
Package ‘hilbertSimilarity’
January 14, 2026

Type Package
Title Hilbert Similarity Index for High Dimensional Data
Version 0.4.4
Date 2026-01-05
Description Quantifying similarity between high-

dimensional single cell samples is challenging, and usually requires
some simplifying hypothesis to be made. By transforming the high dimen-
sional space into a high dimensional grid,
the number of cells in each sub-
space of the grid is characteristic of a given sample. Using a Hilbert curve
each sample can be visualized as a simple density plot, and the distance between sam-
ples can be calculated from
the distribution of cells using the Jensen-
Shannon distance. Bins that correspond to significant differences
between samples can identified using a simple bootstrap procedure.

LinkingTo Rcpp
Imports Rcpp, entropy
Suggests knitr, rmarkdown, ggplot2, dplyr, tidyr, reshape2,

bodenmiller, abind
License GPL (>= 3)
Encoding UTF-8

URL https://github.com/yannabraham/hilbertSimilarity

BugReports https://github.com/yannabraham/hilbertSimilarity/issues

VignetteBuilder knitr
RoxygenNote 7.3.2
NeedsCompilation yes
Author Yann Abraham [aut, cre],

Marilisa Neri [aut],
John Skilling [ctb]

Maintainer Yann Abraham <yann.abraham@gmail.com>

Repository CRAN
Date/Publication 2026-01-14 08:00:27 UTC

1

https://github.com/yannabraham/hilbertSimilarity
https://github.com/yannabraham/hilbertSimilarity/issues

2 add.cut

Contents
add.cut . 2
andrewsProjection . 3
do.cut . 4
do.hilbert . 5
hilbert.order . 6
hilbertMapping . 7
hilbertProjection . 8
js.dist . 9
localMaxima . 11
localMinima . 12
make.cut . 13
show.cut . 14

Index 16

add.cut Add New Cut Thresholds

Description

Add new manual cuts to the cuts matrix generated using make.cut

Usage

add.cut(cuts, new.cuts, cut.id = "manual", update = FALSE)

Arguments

cuts a list of cuts generated using make.cut

new.cuts a list of new cut thresholds to be added to cuts

cut.id string identifying the new cuts

update if FALSE (the default) adding a cut.id that already exists in cuts will return
an error

Details

The matrix can be cut using either the fixed cuts (type='fixed'), or the combined cuts (type='combined')
where the limits have been adjusted to match local minima and maxima.

Value

an updated cuts matrix with an extra set of thresholds named cut.id.

Author(s)

Yann Abraham

andrewsProjection 3

Examples

generate a random 3D matrix with 2 peaks
mat <- rbind(matrix(rnorm(300),ncol=3),

matrix(rnorm(300,5,1),ncol=3))
dimnames(mat)[[2]] <- LETTERS[1:3]
estimate the Hilbert order
hilbert.order(mat)
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)

andrewsProjection Use Andrews plots to visualize the Hilbert curve

Description

Use a Fourier series to project the Hilbert curve, based on the number of points per Hilbert index.
See Wikipedia - Andrews plot for a description of the method.

Usage

andrewsProjection(x, breaks = 30)

Arguments

x a matrix of counts, where rows correspond to samples and columns to Hilbert
index

breaks the number of points used to display the Andrews curve

Details

The Andrews curve corresponds to a projection of each item to (1/20.5, sin(t), cos(t), sin(2t), cos(2t), ...)
where t (the Andrews index) varies between −π and π.

