Package ‘highfrequency’

January 8, 2026
Version 1.0.3
Date 2026-01-05
Title Tools for Highfrequency Data Analysis

Description Provide functionality to manage, clean and match highfrequency
trades and quotes data, calculate various liquidity measures, estimate and
forecast volatility, detect price jumps and investigate microstructure noise and intraday
periodicity. A detailed vignette can be found in the open-access paper
* " Analyzing Intraday Financial Data in R: The highfrequency Package"
by Boudt, Kleen, and Sjoerup (2022, <doi:10.18637/jss.v104.108>).

License GPL (>=2)
Encoding UTF-8
LazyData true

URL https://github.com/jonathancornelissen/highfrequency

BugReports https://github.com/jonathancornelissen/highfrequency/issues
Depends R (>=3.5.0)
Imports xts, zoo, Rcpp, graphics, methods, stats, utils, grDevices,
robustbase, data.table (>= 1.12.0), RcppRoll, quantmod,
sandwich, numDeriv, Rsolnp
LinkingTo Rcpp, ReppArmadillo
Suggests mvtnorm, covr, FKF, rugarch, testthat, knitr, rmarkdown
RoxygenNote 7.3.3
NeedsCompilation yes

Author Kris Boudt [aut, cre] (ORCID: <https://orcid.org/0000-0002-1000-5142>),
Jonathan Cornelissen [aut],
Scott Payseur [aut],
Giang Nguyen [ctb],
Onno Kleen [aut] (ORCID: <https://orcid.org/0000-0003-4731-4640>),
Emil Sjoerup [aut]
Maintainer Kris Boudt <kris.boudt@ugent.be>
Repository CRAN

Date/Publication 2026-01-08 12:50:10 UTC

https://doi.org/10.18637/jss.v104.i08
https://github.com/jonathancornelissen/highfrequency
https://github.com/jonathancornelissen/highfrequency/issues
https://orcid.org/0000-0002-1000-5142
https://orcid.org/0000-0003-4731-4640

2 Contents

Contents
highfrequency-package L 4
aggregatePrice L 5
aggregateQuUOLeSo L L e e e e e e e 6
aggregateTrades 8
aggregateTS L e e e 9
AJjumpTest e e e 11
autoSelectExchangeQuotes L 14
autoSelectExchangeTrades Lo oL 15
BNSjumpTest 16
businessTimeAggregation 18
driftBursts 20
exchangeHoursOnly e 23
gatherPrices e e 24
getAlphaVantageData 25
getCriticalValues 26
getLiquidityMeasureso e 27
getTradeDirection 31
HARmodel e 32
HEAVYmodel e 36
ICov . . . e 37
intradayJumpTest L 38
IVar . . . e 40
IVinference o . . 40
JOjumpTest o 43
knChooseReMeDI 45
leadLag e 46
listAvailableKernels 48
listCholCovEstimators i e 49
makeOHLCV e 50
makePsd L 51
makeReturnso 52
makeRMFormat 53
matchTradesQuotes e 53
mergeQuotesSameTimestamp 54
mergeTradesSameTimestamp 55
noZeroPrices e 56
NOZeroQUOLES i e e e e e e e e e e e e e e e e e e 57
plotDBH e 57
plotHARmodel e 58
plot HEAVYmodel 59
plotTQData e e e e e e 59
predict HARmodel e 60
predict HEAVYmodel 61
print DBH e 61
print HARmodel 62

quotesCleanup L L e 63

Contents

3
rankJumpTest L e 66
TAVGCOV . . . o e e 68
rBACOV e e e 70
rBeta. . . . e e e 74
tBPCov . . . e 76
rCholCov e e 77
TCOV . o o e e e e e 79
refreshTime e e e 80
ReMeDI e e e 82
ReMeDIAsymptoticVariance 83
THYCoV . . . e e e 86
rKernelCov e e 87
rKurt . . . e e 89
™MedRQ e 90
MedRQuar e 90
MedRV . . . e e e 92
rtMedRVar e e 92
™MInRQ e 93
rMinRQuar 94
MInRV . . e 95
rMinRVar e e e 95
rmLargeSpread L. e 97
rmNegativeSpread L 97
rmOutliersQuotes L e 98
rmOutliersTrades e e 99
TMPV e e 101
MPVar . . . e e 101
IMRC . . e e e 102
TMRCOV . . . e e e 103
rmTradeOutliersUsingQuotes 106
TOWCOV . . . o e e e e e 107
rQPVar e 109
TQuar . ..o e e e 111
tRTSCov e e 112
rRVar . . e e e 115
rSemiCov L e e e e 116
ISKeW . . . e e e e 118
ISV e e e 119
TSVAr . . L e e e 120
rThresholdCov e e 121
rTPQuar e e 123
ITSCOV . . e e e e 124
RV e 127
salesCondition 127
sampleMultiTradeData L 128
sampleOneMinuteData e e 128
sampleQData e 128

sampleQDataRaw 129

4 highfrequency-package
sampleTData e e e 129
sampleTDataEurope e 130
sampleTDataRaw 131
selectExchange L 131
spotDrift L 132
SPOtVOL . . e e e e 135
spreadPrices L e e e e 143
SPYRM . . . 145
summary.HARmodel 145
tradesCleanup 146
tradesCleanupUsingQuotes oo e 148
tradesCondition 151

Index 152

highfrequency-package highfrequency: Tools for Highfrequency Data Analysis

Description

The highfrequency package provides numerous tools for analyzing high-frequency financial data,
including functionality to:

* Clean, handle, and manage high frequency trades and quotes data.

* Calculate liquidity measures

* Calculate (multivariate) realized measures of the distribution of high-frequency returns

» Estimate models for realized measures of volatility and the corresponding forecasts

* Detect jumps in prices

* Analyze market microstructure noise in asset prices

» Estimate spot volatility and drift as well as analyze intraday periodicity of spot volatility

Author(s)

Kris Boudt, Jonathan Cornelissen, Onno Kleen, Scott Payseur, Emil Sjoerup Maintainer: Kris
Boudt <Kris.Boudt@ugent.be>

Contributors: Giang Nguyen

Thanks: We would like to thank Brian Peterson, Chris Blakely, Dirk Eddelbuettel, Maarten Scher-
mer, and Eric Zivot

See Also

Useful links:

https://github.com/jonathancornelissen/highfrequency
Report bugs at https://github.com/jonathancornelissen/highfrequency/issues

https://github.com/jonathancornelissen/highfrequency
https://github.com/jonathancornelissen/highfrequency/issues

aggregatePrice

aggregatePrice

Aggregate a time series but keep first and last observation

Description

Function to aggregate high frequency data by last tick aggregation to an arbitrary periodicity based
on wall clocks. Alternatively the aggregation can be done by number of ticks. In case we DON’T do
tick-based aggregation, this function accepts arbitrary number of symbols over a arbitrary number
of days. Although the function has the word Price in the name, the function is general and works on
arbitrary time series, either xts or data.table objects the latter requires a DT column containing
POSIXct time stamps.

Usage
aggregatePrice(
pData,
alignBy = "minutes”,

alignPeriod = 1,
marketOpen = "09:30:00",
marketClose = "16:00:00",

fill = FALSE,
tz = NULL
)

Arguments
pData
alignBy
alignPeriod
marketOpen
marketClose
fill
tz

data.table or xts object to be aggregated containing the intraday price series,
possibly across multiple days.

character, indicating the time scale in which alignPeriod is expressed. Pos-
sible values are: "secs", "seconds", "mins", "minutes","hours", and "ticks". To
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to

"minutes”.

positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes”.

the market opening time, by default: marketOpen = "09:30:00".
the market closing time, by default: marketClose = "16:00:00".

indicates whether rows without trades should be added with the most recent
value, FALSE by default.

fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"

6 aggregateQuotes

Details

The time stamps of the new time series are the closing times and/or days of the intervals. The
element of the returned series with e.g. time stamp 09:35:00 contains the last observation up to that
point, including the value at 09:35:00 itself.

In case alignBy = "ticks", the sampling is done such the sampling starts on the first tick, and the
last tick is always included. For example, if 14 observations are made on one day, and these are 1,
2,3, ... 14. Then, with alignBy = "ticks" and alignPeriod = 3, the output will be 1, 4, 7, 10, 13,
14.

Value

A data.table or xts object containing the aggregated time series.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

Examples

Aggregate price data to the 30-second frequency
aggregatePrice(sampleTData, alignBy = "secs"”, alignPeriod = 30)

Aggregate price data to 30-minute frequency including zero return price changes
aggregatePrice(sampleTData, alignBy = "minutes”, alignPeriod = 30, fill = TRUE)

aggregateQuotes Aggregate a data.table or xts object containing quote data

Description

Aggregate tick-by-tick quote data and return a data. table or xts object containing the aggregated
quote data. See sampleQData for an example of the argument qData. This function accepts arbitrary
number of symbols over an arbitrary number of days.

Usage
aggregateQuotes(
gData,
alignBy = "minutes”,

alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = NULL

aggregateQuotes

Arguments

gData

alignBy

alignPeriod

marketOpen
marketClose

tz

Details

data.table or xts object to be aggregated, containing the intraday quote data
of a stock for one day.

character, indicating the time scale in which alignPeriod is expressed. Pos-
sible values are: "secs", "seconds", "mins", "minutes","hours", and "ticks". To
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to

"minutes”.

positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes”.

the market opening time, by default: marketOpen = "09:30:00".
the market closing time, by default: marketClose = "16:00:00".

fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"

The output "BID" and "OFR" columns are constructed using previous tick aggregation.

The variables "BIDSIZ" and "OFRSIZ" are aggregated by taking the sum of the respective inputs

over each interval.

The timestamps of the new time series are the closing times of the intervals.

Please note: Returned objects always contain the first observation (i.e. opening quotes,...).

Value

A data.table or an xts object containing the aggregated quote data.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

Examples

Aggregate quote data to the 30 second frequency
gDataAggregated <- aggregateQuotes(sampleQData, alignBy = "seconds”, alignPeriod = 30)
gDataAggregated # Show the aggregated data

8 aggregateTrades
aggregateTrades Aggregate a data.table or xts object containing trades data ”
Description
Aggregate tick-by-tick trade data and return a time series as a data. table or xts object where first
observation is always the opening price and subsequent observations are the closing prices over the
interval. This function accepts arbitrary number of symbols over an arbitrary number of days.
Usage
aggregateTrades(
tData,
alignBy = "minutes”,
alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = NULL
)
Arguments
tData data.table or xts object to be aggregated, containing the intraday price series
of a stock for possibly multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "secs”, "seconds”, "mins”, "minutes”, "hours”. To aggregate
based on a 5 minute frequency, set alignPeriod = 5and alignBy = "minutes”.
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5 minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
marketOpen the market opening time, by default: marketOpen = "09:30:00".
marketClose the market closing time, by default: marketClose = "16:00:00".
tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"
Details

The time stamps of the new time series are the closing times and/or days of the intervals.

The output "PRICE" column is constructed using previous tick aggregation.

The variable "SIZE" is aggregated by taking the sum over each interval.

The variable "VWPRICE" is the aggregated price weighted by volume.

The time stamps of the new time series are the closing times of the intervals.

aggregateTS 9

In case of previous tick aggregation or alignBy = "seconds”/"minutes”/"hours”, the element
of the returned series with e.g. time stamp 09:35:00 contains the last observation up to that point,
including the value at 09:35:00 itself.

Value

A data.table or xts object containing the aggregated time series.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

Examples

Aggregate trade data to 5 minute frequency
tDataAggregated <- aggregateTrades(sampleTData, alignBy = "minutes”, alignPeriod = 5)
tDataAggregated

aggregateTS Aggregate a time series

Description

Aggregate a time series as xts or data.table object. It can handle irregularly spaced time series
and returns a regularly spaced one. Use univariate time series as input for this function and check
out aggregateTrades and aggregateQuotes to aggregate Trade or Quote data objects.

Usage

aggregateTS(
ts,
FUN = "previoustick”,
alignBy = "minutes”,
alignPeriod = 1,
weights = NULL,
dropna = FALSE,

tz = NULL,
)
Arguments
ts xts or data.table object to aggregate.
FUN function to apply over each interval. By default, previous tick aggregation is

done. Alternatively one can set e.g. FUN = "mean". In case weights are sup-
plied, this argument is ignored and a weighted average is taken.

10 aggregateTS

alignBy character, indicating the time scale in which alignPeriod is expressed. Possi-
ble values are: "secs", "seconds", "mins", "minutes", "hours", "days", "weeks",
"ticks".

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-

ample, to aggregate based on a 5 minute frequency, set alignPeriod to 5 and
alignBy to "minutes”.

weights By default, no weighting scheme is used. When you assign an xts object
with weights to this argument, a weighted mean is taken over each interval.
Of course, the weights should have the same time stamps as the supplied time
series.

dropna boolean, which determines whether empty intervals should be dropped. By de-
fault, an NA is returned in case an interval is empty, except when the user opts
for previous tick aggregation, by setting FUN = "previoustick” (default).

tz character denoting which timezone the output should be in. Defaults to NULL

extra parameters passed on to FUN

Details

The time stamps of the new time series are the closing times and/or days of the intervals. For
example, for a weekly aggregation the new time stamp is the last day in that particular week (namely
Sunday).

non

In case of previous tick aggregation, for alignBy is either "seconds” "minutes”, or "hours”, the
element of the returned series with e.g. timestamp 09:35:00 contains the last observation up to that
point, including the value at 09:35:00 itself.

Please note: In case an interval is empty, by default an NA is returned.. In case e.g. previous
tick aggregation it makes sense to fill these NAs by the function na.locf (last observation carried
forward) from the zoo package.

In case alignBy = "ticks", the sampling is done such the sampling starts on the first tick and the
last tick is always included. For example, if 14 observations are made on one day, and these are 1,
2,3, ... 14. Then, with alignBy = "ticks"” and alignPeriod = 3, the output will be 1, 4, 7, 10, 13,
14.

Value

An xts object containing the aggregated time series.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

Examples

Load sample price data

Not run:

library(xts)

ts <- as.xts(sampleTDatal[, list(DT, PRICE, SIZE)])

AlJjumpTest 11

Previous tick aggregation to the 5-minute sampling frequency:
tsaggbmin <- aggregateTS(ts, alignBy = "minutes”, alignPeriod = 5)
head(tsaggbmin)

Previous tick aggregation to the 30-second sampling frequency:
tsagg30sec <- aggregateTS(ts, alignBy = "seconds”, alignPeriod = 30)
tail(tsagg30@sec)

tsagg3ticks <- aggregateTS(ts, alignBy = "ticks", alignPeriod = 3)

End(Not run)

AJjumpTest Ait-Sahalia and Jacod (2009) tests for the presence of jumps in the
price series.

Description

This test examines the presence of jumps in highfrequency price series. It is based on the theory
of Ait-Sahalia and Jacod (2009). It consists in comparing the multi-power variation of equi-spaced
returns computed at a fast time scale (h), r¢; (2 = 1,..., N) and those computed at the slower time
scale (kh), y.:(i = 1,...,N/k).

They found that the limit (for N — oo) of the realized power variation is invariant for different
sampling scales and that their ratio is 1 in case of jumps and kP /2 _1ifno jumps. Therefore the
Al test detects the presence of jump using the ratio of realized power variation sampled from two
scales. The null hypothesis is no jumps.

The function returns three outcomes: 1.z-test value 2.critical value under confidence level of 95%
and 3. p-value.

Assume there is [NV equispaced returns in period ¢. Let r, ; be areturn (with¢ = 1,..., N) in period
t.

And there is N/k equispaced returns in period ¢. Let y; ; be areturn (with ¢ = 1,...,N/k) in period
t.

Then the AJjumpTest is given by:

St(p> ka h) - k,p/?—l
Vin

s

AljumpTest, n =

in which,

P%,M(p7 kh)

k. h) =
St(pa ’) P‘/;’M(p,h)

N/k
PVi n(p, kh) = Z ye,il”
i=1

12 AljumpTest

P

N
PV, n(p.h) = |re
i=1

v o N(I% k)At,N(zp)
o NAt»N(p)

1 , ,
N(p, k) = (u) (K272 (14 k) pay + K22 (k = 1)pp — 2622
P

1/NY1-p/2) IV ,
Agnizp) = (/L Z |re P for |rj| < a(1/N)®
P i=1

pp = E(IUPIU + vk = 1V[?)

U, V: independent standard normal random variables; h = 1/N; p, k, o, w: parameters.

Usage

AJjumpTest(
pData,
p =4,
k =2,
alignBy = NULL,
alignPeriod = NULL,
alphaMultiplier = 4,

alpha = 0.975,
)
Arguments

pData either an xts or a data. table containing the prices of a single asset, possibly
over multiple days.

p can be chosen among 2 or 3 or 4. The author suggests 4. 4 by default.

k can be chosen among 2 or 3 or 4. The author suggests 2. 2 by default.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs"”, "seconds”, "mins”, "minutes”, "hours” To
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes".

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5 minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

alphaMultiplier
alpha multiplier

alpha numeric of length one with the significance level to use for the jump test(s).
Defaults to 0.975.

used internally

AlJjumpTest 13

Details

The theoretical framework underlying jump test is that the logarithmic price process X; belongs to
the class of Brownian semimartingales, which can be written as:

t t
Xt = / audu + / O'uqu + Zt
0 0

where a is the drift term, o denotes the spot volatility process, W is a standard Brownian motion
and Z is a jump process defined by:

Ny
Zi=Y _k;
j=1

where k; are nonzero random variables. The counting process can be either finite or infinite for
finite or infinite activity jumps.

Using the convergence properties of power variation and its dependence on the time scale on which
it is measured, Ait-Sahalia and Jacod (2009) define a new variable which converges to 1 in the
presence of jumps in the underlying return series, or to another deterministic and known number in
the absence of jumps (Theodosiou and Zikes, 2009).

Value

a list or xts in depending on whether input prices span more than one day.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Ait-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. The Annals
of Statistics, 37(1), 184-222.

Theodosiou, M., & Zikes, F. (2009). A comprehensive comparison of alternative tests for jumps in
asset prices. Unpublished manuscript, Graduate School of Business, Imperial College London.

Examples

jt <= AJjumpTest(sampleTDatal[, 1list(DT, PRICE)], p = 2, k = 3,
alignBy = "seconds”, alignPeriod = 5, makeReturns = TRUE)

14 autoSelectExchangeQuotes

autoSelectExchangeQuotes
Retain only data from the stock exchange with the highest volume

Description

Filters raw quote data and return only data that stems from the exchange with the highest value for
the sum of "BIDSIZ" and "OFRSIZ", i.e. the highest quote volume.

Usage

autoSelectExchangeQuotes(gData, printExchange = TRUE)

Arguments

gData adata.table or xts object with at least a column "EX", indicating the exchange
symbol and columns "BIDSIZ" and "OFRSIZ", indicating the volume available
at the bid and ask respectively.

printExchange indicates whether the chosen exchange is printed on the console, default is TRUE.
The possible exchanges are:

* A: AMEX

* N: NYSE

* B: Boston

* P: Arca

* C:NSX

* T/Q: NASDAQ
* D: NASD ADF and TRF
* X: Philadelphia
* I ISE

* M: Chicago

* W: CBOE

» Z: BATS

Value

data.table or xts object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

Examples

autoSelectExchangeQuotes(sampleQDataRaw)

autoSelectExchangeTrades 15

autoSelectExchangeTrades
Retain only data from the stock exchange with the highest trading vol-
ume

Description

Filters raw trade data and return only data that stems from the exchange with the highest value for
the variable "SIZE", i.e. the highest trade volume.

Usage

autoSelectExchangeTrades(tData, printExchange = TRUE)

Arguments

tData an xts object with at least a column "EX" indicating the exchange symbol and
"SIZE" indicating the trade volume.

printExchange indicates whether the chosen exchange is printed on the console, default is TRUE.
The possible exchanges are:
* A: AMEX
* N: NYSE
* B: Boston
e P: Arca
e C:NSX
* T/Q: NASDAQ
* D: NASD ADF and TRF
e X: Philadelphia
. ISE
* M: Chicago
* W: CBOE
Z: BATS

Value

data.table or xts object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

Examples

autoSelectExchangeTrades(sampleTDataRaw)

16 BNSjumpTest

BNSjumpTest Barndorff-Nielsen and Shephard (2006) tests for the presence of jumps
in the price series.

Description

This test examines the presence of jumps in highfrequency price series. It is based on theory of
Barndorft-Nielsen and Shephard (2006). The null hypothesis is that there are no jumps.

Usage

BNSjumpTest(
rData,
IVestimator = "BV",
IQestimator = "TP",

type = "linear”,
logTransform = FALSE,
max = FALSE,

alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE,

alpha = 0.975
)
Arguments

rData either an xts or a data.table containing the log-returns or prices of a single
asset, possibly over multiple days-

IVestimator can be chosen among jump robust integrated variance estimators: rBPCov, rMinRVar,
rMedRVar, rOWCov and corrected threshold bipower variation (rThresholdCov).
If rThresholdCov is chosen, an argument of startV, start point of auxiliary es-
timators in threshold estimation can be included. rBPCov by default.

IQestimator can be chosen among jump robust integrated quarticity estimators: rTPQuar,
rQPVar, rMinRQuar and rMedRQuar. rTPQuar by default.

type a method of BNS testing: can be linear or ratio. Linear by default.

logTransform boolean, should be TRUE when QVestimator and IVestimator are in logarithm
form. FALSE by default.

max boolean, should be TRUE when max adjustment in SE. FALSE by default.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks", "secs”, "seconds”, "mins”, "minutes”, "hours” To
aggregate based on a 5 minute frequency, set alignPeriod =5 and alignBy =
"minutes”.

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5 minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

BNSjumpTest 17

makeReturns boolean, should be TRUE when pData contains prices. FALSE by default.

alpha numeric of length one with the significance level to use for the jump test(s).
Defaults to 0.975.

Details

Assume there is N equispaced returns in period ¢. Assume the Realized variance (RV), I'Vestimator
and IQestimator are based on N equi-spaced returns.

Let 7, ; be areturn (withi = 1,..., N) in period ¢.
Then the BNSjumpTest is given by

RV — IVestimator
\/(9 — 2)+IQestimator

BNSjumpTest =

The options for IVestimator and IQestimator are listed above. 6 depends on the chosen IVestimator
(Huang and Tauchen, 2005).

The theoretical framework underlying the jump test is that the logarithmic price process X; belongs
to the class of Brownian semimartingales, which can be written as:

t t
Xt:/ audu—l—/ Uuqu+Zt
0 0

where a is the drift term, o denotes the spot volatility process, W is a standard Brownian motion
and Z is a jump process defined by:

Ny
j=1

where k; are nonzero random variables. The counting process can be either finite or infinite for
finite or infinite activity jumps.

Since the realized volatility converges to the sum of integrated variance and jump variation, while
the robust IVestimator converges to the integrated variance, it follows that the difference between
RV and the IVestimator captures the jump part only, and this observation underlines the BNS test
for jumps (Theodosiou and Zikes, 2009).
Value
a list or xts (depending on whether input prices span more than one day) with the following values:
* z-test value.
e critical value (with confidence level of 95%).

¢ p-value of the test.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

18 businessTimeAggregation

References
Barndorff-Nielsen, O. E., and Shephard, N. (2006). Econometrics of testing for jumps in financial
economics using bipower variation. Journal of Financial Econometrics, 4, 1-30.

Corsi, F., Pirino, D., and Reno, R. (2010). Threshold bipower variation and the impact of jumps on
volatility forecasting. Journal of Econometrics, 159, 276-288.

Huang, X., and Tauchen, G. (2005). The relative contribution of jumps to total price variance.
Journal of Financial Econometrics, 3, 456-499.

Theodosiou, M., and Zikes, F. (2009). A comprehensive comparison of alternative tests for jumps
in asset prices. Unpublished manuscript, Graduate School of Business, Imperial College London.

Examples

bns <- BNSjumpTest(sampleTDatal[, list(DT, PRICE)], IVestimator= "rMinRVar",
IQestimator = "rMedRQuar”, type= "linear"”, makeReturns = TRUE)
bns

businessTimeAggregation
Business time aggregation

Description

Time series aggregation based on ‘business time* statistics. Instead of equidistant sampling based
on time during a trading day, business time sampling creates measures and samples equidistantly
using these instead. For example when sampling based on volume, business time aggregation will
result in a time series that has an equal amount of volume between each observation (if possible).

Usage
businessTimeAggregation(
pData,
measure = "volume”,
obs = 390,
bandwidth = 0.075,
tz = NULL,
)
Arguments
pData xts or data. table containing data to aggregate.
measure character denoting which measure to use. Valid options are "intensity”, "vol”,

and "volume", denoting the trade intensity process of Oomen (2005), volatility,
and volume, respectively. Default is "volume".

businessTimeAggregation 19

obs integer valued numeric of length 1 denoting how many observations is wanted
after the aggregation procedure.

bandwidth numeric of length one, denoting which bandwidth parameter to use in the trade
intensity process estimation of Oomen (2005).

tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC".

extra arguments passed on to spotVol when measure is "vol”.

Value

A list containing "pData” which is the aggregated data and a list containing the intensity process,
split up day by day.

Author(s)

Emil Sjoerup.

References

Dong, Y., and Tse, Y. K. (2017). Business time sampling scheme with applications to testing semi-
martingale hypothesis and estimating integrated volatility. Econometrics, 5, 51.

Oomen, R. C. A. (2006). Properties of realized variance under alternative sampling schemes. Jour-
nal of Business & Economic Statistics, 24, 219-237

Examples

pData <- sampleTDatal,list(DT, PRICE, SIZE)]

Aggregate based on the trade intensity measure. Getting 390 observations.

agged <- businessTimeAggregation(pData, measure = "intensity”, obs = 390, bandwidth = 0.075)
Plot the trade intensity measure

plot.ts(agged$intensityProcess$™2018-01-027)

rCov(agged$pDatal, list(DT, PRICE)], makeReturns = TRUE)

rCov(pDatal,1ist(DT, PRICE)], makeReturns = TRUE, alignBy = "minutes”, alignPeriod = 1)

Aggregate based on the volume measure. Getting 78 observations.

agged <- businessTimeAggregation(pData, measure = "volume", obs = 78)
rCov(agged$pDatal,list(DT, PRICE)], makeReturns = TRUE)

rCov(pDatal[,1ist(DT, PRICE)], makeReturns = TRUE, alignBy = "minutes”, alignPeriod = 5)

20 driftBursts

driftBursts Inference on drift burst hypothesis

Description
Calculates the test-statistic for the drift burst hypothesis
Let the efficient log-price be defined as:

dXt = ,U/tdt + O'tth + th,

where p4, 04, and J; are the spot drift, the spot volatility, and a jump process respectively. However,
due to microstructure noise, the observed log-price is

Y, =X, + ¢

In order robustify the results to the presence of market microstructure noise, the pre-averaged returns

are used:
kp—1

ATY =) gi ALY,
Jj=1

where g(-) is a weighting function, min(x,1 — x), and k,, is the pre-averaging horizon.

