
Package ‘hicp’
January 19, 2026

Type Package

Title Harmonised Index of Consumer Prices

Version 1.0.2

Description The Harmonised Index of Consumer Prices (HICP) is the key economic figure to mea-
sure inflation in the euro area.
The methodology underlying the HICP is documented in the HICP Methodological Man-
ual (<https:
//ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003>).
Based on the manual, this package provides functions to access and work with HICP data from Eu-
rostat's public database (<https://ec.europa.eu/eurostat/data/database>).

License EUPL

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports restatapi (>= 0.24.0), data.table (>= 1.16.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

URL https://github.com/eurostat/hicp

BugReports https://github.com/eurostat/hicp/issues

Author Sebastian Weinand [aut, cre]

Maintainer Sebastian Weinand <sebastian.weinand@ec.europa.eu>

Repository CRAN

Date/Publication 2026-01-19 14:00:25 UTC

1

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/data/database
https://github.com/eurostat/hicp
https://github.com/eurostat/hicp/issues

2 chaining

Contents
chaining . 2
coicop . 4
countries . 7
hicp.data . 8
index.aggregation . 10
linking . 13
rates . 15
spec.aggs . 18
tree . 18

Index 22

chaining Chain-linking, rebasing and index conversion

Description

Function unchain() unchains a chained index series. These unchained index series can be aggre-
gated into higher-level indices using aggregate(). To obtain a long-term index series, the higher-
level indices must be chained using function chain(). Function rebase() sets the index reference
period. Monthly indices can be converted into quarterly and yearly indices or 12-month moving
averages using function convert().

Usage

unchain(x, t, by=12, settings=list())

chain(x, t, by=12, settings=list())

rebase(x, t, t.ref="first", settings=list())

convert(x, t, type="year", settings=list())

Arguments

x numeric vector of index values.

t date vector in format YYYY-MM-DD with monthly frequency, that is, one observa-
tion per month. Quarterly and yearly frequencies are also supported.

by for one-month or one-quarter overlap a single integer between 1 and 12 spec-
ifying the price reference period; for annual overlap using a full calendar year
NULL.

t.ref character specifying the index reference period either in format YYYY for a calen-
dar year or YYYY-MM for a specific month or quarter. Can also be first or last
to use the first or last available period. If t.ref contains multiple entries, these
are processed in the order provided, and the first match is used for the rebasing.

chaining 3

type type of converted index. Either year (for annual average), quarter (for quar-
terly average), or 12mavg (for a 12-month moving average).

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• na.rm : logical indicating if averages for calendar years should also be
computed when there are NAs and less than 12 months (or 4 quarters) present
(for na.rm=TRUE). For the 12-month moving average in convert(), the
calculations are always based on the last 12 months (or 4 quarters), meaning
that only NAs are excluded. The default is na.rm=FALSE.

Details

Function unchain() sets the value of the first price reference period to NA although the value could
be set to 100 (if by is not NULL) or 100 divided by the average of the year (if by=NULL). This is
wanted to avoid aggregation of these values. Function chain() finally sets the values back to 100.

Value

Functions unchain(), chain(), rebase(), and convert(..., type="12mavg") return numeric
values of the same length as x.

For type="year" and type="quarter", function convert() returns a named numeric vector of
the length of quarters or years available in t, where the names correspond to the last month of the
year or quarter.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

See Also

aggregate

Examples

EXAMPLE 1

t <- seq.Date(from=as.Date("2021-12-01"), to=as.Date("2024-12-01"), by="1 month")
p <- rnorm(n=length(t), mean=100, sd=5)

rebase index to new reference period:

https://doi.org/10.2785/055028

4 coicop

rebase(x=p, t=t, t.ref=c("1996","2022")) # 1996 not present so 2022 is used
rebase(x=p, t=t, t.ref=c("1996","first")) # 1996 not present so first period is used

convert into quarterly index:
convert(x=p, t=t, type="q") # first quarter is not complete so NA

unchaining and chaining gives initial results:
100*p/p[1]
chain(unchain(p, t, by=12), t, by=12)

use annual overlap:
100*p/mean(p[1:12])
(res <- chain(unchain(p, t, by=NULL), t, by=NULL))
note that for backwards compability, each month in the first
year receives an index value of 100. this allows the same
computation again:
chain(unchain(res, t, by=NULL), t, by=NULL)