Value

a list with 2 items:

• freq : a matrix with breaks rows and ncol(x) columns containing the Andrews vector for
projection

• i : a vector with breaks elements corresponding to the Andrews indices

Author(s)

Yann Abraham

https://en.wikipedia.org/wiki/Andrews_plot

4 do.cut

Examples

generate a random matrix
ncols <- 5
mat <- matrix(rnorm(ncols*1000),ncol=ncols)
dimnames(mat)[[2]] <- LETTERS[seq(ncols)]

generate categories
conditions <- sample(letters[1:3],nrow(mat),replace = TRUE)
generate 4 bins with a minimum bin size of 5
horder <- 4
cuts <- make.cut(mat,n=horder+1,count.lim=5)
Generate the cuts and compute the Hilbert index
cut.mat <- do.cut(mat,cuts,type='fixed')
hc <- do.hilbert(cut.mat,horder)
compute hilbert index per condition
condition.mat <- table(conditions,hc)
condition.pc <- apply(condition.mat,1,function(x) x/sum(x))
condition.pc <- t(condition.pc)
project the matrix to the Andrews curve
av <- andrewsProjection(condition.pc)
proj <- condition.pc %*% t(av$freq)

plot(range(av$i),
range(proj),
type='n',
xlab='Andrews index',
ylab='Projection')

for(i in seq(nrow(proj))) {
lines(av$i,

proj[i,],
col=i)

}
legend('bottomleft',

legend=letters[1:3],
col=seq(1,3),
pch=16,
bty='n')

do.cut Apply Cuts to the Reference Matrix

Description

Apply cuts generated using the make.cut function to the reference matrix

Usage

do.cut(mat, cuts, type = "combined")

do.hilbert 5

Arguments

mat the matrix to cut

cuts a list of cuts generated using make.cut

type the type of cuts to use (use combined by default)

Details

The matrix can be cut using either the fixed cuts (type='fixed'), or the combined cuts (type='combined')
where the limits have been adjusted to match local minima and maxima. Returned values corre-
spond to the bin defined between the first and second threshold of the specified cuts, then between
the second and third threshold, and so on. The values will range between 0 (the first bin) and n-1
where n is the number of values in the specified cuts.

Value

a matrix of the same dimensionality as mat where values correspond to bins defined by the type
thresholds defined cuts.

Author(s)

Yann Abraham

Examples

generate a random 3D matrix with 2 peaks
mat <- rbind(matrix(rnorm(300),ncol=3),

matrix(rnorm(300,5,1),ncol=3))
dimnames(mat)[[2]] <- LETTERS[1:3]
estimate the Hilbert order
hilbert.order(mat)
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)

do.hilbert Generate the Hilbert Index from a Cut Reference Matrix

Description

Generate the Hilbert Index corresponding to the sub-spaces defined by the coordinates generated
via do.cut

Usage

do.hilbert(mat, horder)

6 hilbert.order

Arguments

mat the cut reference matrix

horder the Hilbert order, i.e. the number of bins in each dimension

Details

For each line in mat, the function will compute the corresponding Hilbert index. Each index corre-
sponds to a specific sub-cube of the original high-dimensional space, and consecutive hilbert index
correspond to adjacent sub-cubes

Value

a vector of indices, one for each line in mat

Author(s)

Marilisa Neri

Yann Abraham

John Skilling (for the original C function)

Examples

generate a random 3D matrix
mat <- matrix(rnorm(300),ncol=3)
dimnames(mat)[[2]] <- LETTERS[1:3]
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)
generate the Hilber index
hc <- do.hilbert(cut.mat,2)
plot(table(hc),type='l')

hilbert.order Estimate the Hilbert order for a given matrix

Description

Estimate the Hilbert order, or the number of bins in each dimension, so that if the matrix was random
every row in the matrix would correspond to a single bin.

Usage

hilbert.order(mat)

https://en.wikipedia.org/wiki/Hilbert_curve

hilbertMapping 7

Arguments

mat the matrix for which to estimate the Hilbert order

Details

Assuming the matrix is fully random, there is no need to generate more voxels (the combination of
bins over all dimensions) than there are rows in the matrix. The number can be derived from the
following formula:

cd < N

where c is the number of bins, d is the number of dimensions and N is the total number of cells in
the dataset. c can be computed easily using the following formula:

c = ⌊ d
√
N

The number of cuts for do.cut is the number of bins plus 1.

Value

the suggested number of bins to use for the specified mat.