The test statistic for the Drift Burst Hypothesis can then be calculated as

g _ [P i}
OV Gy
where i
n—kn+2
ap 1 tic1 =1\ \n 5>
My = E ; K <hn >Ai—1Y7
and

_\2
o1 = i | S (i (S5) arY)
19 Ziil w (LL) Z;L:—Ik’n—L-‘FQ K (ti;:[t) K (tHLhZLl—t) AT YA LY,

where w(-) is a smooth kernel function, in this case the Parzen kernel. L, is the lag length for
adjusting for auto-correlation and K (-) is a kernel weighting function, which in this case is the
left-sided exponential kernel.

Usage

driftBursts(
pData,
testTimes = seq(34260, 57600, 60),
preAverage = 5,
ACLag = -1L,

driftBursts

21

meanBandwidth = 300L,
varianceBandwidth = 900L,

parallelize = FALSE,
nCores = NA,
warnings = TRUE
)
Arguments
pData Either a data. table or an xts object. If pData is a data.table, columns DT and
PRICE must be present, containing timestamps of the trades and the price of
the trades (in levels) respectively. If pData is an xts object and the number of
columns is greater than one, PRICE must be present.
testTimes A numeric containing the times at which to calculate the tests. The standard of
seq(34260, 57600, 60) denotes calculating the test-statistic once per minute,
i.e. 390 times for a typical 6.5 hour trading day from 9:31:00 to 16:00:00. See
details. Additionally, testTimes can be set to "all’ where the test statistic will
be calculated on each tick more than 5 seconds after opening
preAverage A positive integer denoting the length of pre-averaging window for the log-
prices. Default is 5
ACLag A positive integer greater than 1 denoting how many lags are to be used for
the HAC estimator of the variance - the default of -1 denotes using an automatic
lag selection algorithm for each iteration. Default is -1L
meanBandwidth An integer denoting the bandwidth for the left-sided exponential kernel for the
mean. Default is 300L
varianceBandwidth
An integer denoting the bandwidth for the left-sided exponential kernel for the
variance. Default is 900L
parallelize A logical to determine whether to parallelize the underlying C++ code (Using
OpenMP). Default is FALSE. Note that the parallelized code is not interruptable,
while the non-parallel code is interruptable and it’s checked every 100 iterations.
nCores An integer denoting the number of cores to use for calculating the code when
parallelized. If this argument is not provided, sequential evaluation will be used
even though parallelize is TRUE. Default is NA
warnings A logical denoting whether warnings should be shown. Default is TRUE
Details

If the testTimes vector contains instructions to test before the first trade, or more than 15 minutes
after the last trade, these entries will be deleted, as not doing so may cause crashes. The test statistic
is unstable before max (meanBandwidth , varianceBandwidth) seconds has passed. The lags from
the Newey-West algorithm is increased by 2 * (preAveage-1) due to the pre-averaging we know
at least this many lags should be corrected for. The maximum of 20 lags is also increased by this
factor for the same reason.

22 driftBursts

Value

An object of class DBH and 1ist containing the series of the drift burst hypothesis test-statistic as
well as the estimated spot drift and variance series. The list also contains some information such as
the variance and mean bandwidths along with the pre-averaging setting and the amount of observa-
tions. Additionally, the list will contain information on whether testing happened for all testTimes
entries. Objects of class DBH has the methods print.DBH, plot.DBH, and getCriticalValues.DBH
which prints, plots, and retrieves critical values for the test described in appendix B of Christensen,
Oomen, and Reno (2020).

Author(s)

Emil Sjoerup

References

Christensen, K., Oomen, R., and Reno, R. (2020) The drift burst hypothesis. Journal of Economet-
rics. Forthcoming.

Examples

Usage with data.table object

dat <- sampleTDatal[as.Date(DT) == "2018-01-02"]

Testing every 60 seconds after 09:45:00

DBH1 <- driftBursts(dat, testTimes = seq(35100, 57600, 60), preAverage = 2, ACLag = -1L,
meanBandwidth = 300L, varianceBandwidth = 90@0L)

print(DBH1)

plot(DBH1, pData = dat)
Usage with xts object (1 column)
library("xts")
dat <- xts(sampleTDatal[as.Date(DT) == "2018-01-03"]1$PRICE,
order.by = sampleTDatal[as.Date(DT) == "2018-01-03"]1$DT)
Testing every 60 seconds after 09:45:00
DBH2 <- driftBursts(dat, testTimes = seq(35100, 57600, 60), preAverage = 2, ACLag = -1L,
meanBandwidth = 300L, varianceBandwidth = 900L)
plot(DBH2, pData = dat)

Not run:
This block takes some time
dat <- xts(sampleTDataEurope$PRICE,
order.by = sampleTDataEurope$DT)
Testing every 60 seconds after 09:00:00
system. time({DBH4 <- driftBursts(dat, testTimes = seq(32400 + 900, 63000, 60), preAverage = 2,
ACLag = -1L, meanBandwidth = 300L, varianceBandwidth = 900L)})

system. time({DBH4 <- driftBursts(dat, testTimes = seq(32400 + 900, 63000, 60), preAverage = 2,
ACLag = -1L, meanBandwidth = 300L, varianceBandwidth = 900L,
parallelize = TRUE, nCores = 8)3})
plot(DBH4, pData = dat)

exchangeHoursOnly 23

The print method for DBH objects takes an argument alpha that determines the confidence level
of the test performed

print(DBH4, alpha = 0.99)

Additionally, criticalValue can be passed directly

print(DBH4, criticalValue = 3)

max(abs(DBH4$tStat)) > getCriticalValues(DBH4, 0.99)$quantile

End(Not run)

exchangeHoursOnly Extract data from an xts object for the exchange hours only

Description

Filter raw trade data such and return only data between market close and market open. By default,
marketOpen = "09:30:00" and marketClose = "16:00:00" (see Brownlees and Gallo (2006) for
more information on good choices for these arguments).

Usage

exchangeHoursOnly(
data,
marketOpen = "09:30:00",
marketClose = "16:00:00",

tz = NULL
)
Arguments
data a data.table or xts object containing the time series data. Multiple days of
input are allowed.
marketOpen character in the format of "HH:MM:SS", specifying the opening time of the ex-
change(s).
marketClose character in the format of "HH:MM:SS", specifying the closing time of the ex-
change(s).
tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column of the data, which may fail. In case of failure we use tz if specified, and
if it is not specified, we use "UTC"
Value

xts or data.table object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

24 gatherPrices

References
Brownlees, C. T. and Gallo, G. M. (2006). Financial econometric analysis at ultra-high frequency:
Data handling concerns. Computational Statistics & Data Analysis, 51, pages 2232-2245.
Examples

exchangeHoursOnly (sampleTDataRaw)

gatherPrices Make TAQ format

Description

Convenience function to gather data from one xts or data. table with at least "DT", and d columns
containing price data to a "DT", "SYMBOL", and "PRICE" column. This function the opposite of

spreadPrices.
Usage
gatherPrices(data)
Arguments
data An xts or adata. table object with at least "DT" and d columns with price data
with their names corresponding to the respective symbols.
Value

a data.table with columns DT, SYMBOL, and PRICE

Author(s)
Emil Sjoerup
See Also
spreadPrices
Examples
Not run:
library(data.table)
datal <- copy(sampleTData)[, ~:="(PRICE = PRICE * runif(.N, min = 0.99, max = 1.01),
DT = DT + runif(.N, 0.01, 0.92))]
data2 <- copy(sampleTData)[, SYMBOL := 'XYZ']

dat1 <- rbind(datall[, list(DT, SYMBOL, PRICE)], data2[, list(DT, SYMBOL, PRICE)1])
setkeyv(dat1l, c("DT", "SYMBOL"))

dat1

dat <- spreadPrices(dat1) # Easy to use for realized measures

getAlphaVantageData 25

dat

dat <- gatherPrices(dat)

dat

all.equal(datl, dat) # We have changed to RM format and back.

End(Not run)

getAlphaVantageData Get high frequency data from Alpha Vantage

Description

Function to retrieve high frequency data from Alpha Vantage - wrapper around quantmod’s get-
Symbols.av function

Usage
getAlphaVantageData(
symbols = NULL,
interval = "5min",

n n

outputType = "xts",
apiKey = NULL,
doSleep = TRUE

)
Arguments
symbols character vector with the symbols to import.
interval the sampling interval of the data retrieved. Should be one of one of "Imin",
"Smin", "15min", "30min", or "60min"
outputType string either "xts” or "DT" to denote the type of output wanted. "xts" will
yield an xts object, "DT" will yield a data.table object.
apiKey string with the api key provided by Alpha Vantage.
doSleep logical when the length of symbols > 5 the function will sleep for 12 seconds by
default.
Details

The doSleep argument is set to true as default because Alpha Vantage has a limit of five calls per
minute. The function does not try to extract when the last API call was made which means that if
you made successive calls to get 3 symbols in rapid succession, the function may not retrieve all the
data.

Value

An object of type xts or data. table in case the length of symbols is 1. If the length of symbols >
1 the xts and data. table objects will be put into a list.

26 getCritical Values

Author(s)

Emil Sjoerup (wrapper only) Paul Teetor (for quantmod’s getSymbols.av)

See Also

The getSymbols.av function in the quantmod package

Examples

Not run:
Get data for SPY at an interval of 1 minute in the standard xts format.
data <- getAlphaVantageData(symbols = "SPY", apiKey = "yourKey”, interval = "1min")

Get data for 3M and Goldman Sachs at a 5 minute interval in the data.table format.
The data.tables will be put in a list.
data <- getAlphaVantageData(symbols = c("MMM", "GS"), interval = "5min”,

outputType = "DT", apiKey = 'yourKey')

Get data for JPM and Citicorp at a 15 minute interval in the xts format.

The xts objects will be put in a list.

data <- getAlphaVantageData(symbols = c("JPM", "C"), interval = "15min",
outputType = "xts"”, apiKey = "yourKey")

End(Not run)

getCriticalValues Get critical value for the drift burst hypothesis t-statistic

Description
Method for DBH objects to calculate the critical value for the presence of a burst of drift. The
critical value is that of the test described in appendix B in Christensen Oomen Reno

Usage

getCriticalValues(x, alpha = 0.95)

Arguments
X object of class DBH
alpha numeric denoting the confidence level for the critical value. Possible values are
c(0.90.950.990.9950.999 0.9999)
Author(s)

Emil Sjoerup

getLiquidityMeasures 27

References

Christensen, K., Oomen, R., and Reno, R. (2020) The drift burst hypothesis. Journal of Economet-
rics. Forthcoming.

getLiquidityMeasures Compute Liquidity Measure

Description

Function returns an xts or data. table object containing 23 liquidity measures. Please see details
below.

Note that this assumes a regular time grid.

Usage

getlLiquidityMeasures(tgData, win = 300)

Arguments
tgData A data.table or xts object as in the highfrequency merged trades and quotes
data.
win A windows length for the forward-prices used for ‘realized’ spread
Details

NOTE: xts or data. table should only contain one day of observations Some markets have publish
information about whether it was a buyer or a seller who initiated the trade. This information can
be passed in a column DIRECTION this column must only have 1 or -1 as values.

The respective liquidity measures are defined as follows:
effectiveSpread

(BID; 4+ OFR;)
f)’
where D; is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)). Note

that the input of this function consists of the matched trades and quotes, so this is were the
time indication refers to (and thus not to the registered quote timestamp).

effective spread, = 2 * D; * (PRICE; —

realizedSpread: realized spread

(BID; 300 + OFR¢.300)
2

realized spread, = 2 * D, % (PRICE, —),

where Dy is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)). Note
that the time indication of BID and OFR refers to the registered time of the quote in seconds.

valueTrade: trade value
trade value; = SIZE; x PRICE;.

28

getLiquidityMeasures

signedValueTrade: signed trade value
signed trade value, = D; * (SIZE; * PRICE;),
where Dy is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)).
depthImbalanceDifference: depth imbalance (as a difference)

D, = (OFRSIZ, — BIDSIZ,)

depth imbalance (as difference), = (OFRSIZ, + BIDSIZ,)
t t

where D; is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)). Note
that the input of this function consists of the matched trades and quotes, so this is were the
time indication refers to (and thus not to the registered quote timestamp).

depthImbalanceRatio: depth imbalance (as ratio)

OFRSIZ,
BIDSIZ,

where Dy is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)). Note
that the input of this function consists of the matched trades and quotes, so this is were the
time indication refers to (and thus not to the registered quote timestamp).

depth imbalance (as ratio), = (yPe,

proportionalEffectiveSpread: proportional effective spread

effective spread,
(OFR; + BID,)/2

proportional effective spread, =

(Venkataraman, 2001).

Note that the input of this function consists of the matched trades and quotes, so this is were
the time indication refers to (and thus not to the registered quote timestamp).

proportionalRealizedSpread: proportional realized spread

realized spread,
(OFR; + BID;)/2

proportional realized spread, =

(Venkataraman, 2001).

Note that the input of this function consists of the matched trades and quotes, so this is were
the time indication refers to (and thus not to the registered

priceImpact: price impact

effective spread, — realized spread,
2

price impact, =

(see Boehmer (2005), Bessembinder (2003)).

proportionalPriceImpact: proportional price impact

(effective spread, —realized spread,)

proportional price impact, =

2
OFR,+BID,
2

(Venkataraman, 2001). Note that the input of this function consists of the matched trades
and quotes, so this is where the time indication refers to (and thus not to the registered quote
timestamp).

getLiquidityMeasures 29

halfTradedSpread: half traded spread

(BID; + OFRy)
]
where D; is 1 (-1) if trade; was buy (sell) (see Boehmer (2005), Bessembinder (2003)). Note

that the input of this function consists of the matched trades and quotes, so this is were the
time indication refers to (and thus not to the registered quote timestamp).

half traded spread, = D; * (PRICE; —

proportionalHalfTradedSpread: proportional half traded spread

half traded spread,
OFR, +BID,
2

proportional half traded spread, =

Note that the input of this function consists of the matched trades and quotes, so this is were
the time indication refers to (and thus not to the registered quote timestamp).

squaredLogReturn: squared log return on trade prices

squared log return on Trade prices, = (log(PRICE;) — log(PRICE;_;))?.
absLogReturn: absolute log return on trade prices

absolute log return on Trade prices, = |log(PRICE;) — log(PRICE,_1)].

quotedSpread: quoted spread
quoted spread, = OFR; — BID;

Note that the input of this function consists of the matched trades and quotes, so this is where
the time indication refers to (and thus not to the registered quote timestamp).

proportionalQuotedSpread: proportional quoted spread

quoted spread,

proportional quoted spread, = “5pp—pr5—
#

(Venkataraman, 2001). Note that the input of this function consists of the matched trades
and quotes, so this is where the time indication refers to (and thus not to the registered quote
timestamp).

logQuotedSpread: log quoted spread

OFR,
BID,

log quoted spread, = log()

(Hasbrouck and Seppi, 2001). Note that the input of this function consists of the matched
trades and quotes, so this is where the time indication refers to (and thus not to the registered
quote timestamp).

logQuotedSize: log quoted size

log quoted size, = log(OFRSIZ,) + log(BIDSIZ,)

(Hasbrouck and Seppi, 2001). Note that the input of this function consists of the matched
trades and quotes, so this is where the time indication refers to (and thus not to the registered
quote timestamp).

30

getLiquidityMeasures

quotedSlope: quoted slope
quoted spread,

ted sl =
quoted slope; log quoted size,
(Hasbrouck and Seppi, 2001).
logQSlope: log quoted slope
log quoted spread,

log quoted slope, = log quoted size,
t

midQuoteSquaredReturn: midquote squared return
midquote squared return, = (log(midquote,) — log(midquote, ;))?,
where midquote, = w

midQuoteAbsReturn: midquote absolute return

midquote absolute return, = | log(midquote,) — log(midquote,)|,

where midquote, = w
signedTradeSize: signed trade size

signed trade size, = D; * SIZE,,

where D, is 1 (-1) if trade; was buy (sell).

Value

A modified (enlarged) xts or data. table with the new measures.

References

Bessembinder, H. (2003). Issues in assessing trade execution costs. Journal of Financial Markets,
223-257.

Boehmer, E. (2005). Dimensions of execution quality: Recent evidence for US equity markets.
Journal of Financial Economics, 78, 553-582.

Hasbrouck, J. and Seppi, D. J. (2001). Common factors in prices, order flows and liquidity. Journal
of Financial Economics, 59, 383-411.

Venkataraman, K. (2001). Automated versus floor trading: An analysis of execution costs on the
Paris and New York exchanges. The Journal of Finance, 56, 1445-1485.

Examples

tgData <- matchTradesQuotes(sampleTDatal[as.Date(DT) == "2018-01-02"17,
sampleQDatalas.Date(DT) == "2018-01-02"])

res <- getlLiquidityMeasures(tgData)

res

getTradeDirection 31

getTradeDirection Get trade direction

Description

Function returns a vector with the inferred trade direction which is determined using the Lee and
Ready algorithm (Lee and Ready, 1991).

Usage

getTradeDirection(tgData)

Arguments
tgData data.table or xts object, containing joined trades and quotes (e.g. using
matchTradesQuotes)
Details

NOTE: By convention the first observation is always marked as a buy.

Value

A vector which has values 1 or (-1) if the inferred trade direction is buy or sell respectively.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup. Special thanks to Dirk Eddel-
buettel.

References

Lee, C. M. C. and Ready, M. J. (1991). Inferring trade direction from intraday data. Journal of
Finance, 46, 733-746.

Examples

Generate matched trades and quote data set

tgData <- matchTradesQuotes(sampleTData[as.Date(DT) == "2018-01-02"],
sampleQDatalas.Date(DT) == "2018-01-02"])

directions <- getTradeDirection(tgData)

head(directions)

32 HARmodel

HARmodel Heterogeneous autoregressive (HAR) model for realized volatility
model estimation

Description

Function returns the estimates for the heterogeneous autoregressive model (HAR) for realized
volatility discussed in Andersen et al. (2007) and Corsi (2009). This model is mainly used to
forecast the next day’s volatility based on the high-frequency returns of the past.

Usage

HARmodel (
data,
periods = c(1, 5, 22),
periodsJ = c(1, 5, 22),
periodsQ = c(1),
leverage = NULL,
RVest = c("rCov"”, "rBPCov", "rQuar"),
type = "HAR",
inputType = "RM",
jumpTest = "ABDJumptest”,
alpha = 0.05,
h =1,
transform = NULL,
externalRegressor = NULL,
periodsExternal = c(1),

)
Arguments

data an xts object containing either: intraday (log-)returns or realized measures al-
ready computed from such returns. In case more than one realized measure
is needed, the object should have the as many columns as realized measures
needed. The first column should always be the realized variance proxy. In case
type is either "HARQJ" or "CHARQ" the order should be "RV"”, "BPV", "RQ", or
the relevant proxies.

periods a vector of integers indicating over how days the realized measures in the model
should be aggregated. By default periods =c(1,5,22), which corresponds
to one day, one week and one month respectively. This default is in line with
Andersen et al. (2007).

periodsJ a vector of integers indicating over what time periods the jump components

in the model should be aggregated. By default periodsJ = c(1,5,22), which
corresponds to one day, one week and one month respectively.

HARmodel

periodsQ

leverage

RVest

type

inputType

jumpTest

alpha

transform

33

a vector of integers indicating over what time periods the realized quarticity
in the model should be aggregated. By default periodsQ=c(1,5,22), which
corresponds to one day, one week and one month respectively.

a vector of integers indicating over what periods the negative returns should
be aggregated. See Corsi and Reno (2012) for more information. By default
leverage = NULL and the model assumes the absence of a leverage effect. Set
leverage = c(1,5,22) to mimic the analysis in Corsi and Reno (2012).

a character vector with one, two, or three elements. The first element always
refers to the name of the function to estimate the daily integrated variance (non-
jump-robust). The second and third element depends on which type of model is
estimated: If type = "HARJ", type = "HARCJ", type = "HARQJ" the second ele-
ment refers to the name of the function to estimate the continuous component
of daily volatility (jump robust). If type = "HARQ", the second element refers
to the name of the function used to estimate the integrated quarticity. If type =
"HARQJ" the third element always refers to the name of the function used to esti-
mate integrated quarticity. By default RVest = c("rCov”, "rBPCov", "rQuar"),
i.e. using the realized volatility, realized bi-power variance, and realized quar-
ticity.

a string referring to the type of HAR model you would like to estimate. By
default type = "HAR", the most basic model. Other valid options for type are
"HARJ", "HARCJ", "HARQ", "HARQJ", "CHAR", or "CHARQ".

a string denoting if the input data consists of realized measures or high-frequency
returns. Default "RM" is the only way to denote realized measures and every-
thing else denotes returns.

the function name of a function used to test whether the test statistic which deter-
mines whether the jump variability is significant that day. By default jumpTest
= "ABDJumptest”, hence using the test statistic in Equation or Equation (18) of
Andersen et al. (2007). It is also possible to provide pre-computed test statistics
for jump tests by setting jumpTest to "testStat”. These test statistics should
still be passed as the third column.

a real indicating the confidence level used in testing for jumps. By default alpha
=0.05.

an integer indicating the number over how many days the dependent variable
should be aggregated. By default, h = 1, i.e. no aggregation takes place, you just
model the daily realized volatility.

optionally a string referring to a function that transforms both the dependent
and explanatory variables in the model. By default transform = NULL, so no
transformation is done. Typical other choices in this context would be "log" or
”Sqrt"_

externalRegressor

periodsExternal

an xts object of same number of rows as data, and one column. This is used as
an external regressor. Default is NULL.

a vector of integers indicating over how days externalRegressor should be
aggregated.

extra arguments for jump test.

34 HARmodel

Details
The basic specification in Corsi (2009) is as follows. Let RV; be the realized variances at day ¢ and
RV, _., the average realized variance in betweent — k and ¢, k > 0.

The dynamics of the model are given by

RViy1 = Bo+ p1 RV + B2 RVi—a: + B3 RVi—21:4 + €141
which is estimated by ordinary least squares under the assumption that at time ¢, the conditional
mean of €, is equal to zero.

For other specifications, please refer to the cited papers.

The standard errors reporting in the print and summary methods are Newey-West standard errors
calculated with the sandwich package.

Value

The function outputs an object of class HARmodel and 1m (so HARmodel is a subclass of 1m). Objects
of class HARmodel has the following methods plot.HARmodel, predict.HARmodel, print.HARmodel,
and summary .HARmodel.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Andersen, T. G., Bollerslev, T., and Diebold, F. (2007). Roughing it up: Including jump components
in the measurement, modelling and forecasting of return volatility. The Review of Economics and
Statistics, 89, 701-720.

Corsi, F. (2009). A simple approximate long memory model of realized volatility. Journal of
Financial Econometrics, 7, 174-196.

Corsi, F. and Reno R. (2012). Discrete-time volatility forecasting with persistent leverage effect
and the link with continuous-time volatility modeling. Journal of Business & Economic Statistics,
30, 368-380.

Bollerslev, T., Patton, A., and Quaedvlieg, R. (2016). Exploiting the errors: A simple approach for
improved volatility forecasting, Journal of Econometrics, 192, 1-18.

Examples

Example 1: HAR

Forecasting daily Realized volatility for the S&P 500 using the basic HARmodel: HAR
library(xts)

RVSPY <- as.xts(SPYRM$RV5, order.by = SPYRM$DT)

x <- HARmodel(data = RVSPY , periods = c(1,5,22), RVest = c("rCov"),
type = "HAR", h = 1, transform = NULL, inputType = "RM")

class(x)

X

HARmodel 35

summary (x)
plot(x)
predict(x)

Example 2: HARQ

Get the highfrequency returns

dat <- as.xts(sampleOneMinuteDatal[, makeReturns(STOCK), by = list(DATE = as.Date(DT))1)

x <- HARmodel(dat, periods = c(1,5,10), periodsJ = c(1,5,10),
periodsQ = c(1), RVest = c("rCov", "rQuar"),

type="HARQ", inputType = "returns”)

Estimate the HAR model of type HARQ

class(x)

X

plot(x)

predict(x)

Example 3: HARQJ with already computed realized measures

dat <- SPYRM[, list(DT, RV5, BPV5, RQ5)]

x <- HARmodel(as.xts(dat), periods = c¢(1,5,22), periodsJ = c(1),
periodsQ = c(1), type = "HARQJ")

Estimate the HAR model of type HARQJ

class(x)

X

plot(x)

predict(x)

Example 4: CHAR with already computed realized measures
dat <- SPYRM[, list(DT, RV5, BPV5)]

x <- HARmodel(as.xts(dat), periods = c(1, 5, 22), type = "CHAR")
Estimate the HAR model of type CHAR

class(x)

X

plot(x)

predict(x)

Example 5: CHARQ with already computed realized measures
dat <- SPYRM[, list(DT, RV5, BPV5, RQ5)]

x <- HARmodel(as.xts(dat), periods = c(1,5,22), periodsQ = c(1), type = "CHARQ")
Estimate the HAR model of type CHARQ

class(x)

X

plot(x)

predict(x)

Example 6: HARCJ with pre-computed test-statistics

BNSJumptest manually calculated.

testStats <- sqrt(390) * (SPYRM$RV1 - SPYRM$BPV1)/sqrt((pi*2/4+pi-3 - 2) * SPYRM$medRQ1)
model <- HARmodel(cbind(as.xts(SPYRM[, 1ist(DT, RV5, BPV5)]), testStats), type = "HARCJ")

36 HEAVYmodel

HEAVYmodel HEAVY model estimation

Description

This function calculates the High frEquency bAsed VolatilitY (HEAVY) model proposed in Shep-
hard and Sheppard (2010).

Usage
HEAVYmodel (data, startingValues = NULL)

Arguments

data an xts object where the first column is a vector of returns and the second column
is a vector of realized stock market variation

startingValues a vector of alternative starting values: first three arguments for variance equation
and last three arguments for measurement equation.

Details

Let r; and RM,; be series of demeaned returns and realized measures of daily stock price variation.

The HEAVY model is a two-component model. We assume r; = htl / 2Zt where Z; is an i.i.d.
zero-mean and unit-variance innovation term. The dynamics of the HEAVY model are given by

ht =w+ OlRMt_l + 5ht_1
and

pe = wr + arRM;_1 + Briti—1.

The two equations are estimated separately as mentioned in Shephard and Sheppard (2010). We
report robust standard errors based on the matrix-product of inverted Hessians and the outer product
of gradients.