EXAMPLE 2: Working with published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

get hicp index values for euro area with base 2015:
dt <- hicp::data(id="prc_hicp_midx", filters=list(unit="I15", geo="EA"))
dt[, "time":=as.Date(paste0(time, "-01"))]
setkeyv(x=dt, cols=c("unit","coicop","time"))

unchain, chain, and rebase all euro area indices by coicop:
dt[, "dec_ratio" := unchain(x=values, t=time), by="coicop"]
dt[, "chained_index" := chain(x=dec_ratio, t=time), by="coicop"]
dt[, "index_own" := rebase(x=chained_index, t=time, t.ref="2015"), by="coicop"]

convert all euro area indices into annual averages:
dta <- dt[, as.data.table(

x=convert(x=values, t=time, type="year"),
keep.rownames=TRUE), by="coicop"]

setnames(x=dta, c("coicop","time","index"))
plot(index~as.Date(time), data=dta[coicop=="CP00",], type="l") # plot all-items index

coicop COICOP codes, bundles and relatives

Description

Function is.coicop() checks if the input is a valid COICOP code while level() returns the level
(e.g. division or subclass).

coicop 5

For HICP data, COICOP codes are sometimes merged into bundles (e.g. 08X, 0531_2), deviating
from the usual code structure. Function is.bundle() flags if a COICOP code is a bundle or not,
while unbundle() resolves the bundles into the underlying valid codes.

Functions parent() and child() derive the higher-level parents or lower-level children of a COICOP
code.

Usage

is.coicop(id, settings=list())

level(id, label=FALSE, settings=list())

is.bundle(id, settings=list())

unbundle(id, settings=list())

child(id, usedict=TRUE, closest=TRUE, k=1, settings=list())

parent(id, usedict=TRUE, closest=TRUE, k=1, settings=list())

Arguments

id character vector of COICOP codes.

label logical indicating if the number of digits or the labels (e.g., division, subclass)
should be returned.

usedict logical indicating if parents or children should be derived from the full code
dictionary defined by settings$coicop.version (if set to TRUE) or only from
the codes present in id.

closest logical indicating if the closest parents or children should be derived or the k-th
ones defined by k. For example, if set to TRUE, the closest parent could be the
direct parent for one code (e.g. 031->03) and the grandparent for another (e.g.
0321->03).

k integer specifying the k-th relative (e.g., 1 for direct parents or children, 2 for
grandparents and grandchildren, ...). Multiple values allowed, e.g., k=c(1,2).
Only relevant if closest=FALSE.

settings list of control settings to be used. The following settings are supported:

• coicop.version : character specifying the COICOP version to be used by
is.coicop(), level(), child(), and parent() for flagging valid COICOP
codes. See details for the allowed values. The default is getOption("hicp.coicop.version").

• all.items.code : character specifying the code internally used by level(),
child(), and parent() for the all-items index. The default is taken from
getOption("hicp.all.items.code").

• coicop.bundles : named list specifying the COICOP bundle code dictio-
nary used for unbundling any bundle codes in id. The default is getOption("hicp.coicop.bundles").

• simplify : logical indicating if the output of child(), parent() or unbundle()
should be simplified into a vector if possible. The default is FALSE.

6 coicop

– For child() and parent(): If both a COICOP bundle code and the
underlying codes are the parent or child, only the latter codes are kept
(e.g., c(08X,082)->082). Note that simplification usually only works
for parent().

– For unbundle(): All codes underlying the bundle code are kept, mean-
ing that the resulting vector length can exceed the length of id.

Details

The following COICOP versions are supported:

• Classification of Individual Consumption According to Purpose (COICOP-1999): coicop1999

• European COICOP (version 1, ECOICOP): ecoicop

• ECOICOP adopted to the needs of the HICP (version 1, ECOICOP-HICP): ecoicop.hicp

• COICOP-2018: coicop2018

• ECOICOP (version 2, ECOICOP 2): ecoicop2

The COICOP version can be set temporarily in the function settings or globally via options(hicp.coicop.version).
The package default is ecoicop.hicp.

None of the COICOP versions include a code for the all-items index. By default, the internal
package code for the all-items index is defined by options(hicp.all.items.code="00") but can
be changed by the user. The level is always 1.

Although bundle codes (e.g. 08X, 0531_2) are no valid COICOP codes, they are internally resolved
into their underlying codes and processed in that way if they can be found in the bundle code
dictionary (see getOption("hicp.coicop.bundles")). If bundle codes should not be processed,
the dictionary can be cleared by options("hicp.coicop.bundles"=list()).

Value

Functions is.coicop() and is.bundle() return a logical vector, function level() an integer
vector, and functions child(), parent(), and unbundle() a list. All function outputs have the
same length as id.

