...)

S3 method for class 'hmcdm'
summary(object, ...)

Arguments

x an object of class "hmcdm.summary".

... further arguments passed to or from other methods.

object a fitted model object of class "hmcdm".

Value

The function summary.hmcdm computes and returns a list of point estimates of model parameters
and model fit measures including DIC and PPP-values.

See Also

hmcdm()

Examples

output_FOHM = hmcdm(Y_real_array,Q_matrix,"DINA_FOHM",Design_array,1000,500)
summary(output_FOHM)

10 Q_matrix

Q_list_g Generate a list of Q-matrices for each examinee.

Description

Generate a list of length N. Each element of the list is a JxK Q_matrix of all items administered
across all time points to the examinee, in the order of administration.

Usage

Q_list_g(Q_matrix, Design_array)

Arguments

Q_matrix A J-by-K matrix, indicating the item-skill relationship.
Design_array An N-by-J-by-L array indicating whether examinee n has taken item j at l time

point.

Value

A list length of N. Each element of the list is a JxK Q_matrix for each examinee.

Examples

Q_examinee = Q_list_g(Q_matrix, Design_array)

Q_matrix Q-matrix

Description

Q_matrix contains the Q matrix of the items in the Spatial Rotation Learning Program.

Usage

Q_matrix

Format

A J-by-K matrix, indicating the item-skill relationship.

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

random_Q 11

random_Q Generate random Q matrix

Description

Creates a random Q matrix containing three identity matrices after row permutation

Usage

random_Q(J, K)

Arguments

J An int that represents the number of items

K An int that represents the number of attributes/skills

Value

A dichotomous matrix for Q.

Examples

random_Q(15,4)

rOmega Generate a random transition matrix for the first order hidden Markov
model

Description

Generate a random transition matrix under nondecreasing learning trajectory assumption

Usage

rOmega(TP)

Arguments

TP A 2^K-by-2^K dichotomous matrix of indicating possible transitions under the
monotonicity assumption, created with the TPmat function

Value

A 2^K-by-2^K transition matrix, the (i,j)th element indicating the transition probability of transi-
tioning from i-th class to j-th class.

12 sim_alphas

Examples

K = ncol(Q_matrix)
TP = TPmat(K)
Omega_sim = rOmega(TP)

sim_alphas Generate attribute trajectories under the specified hidden Markov
models

Description

Based on the learning model parameters, create cube of attribute patterns of all subjects across time.
Currently available learning models are Higher-order hidden Markov DCM(’HO_sep’), Higher-
order hidden Markov DCM with learning ability as a random effect(’HO_joint’), the simple independent-
attribute learning model(’indept’), and the first order hidden Markov model(’FOHM’).

Usage

sim_alphas(
model,
lambdas = NULL,
thetas = NULL,
Q_matrix = NULL,
Design_array = NULL,
taus = NULL,
Omega = NULL,
N = NA_integer_,
L = NA_integer_,
R = NULL,
alpha0 = NULL

)

Arguments

model The learning model under which the attribute trajectories are generated. Avail-
able options are: ’HO_joint’, ’HO_sep’, ’indept’, ’FOHM’.

lambdas A vector of transition model coefficients. With ’HO_sep’ model specification,
lambdas should be a length 4 vector. First entry is intercept of the logistic
transition model, second entry is the slope of general learning ability, third entry
is the slope for number of other mastered skills, fourth entry is the slope for
amount of practice. With ’HO_joint’ model specification, lambdas should be a
length 3 vector. First entry is intercept of the logistic transition model, second
entry is the slope for number of other mastered skills, third entry is the slope for
amount of practice.

thetas A length N vector of learning abilities of each subject.

Q_matrix A J-by-K Q-matrix

sim_alphas 13

Design_array A N-by-J-by-L array indicating items administered to examinee n at time point
l.

taus A length K vector of transition probabilities from 0 to 1 on each skill

Omega A 2^K-by-2^K matrix of transition probabilities from row pattern to column
pattern

N An int of number of examinees.