Note that we always demean the returns in the data input as we don’t include a constant in the mean
equation.

Value

The function outputs an object of class HEAVYmodel, a list containing

* coefficients = estimated coefficients.

* se = robust standard errors based on inverted Hessian matrix.

* residuals = the residuals in the return equation.

¢ llh = the two-component log-likelihood values.
 varCondVariances = conditional variances in the variance equation.

* RMCondVariances = conditional variances in the RM equation.

ICov 37

* data = the input data.

The class HEAVYmodel has the following methods: plot. HEAVYmodel, predict. HEAVYmodel,
print. HEAV Ymodel, and summary.HEAV Ymodel.

Author(s)

Onno Kleen and Emil Sjorup.

References
Shephard, N. and Sheppard, K. (2010). Realising the future: Forecasting with high frequency based
volatility (HEAVY) models. Journal of Applied Econometrics 25, 197-231.

See Also

predict.HEAVYmodel

Examples

Calculate returns in percentages
logReturns <- 100 * makeReturns(SPYRM$CLOSE)[-1]

Combine both returns and realized measures into one xts
Due to return calculation, the first observation is missing
dataSPY <- xts::xts(cbind(logReturns, SPYRM$BPV5[-1] * 10000), order.by = SPYRM$DT[-1])

Fit the HEAVY model
fittedHEAVY <- HEAVYmodel (dataSPY)

Examine the estimated coefficients and robust standard errors
fittedHEAVY

Calculate iterative multi-step-ahead forecasts
predict(fittedHEAVY, stepsAhead = 12)

ICov Estimators of the integrated covariance

Description

This documentation page functions as a point of reference to quickly look up the estimators of the
integrated covariance provided in the highfrequency package.

The implemented estimators are:
Realized covariance rCov

Realized bipower covariance rBPCov

38

Hayashi-Yoshida realized covariance rHYCov
Realized kernel covariance rkernelCov

Realized outlyingness-weighted covariance rOWCov
Realized threshold covariance rThresholdCov
Realized two-scale covariance rTSCov

Robust realized two-scale covariance rRTSCov
Subsampled realized covariance rAVGCov

Realized semi-covariance rSemiCov

Modulated Realized covariance rMRCov

Realized Cholesky covariance rCholCov

Beta-adjusted realized covariance rBACov

See Also

IVar for a list of implemented estimators of the integrated variance.

intradayJumpTest

intradayJumpTest Intraday jump tests

Description

This function can be used to test for jumps in intraday price paths.
The tests are of the form L(t) = (R(t) — mu(t))/sigma(t).
See spotVol and spotDrift for Estimators for o () and p(t), respectively.

Usage

intradayJumpTest(
pData,
volEstimator = "RM",
driftEstimator = "none”,
alpha = 0.95,
alignBy = "minutes”,
alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = NULL,
n = NULL,

intradayJumpTest 39

Arguments

pData xts or data. table of the price data in levels. This data can (and should in
some cases) be tick-level data. The data can span more than one day. Should
only contain a sinlge SYMBOL

volEstimator character denoting which volatility estimator to use for the tests. See spotVol.
Default = "RM" denoting realized measures.

driftEstimator character denoting which drift estimator to use for the tests. See spotDrift.
Default = "none” denoting no drift estimation.

alpha numeric of length one determining what confidence level to use when construct-
ing the critical values.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible

n o n n on non

values are: "ticks”, "secs"”, "seconds”, "mins”, "minutes”, "hours”

alignPeriod positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes". alignPeriod = 5 and alignBy = "minutes”.

marketOpen the market opening time. This should be in the time zone specified by tz. By
default, marketOpen = "09:30:00".

marketClose the market closing time. This should be in the time zone specified by tz. By
default, marketClose = "16:00:00".

tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"

n number of observation to use in the calculation of the critical values of the test
statistic. If this is left as NULL we fall back to the total number of observations
in the sample.
extra arguments passed on to spotVol for the volatility estimation, and to spotDrift.

The null hypothesis of the tests in this function is that there are no jumps in the
price series

Author(s)

Emil Sjoerup

References

Christensen, K., Oomen, R. C. A., Podolskij, M. (2014): Fact or Friction: Jumps at ultra high
frequency. Journal of Financial Economics, 144, 576-599

Examples

Not run:

We can easily make a Lee-Mykland jump test.

LMtest <- intradayJumpTest(pData = sampleTData[, list(DT, PRICE)],
volEstimator = "RM", driftEstimator = "none”,
RM = "rBPCov"”, lookBackPeriod = 20,

40 IVinference
alignBy = "minutes”, alignPeriod = 5, marketOpen = "@9:30:00",
marketClose = "16:00:00")
plot(LMtest)
We can just as easily use the pre-averaged version from the "Fact or Friction” paper
FoFtest <- intradayJumpTest(pData = sampleTDatal[, list(DT, PRICE)],
volEstimator = "PARM", driftEstimator = "none”,
RM = "rBPCov", lookBackPeriod = 20, theta = 1.2,
marketOpen = "09:30:00", marketClose = "16:00:00")
plot(FoFtest)
End(Not run)
IVar Estimators of the integrated variance
Description
This documentation page functions as a point of reference to quickly look up the estimators of the
integrated variance provided in the highfrequency package.
The implemented estimators are: Realized Variance rRVar
Median realized variance rMedRVar
Minimum realized variance rMinRVar
Realized quadpower variance rQPVar
Realized multipower variance rMPVar
Realized semivariance rSVar
Note that almost all estimators in the list in ICov also work yield estimates of the integrated variance
on the diagonals.
See Also
ICov for a list of implemented estimators of the integrated covariance.
IVinference Function returns the value, the standard error and the confidence band

of the integrated variance (IV) estimator.

IVinference 41

Description

This function supplies information about standard error and confidence band of integrated vari-
ance (IV) estimators under Brownian semimartingales model such as: bipower variation, rMinRYV,
rMedRV. Depending on users’ choices of estimator (integrated variance (I'Vestimator), integrated
quarticity (IQestimator)) and confidence level, the function returns the result.(Barndorff (2002))
Function returns three outcomes: 1.value of IV estimator 2.standard error of IV estimator and 3.con-
fidence band of IV estimator.

Assume there is [V equispaced returns in period ¢.

Then the IVinference is given by:

1
standard error = —— * sd

VN

confidence band = IV 4 cv * se

sd =1/0 x IQ

in which,

cv : critical value.
se : standard error.
0 : depending on IQestimator, 6 can take different value (Andersen et al. (2012)).

1 Q integrated quarticity estimator.

Usage
IVinference(
rData,
IVestimator = "RV",
IQestimator = "rQuar",

confidence = 0.95,
alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE,

)
Arguments

rData xts object containing all returns in period t for one asset.

IVestimator can be chosen among integrated variance estimators: RV, BV, rMinRV or rMe-
dRV. RV by default.

IQestimator can be chosen among integrated quarticity estimators: rQuar, realized tri-power
quarticity (TPQ), quad-power quarticity (QPQ), rMinRQuar or rMedRQuar. TPQ
by default.

confidence confidence level set by users. 0.95 by default.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible

n o n non non

values are: "ticks”, "secs”, "seconds”, "mins”, "minutes”, "hours"”

42 IVinference

alignPeriod positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes”.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

additional arguments.

Details

The theoretical framework is the logarithmic price process X; belongs to the class of Brownian
semimartingales, which can be written as:

t t
X :/ audu—i—/ 0, AW,
0 0

where a is the drift term, o denotes the spot vivinferenceolatility process, W is a standard Brownian
motion (assume that there are no jumps).

Value

list

Author(s)

Giang Nguyen, Jonathan Cornelissen and Kris Boudt

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

Barndorff-Nielsen, O. E. (2002). Econometric analysis of realized volatility and its use in esti-
mating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 64, 253-280.

Examples

Not run:

library("xts") # This function only accepts xts data currently

ivInf <- IVinference(as.xts(sampleTData[, list(DT, PRICE)]), IVestimator= "rMinRV",
IQestimator = "rMedRQ"”, confidence = ©.95, makeReturns = TRUE)

ivInf

End(Not run)

JOjumpTest 43

JOjumpTest Jiang and Oomen (2008) tests for the presence of jumps in the price
series.

Description

This test examines the jump in highfrequency data. It is based on theory of Jiang and Oomen
(JO). They found that the difference of simple return and logarithmic return can capture one half
of integrated variance if there is no jump in the underlying sample path. The null hypothesis is no
jumps.

Function returns three outcomes: 1.z-test value 2.critical value under confidence level of 95% and
3.p-value.

Assume there is N equispaced returns in period t.

Let 7, ; be a logarithmic return (with¢ = 1, ..., N) in period ¢.
Let R, ; be a simple return (with¢ = 1,..., N) in period ¢.
Then the JOjumpTest is given by:

NBV;
/ RVy
QSwV (1 - SwVf,)

JOjumpTest, =

in which, BV: bipower variance; RV: realized variance (defined by Andersen et al. (2012));

N
SWVt = QZ(RIW' — ’I“tﬂ‘)

=1

3*prp

,UG M6/p /
Qw 1 P
suv = L0 ST

r(1/2(p+ 1))
= E[|UJ?] = 2#/2
U': independent standard normal random variables

p: parameter (power).

Usage
JOjumpTest(
pData,
power = 4,

alignBy = NULL,
alignPeriod = NULL,
alpha = 0.975,

44 JOjumpTest

Arguments
pData a zoo/xts object containing all prices in period t for one asset.
power can be chosen among 4 or 6. 4 by default.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes".
alpha numeric of length one with the significance level to use for the jump test(s).
Defaults to 0.975.
Used internally, do not set.
Details

The theoretical framework underlying jump test is that the logarithmic price process X; belongs to
the class of Brownian semimartingales, which can be written as:

t t
X = / aydu + / 0, dW, + Z4
0 0

where a is the drift term, o denotes the spot volatility process, W is a standard Brownian motion
and Z is a jump process defined by:
Ny
Zi =Y Kk
j=1

where k; are nonzero random variables. The counting process can be either finite or infinite for
finite or infinite activity jumps.

The the Jiang and Ooment test is that in the absence of jumps, the accumulated difference between
the simple returns and log returns captures half of the integrated variance. (Theodosiou and Zikes,
2009). If this difference is too great, the null hypothesis of no jumps is rejected.

Value

list

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup

References
Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75- 93.

Jiang, J. G., and Oomen, R. C. A (2008). Testing for jumps when asset prices are observed with
noise- a "swap variance" approach. Journal of Econometrics, 144, 352-370.

Theodosiou, M., Zikes, F. (2009). A comprehensive comparison of alternative tests for jumps in
asset prices. Unpublished manuscript, Graduate School of Business, Imperial College London.

knChooseReMeDI 45

Examples

joDT <- JOjumpTest(sampleTDatal, list(DT, PRICE)])

knChooseReMeDI ReMeDI tuning parameter

Description

Function to choose the tuning parameter, kn in ReMeDI estimation. The optimal parameter kn is
the smallest value that where the criterion:

n,k N Pk Pk Pk 2
n __ shvn shvn shvn shvn shvn
SqErr(ky); = <Rt,0 Ry R+ Ry — Ry)

is perceived to be zero. The tuning parameter tol can be set to choose the tolerance of the perception
of “close to zero’, a higher tolerance will lead to a higher optimal value.

Usage
knChooseReMeDI (
pData,
knMax = 10,
tol = 0.05,
size = 3,
lower = 2,
upper = 5,
plot = FALSE
)
Arguments
pData xts or data.table containing the log-prices of the asset.
knMax max value of kn to be considered.
tol tolerance for the minimizing value. If tol is high, the algorithm will choose a
lower optimal value.
size size of the local window.
lower lower boundary for the method if it fails to find an optimal value. If this is the
case, the best kn between lower and upper is returned
upper upper boundary for the method if it fails to find an optimal value. If this is the
case, the best kn between lower and upper is returned
plot logical whether to plot the errors.
Details

This is the algorithm B.2 in the appendix of the Li and Linton (2019) working paper.

46 leadLag

Value

integer containing the optimal kn

Note

We Thank Merrick Li for contributing his Matlab code for this estimator.

Author(s)

Emil Sjoerup.

References

Li, M. and Linton, O. (2019). A ReMeDI for microstructure noise. Cambridge Working Papers in
Economics 1908.

Examples
optimalkKn <- knChooseReMeDI (sampleTDatalas.Date(DT) == "2018-01-02",1],
knMax = 10, tol = 0.05, size = 3,
lower = 2, upper = 5, plot = TRUE)
optimalKn
Not run:

We can also have a much larger search-space
optimalkKn <- knChooseReMeDI (sampleTDataEurope,

knMax = 50, tol = 0.05,

size = 3, lower = 2, upper = 5, plot = TRUE)
optimalKn

End(Not run)

leadLag Lead-Lag estimation

Description

Function that estimates whether one series leads (or lags) another.
Let X; and Y; be two observed price over the time interval [0, 1].

For every integer k € Z, we form the shifted time series
}/(k+i)/n7 1= 1727"'

H = (ﬂ,m is an interval for 19 € O, define the shift interval Hy = H + 19 = (ﬂ +9, H + 19}
then let

X(H)t:/o 1r (5) dX,

leadLag 47

‘Which will be abbreviated:
T+46
X(H):X(H)T+6:/ 1y (s)dX;
0

Then the shifted HY contrast function is:
ToU (D) =15 Y XY Dy untlice D XDY) e
1€1,JeJ,I<T IeZ,JeJg, J<T

This contrast function is then calculated for all the lags passed in the argument lags

Usage
leadlLag(
pricel = NULL,
price2 = NULL,
lags = NULL,
resolution = "seconds”,
normalize = TRUE,
parallelize = FALSE,
nCores = NA
)
Arguments
pricel xts or data.table containing prices in levels, in case of data.table, use a col-
umn DT to denote the date-time in POSIXct format, and a column PRICE to
denote the price
price2 xts or data.table containing prices in levels, in case of data.table, use a col-
umn DT to denote the date-time in POSIXct format, and a column PRICE to
denote the price
lags a numeric denoting which lags (in units of resolution) should be tested as
leading or lagging
resolution the resolution at which the lags is measured. The default is "seconds", use this
argument to gain 1000 times resolution by setting it to either "ms", "millisec-
onds", or "milli-seconds".
normalize logical denoting whether the contrasts should be normalized by the product of
the L2 norms of both the prices. Default = TRUE. This does not change the
value of the lead-lag-ratio.
parallelize logical denoting whether to use a parallelized version of the C++ code (paral-
lelized using OPENMP). Default = FALSE
nCores integer valued numeric denoting how many cores to use for the lead-lag esti-
mation procedure in case parallelize is TRUE. Default is NA, which does not
parallelize the code.
Details

The lead-lag-ratio (LLR) can be used to see if one asset leads the other. If LLR < 1, then pricel
MAY be leading price2 and vice versa if LLR > 1.

48

Value

listAvailableKernels

A list with class leadlLag which contains contrasts, lead-lag-ratio, and lags, denoting the
estimated values for each lag calculated, the lead-lag-ratio, and the tested lags respectively.

References

Hoffmann, M., Rosenbaum, M., and Yoshida, N. (2013). Estimation of the lead-lag parameter from
non-synchronous data. Bernoulli, 19, 1-37.

Examples

Not run:

Toy example to show the usage
Spread prices

spread <- spreadPrices(sampleMultiTradeData[SYMBOL %in% c("ETF", "AAA")])
Use lead-lag estimator

11Empirical <- leadLag(spread[!is.na(AAA), list(DT, PRICE
spread[!is.na(ETF), list(DT, PRICE

plot(llEmpirical)

End(Not run)

AAR)T,
ETF)1, seq(-15,15))

listAvailableKernels Available kernels

Description

Returns a vector of the available kernels.

Usage

listAvailableKernels()

Details

The available kernels are:

Rectangular: K(x) = 1.

Bartlett: K(z) =1 — .

Second-order: K (z) = 1 — 2z — 22
Epanechnikov: K (z) =1 — 22.

Cubic: K(x) = 1 — 322 + 223,

Fifth: K(z) =1 — 1023 + 152 — 62°.
Sixth: K(z) =1 — 152* 4 2425 — 1025
Seventh: K (z) =1 — 2125 4 3525 — 1527,

listCholCovEstimators 49

Eighth: K (z) = 1 — 282° + 4827 — 2128,

e Parzen: K(x) =1 — 622+ 622 if k < 0.5and K(z) = 2(1 — z)3if k > 0.5.
* TukeyHanning: K (z) = 1 +sin(n/2 — 7 - xz))/2.

s ModifiedTukeyHanning: K (z) = (1 — sin(7/2 — 7 (1 — x)?)/2.

Value

a character vector.

Author(s)

Scott Payseur.

References

Barndorft-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized
kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76,
1481-1536.

Examples

listAvailableKernels

listCholCovEstimators Utility function listing the available estimators for the CholCov esti-
mation

Description

Utility function listing the available estimators for the CholCov estimation

Usage

listCholCovEstimators()

Value

This function returns a character vector containing the available estimators.

50

makeOHLCV

makeOHLCV

Make Open-High-Low-Close-Volume bars

Description

This function makes OHLC-V bars at arbitrary intervals. If the SIZE column is not present in the
input, no volume column is created.

Usage

makeOHLCV (pData, alignBy = "minutes”, alignPeriod = 5, tz = NULL)

Arguments
pData data.table or xts object to make the bars out of, containing the intraday price
series of possibly multiple stocks for possibly multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "secs”, "seconds”, "mins”, "minutes”, "hours”, and "ticks".
To aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy
to "minutes”.
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5 minute frequency, set alignPeriod to 5 and
alignBy to "minutes”.
tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".
Author(s)
Emil Sjoerup
Examples
Not run:
minuteBars <- makeOHLCV(sampleTDataEurope, alignBy = "minutes”, alignPeriod = 1)

We can use the quantmod package's chartSeries function to plot the ohlcv data
quantmod: :chartSeries(minuteBars)

minuteBars <- makeOHLCV(sampleTDataEurope[,], alignBy = "minutes”, alignPeriod = 1)
Again we plot the series with chartSeries
quantmod: : chartSeries(minuteBars)

We can also handle data across multiple days.
fiveMinuteBars <- makeOHLCV(sampleTData)

Again we plot the series with chartSeries
quantmod: :chartSeries(fiveMinuteBars)

makePsd 51

We can use arbitrary alignPeriod, here we choose pi

bars <- makeOHLCV(sampleTDataEurope, alignBy = "seconds”, alignPeriod = pi)
Again we plot the series with chartSeries

quantmod: :chartSeries(bars)

End(Not run)

makePsd Returns the positive semidefinite projection of a symmetric matrix us-
ing the eigenvalue method

Description

Function returns the positive semidefinite projection of a symmetric matrix using the eigenvalue

method.
Usage
makePsd(S, method = "covariance")
Arguments
S a non-PSD matrix.
method character, indicating whether the negative eigenvalues of the correlation or co-
variance should be replaced by zero. Possible values are "covariance" and "cor-
relation”.
Details

We use the eigenvalue method to transform .S into a positive semidefinite covariance matrix (see,
e.g., Barndorff-Nielsen and Shephard, 2004, and Rousseeuw and Molenberghs, 1993). Let I' be
the orthogonal matrix consisting of the p eigenvectors of .S. Denote /\T, ey /\;f its p eigenvalues,
whereby the negative eigenvalues have been replaced by zeroes. Under this approach, the positive
semi-definite projection of S is S* = I"diag(A, ..., A1)

If method = "correlation", the eigenvalues of the correlation matrix corresponding to the matrix S
are transformed, see Fan et al. (2010).

Value

A matrix containing the positive semi definite matrix.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

52 makeReturns

References

Barndorff-Nielsen, O. E. and Shephard, N. (2004). Measuring the impact of jumps in multivariate
price processes using bipower covariation. Discussion paper, Nuffield College, Oxford University.

Fan, J., Li, Y., and Yu, K. (2012). Vast volatility matrix estimation using high frequency data for
portfolio selection. Journal of the American Statistical Association, 107, 412-428

Rousseeuw, P. and Molenberghs, G. (1993). Transformation of non positive semidefinite correlation
matrices. Communications in Statistics - Theory and Methods, 22, 965-984.

makeReturns Compute log returns

Description

Convenience function to calculate log-returns, also used extensively internally. Accepts xts and
matrix-like objects. If you use this with a data. table object, remember to not pass the DT column.

log return, = (log(PRICE;) — log(PRICE;_1)).

Usage
makeReturns(ts)
Arguments
ts a possibly multivariate matrix-like object containing prices in levels. If ts is an
xts object, we return an xts object. Other types will result in a matrix
Details

Note: the first (row of) observation(s) is set to zero.

Value

Depending on input, either a matrix or an xts object containing the log returns.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup

makeRMFormat 53

makeRMFormat DEPRECATED use spreadPrices

Description

DEPRECATED use spreadPrices

Usage
makeRMFormat (data)

Arguments

data DEPRECATED

matchTradesQuotes Match trade and quote data

Description

Match the trades and quotes of the input data. All trades are retained and the latest bids and offers
are retained, while "old’ quotes are discarded.

Usage

matchTradesQuotes(
tData,
gData,
lagQuotes = 0,
BFM = FALSE,
backwardsWindow = 3600,
forwardsWindow = 0.5,

plot = FALSE,
)
Arguments

tData data. table or xts-object containing the trade data possibly with multiple sym-
bols and over multiple days possible

gData data. table or xts-object containing the quote data possibly with multiple sym-
bols and over multiple days possible

lagQuotes numeric, number of seconds the quotes are registered faster than the trades

(should be round and positive). Default is 0. For older datasets, i.e. before
2010, it may be a good idea to set this to e.g. 2. See Vergote (2005)

54

BFM

backwardsWindow

forwardsWindow

plot

Value

mergeQuotesSameTimestamp

a logical determining whether to conduct *Backwards - Forwards matching’ of
trades and quotes. The algorithm tries to match trades that fall outside the bid
- ask and first tries to match a small window forwards and if this fails, it tries
to match backwards in a bigger window. The small window is a tolerance for
inaccuracies in the timestamps of bids and asks. The backwards window allow
for matching of late reported trades. I.e. block trades.

a numeric denoting the length of the backwards window used when BFM = TRUE.
Default is 3600, corresponding to one hour.

a numeric denoting the length of the forwards window used when BFM = TRUE.
Default is 0.5, corresponding to one half second.

a logical denoting whether to visualize the forwards, backwards, and unmatched
trades in a plot.

used internally. Don’t set this parameter

Depending on the input data type, we return either a data.table or an xts object containing
the matched trade and quote data. When using the BFM algorithm, a report of the matched
and unmatched trades are also returned (This is omitted when we call this function from the
tradesCleanupUsingQuotes function).

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Vergote, O. (2005). How to match trades and quotes for NYSE stocks? K.U.Leuven working paper.

Christensen, K., Oomen, R. C. A., Podolskij, M. (2014): Fact or Friction: Jumps at ultra high
frequency. Journal of Financial Economics, 144, 576-599

Examples

Multi-day input allowed
tgData <- matchTradesQuotes(sampleTData, sampleQData)

Show output
tgData

mergeQuotesSameTimestamp

Merge multiple quote entries with the same time stamp

Description

Merge quote entries that have the same time stamp to a single one and returns an xts or a data. table
object with unique time stamps only.

mergeTradesSameTimestamp 55

Usage
mergeQuotesSameTimestamp(gData, selection = "median”)
Arguments
gData an xts object or data. table containing the time series data, with at least two
columns named BID and OFR indicating the bid and ask price as well as two
columns BIDSIZ, OFRSIZ indicating the number of round lots available at these
prices. For data.table an additional column DT is necessary that stores the
date/time information.
selection indicates how the bid and ask price for a certain time stamp should be calculated
in case of multiple observation for a certain time stamp. By default, selection
= "median”, and the median price is taken. Alternatively:
* selection = "max.volume”: use the (bid/ask) price of the entry with largest
(bid/ask) volume.
* selection = "weighted.average”: take the weighted average of all bid
(ask) prices, weighted by "BIDSIZ" ("OFRSIZ").
Value

Depending on the input data type, we return either a data.table or an xts object containing the
quote data which has been cleaned.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

mergeTradesSameTimestamp
Merge multiple transactions with the same time stamp

Description

Merge trade entries that have the same time stamp to a single one and returns an xts or adata. table
object with unique time stamps only.

Usage
mergeTradesSameTimestamp(tData, selection = "median”)
Arguments
tData an xts object containing the time series data, with one column named PRICE

indicating the transaction price and one column SIZE indicating the number of
shares traded.

56 noZeroPrices

selection indicates how the price for a certain time stamp should be calculated in case
of multiple observation for a certain time stamp. By default, selection =
"median”, and the median price is taken. Alternatively:

* selection = "max.volume”: use the price of the transaction with largest
volume.

* selection = "weighted.average": take the weighted average of all prices.

Value

data. table or xts object depending on input.

Note

previously this function returned the mean of the size of the merged trades (pre version 0.7 and
when not using max.volume as the criterion), now it returns the sum.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

noZeroPrices Delete the observations where the price is zero

Description

Function deletes the observations where the price is zero.

Usage

noZeroPrices(tData)
Arguments

tData an xts or data. table object at least containing a column PRICE.
Value

an xts or data. table object depending on input.

Author(s)

Jonathan Cornelissen and Kris Boudt.

noZeroQuotes 57

noZeroQuotes Delete the observations where the bid or ask is zero

Description

Function deletes the observations where the bid or ask is zero.

Usage

noZeroQuotes(gData)
Arguments

gData an xts or data. table object at least containing the columns BID and OFR.
Value

xts object or data. table depending on type of input.

Author(s)

Jonathan Cornelissen and Kris Boudt.

plot.DBH Plotting method for DBH objects

Description

Plotting method for DBH objects

Usage
S3 method for class 'DBH'
plot(x, ...)