Author(s)

Sebastian Weinand

See Also

tree

Examples

EXAMPLE 1

check if coicop codes are valid:
is.coicop(id=c("00","CP00","01","011","13","08X"))

get the coicop level or label:

https://unstats.un.org/unsd/classifications/Econ/Structure
https://op.europa.eu/de/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/ecoicop
https://op.europa.eu/de/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/ecoicop-hicp
https://unstats.un.org/unsd/classifications/Econ
https://op.europa.eu/de/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/ecoicop2

countries 7

level(id=c("00","05","053","0531_2"))
level(id=c("00","05","053","0531_2"), label=TRUE)

derive children and parents

no children of 01 present in ids:
child(id=c("01"), usedict=FALSE)

still no direct child present:
child(id=c("01","0111"), usedict=FALSE, closest=FALSE, k=1)

but a grandchild of 01 is found:
child(id=c("01","0111"), usedict=FALSE, closest=TRUE)

derive the children from the code dictionary:
child(id=c("01"), usedict=TRUE)

two parents found for 05311 due to presence of bundle code:
parent(id=c("0531","0531_2","05311","05321"), usedict=FALSE)

simplification removes bundle code:
parent(id=c("0531","0531_2","05311","05321"), usedict=FALSE, settings=list(simplify=TRUE))

EXAMPLE 2: Working with published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

load hicp item weights of euro area:
coicops <- hicp::data(id="prc_hicp_inw", filters=list(geo="EA"))
coicops <- coicops[grepl("^CP", coicop),]
coicops[, "coicop":=gsub("^CP", "", coicop)]

show frequency of coicop levels over time:
coicops[, .N, by=list(time, "lvl"=level(coicop))]

get coicop parent from the data:
coicops[, "parent":=parent(id=coicop, usedict=FALSE, settings=list(simplify=TRUE)), by="time"]

flag if coicop has child available in the data:
coicops[, "has_child":=lengths(child(id=coicop, usedict=FALSE))>0, by="time"]
coicops[has_child==FALSE, sum(values, na.rm=TRUE), by="time"]
coicop bundles and their component ids are both taken into
account. this double counting explains some differences

countries Country metadata

8 hicp.data

Description

This data set contains metadata for the euro area, EU, EFTA, and candidate countries that sub-
mit(ted) HICP data on a regular basis.

Usage

country metadata:
countries

Format

A data.table with metadata on the individual euro area (EA), EU, EFTA, and candidate countries
producing the HICP.

• code: the country code

• name_[en|fr|de]: the country name in English, French, and German

• protocol_order: the official protocol order of countries

• is_eu, is_ea, is_efta, is_candidate: a logical indicating if a country belongs to the EU,
the euro area, or if it’s an EFTA or candidate country, respectively

• eu_since, eu_until: date of joining and leaving the European Union

• ea_since: the date of introduction of the euro as the official currency

• index_decimals: the number of index decimals used for dissemination

Author(s)

Sebastian Weinand

Examples

subset to euro area countries:
countries[is_ea==TRUE,]

hicp.data Download HICP data

Description

These functions are simple wrappers of functions in the restatapi package.

The function datasets() lists all available HICP data sets in Eurostat’s public database, while
datafilters() gives the allowed values that can be used for filtering a data set. The function
data() downloads a specific data set with filtering on key parameters and time, if supplied.

hicp.data 9

Usage

datasets(pattern="^prc_hicp", ...)

datafilters(id, ...)

data(id, filters=list(), date.range=NULL, flags=FALSE, ...)

Arguments

pattern character for pattern matching on data set identifier. See also grepl.

id data set identifier, which can be obtained from datasets().

filters named list of filters to be applied to the data request. Allowed values for filtering
can be retrieved from datafilters(). For HICP data, typical filter variables
are the index reference period (unit: I96, I05, I15), the country (geo: EA,
DE, FR,...), or the COICOP code (coicop: CP00, CP01, SERV, ...).

date.range vector of start and end date used for filtering on time dimension. These must
follow the pattern YYYY(-MM)?. An open interval can be defined by setting one
date to NA.

flags logical indicating if data flags should be returned or not.

... further arguments passed to functions:

• get_eurostat_toc for datasets()
• get_eurostat_dsd for datafilters()
• get_eurostat_data for data()

Value

A data.table.

Author(s)

Sebastian Weinand

Source

See Eurostat’s public database at https://ec.europa.eu/eurostat/web/main/data/database.

Examples

set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)

view available HICP data sets:
datasets()

get allowed filters for item weights:
datafilters(id="prc_hicp_inw")

https://ec.europa.eu/eurostat/web/main/data/database

10 index.aggregation

download item weights since 2015 for euro area:
data(id="prc_hicp_inw", filters=list("geo"="EA"), date.range=c("2015", NA))

index.aggregation Index number functions and aggregation

Description

Lower-level price indices can be aggregated into higher-level indices in a single step using the bilat-
eral index formulas below or gradually following the COICOP tree with the function aggregate.tree().