Author(s)

Yann Abraham

Examples

generate a random 3D matrix with 2 peaks
mat <- rbind(matrix(rnorm(300),ncol=3),

matrix(rnorm(300,5,1),ncol=3))
dimnames(mat)[[2]] <- LETTERS[1:3]
estimate the Hilbert order
hilbert.order(mat)
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)

hilbertMapping Map High Dimensional Coordinates to Hilbert Index and back

Description

hilbertMapping will compute the Hilbert index for each row of a matrix of integer coordinates
corresponding to sub-cubes in a high dimensional space.

https://en.wikipedia.org/wiki/Hilbert_curve

8 hilbertProjection

Arguments

x a matrix of a matrix of integer coordinates (see do.hilbert)

bits the hilbert order, i.e. the number of cuts in each dimension

Details

Functions: TransposetoAxes AxestoTranspose Purpose: Transform in-place between Hilbert trans-
pose and geometrical axes Example: b=5 bits for each of n=3 coordinates. 15-bit Hilbert integer =
A B C D E F G H I J K L M N O is stored as its Transpose X[0] = A D G J M X[2]| X[1] = B E H
K N <——-> | /X[1] X[2] = C F I L O axes |/ high low 0—— X[0] Axes are stored conventionally
as b-bit integers. Author: John Skilling 20 Apr 2001 to 11 Oct 2003

The source code includes the correction suggested in the following StackOverflow discussion.

Value

a vector of hilbert index, one for each line in x

Author(s)

Marilisa Neri

Yann Abraham

John Skilling

hilbertProjection Project a Cut Reference Matrix to a Different Space through an Hilbert
Index

Description

Starting from a Hilbert Index generated in a high dimensional space, returns a set of coordinates in
a new (lower) dimensional space

Usage

hilbertProjection(hc, target = 2)

Arguments

hc the hilbert index returned by do.hilbert

target the number of dimensions in the target space (defaults to 2)

Details

Based on the maximum index and the targeted number of dimensions the number of target bins is
computed and used to generate a reference matrix and a reference index. The reference matrix is
returned, ordered by the reference index.

https://stackoverflow.com/a/10384110

js.dist 9

Value

a matrix with target columns, corresponding to the projection of each Hilbert index to target
dimensions

Author(s)

Marilisa Neri

Yann Abraham

John Skilling (for the original C function)

Examples

generate a random matrix
ncols <- 5
mat <- matrix(rnorm(ncols*5000),ncol=ncols)
dimnames(mat)[[2]] <- LETTERS[seq(ncols)]

generate 4 bins with a minimum bin size of 5
horder <- 4
cuts <- make.cut(mat,n=horder+1,count.lim=5)

Generate the cuts and compute the Hilbert index
cut.mat <- do.cut(mat,cuts,type='fixed')
hc <- do.hilbert(cut.mat,horder)
chc <- table(hc)
idx <- as.numeric(names(chc))

project the matrix to 2 dimensions
proj <- hilbertProjection(hc)

visualize the result
img <- matrix(0,ncol=max(proj[,2])+1,nrow = max(proj[,1])+1)
img[proj[idx,]+1] <- chc
image(img)

js.dist Compute the Jensen-Shannon Distance between 2 sets of Hilbert Index

Description

The Jensen-Shannon distance is a method to measure the distance between discrete probability
distributions. To measure the distance between 2 high-dimensional datasets, we cut the space into
sub-cubes, then count the number of events per cube. The resulting probability distributions can be
compared using the Jensen-Shannon distance.

Usage

js.dist(mat, pc = 1e-04)

https://en.wikipedia.org/wiki/Jensen-Shannon_divergence

10 js.dist

Arguments

mat a matrix of counts, where rows correspond to samples and columns to Hilbert
index

pc a pseudo-count that is added to all samples to avoid divide-by-zero errors

Value

a S3 distance object

Author(s)