Arguments
X an object of class DBH

optional arguments, see details

58 plot. HARmodel

Details
The plotting method has the following optional parameters:

pData A data.table or an xts object, containing the prices and timestamps of the data used to
calculate the test statistic. If specified, and which = "tStat", the price will be shown on the
right y-axis along with the test statistic

which A string denoting which of four plots to make. "tStat"” denotes plotting the test statistic.
"sigma” denotes plotting the estimated volatility process. "mu” denotes plotting the estimated
drift process. If which = c("sigma”, "mu"”) orwhich = c("mu”, "sigma"), both the drift and
volatility processes are plotted. CaPiTAlizAtIOn doesn’t matter

Author(s)

Emil Sjoerup
Examples

Testing every 60 seconds after 09:15:00

DBH <- driftBursts(sampleTDataEurope, testTimes = seq(32400 + 900, 63000, 60), preAverage = 2,
ACLag = -1L, meanBandwidth = 300L, varianceBandwidth = 900L)

plot (DBH)

plot(DBH, pData = sampleTDataEurope)

plot(DBH, which = "sigma")

plot(DBH, which = "mu")

plot(DBH, which = c("sigma”, "mu"))

plot.HARmodel Plotting method for HARmodel objects

Description

Plotting method for HARmodel objects

Usage
S3 method for class 'HARmodel'
plot(x, ...)
Arguments
X an object of class HARmodel
extra arguments, see details
Details

The plotting method has the following optional parameter:

legend.loc A string denoting the location of the legend passed on to addLegend of the xts package

plot. HEAV Ymodel

59

plot.HEAVYmodel Plotting method for HEAVYmodel objects

Description

Plotting method for HEAV Ymodel objects

Usage
S3 method for class 'HEAVYmodel'
plot(x, ...)
Arguments
X an object of class HEAVYmodel.
extra arguments, see details.
Details

The plotting method has the following optional parameter:

legend.loc A string denoting the location of the legend passed on to addLegend of the xts package

type A string denoting the type of lot to be made. If type is "condVar” the fitted values of the
conditional variance of the returns is shown. If type is different from "condVar", the fitted

values of the realized measure is shown. Default is "condVar”

plotTQData Plot Trade and Quote data

Description

Plot trade and quote data, trades are marked by crosses, and quotes are plotted as boxes denoting

the bid-offer spread for all the quotes.

Usage
plotTQData(
tData,
gData = NULL,
xLim = NULL,

tradeCol = "black”,
quoteCol = "darkgray",
format = "%H:%M:%S",
axisCol = "black”,

60 predict. HARmodel

Arguments
tData cleaned trades data
gData cleaned quotes data
xLim timestamps for the start and the end of the plots.
tradeCol color in which to paint the trade crosses.
quoteCol color in which to fill out the bid-offer spread.
format format string to pass to axis.POSIXct when creating the timestamps on the
x axis. If you are plotting a very short time interval, use "%H:%M:%0S" to get
fractional seconds on the time axis.
axisCol string to denote which color to use for the x axis
passed to plot and points.
Examples
Not run:

cleanedQuotes = quotesCleanup(qgDataRaw = sampleQDataRaw, report = FALSE, printExchange = FALSE)
cleanedTrades <- tradesCleanupUsingQuotes(

tData = tradesCleanup(tDataRaw = sampleTDataRaw, report = FALSE, printExchange = FALSE),

gData = quotesCleanup(gDataRaw = sampleQDataRaw, report = FALSE, printExchange = FALSE)

Y[as.Date(DT) == "2018-01-03"]
xLim <- range(as.POSIXct(c("2018-01-03 15:30:00", "2018-01-03 16:00:00"), tz = "EST"))
plotTQData(cleanedTrades, cleanedQuotes, xLim = xLim,
main = "Raw trade and quote data from NYSE TAQ")

End(Not run)

predict.HARmodel Predict method for objects of type HARmodel

Description

Predict method for objects of type HARmodel

Usage
S3 method for class 'HARmodel'
predict(object, ...)

Arguments
object an object of class HARmodel

extra arguments. See details

predict. HEAV Ymodel 61

Details

The print method has the following optional parameters:

newdata new data to use for forecasting
warnings A logical denoting whether to display warnings, detault is TRUE

backtransform A string. If the model is estimated with transformation this parameter can be
set to transform the prediction back into variance The possible values are "simple” which
means inverse of transformation, i.e. exp when log-transformation is applied. If using log
transformation, the option "parametric” can also be used to transform back. The parametric
method adds a correction that stems from using the log-transformation

predict.HEAVYmodel Iterative multi-step-ahead forecasting for HEAVY models

Description

Calculates forecasts for hryx, where T denotes the end of the estimation period for fitting the
HEAVYmodel and k = 1, ..., stepsAhead.

Usage
S3 method for class 'HEAVYmodel'
predict(object, stepsAhead = 10, ...)
Arguments
object an object of class HEAV Ymodel.
stepsAhead the number of days iterative forecasts are calculated for (default 10).

further arguments passed to or from other methods.

print.DBH Printing method for DBH objects

Description

Printing method for DBH objects

Usage

S3 method for class 'DBH'
print(x, ...)

62 print. HARmodel

Arguments
X an object of class DBH
optional arguments, see details
Details

The print method has the following optional parameters:

criticalValue A numeric denoting a custom critical value of the test.

alpha A numeric denoting the confidence level of the test. The alpha value is passed on to
getCriticalValues. The default value is 0.95

Author(s)

Emil Sjoerup

Examples

Not run:

DBH <- driftBursts(sampleTDataEurope, testTimes = seq(32400 + 900, 63000, 300), preAverage = 2,
ACLag = -1L, meanBandwidth = 300L, varianceBandwidth = 900L)

print(DBH)

print(DBH, criticalValue = 1) # This value doesn't make sense - don't actually use it!

print(DBH, alpha = ©.95) # 5% confidence level - this is the standard

print(DBH, alpha = 0.99) # 1% confidence level

End(Not run)

print.HARmodel Printing method for HARmodel objects

Description

Printing method for HARmodel objects

Usage
S3 method for class 'HARmodel'
print(x, ...)

Arguments
X object of type HARmodel

extra options

quotesCleanup 63

Details

The printing method has the extra option digits which can be used to set the number of digits for
printing pass lag to determine the maximum order of the Newey West estimator. Default is 22

quotesCleanup Cleans quote data

Description

This is a wrapper function for cleaning the quote data in the entire folder dataSource. The result
is saved in the folder dataDestination.

In case you supply the argument gDataRaw, the on-disk functionality is ignored and the function
returns the cleaned quotes as xts or data. table object (see examples).

The following cleaning functions are performed sequentially: noZeroQuotes, exchangeHoursOnly,
autoSelectExchangeQuotes or selectExchange, rmNegativeSpread, rmLargeSpread mergeQuotesSameTimestamp,
rmOutliersQuotes.

Usage

quotesCleanup(
dataSource = NULL,
dataDestination = NULL,
exchanges = "auto",
gDataRaw = NULL,
report = TRUE,
selection = "median”,
maxi = 50,
window = 50,
type = "standard”,
marketOpen = "09:30:00",
marketClose = "16:00:00",
rmoutliersmaxi = 10,
printExchange = TRUE,
saveAsXTS = FALSE,

tz = NULL
)
Arguments
dataSource character indicating the folder in which the original data is stored.
dataDestination
character indicating the folder in which the cleaned data is stored.
exchanges vector of stock exchange symbols for all data in dataSource, e.g. exchanges

=c("T","N") retrieves all stock market data from both NYSE and NASDAQ.
The possible exchange symbols are:

64

gDataRaw

report

selection

maxi

window

type
marketOpen

marketClose

rmoutliersmaxi

printExchange

saveAsXTS

tz

quotesCleanup

A: AMEX
* N: NYSE
* B: Boston
e P: Arca
* C:NSX
T/Q: NASDAQ
D: NASD ADF and TRF
X: Philadelphia
* I ISE
e M: Chicago
* W: CBOE
* Z: BATS
. The default value is "auto” which automatically selects the exchange for the
stocks and days independently using the autoSelectExchangeQuotes

xts or data. table object containing raw quote data, possibly for multiple sym-
bols over multiple days. This argument is NULL by default. Enabling it means the
arguments dataSource and dataDestination will be ignored. (only advisable
for small chunks of data)

boolean and TRUE by default. In case it is true and we don’t use the on-disk
functionality, the function returns (also) a vector indicating how many quotes
were deleted by each cleaning step.

argument to be passed on to the cleaning routine mergeQuotesSameTimestamp.
The default is "median”.

spreads which are greater than median spreads of the day times maxi are ex-
cluded.

argument to be passed on to the cleaning routine rmOutliersQuotes.
argument to be passed on to the cleaning routine rmOutliersQuotes.

passed to exchangeHoursOnly. A character in the format of "HH:MM: SS", spec-
ifying the starting hour, minute and second of an exchange.

passed to exchangeHoursOnly. A character in the format of "HH:MM:SS", spec-
ifying the closing hour, minute and second of an exchange.

argument to be passed on to the cleaning routine rmOutliersQuotes.

Argument passed to autoSelectExchangeQuotes indicates whether the chosen
exchange is printed on the console, default is TRUE. This is only used when
exchanges is "auto”

indicates whether data should be saved in xts format instead of data.table
when using on-disk functionality. FALSE by default, which means we save as
data.table.

fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".
In the on-disk functionality, if tz is not specified, the timezone used will be the
system default.

quotesCleanup 65

Details

Using the on-disk functionality with .csv.zip files which is the standard from the WRDS database
will write temporary files on your machine - we try to clean up after it, but cannot guarantee that
there won’t be files that slip through the crack if the permission settings on your machine does not
match ours.

If the input data. table does not contain a DT column but it does contain DATE and TIME_M columns,
we create the DT column by REFERENCE, altering the data.table that may be in the user’s
environment!

Value

The function converts every (compressed) csv (or rds) file in dataSource into multiple xts or
data.table files.

In dataDestination, there will be one folder for each symbol containing .rds files with cleaned
data stored either in data. table or xts format.

In case you supply the argument gDataRaw, the on-disk functionality is ignored and the function
returns a list with the cleaned quotes as an xts or data.table object depending on input (see
examples).

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Barndorft-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized kernels in
practice: Trades and quotes. Econometrics Journal 12, C1-C32.

Brownlees, C.T. and Gallo, G.M. (2006). Financial econometric analysis at ultra-high frequency:
Data handling concerns. Computational Statistics & Data Analysis, 51, pages 2232-2245.

Falkenberry, T.N. (2002). High frequency data filtering. Unpublished technical report.

Examples

Consider you have raw quote data for 1 stock for 2 days

head(sampleQDataRaw)

dim(sampleQDataRaw)

gDataAfterCleaning <- quotesCleanup(qDataRaw = sampleQDataRaw, exchanges = "N")
gDataAfterCleaning$report

dim(gDataAfterCleaning$qgData)

In case you have more data it is advised to use the on-disk functionality
via "dataSource” and "dataDestination” arguments

66 rankJumpTest
rankJumpTest Rank jump test
Description
Calculate the rank jump test of Li et al. (2019). The procedure tests for the rank of the jump matrix
at simultaneous jump events in market returns as well as individual assets.
Usage
rankJumpTest(
marketPrice,
stockPrices,
alpha = c(5, 3),
coarsefFreq = 10,
localWindow = 30,
rank = 1,
BoxCox =
quantiles = c(0.9, 0.95, 0.99),
nBoot = 1000,
dontTestAtBoundaries = TRUE,
alignBy = "minutes”,
alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = NULL
)
Arguments
marketPrice data.table or xtscontaining the market prices in levels
stockPrices list containing the individual stock prices in either data.table or xtsformat. The
format should be the the same as marketPrice
alpha significance level (in standard deviations) to use for the jump detections. Default
is c(5, 3) for 5 and 3 in the market and stocks respectively.
coarsefFreq numeric denoting the coarse sampling frequency. Default is 10
localWindow numeric denoting the local window for the bootstrap algorithm. Default is 30
rank rank of the jump matrix under the null hypothesis. Default is 1
BoxCox numeric of exponents for the Box-Cox transformation, default is 1
quantiles numeric denoting which quantiles of the bootstrapped critical values to return
and compare against. Default is c(0.9, 0.95, 0.99)
nBoot numeric denoting how many replications to be used for the bootstrap algorithm.

Default is 1000

rankJumpTest

67

dontTestAtBoundaries

alignBy

alignPeriod

marketOpen
marketClose
tz

Details

logical determining whether to exclude data across different days. Default is
TRUE

character, indicating the time scale in which alignPeriod is expressed. Pos-
sible values are: "secs", "seconds", "mins", "minutes","hours", and "ticks". To
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to

"minutes”.

positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5 minute frequency, set alignPeriod to 5 and alignBy to
"minutes”.

the market opening time, by default: marketOpen = "09:30:00".
the market closing time, by default: marketClose = "16:00:00".

fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"

Let the jump times be defined as:

T = {i: |APZ] > un}

Then the estimated jump matrix is:

Let A2, > A2, >

j" = [ZkXLeIn

~ ~ ~l
> A2, be the ordered eigenvalues of J,,J,,, then test statistic is

d
o= 3 X2,

Jj=r+1

The critical values are computed by applying a bootstrapping method

The singular value decomposition of the jump matrix J,, is:

then U’n = [ﬁln :

j = ﬁnbnf/;

f]gn] and Vn = {Vln : Vzn}

Un = (Ujn)i<jeq Such that v, =< A7 forw € (0,1/2) which is used to trim jumps. The
bootstrapping method is calculated by the following algorithm

e Step 1.

For each i € Z,,, draw k] ~ Uniform [0, 1] and draw with equal probability,

&, i_from {min (max (A} ; X, —v,),v,) : 1 <j <k},

n,i—

&, i from {min (max (A} ; X, —vy) ,v,) : 1 < j < kp},

and set ¢}, ; = \/ﬁ’f;ﬂe +Vk—r;&, o and ¢ = I:C:L,i]iel'n

68 rAVGCov

e Step 2.

~ ! ~
Repeat 1 for a large number of iterations. Set cv,, o as as the 1 — a quantile of H U, & Vo,

in the simulated sample.

Value

A list containing criticalValues which are the bootstrapped critical values, testStatistic the

test statistic of the jump test, dimensions which are the dimensions of the jump matrix marketJumpDetections
the jumps detected in the market prices, stockJumpDetections the co-jumps detected in the indi-

vidual stock prices, and jumpIndices which are the indices of the detected jumps.

Author(s)
Emil Sjoerup, based on Matlab code provided by Li et al. (2019)

References

Li, j., Todorov, V., Tauchen, G., and Lin, H. (2019). Rank Tests at Jump Events. Journal of Business
& Economic Statistics, 37, 312-321.

rAVGCov Realized covariances via subsample averaging

Description

Calculates realized variances via averaging across partially overlapping grids, first introduced by
Zhang et al. (2005). This estimator is basically an average across different rCov estimates that start
at different points in time, see details below.

Usage

rAVGCov (
rData,
cor = FALSE,
alignBy = "minutes”,
alignPeriod = 5,
k=1,
makeReturns = FALSE,

)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is

returned instead of the covariance matrix. FALSE by default.

rAVGCov 69

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible

non n on non

values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

k numeric denoting which horizon to use for the subsambles. This can be a frac-
tion as long as k is a divisor of alignPeriod default is 1.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

used internally, do not change.

Details

Suppose that in period ¢, there are N equispaced returns 7; ; and let A be equal to alignPeriod.
For ¢ > A, we define the subsampled A-period return as

A—1

Tt = E Tti—ks -

k=0

Now define N*(j) = N/Aif j = 0 and N*(j) = N/A — 1 otherwise. The j-th component of the
rAVGCov estimator is given by

N*(j)
Jj _ ~2
RVY = Y #ia
=1

Now taking the average across the different Rth , j=0,...,A—1, defines the rAVGCov estimator.
The multivariate version follows analogously.

Note that Liu et al. (2015) show that rAVGCov is not only theoretically but also empirically a more
reliable estimator than rCov.

Value

in case the input is and contains data from one day, an N by N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data. table), the function returns a list containing N by N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Scott Payseur, Onno Kleen, and Emil Sjoerup.

References

Liu, L. Y., Patton, A. J., Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of
realized measures across multiple asset classes. Journal of Econometrics, 187, 293-311.
Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining in-

tegrated volatility with noisy high-frequency data. Journal of the American Statistical Association,
100, 1394-1411.

70 rBACov

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Average subsampled realized variance/covariance aligned at one minute returns at
5 sub-grids (5 minutes).

Univariate subsampled realized variance

rvAvgSub <- rAVGCov(rData = sampleTDatal[, list(DT, PRICE)], alignBy = "minutes”,
makeReturns = TRUE)

rvAvgSub

Multivariate subsampled realized variance
rvAvgCovSub <- rAVGCov(rData = sampleOneMinuteData[1:391], makeReturns = TRUE)
rvAvgCovSub

rBACov rBACov

Description
The Beta Adjusted Covariance (BAC) equals the pre-estimator plus a minimal adjustment matrix
such that the covariance-implied stock-ETF beta equals a target beta.

The BAC estimator works by applying a minimum correction factor to a pre-estimated covariance
matrix such that a target beta derived from the ETF is reached.

Let B
B

denote the implied beta derived from the pre-estimator, and
Be

denote the target beta, then the correction factor is calculated as:

L(B~p.),

where
Nk k 2 -
e (wi) waow

ng 2 ’

1 B
L = (Id? - 29) W’ Id2

k=1

where d is the number of assets in the ETF, and n;, is the number of trades in the kth asset, and

n n
Wk _ / 1 - 1 1 . d 0/
=\ Ye—va - Wi oo Wya s Yd—kyd | »
1 m=1 d m=1

where wf,c is the weight of the kth asset in the ETF.
m—1

rBACov 71

and
Q(i*l)d#’j

is defined by the following two cases:

(0/(¢71)d+j71’ 1’02d7i+1)d7j> + (Ol(jfl)djtifl’ _1’Ol(d7j+1)d7i) if i # j;

"> otherwise.

W* has dimensions d x d? and Q(“—14+J has dimensions d2 x d2.

The Beta-Adjusted Covariance is then

EBACZE*L(BfﬂO)a
where X is the pre-estimated covariance matrix.

Usage

rBACov (
pData,
shares,
outstanding,
nonEquity,
ETFNAME = "ETF",
unrestricted = TRUE,
targetBeta = c("HY", "VAB", "expert"),
expertBeta = NULL,
preEstimator = "rCov”,
noiseRobustEstimator = rTSCov,
noiseCorrection = FALSE,
returnL = FALSE,

)
Arguments

pData a named list. Each list-item contains an xts or data.table object with the
intraday price data of an ETF and it’s component stocks. xts objects are turned
into data. tables

shares a numeric with length corresponding to the number of component stocks in the
ETF. The entries are the stock holdings of the ETF in the corresponding stock.
The order of these entries should correspond to the order the stocks are listed in
the 1ist passed in the pData argument.

outstanding number of shares outstanding of the ETF

nonEquity aggregated value of the additional components (like cash, money-market funds,
bonds, etc.) of the ETF which are not included in the components in pData.

ETFNAME a character denoting which entry in the pData list is the ETF. Default is "ETF"

unrestricted a logical denoting whether to use the unrestricted estimator, which is an ex-
tension that also affects the diagonal. Default is FALSE

72 rBACov

targetBeta a character, one of c("HY", "VAB", "expert") (default) denoting which tar-
get beta to use, only the first entry will be used. A value "HY" means using
the Hayashi-Yoshida estimator to estimate the empirical beta. A value of "VAB"
denotes using the variance adjusted beta. A value of "expert” denotes using a
user-supplied target beta, which can be supplied in the expertBeta argument.

expertBeta a numeric containing the user supplied expert beta used when targetBeta is
"expert”. The expertBeta must be of length equal to the number of assets in
the ETF. Default is NULL

preEstimator a function which estimates the integrated covariance matrix. Default is rCov

noiseRobustEstimator
a function which estimates the integrated (co)variance and is robust to mi-
crostructure noise (only the diagonal will be estimated). This function is only
used when noiseCorrection is TRUE. Default is rTSCov

noiseCorrection
a logical which denotes whether to use the extension of the estimator which
corrects for microstructure noise by using the noiseRobustEstimator function.
Default is FALSE

returnL a logical which denotes whether to return the L matrix. Default is FALSE

extra arguments passed to preEstimator and noiseRobustEstimator.

Author(s)

Emil Sjoerup, (Kris Boudt and Kirill Dragun for the Python version)

References

Boudt, K., Dragun, K., Omauri, S., and Vanduffel, S. (2021) Beta-Adjusted Covariance Estimation
(working paper).

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Not run:
Since we don't have any data in this package that is of the required format we must simulate it.
library(xts)
library(highfrequency)
The mvtnorm package is needed for this example
Please install this package before running this example
library("mvtnorm”)
Set the seed for replication
set.seed(123)
iT <- 23400 # Number of observations
Simulate returns
rets <- rmvnorm(iT * 3 + 1, mean = rep(0,4),
sigma = matrix(c(@.1, -0.03 , 0.02, 0.04,
-0.03, 0.05, -0.03, 0.02,

rBACov 73

0.02, -0.03, 0.05, -0.03,

0.04, 0.02, -0.03, 0.08), ncol = 4))
We assume that the assets don't trade in a synchronous manner
wl <- rets[sort(sample(1:nrow(rets), size = nrow(rets) x 0.5)), 1]
w2 <- rets[sort(sample(1:nrow(rets), size = nrow(rets) x 0.75)), 2]
w3 <- rets[sort(sample(1:nrow(rets), size = nrow(rets) * 0.65)), 3]
w4 <- rets[sort(sample(1:nrow(rets), size = nrow(rets) x 0.8)), 4]
w5 <- rnorm(nrow(rets) x 0.9, mean = @, sd = 0.005)
timestamps1 <- seq(34200, 57600, length.out = length(wl))
timestamps2 <- seq(34200, 57600, length.out = length(w2))
timestamps3 <- seq(34200, 57600, length.out = length(w3))
timestamps4 <- seq(34200, 57600, length.out = length(w4))
timestamps4 <- seq(34200, 57600, length.out = length(w4))
timestamps5 <- seq(34200, 57600, length.out = length(w5))

wl <- xts(wl * c(0,sqrt(diff(timestamps1) / (max(timestamps1) - min(timestamps1)))),
as.POSIXct(timestampsl, origin = "1970-01-01"), tzone = "UTC")

w2 <- xts(w2 * c(0,sqrt(diff(timestamps2) / (max(timestamps2) - min(timestamps2)))),
as.POSIXct(timestamps2, origin = "1970-01-01"), tzone = "UTC")

w3 <- xts(w3 * c(0,sqrt(diff(timestamps3) / (max(timestamps3) - min(timestamps3)))),
as.POSIXct(timestamps3, origin = "1970-01-01"), tzone = "UTC")

w4 <- xts(w4 * c(0,sqrt(diff(timestamps4) / (max(timestamps4) - min(timestamps4)))),
as.POSIXct(timestamps4, origin = "1970-01-01"), tzone = "UTC")

w5 <- xts(w5 * c(0,sqrt(diff(timestamps5) / (max(timestamps5) - min(timestamps5)))),
as.POSIXct(timestamps5, origin = "1970-01-01"), tzone = "UTC")

pl <- exp(cumsum(w1))
p2 <- exp(cumsum(w2))
p3 <- exp(cumsum(w3))
p4 <- exp(cumsum(w4))

weights <- runif(4) * 1:4

weights <- weights / sum(weights)

p5 <- xts(rowSums(cbind(w1l * weights[1], w2 x weights[2], w3 x weights[3], w4 * weights[4]),
na.rm = TRUE),
index(cbind(p1, p2, p3, p4)))

p5 <- xts(cumsum(rowSums(cbind(p5, w5), na.rm = TRUE)), index(cbind(p5, w5)))

p5 <- exp(p5[Lsort(sample(1:length(p5), size = nrow(rets) * 0.9))1)

BAC <- rBACov(pData = list(
"ETF" = p5, "STOCK 1" = p1, "STOCK 2" = p2, "STOCK 3" = p3, "STOCK 4" = p4
), shares = 1:4, outstanding = 1, nonEquity = @, ETFNAME = "ETF",
unrestricted = FALSE, preEstimator = "rCov"”, noiseCorrection = FALSE,
returnL = FALSE, K =2, J =1)

Noise robust version of the estimator
noiseRobustBAC <- rBACov(pData = list(
"ETF" = p5, "STOCK 1" = p1, "STOCK 2" = p2, "STOCK 3" = p3, "STOCK 4" = p4
), shares = 1:4, outstanding = 1, nonEquity = @, ETFNAME = "ETF",
unrestricted = FALSE, preEstimator = "rCov", noiseCorrection = TRUE,
noiseRobustEstimator = rHYCov, returnL = FALSE, K =2, J = 1)

74 rBeta

Use the Variance Adjusted Beta method
Also use a different pre-estimator.
VABBAC <- rBACov(pData = list(
"ETF" = p5, "STOCK 1" = p1, "STOCK 2" = p2, "STOCK 3" = p3, "STOCK 4" = p4
), shares = 1:4, outstanding = 1, nonEquity = @, ETFNAME = "ETF",
unrestricted = FALSE, targetBeta = "VAB", preEstimator = "rHYov",
noiseCorrection = FALSE, returnL = FALSE, Lin = FALSE, L =0, K=2, J=1)

End(Not run)

rBeta Realized beta

Description
Depending on users’ choices of estimator (realized covariance (RCOVestimator) and realized vari-
ance (RVestimator)), the function returns the realized beta, defined as the ratio between both.

The realized beta is given by
RCOVestimatory,

RVestimator,,

ﬂjm =

in which
RCOVestimator : Realized covariance of asset j and market index m.

RV estimator : Realized variance of market index m.

Usage
rBeta(
rData,
rindex,
RCOVestimator = "rCov",
RVestimator = "rRVar”,

makeReturns = FALSE,

)

Arguments
rData a xts object containing all returns in period t for one asset.
rIndex a xts object containing return in period t for an index.

RCOVestimator canbe chosen among realized covariance estimators: "rCov"”, "rAVGCov", "rBPCov",
"rHYCov", "rKernelCov", "rOWCov", "rRTSCov", "rThresholdCov" and "rTSCov"
"rCov" by default.

rBeta 75

RVestimator can be chosen among realized variance estimators: "rRVar”, "rMinRVar"” and
"rMedRVar"”. "rRVar" by default. In case of missing RVestimator, RCOVestimator
function applying for rIndex will be used.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

arguments passed to RCOVestimator and RVestimator

Details

Suppose there are N equispaced returns on day ¢ for the asset j and the index m. Denote r(;; ¢,
T(m)i,+ as the ith return on day ¢ for asset j and index m (with¢ =1,..., N).

By default, the RCov is used and the realized beta coefficient is computed as:

N
Biymyt = Dim1 TGt (m)it
jm N .
Zi:l T(Zm)i,t

Note: The function does not support to calculate betas across multiple days.

Value

numeric

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Barndorff-Nielsen, O. E. and Shephard, N. (2004). Econometric analysis of realized covariation:
high frequency based covariance, regression, and correlation in financial economics. Econometrica,
72, 885-925.

Examples
Not run:
library("xts")
a <- as.xts(sampleOneMinuteDatalas.Date(DT) == "2001-08-04", 1ist(DT, MARKET)])
b <- as.xts(sampleOneMinuteDatalas.Date(DT) == "2001-08-04", list(DT, STOCK)])

rBeta(a, b, RCOVestimator = "rBPCov"”, RVestimator = "rMinRVar", makeReturns = TRUE)

End(Not run)

76 rBPCov

rBPCov Realized bipower covariance

Description

Calculate the Realized BiPower Covariance (rBPCov), defined in Barndorff-Nielsen and Shephard
(2004).