The functions aggregate() and disaggregate() can be used for the calculation of user-defined
aggregates (e.g., HICP special aggregates). For aggregate(), lower-level indices are aggregated
into the respective total. For disaggregate(), they are deducted from the total to receive a subag-
gregate.

Usage

bilateral price index formulas:
jevons(x)
carli(x)
harmonic(x)
laspeyres(x, w0)
paasche(x, wt)
fisher(x, w0, wt)
toernqvist(x, w0, wt)
walsh(x, w0, wt)

aggregation into user-defined aggregates:
aggregate(x, w0, wt, id, formula=laspeyres, agg=list(), settings=list())

disaggregation into user-defined aggregates:
disaggregate(x, w0, id, agg=list(), settings=list())

gradual aggregation following the COICOP tree:
aggregate.tree(x, w0, wt, id, formula=laspeyres, settings=list())

Arguments

x numeric vector of price relatives between two periods, typically obtained by
unchaining some HICP index series.

w0, wt numeric vector of weights in the base period w0 (e.g., for the Laspeyres index)
or current period wt (e.g., for the Paasche index).

id character vector of aggregate codes. For aggregate.tree(), only valid COICOP
codes or bundle codes are processed.

formula a function or named list of functions specifying the index formula(s) used for
aggregation. Each function must return a scalar and have the argument x. For
weighted index formulas, the arguments w0 and/or wt must be available as well.

index.aggregation 11

agg list of user-defined aggregates to be calculated. For disaggregate(), the list
must have names specifying the aggregate from which indices are deducted.
Each list element is a vector of codes that can be found in id. See settings$exact
for further specification of this argument.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• coicop.version : character specifying the COICOP version to be used
for flagging valid COICOP codes. See coicop for the allowed values. The
default is getOption("hicp.coicop.version").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

• coicop.bundles : named list specifying the COICOP bundle code dictio-
nary used for unbundling any bundle codes in id. The default is getOption("hicp.coicop.bundles").

• exact : logical indicating if the codes in agg must all be present in id for
aggregation or not. If FALSE, aggregation is carried out using the codes
present in agg. If TRUE and some codes cannot be found in id, NA is re-
turned. The default is TRUE.

• names : character of names for the aggregates in agg. If not supplied, the
aggregates are numbered.

Details

The bilateral index formulas currently available are intended for the aggregation of (unchained)
price relatives x. The Dutot index is therefore not implemented.

Value

The functions jevons(), carli(), harmonic(), laspeyres(), paasche(), fisher(), toernqvist(),
and walsh() return a single aggregated value.

The functions aggregate(), disaggregate() and aggregate.tree() return a data.table with
the sum of weights w0 and wt (if supplied) and the computed aggregates for each index formula
specified by formula.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

See Also

unchain, chain, rebase

https://doi.org/10.2785/055028

12 index.aggregation

Examples

library(data.table)

EXAMPLE 1

example data with unchained prices and weights:
dt <- data.table("coicop"=c("0111","0112","012","021","022"),

"price"=c(102,105,99,109,115),
"weight"=c(0.2,0.15,0.4,0.2,0.05))

aggregate directly into overall index:
dt[, laspeyres(x=price, w0=weight)]

same result at top level with gradual aggregation:
(dtagg <- dt[, aggregate.tree(x=price, w0=weight, id=coicop)])

compute user-defined aggregates by disaggregation:
dtagg[, disaggregate(x=laspeyres, w0=w0, id=id,

agg=list("00"=c("01"), "00"=c("022")),
settings=list(names=c("A","B")))]

which can be similarly derived by aggregation:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("021","022"), c("011","012","021")),
settings=list(names=c("A","B")))]

same aggregates by several index formulas:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("021","022"), c("011","012","021")),
formula=list("lasp"=laspeyres, "jev"=jevons, "mean"=mean),
settings=list(names=c("A","B")))]

no aggregation if one index is missing:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("01","02","03")),
settings=list(exact=TRUE))]

or just use the available ones:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("01","02","03")),
settings=list(exact=FALSE))]