L An int of number of time points.

R A K-by-K dichotomous reachability matrix indicating the attribute hierarchies.
The k,k’th entry of R is 1 if k’ is prereq to k.

alpha0 Optional. An N-by-K matrix of subjects’ initial attribute patterns.

Value

An N-by-K-by-L array of attribute patterns of subjects at each time point.

Examples

HO_joint
N = nrow(Design_array)
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = TRUE)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){

Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N, 0, 1.8)
lambdas_true <- c(-2, .4, .055)
Alphas <- sim_alphas(model="HO_joint",

lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)

HO_sep
N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){

Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep",

lambdas=lambdas_true,
thetas=thetas_true,

14 sim_hmcdm

Q_matrix=Q_matrix,
Design_array=Design_array)

indept
N = dim(Design_array)[1]
K = dim(Q_matrix)[2]
L = dim(Design_array)[3]
tau <- numeric(K)
for(k in 1:K){

tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){

for(k in 1:K){
prereqs <- which(R[k,]==1)
if(length(prereqs)==0){

Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
}
if(length(prereqs)>0){

Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
}

}
}
Alphas <- sim_alphas(model="indept", taus=tau, N=N, L=L, R=R)

FOHM
N = dim(Design_array)[1]
K = ncol(Q_matrix)
L = dim(Design_array)[3]
TP <- TPmat(K)
Omega_true <- rOmega(TP)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){

Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
Alphas <- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)

sim_hmcdm Simulate responses from the specified model (entire cube)

Description

Simulate a cube of responses from the specified model for all persons on items across all time
points. Currently available models are DINA, rRUM, and NIDA.

sim_hmcdm 15

Usage

sim_hmcdm(
model,
alphas,
Q_matrix,
Design_array,
itempars = NULL,
r_stars = NULL,
pi_stars = NULL,
Svec = NULL,
Gvec = NULL

)

Arguments

model The cognitive diagnostic model under which the item responses are generated

alphas An N-by-K-by-L array of attribute patterns of all persons across L time points

Q_matrix A J-by-K of Q-matrix

Design_array A N-by-J-by-L array indicating whether item j is administered to examinee i at
l time point.

itempars A J-by-2 mat of item parameters (slipping: 1st col, guessing: 2nd col).

r_stars A J-by-K mat of item penalty parameters for missing skills.

pi_stars A length J vector of item correct response probability with all requisite skills.

Svec A length K vector of slipping probability in applying mastered skills

Gvec A length K vector of guessing probability in applying mastered skills

Value

An array of item responses from the specified model of examinees across all time points.

Examples

DINA
N = nrow(Design_array)
J = nrow(Q_matrix)
thetas_true = rnorm(N, 0, 1.8)
lambdas_true <- c(-2, .4, .055)
Alphas <- sim_alphas(model="HO_joint",

lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)

itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)

Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)

16 sim_RT

rRUM
J = nrow(Q_matrix)
K = ncol(Q_matrix)
Smats <- matrix(runif(J*K,.1,.3),c(J,K))
Gmats <- matrix(runif(J*K,.1,.3),c(J,K))
r_stars <- Gmats / (1-Smats)
pi_stars <- apply((1-Smats)^Q_matrix, 1, prod)

Y_sim <- sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,
r_stars=r_stars,pi_stars=pi_stars)

NIDA
K = ncol(Q_matrix)
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)

Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Svec=Svec,Gvec=Gvec)

sim_RT Simulate item response times based on Wang et al.’s (2018) joint model
of response times and accuracy in learning

Description

Simulate a cube of subjects’ response times across time points according to a variant of the logNor-
mal model

Usage

sim_RT(alphas, Q_matrix, Design_array, RT_itempars, taus, phi, G_version)

Arguments

alphas An N-by-K-by-T array of attribute patterns of all persons across T time points

Q_matrix A J-by-K Q-matrix for the test

Design_array A N-by-J-by-L array indicating whether item j is administered to examinee i at
l time point.