Let 7, ; be an intraday Nz1 return vector and ¢ = 1, ..., M the number of intraday returns.

The rBPCov is defined as the process whose value at time ¢ is the /N-dimensional square matrix
with k, g-th element equal to

M
rBPCov[k, q]; = g (Z P + @l [roei-1 + r@iot] =lrae: = r@eil [rwei-1 = r@ei-a))

=2

where 71 ; is the k-th component of the return vector 7 ;.

Usage

rBPCov (
rData,
cor = FALSE,
alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE,
makePsd = FALSE,

)
Arguments

rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days

cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”

alignPeriod positive numeric, indicating the number of periods to aggregate over. E.g. to
aggregate based on a 5-minute frequency, set alignPeriod to 5 and alignBy to
"minutes”.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

makePsd boolean, in case it is TRUE, the positive definite version of rBPCov is returned.
FALSE by default.

used internally, do not change.

rCholCov 77

Value

in case the input is and contains data from one day, an N by N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data. table), the function returns a list containing N by N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Barndorff-Nielsen, O. E., and Shephard, N. (2004). Measuring the impact of jumps in multivariate
price processes using bipower covariation. Discussion paper, Nuffield College, Oxford University.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Realized Bipower Variance/Covariance for a price series aligned
at 5 minutes.

Univariate:

rbpv <- rBPCov(rData = sampleTDatal[, list(DT, PRICE)], alignBy ="minutes"”,
alignPeriod = 5, makeReturns = TRUE)

Multivariate:

rbpc <- rBPCov(rData = sampleOneMinuteData, makeReturns = TRUE, makePsd = TRUE)

rbpc

rCholCov CholCov estimator

Description

Positive semi-definite covariance estimation using the CholCov algorithm. The algorithm estimates
the integrated covariance matrix by sequentially adding series and using ‘refreshTime* to synchro-
nize the observations. This is done in order of liquidity, which means that the algorithm uses more
data points than most other estimation techniques.

Usage

rCholCov/(
pData,
IVest = "rMRCov”,
COVest = "rMRCov",
criterion = "squared duration”,

78

Arguments

pData

IVest

COVest

criterion

Details

rCholCov

a list. Each list-item i contains an xts object with the intraday price data (in
levels) of stock ¢ for day ¢. The order of the data does not matter as it will be
sorted according to the criterion specified in the criterion argument

integrated variance estimator, default is "rMRCov". For a list of implemented
estimators, use listCholCovEstimators().

covariance estimator, default is "rMRCov". For a list of implemented estimators,
use listCholCovEstimators().

criterion to use for sorting the data according to liquidity. Possible values are

non

"squared duration”, "duration”, "count"”, defaults to "squared duration”.

additional arguments to pass to IVest and COVest. See details.

Additional arguments for IVest and COVest should be passed in the ... argument. For the rMRCov
estimator, which is the default, the theta and delta parameters can be set. These default to 1 and

0.1 respectively.

The CholCov estimation algorithm is useful for estimating covariances of d series that are sampled
asynchronously and with different liquidities. The CholCov estimation algorithm is as follows:

* First sort the series in terms of decreasing liquidity according to a liquidity criterion, such that
series 1 is the most liquid, and series d the least.

e Step 1:

Apply refresh-time on a = {1} to obtain the grid 7°.

Estimate §;1 using an IV estimator on fT(}l) = aSJ
J J

» Step 2:

Apply refresh-time on b = {1, 2} to obtain the grid 7°.

Estimate hgl as the realized beta between fﬁ) and ﬁ(fb) Set hoy = iLgl.

Estimate §oo using an IV estimator on fT(f) = ﬁ(j, - iLQl fﬁ).
J J J

» Step 3:

Apply refresh-time on ¢ = {1, 3} to obtain the grid 7¢.

Estimate ﬂgl as the realized beta between fT(l) and 4
J

3
5

). Set }Algl = iLgl

Apply refresh-time on d = {1,2, 3} to obtain the grid 7¢.

Re-estimate ﬁgl at the new grid, such that the projections fT({lj) and fT(?j) are orthogonal.

Estimate ﬁgz as the realized beta between fﬁ) and 0% Set hgo = fzgz.
J

d
T
J

Estimate §33 using an IV estimator on fT(i) —) _ ilgg fg) — fzgl fT(i).
j j i j

e Step 4 tod:

Td

Continue in the same fashion by sampling over 1, ..., k, [to estimate h;; using the smallest

possible set.

Re-estimate the A, with m < n < k at every new grid to obtain orthogonal projections.

Estimate the g as the IV of projections based on the final estimates, h.

rCov 79

Value

a list containing the covariance matrix "CholCov”, and the Cholesky decomposition "L" and "G"
such that L x G x L’ = CholCov.

Author(s)
Emil Sjoerup

References
Boudt, K., Laurent, S., Lunde, A., Quaedvlieg, R., and Sauri, O. (2017). Positive semidefinite
integrated covariance estimation, factorizations and asynchronicity. Journal of Econometrics, 196,
347-367.

See Also

ICov for a list of implemented estimators of the integrated covariance.

rCov Realized covariance

Description

Function returns the Realized Covariation (rCov). Let r; ; be an intraday N x M return vector and
i =1, ..., M the number of intraday returns.

Then, the rCov is given by

M
rCov; = E Tl
i=1

Usage

rCov (
rData,
cor = FALSE,
alignBy = NULL,
alignPeriod = NULL,

makeReturns = FALSE,
)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is

returned instead of the covariance matrix. FALSE by default.

80 refreshTime

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible

non n on non

values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

used internally, do not change.

Value

in case the input is and contains data from one day, an N x N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data.table), the function returns a list containing N by N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Realized Variance/Covariance for prices aligned at 5 minutes.

Univariate:

rv = rCov(rData = sampleTDatal[, list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)

rv

Multivariate:
rc = rCov(rData = sampleOneMinuteData, makeReturns = TRUE)
rc

refreshTime Synchronize (multiple) irregular timeseries by refresh time

Description

This function implements the refresh time synchronization scheme proposed by Harris et al. (1995).
It picks the so-called refresh times at which all assets have traded at least once since the last refresh
time point. For example, the first refresh time corresponds to the first time at which all stocks have
traded. The subsequent refresh time is defined as the first time when all stocks have traded again.
This process is repeated until the end of one time series is reached.

refreshTime 81

Usage
refreshTime(pData, sort = FALSE, criterion = "squared duration”)
Arguments
pData a list. Each list-item contains an xts or a data. table object (with first column
DT (datetime)) containing the original time series (one day only and typically a
price series).
sort logical determining whether to sort the index based on a criterion (will only sort
descending; i.e., most liquid first). Default is FALSE.
criterion character determining which criterion used. Currently supports "squared duration”
and "duration”. Default is "squared duration”.
Value

An xts or data. table object containing the synchronized time series - depending on the input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Harris, F., T. Mclnish, Shoesmith, G., and Wood, R. (1995). Cointegration, error correction, and
price discovery on informationally linked security markets. Journal of Financial and Quantitative
Analysis, 30, 563-581.

Examples

Suppose irregular timepoints:

start <- as.POSIXct("2010-01-01 ©9:30:00")
ta <- start + c(1,2,4,5,9)

tb <- start + ¢(1,3,6,7,8,9,10,11)

Yielding the following timeseries:
a <- xts::as.xts(1:length(ta), order.by = ta)
b <- xts::as.xts(1:1length(tb), order.by = tb)

Calculate the synchronized timeseries:
refreshTime(list(a,b))

82 ReMeDI

ReMeDI ReMeDI

Description

This function estimates the auto-covariance of market-microstructure noise

Let the observed price Y; be given as Y; = X; + ¢;, where X; is the efficient price and ¢, is the
market microstructure noise

The estimator of the I’th lag of the market microstructure is defined as:

ne—ky—1

= > (Y - Yi) (YY),

"ok,
where k,, is a tuning parameter. In the function knChooseReMeDI, we provide a function to estimate
the optimal k,, parameter.
Usage

ReMeDI(pData, kn = 1, lags = 1, makeCorrelation = FALSE)

Arguments
pData xts or data. table containing the log-prices of the asset
kn numeric of length 1 determining the tuning parameter kn this controls the lengths
of the non-overlapping interval in the ReMeDI estimation
lags numeric containing integer values indicating the lags for which to estimate the
(co)variance
makeCorrelation
logical indicating whether to transform the autocovariances into autocorrela-
tions. The estimate of variance is imprecise and thus, constructing the correla-
tion like this may show correlations that fall outside (—1,1).
Note

We Thank Merrick Li for contributing his Matlab code for this estimator.

Author(s)

Emil Sjoerup.

References

Li, M. and Linton, O. (2021). A ReMeDI for microstructure noise. Econometrica, forthcoming

ReMeDIAsymptotic Variance 83

Examples
remed <- ReMeDI(sampleTDatal[as.Date(DT) == "2018-01-02", 1, kn = 2, lags = 1:8)
We can also use the algorithm for choosing the kn tuning parameter
optimalkKn <- knChooseReMeDI (sampleTDatalas.Date(DT) == "2018-01-02",1],
knMax = 10, tol = 0.05, size = 3,
lower = 2, upper = 5, plot = TRUE)
optimalKn
remed <- ReMeDI(sampleTDatal[as.Date(DT) == "2018-01-02", 1, kn = optimalKn, lags = 1:8)

ReMeDIAsymptoticVariance
Asymptotic variance of ReMeDI estimator

Description

Estimates the asymptotic variance of the ReMeDI estimator.

Usage

ReMeDIAsymptoticVariance(pData, kn, lags, phi, i)

Arguments
pData xts or data. table containing the log-prices of the asset
kn numerical value determining the tuning parameter kn this controls the lengths of
the non-overlapping interval in the ReMeDI estimation
lags numeric containing integer values indicating the lags for which to estimate the
(co)variance
phi tuning parameter phi
i tuning parameter i
Details

Some notation is needed for the estimator of the asymptotic covariance of the ReMeDI estimator.
Let

§(nyi) =t — i > 1,

N n n 2
5 = knd (n,i+1+kn) =t o 0p + ok
' (k=) V on 7

ne—w(l),

U= Y o,
=0

84 ReMeDIAsymptotic Variance

ni—w(2),
=0
ny—w(3),, .
U (3 J j/)t 51 A (Y)'H»UJ(B);L Aj’ (Y)H»w(S)" ’
=0
ni—w(4),
U%3.3), == >, A;(V)Ay V)i
i=29-1k,,
ny—w(5),,

U(5k3-7 Z Z A (Y):LHA in,+k)(Y), L
QqEQq i= 2P(Qq)k Qq@(]/@q/ (+k)) Z:leQg (]le ’) @i

ey ~u(6) " i

U6:k:3,3') = Liegueq Lizann - Aanager) VA oy A7 iruiorg
W (6), "

~ Yiiei Livauk, A{]l}@a) (V)7 81 (V)i

- Zj{/ Z;Hz:;c A{j{/-irk}@j (¥V)7 Agr, Vivaroryr

U (7,k;j.j'); = ReMeDI (j & j' (+k)); ,

7

U(kig,3'), =Y U (L k4,5');,
=5
7

U(kid,d'), =Y U (L k4,5,

~
Il
o

Where the indices are given by:

w (1), =242k, w(2)y =24+ 3+27") ky, w(2), =w(2)y + j1 + kn,
W (@) =2+ (3427)k, w(3)5 =2+ (5297 + 207)k + i,

w(3), =w @)z +1 +kn, w(4)y = 2kn + g + 1, w(4), = w @)y +J1 + kn,
14

e(Qq) = 21Qql +d —q—1) V1L, w(B)jy =4lky + Y ji, V (ji, + k) forl > 1,
=1

w (S)n =w (5)|TLQ2|+1 +jl|@g| \ (jl|Qg| + k) + kn,

W (6)5 = (272 + 2k + eV (i + K), @ (6)5 = (27242772 2) o+ 1 + e V (g +),

W (6)5 = (29724 2) b+ e V (L + K), W (6)5 = (2724 1) b+ (i + 1) V i,

ReMeDIAsymptotic Variance 85
w(6), =w(6)5 + 5+ kn, ' (6), = (6); +j1 + kn, ' (6),, = " (6)3 j1 + Fn,

The asymptotic variance estimator is then given by

where
61(4,9); = U (0:4,3") +>_ (U (k4,5");) + 2in + DU (4;4,5); ,
k=1

o (‘77.7/)? =U (37.77.7/))

63 (4.3"); = %ReMeDI (Y,4); ReMeDI (Y, 5')} U (1),
t

1 AT . AL N\ T

o (ReMeDI (Y, 4); U (2,4'); + ReMeDI (Y,5'); U (2,4);),
Value

a list with components ReMeDI and asympVar containing the ReMeDI estimation and it’s asymptotic
variance respectively

Note

We Thank Merrick Li for contributing his Matlab code for this estimator.

Examples

kn <- knChooseReMeDI (sampleTDataEurope[, 1ist(DT, PRICE)])
remedi <- ReMeDI(sampleTDataEurope[, list(DT, PRICE)], kn = kn, lags = 0:15)

asympVar <- ReMeDIAsymptoticVariance(sampleTDataEurope[, list(DT, PRICE)],
kn = kn, lags = 0:15, phi = 0.9, i = 2)

86 rHYCov

rHYCov Hayashi-Yoshida covariance

Description

Calculates the Hayashi-Yoshida Covariance estimator

Usage
rHYCov (
rData,
cor = FALSE,
period = 1,
alignBy = "seconds”,

alignPeriod = 1,
makeReturns = FALSE,
makePsd = TRUE,

)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.
period Sampling period
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
makePsd boolean, in case it is TRUE, the positive definite version of rHYCov is returned.
FALSE by default.
used internally. Do not set.
Author(s)

Scott Payseur and Emil Sjoerup.

References

Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-synchronously observed
diffusion processes. Bernoulli, 11, 359-379.

rKernelCov

See Also

87

ICov for a list of implemented estimators of the integrated covariance.

Examples

library("xts")
hy <- rHYCov(rData = as.xts(sampleOneMinuteData)["2001-08-05"],

period = 5, alignBy = "minutes”, alignPeriod = 5, makeReturns = TRUE)

rkernelCov

Realized kernel estimator

Description

Realized covariance calculation using a kernel estimator. The different types of kernels available
can be found using listAvailableKernels.

Usage

rkernelCov/(
rData,

cor = FALSE,

alignBy =

NULL,

alignPeriod = NULL,
makeReturns = FALSE,
kernelType = "rectangular”,
kernelParam = 1,
kernelDOFadj = TRUE,

Arguments

rData

cor

alignBy

alignPeriod

makeReturns

kernelType

an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days

boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.
character, indicating the time scale in which alignPeriod is expressed. Possible

non non non

values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"

positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod to 5 and
alignBy to "minutes”.

boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

Kernel name.

88 rKernelCov

kernelParam Kernel parameter.
kernelDOFadj Kernel degree of freedom adjustment.

used internally, do not change.

Details

Let r, ; be N returns in period ¢, ¢ = 1,..., N. The returns or prices do not have to be equidistant.
The kernel estimator for H = kernelParam is given by

Lo h-1
Yo + QZk (H) Ths
h=1
where k(x) is the chosen kernel function and

N
Yh = E Tt X Tti—h

i=h

is the empirical autocovariance function. The multivariate version employs the cross-covariances
instead.

Value

in case the input is and contains data from one day, an N by N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data. table), the function returns a list containing N by N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Scott Payseur, Onno Kleen, and Emil Sjoerup.

References

Barndorft-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized
kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76,
1481-1536.

Hansen, P. and Lunde, A. (2006). Realized variance and market microstructure noise. Journal of
Business and Economic Statistics, 24, 127-218.

Zhou., B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business
& Economic Statistics, 14, 45-52.

See Also

ICov for a list of implemented estimators of the integrated covariance.

rKurt 89
Examples

Univariate:

rvKernel <- rKernelCov(rData = sampleTDatal[, list(DT, PRICE)], alignBy = "minutes”,

alignPeriod = 5, makeReturns = TRUE)

rvKernel

Multivariate:

rcKernel <- rKernelCov(rData = sampleOneMinuteData, makeReturns = TRUE)

rcKernel

rkurt Realized kurtosis of highfrequency return series.

Description

Calculate the realized kurtosis as defined in Amaya et al. (2015).

Assume there are N equispaced returns in period ¢. Let r;; be a return (with 7 = 1,..., N) in

period ¢. Then, rKurt is given by

Usage

N ()t
(Zivﬂ T%,i)2

rKurtt =

rKurt(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments

rData

alignBy

alignPeriod

makeReturns

Value

an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
character, indicating the time scale in which alignPeriod is expressed. Possible

non non non

values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"

positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod = 5 and
alignBy = "minutes”.

boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

90 rMedRQuar

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A. (2015). Does realized skewness and
kurtosis predict the cross-section of equity returns? Journal of Financial Economics, 118, 135-167.

Examples

rk <- rKurt(sampleTData[, list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
rk

rMedRQ DEPRECATED

Description

DEPRECATED USE rMedRQuar

Usage

rMedRQ(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData DEPRECATED USE rMedRQuar
alignBy DEPRECATED USE rMedRQuar

alignPeriod DEPRECATED USE rMedRQuar
makeReturns DEPRECATED USE rMedRQuar

rMedRQuar An estimator of integrated quarticity from applying the median opera-
tor on blocks of three returns

Description

Calculate the rMedRQ, defined in Andersen et al. (2012). Assume there are IV equispaced returns
r¢;inperiodt,7 = 1,..., N. Then, the tMedRQ is given by

N-1

3tN N
rMedRQ, = (N) Z med(|rei—1|, 7o, [reic)
i=2

O + 72 — 524/3 -2

rMedRQuar 91

Usage

rMedRQuar (rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod to 5 and
alignBy to "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
Value

* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

* If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

Examples

rqg <- rMedRQuar(rData = sampleTData[, list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
rq

92

rMedRVar

rMedRV

DEPRECATED

Description

DEPRECATED USE rMedRVar

Usage

rMedRV(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData DEPRECATED USE rMedRVar
alignBy DEPRECATED USE rMedRVar
alignPeriod DEPRECATED USE rMedRVar
makeReturns DEPRECATED USE rMedRVar
rMedRVar rMedRVar
Description

Calculate the rMedRVar, defined in Andersen et al. (2012). Let r; ; be areturn (withz = 1,..., M)
in period ¢. Then, the rMedRVar is given by

- M M—1
rMedRVar, = med(|re 1|, [reil, [reisa])?
=iy () 2 el il)
Usage
rMedRVar (rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE, ...)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks”, "secs”, "seconds”, "mins”, "minutes”, "hours"”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE

by default.

used internally, do not change.

rMinRQ 93

Details

The rMedRVar belongs to the class of realized volatility measures in this package that use the series
of high-frequency returns r; ; of a day ¢ to produce an ex post estimate of the realized volatility
of that day ¢. rMedRVar is designed to be robust to price jumps. The difference between RV and
rMedRVar is an estimate of the realized jump variability. Disentangling the continuous and jump
components in RV can lead to more precise volatility forecasts, as shown in Andersen et al. (2012)

Value

* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data. table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.
Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References
Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

See Also

IVar for a list of implemented estimators of the integrated variance.

Examples

medrv <- rMedRVar(rData = sampleTDatal[, list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
medrv

rMinRQ DEPRECATED

Description

DEPRECATED USE rMinRQuar

Usage

rMinRQ(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

94 rMinRQuar
Arguments
rData DEPRECATED USE rMinRQuar
alignBy DEPRECATED USE rMinRQuar
alignPeriod DEPRECATED USE rMinRQuar
makeReturns DEPRECATED USE rMinRQuar
rMinRQuar An estimator of integrated quarticity from applying the minimum op-
erator on blocks of two returns
Description
Calculate the rtMinRQuar, defined in Andersen et al. (2012). Assume there are N equispaced
returns 7, ; in period ¢, % = 1, ..., N. Then, the rMinRQuar is given by
N-1
TN N
rMinRQuar, = —— [——— min(|rs 5|, [7¢.4 4
Quar = 5705 (7) 35 mindica)
Usage
rMinRQuar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
Value
* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.
* If the input data spans multiple days and is in xts format, an xts will be returned.
* If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.
Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup

rMinRV

References

95

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using

nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

Examples

rqg <- rMinRQuar(rData = sampleTDatal, 1list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
rq

rMinRV DEPRECATED

Description

DEPRECATED USE rMinRVar

Usage

rMinRV(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData DEPRECATED USE rMinRVar
alignBy DEPRECATED USE rMinRVar

alignPeriod DEPRECATED USE rMinRVar
makeReturns DEPRECATED USE rMinRVar

rMinRVar rMinRVar

Description

Calculate the rtMinRVar, defined in Andersen et al. (2009). Let r; ; be a return (withi =1,...

in period ¢. Then, the rtMinRVar is given by

- M M-1
rMinRVar, = p— <M — 1) ; min(|ry |, |7“t,i+1|)2

Usage

rMinRVar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE,

s M)

96 rMinRVar

Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks”, "secs”, "seconds”, "mins”, "minutes”, "hours"”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally, do not change.
Value

¢ In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

* If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Jonathan Cornelissen, Kris Boudt, Emil Sjoerup.

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

See Also

IVar for a list of implemented estimators of the integrated variance.

Examples

minrv <- rMinRVar(rData = sampleTDatal[, 1list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
minrv

rmLargeSpread 97

rmLargeSpread Delete entries for which the spread is more than maxi times the median
spread

Description
Function deletes entries for which the spread is more than "maxi” times the median spread on that
day.

Usage

rmLargeSpread(qData, maxi = 50, tz = NULL)

Arguments
gData an xts or data. table object at least containing the columns "BID" and "OFR".
maxi an integer. By default maxi = "5@", which means that entries are deleted if the
spread is more than 50 times the median spread on that day.
tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".
In the on-disk functionality, if tz is not specified, the timezone used will be the
system default.
Value

xts or data. table object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

rmNegativeSpread Delete entries for which the spread is negative

Description

Function deletes entries for which the spread is negative.

Usage

rmNegativeSpread(gData)

98

Arguments

gData

Value

rmOutliersQuotes

an xts object at least containing the columns "BID" and "OFR".

data.table or xts object

Author(s)

Jonathan Cornelissen, Kris Boudt and Onno Kleen

Examples

rmNegativeSpread(sampleQDataRaw)

rmOutliersQuotes

Remove outliers in quotes

Description

Delete entries for which the mid-quote is outlying with respect to surrounding entries.

Usage

rmOutliersQuotes(qData, maxi = 10, window = 5@, type = "advanced”, tz = NULL)

Arguments

gData

maxi

window

type
tz

adata.table or xts object at least containing the columns "BID" and "OFR".

an integer, indicating the maximum number of median absolute deviations al-
lowed.

an integer, indicating the time window for which the "outlyingness" is consid-
ered.

should be "standard” or "advanced” (see details).

fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".

rmOutliersTrades 99

Details

* If type = "standard”: Function deletes entries for which the mid-quote deviated by more
than "maxi" median absolute deviations from a rolling centered median (excluding the obser-
vation under consideration) of window observations.

 If type = "advanced": Function deletes entries for which the mid-quote deviates by more
than "maxi" median absolute deviations from the value closest to the mid-quote of these three
options:
1. Rolling centered median (excluding the observation under consideration)
2. Rolling median of the following window of observations
3. Rolling median of the previous window of observations
The advantage of this procedure compared to the "standard" proposed by Barndorff-Nielsen

et al. (2010) is that it will not incorrectly remove large price jumps. Therefore this procedure
has been set as the default for removing outliers.

Note that the median absolute deviation is taken over the entire day. In case it is zero (which
can happen if mid-quotes don’t change much), the median absolute deviation is taken over a
subsample without constant mid-quotes.

Value

xts object or data.table depending on type of input.

Author(s)

Jonathan Cornelissen and Kris Boudt.

References

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2009). Realized kernels in
practice: Trades and quotes. Econometrics Journal, 12, C1-C32.

Brownlees, C.T., and Gallo, G.M. (2006). Financial econometric analysis at ultra-high frequency:
Data handling concerns. Computational Statistics & Data Analysis, 51, 2232-2245.

rmOutliersTrades Remove outliers in trades without using quote data

Description
Delete entries for which the price is outlying with respect to surrounding entries. In comparison to
tradesCleanupUsingQuotes, this function doesn’t need quote data.

Usage

rmOutliersTrades(pData, maxi = 10, window = 5@, type = "advanced”, tz = NULL)

100 rmOutliersTrades
Arguments
pData adata.table or xts object at least containing the column "PRICE".
maxi an integer, indicating the maximum number of median absolute deviations al-
lowed.
window an integer, indicating the time window for which the "outlyingness" is consid-
ered.
type should be "standard” or "advanced” (see details).
tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".
Details

Value

e If type = "standard”: Function deletes entries for which the price deviated by more than

"maxi" median absolute deviations from a rolling centered median (excluding the observation
under consideration) of window observations.

If type = "advanced”: Function deletes entries for which the price deviates by more than
"maxi" median absolute deviations from the value closest to the price of these three options:
1. Rolling centered median (excluding the observation under consideration)
2. Rolling median of the following window of observations
3. Rolling median of the previous window of observations
The advantage of this procedure compared to the "standard" proposed by Barndorff-Nielsen

et al. (2010, footnote 8) is that it will not incorrectly remove large price jumps. Therefore this
procedure has been set as the default for removing outliers.

Note that the median absolute deviation is taken over the entire day. In case it is zero (which
can happen if prices don’t change much), the median absolute deviation is taken over a sub-
sample without constant prices.

xts object or data. table depending on type of input.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Onno Kleen.

References

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2009). Realized kernels in
practice: Trades and quotes. Econometrics Journal, 12, C1-C32.

rMPV

101

rMPV

DEPRECATED

Description

DEPRECATED USE rMPVar

Usage

rMPV(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData DEPRECATED
alignBy DEPRECATED
alignPeriod DEPRECATED
makeReturns DEPRECATED
rMPVar Realized multipower variation
Description

Calculate the Realized Multipower Variation rMPVar, defined in Andersen et al. (2012).

Assume there are N equispaced returns r; ; in period ¢, ¢ = 1,..., N. Then, the tMPVar is given

by

tMPVary (m, p) = d

in which

—m .

dm,p = /ffp/m-

N—m+1

Yo P P
i=1

NP/2
PN —m+1

m: the window size of return blocks;

p: the power of the variation;

and m > p/2.