Yann Abraham

Examples

generate 3 samples over 5 dimensions
sample 1 and 2 are similar, sample 3 has an extra population
set the seed for reproducible examples
set.seed(1234)
my.samples <- lapply(LETTERS[1:3],function(j) {

each sample has a different number of events
n <- floor(runif(1,0.5,0.8)*10000)
matrix is random normal over 5 dimensions
cur.mat <- matrix(rnorm(5*n),ncol=5)
rescale cur.mat to a [0,3] interval
cur.mat <- 3*(cur.mat-min(cur.mat))/diff(range(cur.mat))
dimnames(cur.mat)[[2]] <- LETTERS[(length(LETTERS)-4):length(LETTERS)]
if(j=='C') {

select 30% of the points
cur.rws <- sample(n,round(n*0.3,0))
select 2 columns at random
cur.cls <- sample(ncol(cur.mat),2)
create an artificial sub population
cur.mat[cur.rws,cur.cls] <- 4*cur.mat[cur.rws,cur.cls]

}
return(cur.mat)

}
)
names(my.samples) <- LETTERS[1:3]

check the population size
lapply(my.samples,nrow)

assemble a sample matrix
my.samples.mat <- do.call('rbind',my.samples)
my.samples.id <- lapply(names(my.samples),

function(cur.spl) rep(cur.spl,nrow(my.samples[[cur.spl]])))
my.samples.id <- unlist(my.samples.id)

Estimate the maximum required Hilbert order
hilbert.order(my.samples.mat)

localMaxima 11

Estimate the cut positions
my.cuts <- make.cut(my.samples.mat,n=5,count.lim=5)

Visualize the cuts
show.cut(my.cuts)

Cut the matrix & compute the hilbert index
my.samples.cut <- do.cut(my.samples.mat,my.cuts,type='combined')
system.time(my.samples.index <- do.hilbert(my.samples.cut,horder=4))

Visualize samples as density plots
my.samples.dens <- density(my.samples.index)
my.samples.dens$y <- (my.samples.dens$y-min(my.samples.dens$y))/diff(range(my.samples.dens$y))

plot(my.samples.dens,col='grey3',lty=2)
ksink <- lapply(names(my.samples),function(cur.spl) {

cat(cur.spl,'\n')
cur.dens <- density(my.samples.index[my.samples.id==cur.spl],

bw=my.samples.dens$bw)
cur.dens$y <- (cur.dens$y-min(cur.dens$y))/diff(range(cur.dens$y))
lines(cur.dens$x,

cur.dens$y,
col=match(cur.spl,names(my.samples))+1)

}
)
legend('topright',

legend=names(my.samples),
co=seq(length(my.samples))+1,
pch=16,
bty='n')

assemble a contingency table
my.samples.table <- table(my.samples.index,my.samples.id)
dim(my.samples.table)

heatmap(log10(my.samples.table+0.00001),
col=colorRampPalette(c('white',blues9))(24),
Rowv=NA,Colv=NA,
scale='none')

compute the Jensen-Shannon distance
my.samples.dist <- js.dist(t(my.samples.table))
my.samples.clust <- hclust(my.samples.dist)

plot(my.samples.clust)

localMaxima Find Local Maxima in a vector

12 localMinima

Description

Given a density object, find the position of local maxima (inflection points)

Usage

localMaxima(x)

Arguments

x a vector of density values, as generated through a call to density

Value

a vector of index corresponding to local maxima

Author(s)

Tommy https://stackoverflow.com/questions/6836409/finding-local-maxima-and-minima

Examples

x <- c(rnorm(100),rnorm(100,3))
dx <- density(x)
plot(dx)
abline(v=dx$x[localMaxima(dx$y)],col=2,lty=2)

localMinima Find Local Minima in a vector

Description

Given a density object, find the position of local minima (inflection points)

Usage

localMinima(x)

Arguments

x a vector of density values, as generated through a call to density

Value

a vector of index corresponding to local minima

Author(s)

Tommy https://stackoverflow.com/questions/6836409/finding-local-maxima-and-minima

https://stackoverflow.com/questions/6836409/finding-local-maxima-and-minima
https://stackoverflow.com/questions/6836409/finding-local-maxima-and-minima

make.cut 13

Examples

x <- c(rnorm(100),rnorm(100,3))
dx <- density(x)
plot(dx)
abline(v=dx$x[localMinima(dx$y)],col=2,lty=2)

make.cut Generate Cutting Points for a Multidimensional Matrix

Description

For a given column cur.ch that belongs to a matrix, and a given number of cuts n, compute n-1
bins using either fixed of combined limits