RT_itempars A J-by-2 matrix of item time discrimination and time intensity parameters

taus A length N vector of latent speed of each person

phi A scalar of slope of increase in fluency over time due to covariates (G)

G_version An int of the type of covariate for increased fluency (1: G is dichotomous
depending on whether all skills required for current item are mastered; 2: G
cumulates practice effect on previous items using mastered skills; 3: G is a time
block effect invariant across subjects with different attribute trajectories)

Test_order 17

Value

A cube of response times of subjects on each item across time

Examples

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = TRUE)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){

Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055)
Alphas <- sim_alphas(model="HO_joint",

lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)

RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
ETAs <- ETAmat(K,J,Q_matrix)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)

Test_order Test block ordering of each test version

Description

Test_order contains the item block ordering corresponding to each test module.

Usage

Test_order

Format

A L-by-L matrix, each row is the order of item blocks for that test version.

18 Test_versions

Details

Each row represents the test module number and shows the order of item blocks administered to a
subject with the test module. For example, the first row is the order of item block administration
(1-2-3-4-5) to subjects with test module 1.

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

See Also

Test_versions

Test_versions Subjects’ test version

Description

Test_versions contains each subject’s test module in the Spatial Rotation Learning Program.

Usage

Test_versions

Format

A vector of length N, containing each subject’s assigned test module.

Details

The data object "Test_versions" contains a vector of length N indicating the test module assigned
to each subject. Each test module consists of multiple item blocks with different orders over L time
points. The order of item blocks corresponding to each test module is presented in the data object
"Test_order".

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

TPmat 19

See Also

Test_order

TPmat Generate monotonicity matrix

Description

Based on the latent attribute space, generate a matrix indicating whether it is possible to transition
from pattern cc to cc’ under the monotonicity learning assumption.

Usage

TPmat(K)

Arguments

K An int of the number of attributes.

Value

A 2^K-by-2^K dichotomous matrix of whether it is possible to transition between two patterns

Examples

TP = TPmat(4)

Y_real_array Observed response accuracy array

Description

Y_real_array contains each subject’s observed response accuracy (0/1) at all time points in the
Spatial Rotation Learning Program.

Usage

Y_real_array

Format

An array of dimensions N-by-J-by-L. Each slice of the array is an N-by-J matrix, containing the
subjects’ response accuracy to each item at time point l.

Author(s)

Shiyu Wang, Yan Yang, Jeff Douglas, and Steve Culpepper

20 Y_real_array

Source

Spatial Rotation Learning Experiment at UIUC between Fall 2015 and Spring 2016.

Index

∗ datasets
Design_array, 3
L_real_array, 6
Q_matrix, 10
Test_order, 17
Test_versions, 18
Y_real_array, 19

_PACKAGE (hmcdm-package), 2

bayesplot::ppc_dens_overlay(), 8
bayesplot::ppc_error_scatter_avg(), 8
bayesplot::ppc_scatter_avg(), 8
bayesplot::ppc_stat(), 8
bayesplot::ppc_stat_2d(), 8

Design_array, 3

ETAmat, 4

hmcdm, 4
hmcdm(), 9
hmcdm-package, 2

inv_bijectionvector, 6

L_real_array, 6

OddsRatio, 7

pp_check.hmcdm, 8
print.summary.hmcdm, 9

Q_list_g, 10
Q_matrix, 10

random_Q, 11
rOmega, 11

sim_alphas, 12
sim_hmcdm, 14
sim_RT, 16
summary.hmcdm (print.summary.hmcdm), 9

Test_order, 17, 19
Test_versions, 18, 18
TPmat, 19

Y_real_array, 19

21

	hmcdm-package
	Design_array
	ETAmat
	hmcdm
	inv_bijectionvector
	L_real_array
	OddsRatio
	pp_check.hmcdm
	print.summary.hmcdm
	Q_list_g
	Q_matrix
	random_Q
	rOmega
	sim_alphas
	sim_hmcdm
	sim_RT
	Test_order
	Test_versions
	TPmat
	Y_real_array
	Index