Usage

rMPVar (
rData,
m= 2,
p =2,

alignBy = NULL,
alignPeriod = NULL,

makeReturns

FALSE,

102 rMRC
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
m the window size of return blocks. 2 by default.
p the power of the variation. 2 by default.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks”, "secs”, "seconds”, "mins”, "minutes”, "hours"”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally, do not change.
Value
numeric
Author(s)
Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.
References
Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.
See Also
IVar for a list of implemented estimators of the integrated variance.
Examples
mpv <- rMPVar(sampleTData[, list(DT, PRICE)], m = 2, p = 3, alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
mpv
rMRC DEPRECATED rMRC
Description
DEPRECATED USE rMRCov
Usage

rMRC(pData, pairwise = FALSE, makePsd = FALSE, theta = 0.8, ...)

rMRCov 103
Arguments
pData DEPRECATED USE rMRCov
pairwise DEPRECATED USE rMRCov
makePsd DEPRECATED USE rMRCov
theta DEPRECATED USE rMRCov
DEPRECATED USE rMRCov
rMRCov Modulated realized covariance
Description

Calculate univariate or multivariate pre-averaged estimator, as defined in Hautsch and Podolskij

(2013).

Usage

rMRCov (
pData,

pairwise

FALSE,

makePsd = FALSE,

theta

crossAssetNoiseCorrection = FALSE,

Arguments

pData

pairwise

makePsd

theta

a list. Each list-item contains an xts or data.table object with the intraday
price data of a stock.

boolean, should be TRUE when refresh times are based on pairs of assets. FALSE
by default.

boolean, in case it is TRUE, the positive definite version of rMRCov is returned.
FALSE by default.

a numeric controlling the preaveraging horizon. Detaults to 0.8 as recom-
mended by Hautsch and Podolskij (2013)

crossAssetNoiseCorrection

a logical denoting whether to apply the bias correction term on the off-diagonals
(covariance) terms. We set this to FALSE by default as noise is typically seen as
independent across assets.

used internally, do not change.

104 rMRCov

Details

In practice, market microstructure noise leads to a departure from the pure semimartingale model.
We consider the process Y in period 7:

Y, =X, +e,,

where the observed d dimensional log-prices are the sum of underlying Brownian semimartingale
process X and a noise term €.

€; is an i.i.d. process with X.

It is intuitive that under mean zero i.i.d. microstructure noise some form of smoothing of the ob-
served log-price should tend to diminish the impact of the noise. Effectively, we are going to
approximate a continuous function by an average of observations of Y in a neighborhood, the noise
being averaged away.

Assume there is N equispaced returns in period 7 of a list (after refreshing data). Let r,, be a return
(with7 =1,..., N) of an asset in period 7. Assume there is d assets.

In order to define the univariate pre-averaging estimator, we first define the pre-averaged returns as

kn—1 h
(k) L) k)
T'ry” = Z 9 <kN> Trjsn

where g is a non-zero real-valued function g : [0,1] — R given by g(z) = min(z,1 — z). ky is
a sequence of integers satisfying ky = |#N'/2|. We use § = 0.8 as recommended in Hautsch
and Podolskij (2013). The pre-averaged returns are simply a weighted average over the returns in
a local window. This averaging diminishes the influence of the noise. The order of the window
size k, is chosen to lead to optimal convergence rates. The pre-averaging estimator is then simply
the analogue of the realized variance but based on pre-averaged returns and an additional term to
remove bias due to noise

N_1/2 N—kn+1 icNN_l N ,

r
2,1 kN Ti
20 % =0

" (1 iV
N _— J Y J 7
e (o () (7))

é:

with

7/)2:5

The multivariate counterpart is very similar. The estimator is called the Modulated Realized Co-
variance (rtMRCov) and is defined as
N 1 N—kny+1 kN

= /FT- . 'Fg- - L I
N —kn + 2 2kn iz:; T gygb

MRC

rMRCov 105

where Wy = =t vazl r;,(r;,) . Ttis a bias correction to make it consistent. However, due to
this correction, the estimator is not ensured PSD. An alternative is to slightly enlarge the bandwidth
such that ky = |#N'/2+9|. § = 0.1 results in a consistent estimate without the bias correction and
a PSD estimate, in which case:

N 1 N—-kn+1
MRC® = i T
N —kn + 2 ¢oky ; it

Value

A d x d covariance matrix.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Hautsch, N., and Podolskij, M. (2013). Preaveraging-based estimation of quadratic variation in the
presence of noise and jumps: theory, implementation, and empirical Evidence. Journal of Business
& Economic Statistics, 31, 165-183.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Not run:

library("xts")

Note that this ought to be tick-by-tick data and this example is only to show the usage.

a <- list(as.xts(sampleOneMinuteDatal[as.Date(DT) == "2001-08-04", 1list(DT, MARKET)]),
as.xts(sampleOneMinuteDatal[as.Date(DT) == "2001-08-04", list(DT, STOCK)1))

rMRCov(a, pairwise = TRUE, makePsd = TRUE)

We can also add use data.tables and use a named list to convey asset names

a <- list(foo = sampleOneMinuteDatalas.Date(DT) == "2001-08-04", list(DT, MARKET)],
bar = sampleOneMinuteDatal[as.Date(DT) == "2001-08-04", list(DT, STOCK)])

rMRCov(a, pairwise = TRUE, makePsd = TRUE)

End(Not run)

106 rmTradeQOutliersUsingQuotes

rmTradeOutliersUsingQuotes
Delete transactions with unlikely transaction prices

Description

Function deletes entries with prices that are above the ask plus the bid-ask spread. Similar for
entries with prices below the bid minus the bid-ask spread.

Usage

rmTradeOutliersUsingQuotes(
tData,
gData,
lagQuotes = 0,
nSpreads = 1,
BFM = FALSE,
backwardsWindow = 3600,
forwardsWindow = 0.5,

plot = FALSE,
)
Arguments

tData a data.table or xts object containing the time series data, with at least the
column "PRICE", containing the transaction price.

gData a data.table or xts object containing the time series data with at least the
columns "BID" and "OFR", containing the bid and ask prices.

lagQuotes numeric, number of seconds the quotes are registered faster than the trades

(should be round and positive). Default is 0. For older datasets, i.e. before
2010, it may be a good idea to set this to e.g. 2. See Vergote (2005)

nSpreads numeric of length 1 denotes how far above the offer and below bid we allow
outliers to be. Trades are filtered out if they are MORE THAN nSpread * spread
above (below) the offer (bid)

BFM a logical determining whether to conduct *Backwards - Forwards matching’ of
trades and quotes. The algorithm tries to match trades that fall outside the bid
- ask and first tries to match a small window forwards and if this fails, it tries
to match backwards in a bigger window. The small window is a tolerance for
inaccuracies in the timestamps of bids and asks. The backwards window allow
for matching of late reported trades, i.e. block trades.

backwardsWindow
a numeric denoting the length of the backwards window. Default is 3600, cor-
responding to one hour.

forwardsWindow a numeric denoting the length of the forwards window. Default is 0.5, corre-
sponding to one half second.

rOWCov 107

plot a logical denoting whether to visualize the forwards, backwards, and unmatched
trades in a plot.

used internally

Details

Note: in order to work correctly, the input data of this function should be cleaned trade (tData)
and quote (qData) data respectively. In older high frequency datasets the trades frequently lag the
quotes. In newer datasets this tends to happen only during extreme market activity when exchange
networks are at maximum capacity.

Value

xts or data. table object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Vergote, O. (2005). How to match trades and quotes for NYSE stocks? K.U.Leuven working paper.

Christensen, K., Oomen, R. C. A., Podolskij, M. (2014): Fact or Friction: Jumps at ultra high
frequency. Journal of Financial Economics, 144, 576-599

rowCov Realized outlyingness weighted covariance

Description

Calculate the Realized Outlyingness Weighted Covariance (rOWCov), defined in Boudt et al. (2008).

Let r;;, for i = 1,..., M be a sample of M high-frequency (N x 1) return vectors and d; ; their
outlyingness given by the squared Mahalanobis distance between the return vector and zero in terms
of the reweighted MCD covariance estimate based on these returns.

Then, the rOWCov is given by

St w(dyi)rery
M
ﬁ Zi:l w(dy,;)

The weight w; A is one if the multivariate jump test statistic for r; A in Boudt et al. (2008) is less
than the 99.9% percentile of the chi-square distribution with N degrees of freedom and zero oth-
erwise. The scalar ¢, is a correction factor ensuring consistency of the rOWCov for the Integrated
Covariance, under the Brownian Semimartingale with Finite Activity Jumps model.

rOWCov; = ¢,

9

108

Usage

rowCov (
rData,

cor = FALSE,

rOWCov

alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE,
seasadjR = NULL,

wFunction = "HR",
alphaMCD = 0.75,
alpha = 0.001,
)
Arguments
rData a (MxzN) xts object containing the N return series over period ¢, with M ob-
servations during ¢.
cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
seasadjR a (MxzN) xts object containing the seasonally adjusted returns. This is an
optional argument.
wFunction determines whether a zero-one weight function (one if no jump is detected based
on d; ; and O otherwise) or Soft Rejection ("SR") weight function is to be used.
By default a zero-one weight function (wFunction = "HR") is used.
alphaMCD a numeric parameter, controlling the size of the subsets over which the determi-
nant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75.
See Boudt et al. (2008) or the covMcd function in the robustbase package.
alpha is a parameter between 0 and 0.5, that determines the rejection threshold value
(see Boudt et al. (2008) for details).
used internally, do not change.
Details

Advantages of the rOWCov compared to the rBPCov include a higher statistical efficiency, positive
semi-definiteness and affine equi-variance. However, the rOWCov suffers from a curse of dimen-
sionality. The rOWCov gives a zero weight to a return vector if at least one of the components is
affected by a jump. In the case of independent jump occurrences, the average proportion of obser-
vations with at least one component being affected by jumps increases fast with the dimension of

rQPVar 109

the series. This means that a potentially large proportion of the returns receives a zero weight, due
to which the rOWCov can have a low finite sample efficiency in higher dimensions.
Value

an N x N matrix

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Boudt, K., Croux, C., and Laurent, S. (2008). Outlyingness weighted covariation. Journal of
Financial Econometrics, 9, 657-684.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Not run:

library("xts")

Realized Outlyingness Weighted Variance/Covariance for prices aligned
at 1 minutes.

Univariate:
row <- rOWCov(rData = as.xts(sampleOneMinuteDatal[as.Date(DT) == "2001-08-04",

1list (DT, MARKET)]), makeReturns = TRUE)
row

Multivariate:

rowc <- rOWCov(rData = as.xts(sampleOneMinuteDatalas.Date(DT) == "2001-08-04",1),
makeReturns = TRUE)

rowc

End(Not run)

rQPvVar Realized quad-power variation of intraday returns

Description

Calculate the realized quad-power variation, defined in Andersen et al. (2012).
Assume there are IV equispaced returns 7 ; in period ¢, ¢ = 1,..., N. Then, the rQPVar is given by
2

—4
N
rQPVar, = N s () realireicallralireial)

110 rQPVar

Usage
rQPVar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE, ...)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally, do not change.
Value

¢ In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

See Also

IVar for a list of implemented estimators of the integrated variance.

Examples

gpv <- rQPVar(rData= sampleTDatal[, 1list(DT, PRICE)], alignBy= "minutes”,
alignPeriod =5, makeReturns= TRUE)
qpv

rQuar

111

rQuar

Realized quarticity

Description

Calculate the realized quarticity (rQuar), defined in Andersen et al. (2012).

Assume there are N equispaced returns r; ; in period ¢,¢ =1,..., N.

Then, the rQuar is given by

Usage

NX
rQuar, = 5 Z (rfﬂ;)
i=1

rQuar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments

rData

alignBy

alignPeriod

makeReturns

Value

an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.

character, indicating the time scale in which alignPeriod is expressed. Possible

non non non

values are: "ticks”, "secs”, "seconds”, "mins”, "minutes”, "hours"”

positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

¢ In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

112

Examples

rq <- rQuar(rData

rRTSCov

= sampleTDatal[, 1list(DT, PRICE)], alignBy = "minutes”,

alignPeriod = 5, makeReturns = TRUE)

rq

rRTSCov

Robust two time scale covariance estimation

Description

Calculate the robust two time scale covariance matrix proposed in Boudt and Zhang (2010). Unlike
the rOWCov, but similarly to the rThresholdCov, the rRTSCov uses univariate jump detection rules
to truncate the effect of jumps on the covariance estimate. By the use of two time scales, this
covariance estimate is not only robust to price jumps, but also to microstructure noise and non-

synchronic trading.

Usage

rRTSCov (
pData,
cor = FALSE,

startIV = NULL,
noisevar = NULL,

K = 300,
J =1
KCov

NULL,
JCov = NULL,
KVar = NULL,
JVar = NULL,
eta = 9,

makePsd = FALSE,

Arguments

pData

cor

startlV

noisevar

a list. Each list-item i contains an xts object with the intraday price data of
stock ¢ for day .

boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.

vector containing the first step estimates of the integrated variance of the assets,
needed in the truncation. Is NULL by default.

vector containing the estimates of the noise variance of the assets, needed in the
truncation. Is NULL by default.

positive integer, slow time scale returns are computed on prices that are K steps
apart.

rRTSCov 113

J positive integer, fast time scale returns are computed on prices that are J steps
apart.
KCov positive integer, for the extradiagonal covariance elements the slow time scale

returns are computed on prices that are K steps apart.

JCov positive integer, for the extradiagonal covariance elements the fast time scale
returns are computed on prices that are J steps apart.

Kvar vector of positive integers, for the diagonal variance elements the slow time scale
returns are computed on prices that are K steps apart.

Jvar vector of positive integers, for the diagonal variance elements the fast time scale
returns are computed on prices that are J steps apart.

eta positive real number, squared standardized high-frequency returns that exceed
eta are detected as jumps.

makePsd boolean, in case it is TRUE, the positive definite version of rRTSCov is returned.
FALSE by default.

used internally, do not change.

Details

The rRTSCov requires the tick-by-tick transaction prices. (Co)variances are then computed using
log-returns calculated on a rolling basis on stock prices that are K (slow time scale) and J (fast
time scale) steps apart.

The diagonal elements of the rRTSCov matrix are the variances, computed for log-price series X
with n price observations at times 71, 7o, . . . , T, as follows:

(1— 251, X — {X X300,
nJy
whereg = (n— K+ 1)/K,ny=(n—J+1)/J and

n—K+1
nz * (ti+K Xt)2IX()
K+1 :
K P K+1 Zn - I (i5m)

The constant c,, adjusts for the bias due to the thresholding and 7% (4; 7)) is a jump indicator function
that is one if

{X, X}(K)

(Xti,+K - Xti)Q
(ftti”K o2ds + 202)

Ui

and zero otherwise. The elements in the denominator are the integrated variance (estimated recur-
sively) and noise variance (estimated by the method in Zhang et al, 2005).

The extradiagonal elements of the rRTSCov are the covariances. For their calculation, the data is
first synchronized by the refresh time method proposed by Harris et al (1995). It uses the func-
tion refreshTime to collect first the so-called refresh times at which all assets have traded at least
once since the last refresh time point. Suppose we have two log-price series: X and Y. Let
T ={n,m,... ,TN%(} and © = {04,6,,... ,HNTY} be the set of transaction times of these as-
sets. The first refresh time corresponds to the first time at which both stocks have traded, i.e.
¢1 = max(7y,01). The subsequent refresh time is defined as the first time when both stocks
have again traded, i.e. ¢;11 = max(TNﬁj 11,0 Ny, +1). The complete refresh time sample grid is

114 rRTSCov
D = {1, P2, ..., drry+1}, Where My is the total number of paired returns. The sampling points of

asset X and Y are defined tobe t; = max{r € ' : 7 < ¢;} and s; = max{0 € © : § < ¢,}.

Given these refresh times, the covariance is computed as follows:

K) MNK J
(X VR = X VHD),

where

i Z£77K+1 ci(Xti+K _ Xti)(YSH»K B Ysl)I)I(((L 77)]}5(27 77)
K

{X’Y}(TK) = Mn—K ; -
e oy T I (i) I (s)

b

with 7% (i;7) the same jump indicator function as for the variance and c a constant to adjust for
the bias due to the thresholding.

Unfortunately, the rRTSCov is not always positive semidefinite. By setting the argument makePsd =
TRUE, the function makePsd is used to return a positive semidefinite matrix. This function replaces
the negative eigenvalues with zeroes.

Value

an N x N matrix

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Boudt K. and Zhang, J. 2010. Jump robust two time scale covariance estimation and realized
volatility budgets. Mimeo.

Harris, F., Mclnish, T., Shoesmith, G., and Wood, R. (1995). Cointegration, error correction, and

price discovery on informationally linked security markets. Journal of Financial and Quantitative
Analysis, 30, 563-581.

Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining in-
tegrated volatility with noisy high-frequency data. Journal of the American Statistical Association,
100, 1394-1411.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Not run:

library(xts)

set.seed(123)

start <- strptime(”1970-01-01", format = "%Y-%m-%d", tz = "UTC")
timestamps <- start + seq(34200, 57600, length.out = 23401)

rRVar 115

dat <- cbind(rnorm(23401) x sqrt(1/23401), rnorm(23401) * sqrt(1/23401))

dat <- exp(cumsum(xts(dat, timestamps)))
pricel <- dat[,1]

price2 <- dat[,2]

rcRTS <- rRTSCov(pData = list(pricel, price2))
Note: List of prices as input

rcRTS

End(Not run)

rRvVar An estimator of realized variance.

Description

Calculates the daily Realized Variance. Let 7;; be an intraday return vector with ¢ = 1,..., M
number of intraday returns.

Then, the realized variance is given by

M
RVar; = E 2
i=1

Usage
rRVar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE, ...)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally, do not change.
Value

* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

116 rSemiCov

See Also

IVar for a list of implemented estimators of the integrated variance.

Examples

rv <- rRVar(sampleOneMinuteData, makeReturns = TRUE)
plot(rv[, DT], rv[, MARKET], xlab = "Date"”, ylab = "Realized Variance"”, type = "1")

rSemiCov Realized semicovariance

Description

Calculate the Realized Semicovariances (rSemiCov). Let r;; be an intraday MaN return ma-
trix and i = 1,..., M the number of intraday returns. Then, let r}"; = maz(r;;,0) and 7,, =
min(ry,;,0).

Then, the realized semicovariance is given by the following three matrices:

M

— + .+

pos; = § :Tt,irt,i
i=1

M

!
neg, = E :rt,irt,i

i=1

M
. _ + _/ _ +/
mixed; = E (rt,irt,i + Tt,irt,i)

i=1

The mixed covariance matrix will have O on the diagonal. From these three matrices, the realized
covariance can be constructed as pos + neg + mixed. The concordant semicovariance matrix is
pos + neg. The off-diagonals of the concordant matrix is always positive, while for the mixed
matrix, it is always negative.

Usage

rSemiCov (
rData,
cor = FALSE,
alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE

rSemiCov

Arguments

rData

cor

alignBy

alignPeriod

makeReturns

Details

117

an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.

boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.
character, indicating the time scale in which alignPeriod is expressed. Possible

n o n non non

values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”

positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.

In the case that cor is TRUE, the mixed matrix will be an N x N matrix filled with NA as mapping
the mixed covariance matrix into correlation space is impossible due to the 0-diagonal.

Value

In case the data consists of one day a list of five N x N matrices are returned. These matrices are
named mixed, positive, negative, concordant, and rCov. The latter matrix corresponds to the
realized covariance estimator and is thus named like the function rCov. In case the data spans more
than one day, the list for each day will be put into another list named according to the date of the

estimates.

Author(s)

Emil Sjoerup.

References

Bollerslev, T., Li, J., Patton, A. J., and Quaedvlieg, R. (2020). Realized semicovariances. Econo-
metrica, 88, 1515-1551.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Realized semi-variance/semi-covariance for prices aligned

at 5 minutes.

Univariate:

rSVar = rSemiCov(rData = sampleTDatal, list(DT, PRICE)], alignBy = "minutes"”,

rSVar
Not run:

alignPeriod = 5, makeReturns = TRUE)

118 rSkew

library("xts")

Multivariate multi day:

rSC <- rSemiCov(sampleOneMinuteData, makeReturns = TRUE) # rSC is a list of lists
We extract the covariance between stock 1 and stock 2 for all three covariances.
mixed <- sapply(rSC, function(x) x[["mixed”]][1,2])

neg <- sapply(rSC, function(x) x[["negative”]1]1[1,2])

pos <- sapply(rSC, function(x) x[["positive”]1[1,2])

covariances <- xts(cbind(mixed, neg, pos), as.Date(names(rSC)))

colnames(covariances) <- c("mixed”, "neg", "pos")
We make a quick plot of the different covariances
plot(covariances)

addLegend(lty = 1) # Add legend so we can distinguish the series.

End(Not run)

rSkew Realized skewness

Description

Calculate the realized skewness, defined in Amaya et al. (2015).

Assume there are N equispaced returns in period ¢. Let r;; be a return (with ¢ = 1,...,N) in
period t. Then, rSkew is given by

VNEL ()
(Z rzz,t)?)/Q

rSkew; =

Usage

rSkew(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments

rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”

alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.

makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE

by default.

sV 119

Value

* In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

« If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A. (2015). Does realized skewness and
kurtosis predict the cross-section of equity returns? Journal of Financial Economics, 118, 135-167.

Examples

rs <- rSkew(sampleTDatal, list(DT, PRICE)],alignBy ="minutes”, alignPeriod =5,
makeReturns = TRUE)
rs

rsv DEPRECATED

Description

DEPRECATED USE rSVar

Usage

rSV(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData DEPRECATED USE rSvVar
alignBy DEPRECATED USE rSvar

alignPeriod DEPRECATED USE rSvar
makeReturns DEPRECATED USE rSvar

120

rSVar

rSvar

Realized semivariance of highfrequency return series

Description

Calculate the realized semivariances, defined in Barndorff-Nielsen et al. (2008).

Function returns two outcomes:

1. Downside realized semivariance

2. Upside realized semivariance.

Assume there are N equispaced returns 7 ; in period ¢,¢ =1,..., N.

Then, the rSVar is given by

N
rSVardownside; = Z(rm)Q X I[ry; <0

i=1

N
rSVarupside, = Z(Tt,i)Q x I[ry; > 0]
i=1
Usage
rSVar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE, ...)
Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours”
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample to aggregate. based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally
Value

list with two entries, the realized positive and negative semivariances

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

rThresholdCov 121

References

Barndorft-Nielsen, O. E., Kinnebrock, S., and Shephard N. (2010). Measuring downside risk:
realised semivariance. In: Volatility and Time Series Econometrics: Essays in Honor of Robert F.
Engle, (Edited by Bollerslev, T., Russell, J., and Watson, M.), 117-136. Oxford University Press.

See Also

IVar for a list of implemented estimators of the integrated variance.

Examples

sv <- rSVar(sampleTDatal[, list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
sV

rThresholdCov Threshold Covariance

Description

Calculate the threshold covariance matrix proposed in Gobbi and Mancini (2009). Unlike the
rOWCov, the rThresholdCov uses univariate jump detection rules to truncate the effect of jumps
on the covariance estimate. As such, it remains feasible in high dimensions, but it is less robust to
small cojumps.

Let 7, ; be an intraday N x1 return vector of N assets where ¢ = 1, ..., M and M being the number
of intraday returns.

Then, the k, g-th element of the threshold covariance matrix is defined as

M
thresholdcovlk, g]: = Zr(k)t,il{r

i=1

200 STRyY T(@tile2 <TRyYs

with the threshold value T'Rj; set to 3A%49 times the daily realized bi-power variation of asset k,
as suggested in Jacod and Todorov (2009).

Usage

rThresholdCov (
rData,
cor = FALSE,
alignBy = NULL,
alignPeriod = NULL,
makeReturns = FALSE,

122 rThresholdCov

Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
used internally, do not change.
Value

in case the input is and contains data from one day, an N x N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data. table), the function returns a list containing N x N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Barndorft-Nielsen, O. and Shephard, N. (2004). Measuring the impact of jumps in multivariate
price processes using bipower covariation. Discussion paper, Nuffield College, Oxford University.

Jacod, J. and Todorov, V. (2009). Testing for common arrival of jumps in discretely-observed
multidimensional processes. Annals of Statistics, 37, 1792-1838.

Mancini, C. and Gobbi, F. (2012). Identifying the Brownian covariation from the co-jumps given
discrete observations. Econometric Theory, 28, 249-273.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Realized threshold Variance/Covariance:

Multivariate:

Not run:

library("xts")

set.seed(123)

start <- strptime(”1970-01-01", format = "%Y-%m-%d", tz = "UTC")
timestamps <- start + seq(34200, 57600, length.out = 23401)

rTPQuar 123

dat <- cbind(rnorm(23401) x sqrt(1/23401), rnorm(23401) * sqrt(1/23401))

dat <- exp(cumsum(xts(dat, timestamps)))

rcThreshold <- rThresholdCov(dat, alignBy = "minutes”, alignPeriod = 1, makeReturns = TRUE)
rcThreshold

End(Not run)

rTPQuar Realized tri-power quarticity

Description

Calculate the rTPQuar, defined in Andersen et al. (2012).

Assume there are IV equispaced returns 7y ; in period ¢, 2 = 1,..., N. Then, the rTPQuar is given
by

N r0s5 \°<
rTPQuar, = NN 5 <22/3F (7/6)> ;(|Tt,i|4/3|rt,i—1|4/3|rt,i—2|4/3)

Usage
rTPQuar(rData, alignBy = NULL, alignPeriod = NULL, makeReturns = FALSE)

Arguments
rData an xts or data. table object containing returns or prices, possibly for multiple
assets over multiple days.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "secs”, "seconds”, "mins”, "minutes”, "hours".
alignPeriod positive numeric, indicating the number of periods to aggregate over. For ex-
ample, to aggregate based on a 5-minute frequency, set alignPeriod =5 and
alignBy = "minutes”.
makeReturns boolean, should be TRUE when rData contains prices instead of returns. FALSE
by default.
Value

¢ In case the input is an xts object with data from one day, a numeric of the same length as the
number of assets.

* If the input data spans multiple days and is in xts format, an xts will be returned.

* If the input data is a data.table object, the function returns a data.table with the same
column names as the input data, containing the date and the realized measures.

Author(s)

Giang Nguyen, Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

124 rTSCov

References

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using
nearest neighbor truncation. Journal of Econometrics, 169, 75-93.

Examples

tpg <- rTPQuar(rData = sampleTDatal[, 1list(DT, PRICE)], alignBy = "minutes”,
alignPeriod = 5, makeReturns = TRUE)
tpq

rTSCov Two time scale covariance estimation

Description

Calculate the two time scale covariance matrix proposed in Zhang et al. (2005) and Zhang (2010).
By the use of two time scales, this covariance estimate is robust to microstructure noise and non-
synchronic trading.