Usage

make.cut(mat, n = 5, count.lim = 40)

Arguments

mat the matrix to cut

n the number of cuts to generate (defaults to 5)

count.lim the minimum number of counts to consider for density (defaults to 40)

Details

the fixed limits correspond to 5 equally spaced values over the range of the column. the combined
limits take the local minima and maxima determined using the localMinima and localMaxima
functions, to adjust the limits using the following algorithm:

• define d as half the distance between 2 fixed limits

• merge local minima and local maxima that are closer than d

• if any fixed limit is closer to a local minima than d, move the fixed limit to the local minima;
move the limits that are not been moved yet, and that are before and after the moved limit so
that they are evenly spread; repeat until no fixed limit can be moved

• if some limits have been moved to a local minima, remove limits that are closer than d to a
local maxima; move the limits that are not been moved yet, and that are before and after the
deleted limit so that they are evenly spread; repeat until no fixed limit can be moved

• if no limits has been moved to a local minima, move limits that are closer than d to a local
maxima; move the limits that are not been moved yet, and that are before and after the moved
limit so that they are evenly spread; repeat until no fixed limit can be moved

The function returns a list of lists, one for each column in mat, consisting of

• cur.dens the density used to describe the data

• cur.hist the histogram used to describe the data

14 show.cut

• fixed the fixed, evenly spaced cuts

• minima the local minima detected in the data

• maxima the local maxima detected in the data

• combined the cuts defined using a combination of fixed positions, local minima and local
maxima

Value

a list of of cuts for each column in mat, see details

Author(s)

Yann Abraham

Examples

generate a random 3D matrix with 2 peaks
mat <- rbind(matrix(rnorm(300),ncol=3),

matrix(rnorm(300,5,1),ncol=3))
dimnames(mat)[[2]] <- LETTERS[1:3]
estimate the Hilbert order
hilbert.order(mat)
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)

show.cut Plot the cuts generated through make.cut

Description

Visualize the cuts in relation with the distribution of the data for each dimension in the original
matrix

Usage

show.cut(cuts, type = "all", local = FALSE)

Arguments

cuts the output of the make.cut.

type which cuts to show. This must be one of "all", "fixed" or "combined". Any
unambiguous substring can be given.

local defaults to FALSE; if TRUE, shows the local minima and maxima as a rug plot.

show.cut 15

Details

"fixed" will show n equally spaced cuts (see make.cut for the definition of n). "combined" will
show the cuts after adjustment for local minima and maxima. "all" will show both. Setting local
to TRUE will enable the visualization of local minima and maxima detected by the algorithm in each
dimension.

Value

the function returns an invisible ‘NULL‘.

Author(s)

Yann Abraham

Examples

generate a random 3D matrix with 2 peaks
mat <- rbind(matrix(rnorm(300),ncol=3),

matrix(rnorm(300,5,1),ncol=3))
dimnames(mat)[[2]] <- LETTERS[1:3]
estimate the Hilbert order
hilbert.order(mat)
generate 2 bins with a minimum bin size of 5
cuts <- make.cut(mat,n=3,count.lim=5)
show.cut(cuts)
Generate the cuts
cut.mat <- do.cut(mat,cuts,type='fixed')
head(cut.mat)

Index

add.cut, 2
andrewsProjection, 3

density, 12
do.cut, 4, 5, 7
do.hilbert, 5, 8

hilbert.order, 6
hilbertMapping, 7
hilbertProjection, 8

js.dist, 9

localMaxima, 11, 13
localMinima, 12, 13

make.cut, 2, 4, 5, 13, 14, 15

show.cut, 14

16

	add.cut
	andrewsProjection
	do.cut
	do.hilbert
	hilbert.order
	hilbertMapping
	hilbertProjection
	js.dist
	localMaxima
	localMinima
	make.cut
	show.cut
	Index