Usage

rTSCov/(
pData,
cor = FALSE,
K = 300,
J=1,
KCov = NULL,
JCov = NULL,
KVar = NULL,
JVar = NULL,

makePsd = FALSE,

)
Arguments

pData a list. Each list-item i contains an xts object with the intraday price data of
stock ¢ for day t.

cor boolean, in case it is TRUE, and the input data is multivariate, the correlation is
returned instead of the covariance matrix. FALSE by default.

K positive integer, slow time scale returns are computed on prices that are K steps
apart.

J positive integer, fast time scale returns are computed on prices that are J steps

apart.

rTSCov 125

KCov positive integer, for the extradiagonal covariance elements the slow time scale
returns are computed on prices that are K steps apart.

JCov positive integer, for the extradiagonal covariance elements the fast time scale
returns are computed on prices that are J steps apart.

Kvar vector of positive integers, for the diagonal variance elements the slow time scale
returns are computed on prices that are K steps apart.

JVar vector of positive integers, for the diagonal variance elements the fast time scale
returns are computed on prices that are J steps apart.

makePsd boolean, in case it is TRUE, the positive definite version of rTSCov is returned.
FALSE by default.

used internally, do not change.

Details

The rTSCov requires the tick-by-tick transaction prices. (Co)variances are then computed using
log-returns calculated on a rolling basis on stock prices that are K (slow time scale) and J (fast
time scale) steps apart.

The diagonal elements of the rTSCov matrix are the variances, computed for log-price series X

with n price observations at times 71, 7o, . . ., T,, as follows:
N, _ K) TNk J
(1— =571 (1x, X090 = =5 [, x5
ny ny

where g = (n— K+1)/K, 7y =(n—J+1)/J and
1 n—K+1
K
[XvX}g’):E ; (Xti+K7Xti)2'

The extradiagonal elements of the rTSCov are the covariances. For their calculation, the data is
first synchronized by the refresh time method proposed by Harris et al (1995). It uses the func-
tion refreshTime to collect first the so-called refresh times at which all assets have traded at least
once since the last refresh time point. Suppose we have two log-price series: X and Y. Let

= {r,m,... ,TN%(} and © = {64,0,,... ,QNTy} be the set of transaction times of these as-
sets. The first refresh time corresponds to the first time at which both stocks have traded, i.e.
¢1 = max(7y,01). The subsequent refresh time is defined as the first time when both stocks

have again traded, i.e. ¢;11 = max(TN?; 11,0 NY +1). The complete refresh time sample grid is
j i

D = {¢1, 2, ..., Prry+1}> where My is the total number of paired returns. The sampling points of
asset X and Y are defined tobe t; = max{r € I': 7 < ¢;} and s; = max{0 € © : § < ¢;}.

Given these refresh times, the covariance is computed as follows:

K Nk J
en([X, V15 = 25 1x, v,
ny
where
My—K+1

1

K

[X, Y]’.(Z“) = K Z (Xti+K - Xti)(YSi+K —Ys,).
i=1

126 rTSCov

Unfortunately, the rTSCov is not always positive semidefinite. By setting the argument makePsd =
TRUE, the function makePsd is used to return a positive semidefinite matrix. This function replaces
the negative eigenvalues with zeroes.

Value

in case the input is and contains data from one day, an N by N matrix is returned. If the data is a
univariate xts object with multiple days, an xts is returned. If the data is multivariate and contains
multiple days (xts or data. table), the function returns a list containing N by N matrices. Each
item in the list has a name which corresponds to the date for the matrix.

Author(s)

Jonathan Cornelissen, Kris Boudt, and Emil Sjoerup.

References

Harris, F., Mclnish, T., Shoesmith, G., and Wood, R. (1995). Cointegration, error correction, and
price discovery on informationally linked security markets. Journal of Financial and Quantitative
Analysis, 30, 563-581.

Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining in-
tegrated volatility with noisy high-frequency data. Journal of the American Statistical Association,
100, 1394-1411.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal of Economet-
rics, 160, 33-47.

See Also

ICov for a list of implemented estimators of the integrated covariance.

Examples

Robust Realized two timescales Variance/Covariance

Multivariate:

Not run:

library(xts)

set.seed(123)

start <- strptime(”1970-01-01", format = "%Y-%m-%d", tz = "UTC")
timestamps <- start + seq(34200, 57600, length.out = 23401)

dat <- cbind(rnorm(23401) x sqrt(1/23401), rnorm(23401) * sqrt(1/23401))

dat <- exp(cumsum(xts(dat, timestamps)))
pricel <- dat[,1]

price2 <- dat[,2]

rcovts <- rTSCov(pData = list(pricel, price2))
Note: List of prices as input

rcovts

End(Not run)

RV

127

RV DEPRECATED DEPRECATED USE rRVar

Description

DEPRECATED DEPRECATED USE rRVar

Usage

RV(rData)

Arguments

rData DEPRECATED USE rRVar

salesCondition salesCondition is deprecated. Use tradesCondition instead.

Description

salesCondition is deprecated. Use tradesCondition instead.

Usage

salesCondition(

tData,

ValidCOndS = C(““, H@H, HEII’ H@EH, IIFH, HFIII’ II@F”, II@FIII, IIIII, H@III)
)

Arguments

tData salesCondition is deprecated. Use tradesCondition instead.

validConds salesCondition is deprecated. Use tradesCondition instead.

128 sampleQData

sampleMultiTradeData Multivariate tick by tick data

Description

Cleaned Tick by tick data for a sector ETF, called ETF and two stock components of that ETF, these
stocks are named AAA and BBB.

Usage

sampleMultiTradeData

Format

A data.table object

sampleOneMinuteData One minute data

Description

One minute data price of one stock and a market proxy. This is data from the US market.

Usage

sampleOneMinuteData

Format

A data.table object

sampleQData Sample of cleaned quotes for stock XXX for 2 days measured in mi-
croseconds

Description

A data.table object containing the quotes for the pseudonymized stock XXX for 2 days. This is
the cleaned version of the data sample sampleQDataRaw, using quotesCleanup.

Usage

sampleQData

sampleQDataRaw 129

Format

data.table object

Examples

Not run:
The code to create the sampleQData dataset from raw data is
sampleQData <- quotesCleanup(gDataRaw = sampleQDataRaw,
exchanges = "N"”, type = "standard”, report = FALSE)

End(Not run)

sampleQDataRaw Sample of raw quotes for stock XXX for 2 days measured in microsec-
onds

Description
A data.table object containing the raw quotes the pseudonymized stock XXX for 2 days, in the
typical NYSE TAQ database format.

Usage

sampleQDataRaw

Format

data.table object

sampleTData Sample of cleaned trades for stock XXX for 2 days

Description

A data. table object containing the trades for the pseudonymized stock XXX for 2 days, in the typ-
ical NYSE TAQ database format. This is the cleaned version of the data sample sampleTDataRaw,
using tradesCleanupUsingQuotes.

Usage

sampleTData

Format

A data.table object.

130 sampleTDataEurope

Examples

Not run:
The code to create the sampleTData dataset from raw data is
sampleQData <- quotesCleanup(gDataRaw = sampleQDataRaw,
exchanges = "N", type = "standard”, report = FALSE)

tradesAfterFirstCleaning <- tradesCleanup(tDataRaw = sampleTDataRaw,
exchanges = "N", report = FALSE)

sampleTData <- tradesCleanupUsingQuotes(
tData = tradesAfterFirstCleaning,
gData = sampleQData,
lagQuotes = @)[, c("DT", "EX", "SYMBOL", "PRICE", "SIZE")]
Only some columns are included. These are the ones that were historically included.

For most applications, we recommend aggregating the data at a high frequency
For example, every second.
aggregated <- aggregatePrice(sampleTDatal[, 1list(DT, PRICE)],

alignBy = "seconds"”, alignPeriod = 1)
acf(diff(aggregated[as.Date(DT) == "2018-01-02", PRICE]))
acf(diff(aggregated[as.Date(DT) == "2018-01-03", PRICE]))

signature <- function(x, q){

res <- x[, (rCov(diff(log(PRICE), lag = q, differences = 1))/q), by = as.Date(DT)]
return(res[[2]1])

3

rvAgg <- matrix(nrow = 100, ncol = 2)

for(i in 1:100) rvAgg[i,] <- signature(aggregated, i)

plot(rvAggl,11, type = "1")

plot(rvAggl,2], type = "1")

End(Not run)

sampleTDataEurope European data

Description

Trade data of one stock on one day in the European stock market.

Usage

sampleTDataEurope

Format

A data.table object

sampleTDataRaw 131

sampleTDataRaw Sample of raw trades for stock XXX for 2 days

Description
An imaginary data.table object containing the raw trades the pseudonymized stock XXX for 2
days, in the typical NYSE TAQ database format.

Usage

sampleTDataRaw

Format

A data.table object.

selectExchange Retain only data from a single stock exchange

Description

Filter raw trade data to only contain specified exchanges

Usage

selectExchange(data, exch = "N")

Arguments

data an xts or data. table object containing the time series data. The object should
have a column "EX", indicating the exchange by its symbol.
exch The (vector of) symbol(s) of the stock exchange(s) that should be selected. By
default the NYSE is chosen (exch = "N"). Other exchange symbols are:
* A: AMEX
* N:NYSE
* B: Boston
* P: Arca
¢ C:NSX
T/Q: NASDAQ
D: NASD ADF and TRF
* X: Philadelphia
* . ISE
* M: Chicago
* W: CBOE
Z: BATS

132 spotDrift

Value

xts or data. table object depending on input.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

spotDrift Spot Drift Estimation

Description

Function used to estimate the spot drift of intraday (tick) stock prices/returns

Usage
spotDrift(
data,
method = "mean”,
alignBy = "minutes”,

alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",

tz = NULL,
)
Arguments
data Can be one of two input types, xts or data. table. It is assumed that the input
comprises prices in levels.
method Which method to be used to estimate the spot-drift. Currently, three methods are
available, rolling mean and median as well as the kernel method of Christensen
et al. (2018). The kernel is a left hand exponential kernel that will weigh newer
observations more heavily than older observations.
alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"
alignPeriod How often should the estimation take place? If alignPeriod is 5 the estimation
will be done every fifth unit of alignBy.
marketOpen Opening time of the market, standard is "09:30:00".

marketClose Closing time of the market, standard is "16:00:00".

tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC".

Additional arguments for the individual methods. See ‘Details’.

spotDrift 133

Details
The additional arguments for the mean and median methods are:
* periods for the rolling window length which is 5 by default.

* align controls the alignment. The default is "right".

For the kernel mean estimator, the arguments meanBandwidth can be used to control the bandwidth
of the drift estimator and the preAverage argument, which can be used to control the pre-averaging
horizon. These arguments default to 300 and 5 respectively.

The following estimation methods can be specified in method:
Rolling window mean ("mean”)

Estimates the spot drift by applying a rolling mean over returns.

T
fie = mean (ry_gs)
t=k

where £ is the argument periods. Parameters:

periods how big the window for the estimation should be. The estimator will have periods NAs
at the beginning of each trading day.

align alignment method for returns. Defaults to "1eft"”, which includes only past data, but other
choices, "center” and "right” are available. Warning: These values includes future data.

Outputs:
mu a matrix containing the spot drift estimates

Rolling window median ("median”)

Estimates the spot drift by applying a rolling mean over returns.

T

[y = Z median (r;_g.;) ,
t=k

where k is the argument periods. Parameters:

periods How big the window for the estimation should be. The estimator will have periods NAs
at the beginning of each trading day.

align Alignment method for returns. Defaults to "1eft"”, which includes only past data, but other
choices, "center” and "right"” are available. These values includes FUTURE DATA, so
beware!

Outputs:
mu a matrix containing the spot drift estimates

kernel spot drift estimator ("kernel”)

dXt = ,L,Ltdt + O'tth + th,

134 spotDrift

where p;, ¢, and J; are the spot drift, the spot volatility, and a jump process respectively. However,
due to microstructure noise, the observed log-price is

Y, = X; + &

In order robustify the results to the presence of market microstructure noise, the pre-averaged returns

are used:
kp—1

ATY =) gi ALY,
j=1

where ¢(-) is a weighting function, min(x,1 —), and k, is the pre-averaging horizon. The spot

drift estimator is then:
n—kp+2

A tiog—t -
=y K(-—=—)ArY,
i=1 i
The kernel estimation method has the following parameters:

preAverage a positive integer denoting the length of pre-averaging window for the log-prices.
Default is 5

meanBandwidth an integer denoting the bandwidth for the left-sided exponential kernel for the
mean. Default is 300L
Outputs:

mu a matrix containing the spot drift estimates

Value

An object of class "spotDrift” containing at least the estimated spot drift process. Input on what
this class should contain and methods for it is welcome.

Author(s)

Emil Sjoerup.

References

Christensen, K., Oomen, R., and Reno, R. (2020) The drift burst hypothesis. Journal of Economet-
rics. Forthcoming.

Examples

Example 1: Rolling mean and median estimators for 2 days
meandrift <- spotDrift(data = sampleTData, alignPeriod = 1)
mediandrift <- spotDrift(data = sampleTData, method = "median”,
alignBy = "seconds"”, alignPeriod = 30, tz = "EST")
plot(meandrift)
plot(mediandrift)
Not run:
Example 2: Kernel based estimator for one day with data.table format
price <- sampleTDatal[as.Date(DT) == "2018-01-02", 1list(DT, PRICE)]

spotVol 135

kerneldrift <- spotDrift(sampleTDataEurope, method = "driftKernel”,

alignBy = "minutes”, alignPeriod = 1)
plot(kerneldrift)
End(Not run)
spotVol Spot volatility estimation

Description

Estimates a wide variety of spot volatility estimators.

Usage
spotVol(
data,
method = "detPer”,
alignBy = "minutes”,

alignPeriod = 5,
marketOpen = "09:30:00",
marketClose = "16:00:00",

tz = "GMT”,
m = NULL,
n = NULL,

online = NULL,

)
Arguments

data Can be one of two input types, xts or data. table. It is assumed that the input
comprises prices in levels. Irregularly spaced observations are allowed. They
will be aggregated to the level specified by parameters alignBy and alignPeriod.

method specifies which method will be used to estimate the spot volatility. Valid options
are "detPer”, "stochPer” "kernel” "piecewise” "garch”, "RM" ,"PARM"
See ‘Details’ below for explanation and parameters to use in each of the meth-
ods.

alignBy character, indicating the time scale in which alignPeriod is expressed. Possible
values are: "ticks"”, "secs”, "seconds”, "mins”, "minutes”, "hours"

alignPeriod positive integer, indicating the number of periods to aggregate over. For exam-
ple, to aggregate an xts object to the 5S-minute frequency, set alignPeriod =5
and alignBy = "minutes”.

marketOpen the market opening time. This should be in the time zone specified by tz. By

default, marketOpen = "09:30:00".

136

spotVol

marketClose the market closing time. This should be in the time zone specified by tz. By

default, marketClose = "16:00:00".

tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. We attempt to extract the timezone from the DT
column (or index) of the data, which may fail. In case of failure we use tz if
specified, and if it is not specified, we use "UTC"

m method-specific tuning parameters for the piecewise constant volatility estima-
tor (method = "piecewise"”). These are forwarded through to the underlying
piecewise() estimator via They are kept as explicit arguments for back-
wards compatibility with earlier versions of the package.

n see the description of parameter m

online see the description of parameter m
method-specific parameters (see ‘Details’ below).

Details

The following estimation methods can be specified in method:

Deterministic periodicity method ("detPer")

Parameters:

dailyVol A string specifying the estimation method for the daily component s;. Possible
values are "rBPCov"”, "rRVar"”, "rMedRVar". "rBPCov" by default.

periodicVol A string specifying the estimation method for the component of intraday volatil-
ity, that depends in a deterministic way on the intraday time at which the return is observed.
Possible values are "SD", "WSD", "TML", "OLS". See Boudt et al. (2011) for details. Default
= "TML".

P1 A positive integer corresponding to the number of cosine terms used in the flexible Fourier
specification of the periodicity function, see Andersen et al. (1997) for details. Default = 5.
P2 Same as P1, but for the sine terms. Default = 5.

dummies Boolean: in case it is TRUE, the parametric estimator of periodic standard deviation
specifies the periodicity function as the sum of dummy variables corresponding to each in-
traday period. If it is FALSE, the parametric estimator uses the flexible Fourier specification.
Default is FALSE.

Outputs (see ‘Value’ for a full description of each component):

spot
daily

periodic

Let there be T' days of NV equally-spaced log-returns 7 ;, % = 1,...,Nand¢ = 1,...,T. In case
of method = "detPer"”, the returns are modeled as

Tit = fiStUi,t

with independent u; ; ~ N(0,1). The spot volatility is decomposed into a deterministic periodic
factor f; (identical for every day in the sample) and a daily factor s; (identical for all observations

spotVol 137

within a day). Both components are then estimated separately, see Taylor and Xu (1997) and An-
dersen and Bollerslev (1997). The jump robust versions by Boudt et al. (2011) have also been
implemented.

If periodicVol = "SD", we have
7 1 N
V Ay it SD2

with A = 1/N, cross-daily averages SD; = /1/T Z?:t r?,, and X being the length of the

intraday time intervals.

If periodicVol = "WSD", we have another nonparametric estimator that is robust to jumps in con-
trast to periodicVol = "SD". The definition of this estimator can be found in Boudt et al. (2011,
Egs. 2.9-2.12).

The estimates when periodicVol = "OLS" and periodicVol = "TML" are based on the regression

equation
T
log UTZTW —c=log fi+¢&;
t=1
with i.i.d. zero-mean error term €; and ¢ = —0.63518. periodicVol = "OLS" employs ordinary-

least-squares estimation and periodicVol = "TML" truncated maximum-likelihood estimation (see
Boudt et al., 2011, Section 2.2, for further details).

Stochastic periodicity method ("stochPer")
Parameters:
* P1: A positive integer corresponding to the number of cosine terms used in the flexible Fourier
specification of the periodicity function. Default = 5.
e P2: Same as P1, but for the sine terms. Default = 5.

* init: A named list of initial values to be used in the optimization routine ("BFGS” in optim).
Default=1ist(sigma=0.03, sigma_mu =0.005, sigma_h =0.005, sigma_k =0.05, phi
=0.2,rho=0.98, mu=c(2, -0.5), delta_c=rep(@, max(1,P1)),delta_s =rep(@, max(1,P2))).
The naming of the parameters follows Beltratti and Morana (2001), the corresponding model
equations are listed below. init can contain any number of these parameters. For parameters
not specified in init, the default initial value will be used.

e control: A list of options to be passed down to optim.
Outputs (see ‘Value’ for a full description of each component):

e spot

¢ par

This method by Beltratti and Morana (2001) assumes the periodicity factor to be stochastic. The
spot volatility estimation is split into four components: a random walk, an autoregressive process,
a stochastic cyclical process and a deterministic cyclical process. The model is estimated using a
quasi-maximum likelihood method based on the Kalman Filter. The package FKF is used to apply
the Kalman filter. In addition to the spot volatility estimates, all parameter estimates are returned.

The model for the intraday change in the return series is given by

138 spotVol

Tt;n = Ot,n€t,n, tzlavTa ’I’L:L...,N,

where o, ,, is the conditional standard deviation of the n-th interval of day ¢ and &, ,, is a ii.d.
mean-zero unit-variance process. The conditional standard deviations are modeled as

Mt,n + ht,n + Ct,n)

Ot.n = O €xp < 5

with o being a scaling factor and (i, is the non-stationary volatility component

Ptn = Utn—1 + gt,n

with independent &; , ~ N'(0,0%). hy,p, is the stochastic stationary acyclical volatility component
ht,n = ¢ht,n—1 + Vtn

with independent 7, ~ N(0,07) and [¢| < 1. The cyclical component is separated in two
components:
Ct,on = Clt,n + C2tn

The first component is written in state-space form,

Clitn \ cosA sin A Cltn—1 K1,t,n

Cl,t,n — s CO8 cl,t,n—l Hl,t,n
with 0 < p < 1 and £y ¢, K] 4, are mutually independent zero-mean normal random variables
with variance o2. All other parameters and the process €+, In the state-space representation are

only of instrumental use and are not part of the return value which is why we won’t introduce them
in detail in this vignette; see Beltratti and Morana (2001, pp. 208-209) for more information.

The second component is given by

P

Cotn = H1M1 + pang + Z((Scp cos(pA) + dsp sin(pAn))
p=2

withny = 2n/(N + 1) and ny = 6n%/(N + 1)/(N + 2).
Nonparametric filtering ("kernel”)

Parameters:

* type String specifying the type of kernel to be used. Options include "gaussian”, "epanechnikov”,
"beta". Default = "gaussian”.

* h Scalar or vector specifying bandwidth(s) to be used in kernel. If h is a scalar, it will be
assumed equal throughout the sample. If it is a vector, it should contain bandwidths for each
day. If left empty, it will be estimated. Default = NULL.

* est String specifying the bandwidth estimation method. Possible values include "cv", "quarticity”.
Method "cv"” equals cross-validation, which chooses the bandwidth that minimizes the Inte-
grated Square Error. "quarticity” multiplies the simple plug-in estimator by a factor based
on the daily quarticity of the returns. est is obsolete if h has already been specified by the
user. "cv" by default.

spotVol 139

* lower Lower bound to be used in bandwidth optimization routine, when using cross-validation
method. Default is 0.1n70-2,

* upper Upper bound to be used in bandwidth optimization routine, when using cross-validation
method. Default is n -2

Outputs (see ‘Value’ for a full description of each component):

* spot

* par

This method by Kristensen (2010) filters the spot volatility in a nonparametric way by applying
kernel weights to the standard realized volatility estimator. Different kernels and bandwidths can
be used to focus on specific characteristics of the volatility process.

Estimation results heavily depend on the bandwidth parameter h, so it is important that this param-
eter is well chosen. However, it is difficult to come up with a method that determines the optimal
bandwidth for any kind of data or kernel that can be used. Although some estimation methods
are provided, it is advised that you specify h yourself, or make sure that the estimation results are
appropriate.

One way to estimate h, is by using cross-validation. For each day in the sample, h is chosen as to
minimize the Integrated Square Error, which is a function of h. However, this function often has
multiple local minima, or no minima at all (h — oo). To ensure a reasonable optimum is reached,
strict boundaries have to be imposed on h. These can be specified by lower and upper, which by
default are 0.1n~%2 and n~°-2 respectively, where n is the number of observations in a day.

When using the method "kernel”, in addition to the spot volatility estimates, all used values of the
bandwidth h are returned.

A formal definition of the estimator is too extensive for the context of this vignette. Please refer
to Kristensen (2010) for more detailed information. Our parameter names are aligned with this
reference.

Piecewise constant volatility ("piecewise”)

Parameters:

type string specifying the type of test to be used. Options include "MDa"”, "MDb", "DM". See Fried
(2012) for details. Default = "MDa".

m number of observations to include in reference window. Default = 40.

n number of observations to include in test window. Default = 20.

alpha significance level to be used in tests. Note that the test will be executed many times (roughly
equal to the total number of observations), so it is advised to use a small value for alpha, to
avoid a lot of false positives. Default = 0.005.

volEst string specifying the realized volatility estimator to be used in local windows. Possible
values are "rBPCov"”, "rRVar"”, "rMedRVar". Default = "rBPCov".

online boolean indicating whether estimations at a certain point ¢ should be done online (using
only information available at ¢ — 1), or ex post (using all observations between two change
points). Default = TRUE.

Outputs (see ‘Value’ for a full description of each component):

* spot

140 spotVol

e Cp

This nonparametric method by Fried (2012) is a two-step approach and assumes the volatility to be
piecewise constant over local windows. Robust two-sample tests are applied to detect changes in
variability between subsequent windows. The spot volatility can then be estimated by evaluating
regular realized volatility estimators within each local window. "MDa", "MDb" refer to different test
statistics, see Section 2.2 in Fried (2012).

Along with the spot volatility estimates, this method will return the detected change points in the
volatility level. When plotting a spotVol object containing cp, these change points will be visual-
ized.

GARCH models with intraday seasonality ("garch")
Parameters:
* model string specifying the type of test to be used. Options include "sGARCH", "eGARCH".
See ugarchspec in the rugarch package. Default = "eGARCH".

* garchorder numeric value of length 2, containing the order of the GARCH model to be
estimated. Default = c(1,1).

* dist string specifying the distribution to be assumed on the innovations. See distribution.model
in ugarchspec for possible options. Default = "norm”.

* solver.control list containing solver options. See ugarchfit for possible values. Default
=list().

* P1 apositive integer corresponding to the number of cosine terms used in the flexible Fourier
specification of the periodicity function. Default = 5.

e P2 same as P1, but for the sinus terms. Default = 5.
Outputs (see “Value’ for a full description of each component):

* spot

e ugarchfit
Along with the spot volatility estimates, this method will return the ugarchfit object used by the
rugarch package.

In this model, daily returns r; based on intraday observations r; ;,¢ = 1, ..., N are modeled as

N L
Ty = E Tit = Op——= E EVARE
i=1 VN i

with o, > 0, intraday seasonality s; > 0, and Z; ; being a zero-mean unit-variance error term.

The overall approach is as in Appendix B of Andersen and Bollerslev (1997). This method generates
the external regressors s; needed to model the intraday seasonality with a flexible Fourier form
(Andersen and Bollerslev, 1997, Eqgs. A.1-A.4). The rugarch package is then employed to estimate
the specified intraday GARCH(1,1) model on the residuals r; ;/s;.

Realized Measures ("RM")

This estimator takes trailing rolling window observations of intraday returns to estimate the spot
volatility.

Parameters:

spotVol 141

* RM string denoting which realized measure to use to estimate the local volatility. Possible
values are: "rBPCov"”, "rMedRVar”, "rMinRVar”, "rCov", "rRVar”. Default = "rBPCov".

* lookBackPeriod positive integer denoting the amount of sub-sampled returns to use for the
estimation of the local volatility. Default is 10.

* dontIncludelLast logical indicating whether to omit the last return in the calculation of the
local volatility. This is done in Lee-Mykland (2008) to produce jump-robust estimates of spot
volatility. Setting this to TRUE will then use lookBackPeriod - 1 returns in the construction
of the realized measures. Default = FALSE.

Outputs (see “Value’ for a full description of each component):

* spot

* RM

* lookBackPeriod
This method returns the estimates of the spot volatility, a string containing the realized measure
used, and the lookBackPeriod.
(Non-overlapping) Pre-Averaged Realized Measures ("PARM")

This estimator takes rolling historical window observations of intraday returns to estimate the spot
volatility as in the option "RM"” but adds return pre-averaging of the realized measures. For a de-
scription of return pre-averaging see the details on spotDrift.

Parameters:
* RM String denoting which realized measure to use to estimate the local volatility. Possible val-
ues are: "rBPCov"”, "rMedRVar”, "rMinRVar", "rCov"”, and "rRVar". Default = "rBPCov".
* lookBackPeriod positive integer denoting the amount of sub-sampled returns to use for the
estimation of the local volatility. Default = 50.

Outputs (see “Value’ for a full description of each component):

* spot

* RM

* lookBackPeriod
* kn

Value

A spotVol object, which is a list containing one or more of the following outputs, depending on
the method used:

spot An xts or matrix object (depending on the input) containing spot volatility estimates oy ;,
reported for each interval i between marketOpen and marketClose for every day ¢ in data.
The length of the intervals is specified by alignPeriod and alignBy. Methods that provide
this output: All.

daily An xts or numeric object (depending on the input) containing estimates of the daily volatil-
ity levels for each day ¢ in data, if the used method decomposed spot volatility into a daily
and an intraday component. Methods that provide this output: "detPer”.

142 spotVol

periodic An xts or numeric object (depending on the input) containing estimates of the intraday
periodicity factor for each day interval 7 between marketOpen and marketClose, if the spot
volatility was decomposed into a daily and an intraday component. If the output is in xts
format, this periodicity factor will be dated to the first day of the input data, but it is identical
for each day in the sample. Methods that provide this output: "detPer”.

par A named list containing parameter estimates, for methods that estimate one or more parame-
ters. Methods that provide this output: "stochper"”, "kernel”.

cp A vector containing the change points in the volatility, i.e. the observation indices after which
the volatility level changed, according to the applied tests. The vector starts with a 0. Methods
that provide this output: "piecewise”.

ugarchfit A ugarchfit object, as used by the rugarch package, containing all output from fitting
the GARCH model to the data. Methods that provide this output: "garch”.
The spotVol function offers several methods to estimate spot volatility and its intraday sea-
sonality, using high-frequency data. It returns an object of class spotVol, which can contain
various outputs, depending on the method used. See ‘Details’ for a description of each method.
In any case, the output will contain the spot volatility estimates.

The input can consist of price data or return data, either tick by tick or sampled at set intervals.
The data will be converted to equispaced high-frequency returns 7, ; (read: the %-th return on
day t).

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Andersen, T. G. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial
markets. Journal of Empirical Finance, 4, 115-158.

Beltratti, A. and Morana, C. (2001). Deterministic and stochastic methods for estimation of intraday
seasonal components with high frequency data. Economic Notes, 30, 205-234.

Boudt K., Croux C., and Laurent S. (2011). Robust estimation of intraweek periodicity in volatility
and jump detection. Journal of Empirical Finance, 18, 353-367.

Fried, R. (2012). On the online estimation of local constant volatilities. Computational Statistics
and Data Analysis, 56, 3080-3090.

Kristensen, D. (2010). Nonparametric filtering of the realized spot volatility: A kernel-based ap-
proach. Econometric Theory, 26, 60-93.

Taylor, S. J. and Xu, X. (1997). The incremental volatility information in one million foreign
exchange quotations. Journal of Empirical Finance, 4, 317-340.

Examples

Not run:

init <- list(sigma = ©.03, sigma_mu = 0.005, sigma_h = 0.007,
sigma_k = 0.06, phi = 0.194, rho = 0.986, mu = c(1.87,-0.42),
delta_c = c(0.25, -0.05, -0.2, 0.13, 0.02),
delta_s = c(-1.2, 0.11, 0.26, -0.03, 0.08))

spreadPrices 143

Next method will take around 370 iterations

vol1 <- spotVol (sampleOneMinuteDatal, 1ist(DT, PRICE = MARKET)], method = "stochPer”, init = init)
plot(voll$spot[1:780])

legend("topright”, c("stochPer"”), col = c("black”), lty=1)

End(Not run)

Various kernel estimates
Not run:
h1 <- bw.nrd@((1:nrow(sampleOneMinuteDatal, 1ist(DT, PRICE = MARKET)]))*60)
vol2 <- spotVol(sampleOneMinuteDatal, list(DT, PRICE = MARKET)],
method = "kernel”, h = h1)
vol3 <- spotVol(sampleOneMinuteDatal[, 1list(DT, PRICE = MARKET)],
method = "kernel”, est = "quarticity")
vol4 <- spotVol(sampleOneMinuteDatal, 1list(DT, PRICE = MARKET)],
method = "kernel”, est = "cv")
plot(cbind(vol2$spot, vol3$spot, vol4$spot))
xts::addLegend("topright”, c("h = simple estimate”, "h = quarticity corrected”,
"h = crossvalidated”), col = 1:3, lty=1)

End(Not run)

Piecewise constant volatility
Not run:
vol5 <- spotVol(sampleOneMinuteDatal[, list(DT, PRICE = MARKET)],
method = "piecewise”, m = 200, n = 100, online = FALSE)
plot(vol5)

End(Not run)

Compare regular GARCH(1,1) model to eGARCH, both with external regressors

Not run:

vol6 <- spotVol (sampleOneMinuteDatal, 1ist(DT, PRICE = MARKET)], method = "garch”, model = "sGARCH")
vol7 <- spotVol (sampleOneMinuteDatal[, 1ist(DT, PRICE = MARKET)], method = "garch”, model = "eGARCH")
plot(as.numeric(t(vol6$spot)), type = "1")

lines(as.numeric(t(vol7$spot)), col = "red")

legend("topleft”, c("GARCH", "eGARCH"), col = c("black”, "red"), 1ty = 1)

End(Not run)

Not run:

Compare realized measure spot vol estimation to pre-averaged version

vol8 <- spotVol (sampleTDataEuropel[, 1ist(DT, PRICE)], method = "RM", marketOpen = "09:00:00",
marketClose = "17:30:00", tz = "UTC", alignPeriod = 1, alignBy = "mins",
lookBackPeriod = 10)

vol9 <- spotVol (sampleTDataEurope[, 1ist(DT, PRICE)], method = "PARM", marketOpen = "09:00:00",
marketClose = "17:30:00", tz = "UTC", lookBackPeriod = 10)

plot(zoo::na.locf(cbind(vol8%$spot, vol9$spot)))

End(Not run)

spreadPrices Convert to format for realized measures

144 spreadPrices

Description

Convenience function to split data from one xts or data.table with at least "DT", "SYMBOL", and
"PRICE" columns to a format that can be used in the functions for calculation of realized measures.
This is the opposite of gatherPrices.

Usage
spreadPrices(data)
Arguments
data An xts or a data.table object with at least "DT"”, "SYMBOL", and "PRICE"
columns. This data should already be cleaned.
Value

An xts or adata. table object with columns "DT"” and a column named after each unique entrance
in the "SYMBOL" column of the input. These columns contain the price of the associated symbol.
We drop all other columns, e.g. SIZE.

Author(s)

Emil Sjoerup.

See Also

gatherPrices

Examples

Not run:

library(data.table)

datal <- copy(sampleTData)[, ~:="(PRICE = PRICE * runif(.N, min = ©.99, max = 1.01),
DT = DT + runif(.N, ©.01, 0.02))]

data2 <- copy(sampleTData)[, SYMBOL := 'XYZ']

dat <- rbind(datal, data2)
setkey(dat, "DT")
dat <- spreadPrices(dat)

rCov(dat, alignBy = 'minutes', alignPeriod = 5, makeReturns = TRUE, cor = TRUE)

End(Not run)

SPYRM 145

SPYRM SPY realized measures

Description

Realized measures for the SPY ETF calculated at 1 and 5 minute sampling.

Usage
SPYRM

Format

A data.table object

Note

The CLOSE column is NOT the official close price, but simply the last recorded price of the day.
Thus, this may be slightly different from other sources.

summary . HARmodel Summary for HARmodel objects

Description

Summary for HARmodel objects

Usage
S3 method for class 'HARmodel'
summary (object, ...)

Arguments
object An object of class HARmodel

pass lag to determine the maximum order of the Newey West estimator. Default
is 22

Value

A modified summary.1m

146 tradesCleanup

tradesCleanup Cleans trade data

Description

This is a wrapper function for cleaning the trade data of all stock data inside the folder dataSource.
The result is saved in the folder dataDestination.

In case you supply the argument rawtData, the on-disk functionality is ignored. The function
returns a vector indicating how many trades were removed at each cleaning step in this case. and
the function returns an xts or data. table object.

The following cleaning functions are performed sequentially: noZeroPrices, autoSelectExchangeTrades
or selectExchange, tradesCondition, and mergeTradesSameTimestamp.

Since the function rmTradeOutliersUsingQuotes also requires cleaned quote data as input, it is
not incorporated here and there is a separate wrapper called tradesCleanupUsingQuotes.

Usage

tradesCleanup(
dataSource = NULL,
dataDestination = NULL,
exchanges = "auto",
tDataRaw = NULL,
report = TRUE,
selection = "median”,
validConds = c("", "@", "E", "@E", "F", "FI", "@F", "@FI", "I", "@I"),
marketOpen = "09:30:00",
marketClose = "16:00:00",
printExchange = TRUE,
saveAsXTS = FALSE,

tz = NULL
)
Arguments
dataSource character indicating the folder in which the original data is stored.
dataDestination
character indicating the folder in which the cleaned data is stored.
exchanges vector of stock exchange symbols for all data in dataSource, e.g. exchanges

=c("T","N") retrieves all stock market data from both NYSE and NASDAQ.
The possible exchange symbols are:

« A: AMEX

* N: NYSE

* B: Boston

e P: Arca

e C:NSX

tradesCleanup 147

T/Q: NASDAQ

D: NASD ADF and TRF
¢ X: Philadelphia

* . ISE

e M: Chicago

* W: CBOE

e 7Z: BATS

The default value is "auto” which automatically selects the exchange for the
stocks and days independently using the autoSelectExchangeTrades

tDataRaw xts object containing raw trade data. This argument is NULL by default. En-
abling it means the arguments from, to, dataSource and dataDestination
will be ignored (only advisable for small chunks of data).

report boolean and TRUE by default. In case it is true the function returns (also) a vector
indicating how many trades remained after each cleaning step.

selection argument to be passed on to the cleaning routine mergeTradesSameTimestamp.
The default is "median".

validConds character vector containing valid sales conditions. Passed through to tradesCondition.

marketOpen character in the format of "HH:MM:SS", specifying the opening time of the ex-
change(s).

marketClose character in the format of "HH:MM:SS", specifying the closing time of the ex-
change(s).

printExchange Argument passed to autoSelectExchangeTrades indicates whether the chosen
exchange is printed on the console, default is TRUE. This is only used when
exchanges is "auto”

saveAsXTS indicates whether data should be saved in xts format instead of data.table
when using on-disk functionality. FALSE by default.

tz fallback time zone used in case we we are unable to identify the timezone of
the data, by default: tz = NULL. With the non-disk functionality, we attempt to
extract the timezone from the DT column (or index) of the data, which may fail.
In case of failure we use tz if specified, and if it is not specified, we use "UTC".
In the on-disk functionality, if tz is not specified, the timezone used will be the
system default.

Details

Using the on-disk functionality with .csv.zip files from the WRDS database will write temporary
files on your machine in order to unzip the files - we try to clean up after it, but cannot guarantee
that there won’t be files that slip through the crack if the permission settings on your machine does
not match ours.

If the input data.table does not contain a DT column but it does contain DATE and TIME_M
columns, we create the DT column by REFERENCE, altering the data. table that may be in the
user’s environment.

148 tradesCleanupUsingQuotes

Value

For each day an xts or data.table object is saved into the folder of that date, containing the
cleaned data. This procedure is performed for each stock in "ticker”. The function returns a
vector indicating how many trades remained after each cleaning step.

In case you supply the argument rawtData, the on-disk functionality is ignored and the function
returns a list with the cleaned trades as xts object (see examples).

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup

References

Barndorft-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized kernels in
practice: Trades and quotes. Econometrics Journal, 12, C1-C32.

Brownlees, C.T. and Gallo, G.M. (2006). Financial econometric analysis at ultra-high frequency:
Data handling concerns. Computational Statistics & Data Analysis, 51, 2232-2245.

Examples

Consider you have raw trade data for 1 stock for 2 days

head(sampleTDataRaw)

dim(sampleTDataRaw)

tDataAfterFirstCleaning <- tradesCleanup(tDataRaw = sampleTDataRaw,
exchanges = list("N"))

tDataAfterFirstCleaning$report

dim(tDataAfterFirstCleaning$tData)

In case you have more data it is advised to use the on-disk functionality

via "dataSource” and "dataDestination” arguments

tradesCleanupUsingQuotes
Perform a final cleaning procedure on trade data

Description

Function performs cleaning procedure rmTradeOutliersUsingQuotes for the trades of all stocks
data in "dataDestination". Note that preferably the input data for this function is trade and quote
data cleaned by respectively e.g. tradesCleanup and quotesCleanup.

Usage

tradesCleanupUsingQuotes(
tradeDataSource = NULL,
quoteDataSource = NULL,
dataDestination = NULL,

tradesCleanupUsingQuotes

149

tData = NULL,
gData = NULL,
lagQuotes = 0,
nSpreads = 1,
BFM = FALSE,
backwardsWindow = 3600,
forwardsWindow = 0.5,
plot = FALSE
)
Arguments
tradeDataSource
character indicating the folder in which the original trade data is stored.
quoteDataSource
character indicating the folder in which the original quote data is stored.
dataDestination
character indicating the folder in which the cleaned data is stored, folder of
dataSource by default.
tData data.table or xts object containing trade data cleaned by tradesCleanup.
This argument is NULL by default. Enabling it, means the arguments from, to,
dataSource and dataDestination will be ignored (only advisable for small
chunks of data).
gData data.table or xts object containing cleaned quote data. This argument is
NULL by default. Enabling it means the arguments from, to, dataSource,
dataDestination will be ignored (only advisable for small chunks of data).
lagQuotes numeric, number of seconds the quotes are registered faster than the trades
(should be round and positive). Default is 0. For older datasets, i.e. before
2010, it may be a good idea to set this to, e.g., 2 (see, Vergote, 2005).
nSpreads numeric of length 1 denotes how far above the offer and below bid we allow
outliers to be. Trades are filtered out if they are MORE THAN nSpread * spread
above (below) the offer (bid)
BFM a logical determining whether to conduct "Backwards - Forwards matching" of
trades and quotes. The algorithm tries to match trades that fall outside the bid
- ask and first tries to match a small window forwards and if this fails, it tries
to match backwards in a bigger window. The small window is a tolerance for
inaccuracies in the timestamps of bids and asks. The backwards window allow
for matching of late reported trades, i.e. block trades.
backwardsWindow
a numeric denoting the length of the backwards window used when BFM = TRUE.
Default is 3600, corresponding to one hour.
forwardsWindow a numeric denoting the length of the forwards window used when BFM = TRUE.
Default is 0.5, corresponding to one half second.
plot a logical denoting whether to visualize the forwards, backwards, and unmatched

trades in a plot. Passed on to rmTradeOutliersUsingQuotes

150 tradesCleanupUsingQuotes

Details

In case you supply the arguments tData and gData, the on-disk functionality is ignored and the
function returns cleaned trades as a data. table or xts object (see examples).

When using the on-disk functionality and tradeDataSource and quoteDataSource are the same, the
quote files are all files in the folder that contains *quote’, and the rest are treated as containing trade
data.

Value

For each day an xts object is saved into the folder of that date, containing the cleaned data.

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized kernels in
practice: Trades and quotes. Econometrics Journal, 12, C1-C32.

Brownlees, C.T., and Gallo, G.M. (2006). Financial econometric analysis at ultra-high frequency:
Data handling concerns. Computational Statistics & Data Analysis, 51, 2232-2245.

Christensen, K., Oomen, R. C. A., Podolskij, M. (2014): Fact or Friction: Jumps at ultra high
frequency. Journal of Financial Economics, 144, 576-599

Examples

Consider you have raw trade data for 1 stock for 2 days
Not run:
tDataAfterFirstCleaning <- tradesCleanup(tDataRaw = sampleTDataRaw,
exchanges = "N", report = FALSE)
gData <- quotesCleanup(gDataRaw = sampleQDataRaw,
exchanges = "N", report = FALSE)
dim(tDataAfterFirstCleaning)
tDataAfterFinalCleaning <-
tradesCleanupUsingQuotes(gData = qDatal[as.Date(DT) == "2018-01-02"],
tData = tDataAfterFirstCleaning[as.Date(DT) == "2018-01-02"1)
dim(tDataAfterFinalCleaning)

End(Not run)
In case you have more data it is advised to use the on-disk functionality
via the "tradeDataSource"”, "quoteDataSource”, and "dataDestination” arguments

tradesCondition 151

tradesCondition Delete entries with abnormal trades condition.

Description

Delete entries with abnormal trades condition

Usage

tradesCondition(

tData,

Validconds = C(IIII’ H@H, IIEII’ H@EH’ IIFII, HFIII’ II@FH, II@FIII, IIIII’ II@III)
)

Arguments
tData an xts or data.table object containing the time series data, with one column
named "COND" indicating the Sale Condition.
validConds a character vector containing valid sales conditions defaults to
c('', '@, 'E', '@", 'F', 'FI', '@"', '@I"', 'I', '@I"). See details.
Details

To get more information on the sales conditions, see the NYSE documentation. Section about Daily
TAQ Trades File. The current version (as of May 2020) can be found online at NYSE’s webpage

Value

xts or data. table object depending on input.

Note

Some CSV readers and the WRDS API parses empty strings as NAs. We transform NA values in
COND to "".

Author(s)

Jonathan Cornelissen, Kris Boudt, Onno Kleen, and Emil Sjoerup.

https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.3.pdf

Index

* AJjumpTest
AJjumpTest, 11

* BNSjumpTest
BNSjumpTest, 16

* Drift
spotDrift, 132

+ IVinference
IVinference, 40

* JOjumpTest
JOjumpTest, 43

* autocorrelation
ReMeDI, 82

* autocovariance
ReMeDI, 82

* cleaning
autoSelectExchangeQuotes, 14
autoSelectExchangeTrades, 15
exchangeHoursOnly, 23
mergeQuotesSameTimestamp, 54
mergeTradesSameTimestamp, 55
noZeroPrices, 56
noZeroQuotes, 57
quotesCleanup, 63
rmLargeSpread, 97
rmNegativeSpread, 97
rmOutliersQuotes, 98
rmOutliersTrades, 99
rmTradeOutliersUsingQuotes, 106
salesCondition, 127
selectExchange, 131
tradesCleanup, 146
tradesCleanupUsingQuotes, 148
tradesCondition, 151

x datasets
sampleMultiTradeData, 128
sampleOneMinuteData, 128
sampleQData, 128
sampleQDataRaw, 129
sampleTData, 129

152

sampleTDataEurope, 130
sampleTDataRaw, 131
SPYRM, 145

+ data
aggregatePrice, 5
aggregateQuotes, 6
aggregateTrades, 8
aggregateTs, 9
getAlphaVantageData, 25
makePsd, 51
matchTradesQuotes, 53
refreshTime, 80

x forecasting
HARmodel, 32

+ highfrequency
AJjumpTest, 11
BNSjumpTest, 16
IVinference, 40
JOjumpTest, 43
rBeta, 74
rkurt, 89
rMedRQuar, 90
rMPVar, 101
rMRCov, 103
rQPVar, 109
rQuar, 111
rRvar, 115
rSkew, 118
rSvar, 120
rTPQuar, 123

* liquidity
getTradeDirection, 31

+* manipulation
aggregatePrice, 5
aggregateQuotes, 6
aggregateTrades, 8
aggregateTS, 9
makePsd, 51
matchTradesQuotes, 53

INDEX

refreshTime, 80
* microstructure
ReMeDI, 82
* noise
ReMeDI, 82
* preaveraging
rMRCov, 103
+ rBeta
rBeta, 74
* rKurt
rkurt, 89
* rMPVar
rMPVar, 101
* rMedRQ
rMedRQuar, 90
* rQPVar
rQPvar, 109
* rQuar
rQuar, 111
* rSvar
rSVar, 120
* rSkew
rSkew, 118
* rTPQuar
rTPQuar, 123
x realized
rRvar, 115
* volatility

listAvailableKernels, 48

rAVGCov, 68
rBPCov, 76
rCov, 79
rHYCov, 86
rkernelCov, 87
rMedRVar, 92
rMinRVar, 95
rOwCov, 107
rRTSCov, 112
rSemiCov, 116

rThresholdCov, 121

rTSCov, 124

aggregatePrice, 5
aggregateQuotes, 6, 9
aggregateTrades, 8, 9
aggregateTs, 9
AJjumpTest, 11

autoSelectExchangeQuotes, 14, 63, 64
autoSelectExchangeTrades, 15, 146, 147

153

BNSjumpTest, 16
businessTimeAggregation, 18

driftBursts, 20
exchangeHoursOnly, 23, 63, 64

gatherPrices, 24, 144
getAlphaVantageData, 25
getCriticalValues, 26, 62
getCriticalValues.DBH, 22
getlLiquidityMeasures, 27
getTradeDirection, 31

HARmodel, 32

HEAVYmodel, 36

highfrequency (highfrequency-package), 4
highfrequency-package, 4

ICov, 37,40, 70,72,77,79, 80, 87, 88, 105,
109, 114,117,122, 126

intradayJumpTest, 38

Ivar, 38, 40, 93, 96, 102, 110, 116, 121

IVinference, 40

JOjumpTest, 43
knChooseReMeDI, 45, 82

leadlLag, 46
listAvailableKernels, 48, 87
listCholCovEstimators, 49
1m, 34

makeOHLCV, 50

makePsd, 51, 114, 126

makeReturns, 52

makeRMFormat, 53
matchTradesQuotes, 37, 53
mergeQuotesSameTimestamp, 54, 63, 64
mergeTradesSameTimestamp, 55, 146, 147

noZeroPrices, 56, 146
noZeroQuotes, 57, 63

plot.DBH, 22, 57
plot.HARmodel, 34, 58
plot.HEAVYmodel, 59
plotTQData, 59
predict.HARmodel, 34, 60
predict.HEAVYmodel, 37, 61

154

print.DBH, 22, 61
print.HARmodel, 34, 62

quotesCleanup, 63, 148

rankJumpTest, 66
rAVGCov, 38, 68
rBACov, 38, 70

rBeta, 74
rBPCov, 16, 37,76, 108
rCholCov, 38, 77

rCov, 37,68, 72,79, 117
refreshTime, 80, /13, 125
ReMeDI, 82
ReMeDIAsymptoticVariance, 83
rHYCov, 38, 86
rkernelCov, 38, 87
rkurt, 89

rMedRQ, 90
rMedRQuar, 16, 90, 90
rMedRv, 92
rMedRVar, 16, 40, 92,92
rMinRQ, 93
rMinRQuar, 16, 93, 94, 94
rMinRV, 95
rMinRVar, 16, 40, 95, 95
rmLargeSpread, 63, 97
rmNegativeSpread, 63, 97
rmOutliersQuotes, 63, 64, 98
rmOutliersTrades, 99
rMpPv, 101
rMPVar, 40, 101, 101
rMRC, 102
rMRCov, 38, 102, 103, 103

rmTradeOutliersUsingQuotes, 106, 146,

148, 149
robustbase, 108
rowCov, 16, 38,107, 112, 121
rQPvar, 16, 40, 109
rQuar, 111
rRTSCov, 38, 112
rRvar, 40, 115, 127
rSemiCov, 38, 116
rSkew, 118
rsv, 119
rSvar, 40, 119, 120
rThresholdCov, 16, 38, 112, 121
rTPQuar, 16, 123
r7SCov, 38, 72, 124

Rv, 127

salesCondition, /127, 127
sampleMultiTradeData, 128
sampleOneMinuteData, 128
sampleQData, 6, 128
sampleQDataRaw, 128, 129
sampleTData, 129
sampleTDataEurope, 130
sampleTDataRaw, /29, 131
selectExchange, 63, 131, 146
spotDrift, 38, 39, 132, 141
spotVol, 19, 38, 39, 135
spreadPrices, 24, 53, 143
SPYRM, 145

summary .HARmodel, 34, 145

tradesCleanup, 146, 148, 149

INDEX

tradesCleanupUsingQuotes, 54, 99, 129,

146, 148

tradesCondition, 127, 146, 147, 151

	highfrequency-package
	aggregatePrice
	aggregateQuotes
	aggregateTrades
	aggregateTS
	AJjumpTest
	autoSelectExchangeQuotes
	autoSelectExchangeTrades
	BNSjumpTest
	businessTimeAggregation
	driftBursts
	exchangeHoursOnly
	gatherPrices
	getAlphaVantageData
	getCriticalValues
	getLiquidityMeasures
	getTradeDirection
	HARmodel
	HEAVYmodel
	ICov
	intradayJumpTest
	IVar
	IVinference
	JOjumpTest
	knChooseReMeDI
	leadLag
	listAvailableKernels
	listCholCovEstimators
	makeOHLCV
	makePsd
	makeReturns
	makeRMFormat
	matchTradesQuotes
	mergeQuotesSameTimestamp
	mergeTradesSameTimestamp
	noZeroPrices
	noZeroQuotes
	plot.DBH
	plot.HARmodel
	plot.HEAVYmodel
	plotTQData
	predict.HARmodel
	predict.HEAVYmodel
	print.DBH
	print.HARmodel
	quotesCleanup
	rankJumpTest
	rAVGCov
	rBACov
	rBeta
	rBPCov
	rCholCov
	rCov
	refreshTime
	ReMeDI
	ReMeDIAsymptoticVariance
	rHYCov
	rKernelCov
	rKurt
	rMedRQ
	rMedRQuar
	rMedRV
	rMedRVar
	rMinRQ
	rMinRQuar
	rMinRV
	rMinRVar
	rmLargeSpread
	rmNegativeSpread
	rmOutliersQuotes
	rmOutliersTrades
	rMPV
	rMPVar
	rMRC
	rMRCov
	rmTradeOutliersUsingQuotes
	rOWCov
	rQPVar
	rQuar
	rRTSCov
	rRVar
	rSemiCov
	rSkew
	rSV
	rSVar
	rThresholdCov
	rTPQuar
	rTSCov
	RV
	salesCondition
	sampleMultiTradeData
	sampleOneMinuteData
	sampleQData
	sampleQDataRaw
	sampleTData
	sampleTDataEurope
	sampleTDataRaw
	selectExchange
	spotDrift
	spotVol
	spreadPrices
	SPYRM
	summary.HARmodel
	tradesCleanup
	tradesCleanupUsingQuotes
	tradesCondition
	Index