EXAMPLE 2: Index aggregation using published HICP data

library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

import monthly price indices:
prc <- hicp::data(id="prc_hicp_midx", filters=list(unit="I15", geo="EA"))
prc[, "time":=as.Date(paste0(time, "-01"))]
prc[, "year":=as.integer(format(time, "%Y"))]

linking 13

setnames(x=prc, old="values", new="index")

unchaining indices:
prc[, "dec_ratio" := unchain(x=index, t=time), by="coicop"]

import item weights:
inw <- hicp::data(id="prc_hicp_inw", filters=list(geo="EA"))
inw[, "time":=as.integer(time)]
setnames(x=inw, old=c("time","values"), new=c("year","weight"))

derive coicop tree at lowest possible level:
inw[grepl("^CP",coicop),

"tree":=tree(id=gsub("^CP","",coicop), w=weight, flag=TRUE, settings=list(w.tol=0.1)),
by=c("geo","year")]

except for rounding, we receive total weight of 1000 in each period:
inw[tree==TRUE, sum(weight), by="year"]

merge price indices and item weights:
hicp.data <- merge(x=prc, y=inw, by=c("geo","coicop","year"), all.x=TRUE)
hicp.data <- hicp.data[year <= year(Sys.Date())-1 & grepl("^CP\\d+", coicop),]
hicp.data[, "coicop" := gsub(pattern="^CP", replacement="", x=coicop)]

compute all-items HICP in one step using only lowest-level indices:
hicp.own <- hicp.data[tree==TRUE,

list("laspey"=laspeyres(x=dec_ratio, w0=weight)),
by="time"]

setorderv(x=hicp.own, cols="time")
hicp.own[, "chain_laspey" := chain(x=laspey, t=time, by=12)]
hicp.own[, "chain_laspey_15" := rebase(x=chain_laspey, t=time, t.ref="2015")]

compute all-items HICP gradually through all higher-levels:
hicp.own.all <- hicp.data[, aggregate.tree(x=dec_ratio, w0=weight, id=coicop), by="time"]
setorderv(x=hicp.own.all, cols="time")
hicp.own.all[, "chain_laspey" := chain(x=laspeyres, t=time, by=12), by="id"]
hicp.own.all[, "chain_laspey_15" := rebase(x=chain_laspey, t=time, t.ref="2015"), by="id"]

compare all-items HICP from direct and gradual aggregation:
agg.comp <- merge(x=hicp.own.all[id=="00", list(time, "index_stpwse"=chain_laspey_15)],

y=hicp.own[, list(time, "index_direct"=chain_laspey_15)],
by="time")

no differences -> consistent in aggregation:
head(agg.comp[abs(index_stpwse-index_direct)>1e-4,])

linking Linking-in new index series

14 linking

Description

Function link() links a new index series (x.new) to an existing one (x) using the overlap periods
in t.overlap. In the resulting linked index series, the new index series starts after the existing one.

Function lsf() computes the level-shift factors for linking via the overlap periods in t.overlap in
comparison to the one-month overlap method using December of year t-1. The level-shift factors
can then be used to shift the index level of a HICP index series.

Usage

link(x, x.new, t, t.overlap=NULL, settings=list())

lsf(x, x.new, t, t.overlap=NULL, settings=list())

Arguments

x, x.new numeric vector of index values. NA-values in the vectors indicate when the index
series discontinues (for x) or starts (for x.new).

t date vector in format YYYY-MM-DD with monthly frequency, that is, one observa-
tion per month. Quarterly and yearly frequencies are also supported.

t.overlap character specifying the overlap period either in format YYYY for a calendar year
or YYYY-MM for a specific month or quarter. Multiple periods can be provided. If
NULL, all intersecting periods in x and x.new are used.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• na.rm : logical indicating if averages for calendar years should also be
computed when there are NAs and less than 12 months (or 4 quarters) present
(for na.rm=TRUE).

Value

Function link() returns a numeric vector or a matrix of the same length as t, while lsf() provides
a named numeric vector of the same length as t.overlap.

Author(s)

Sebastian Weinand

See Also

chain

rates 15

Examples

input data:
set.seed(1)
t <- seq.Date(from=as.Date("2015-01-01"), to=as.Date("2024-05-01"), by="1 month")
x.new <- rnorm(n=length(t), mean=100, sd=5)
x.new <- rebase(x=x.new, t=t, t.ref="2019-12")
x.old <- x.new + rnorm(n=length(x.new), sd=5)
x.old <- rebase(x=x.old, t=t, t.ref="2015")
x.old[t>as.Date("2021-12-01")] <- NA # current index discontinues in 2021
x.new[t<as.Date("2020-01-01")] <- NA # new index starts in 2019-12

linking in new index in different periods:
matplot(x=t,

y=link(x=x.old, x.new=x.new, t=t, t.overlap=c("2021-12","2020","2021")),
col=c("red","blue","green"), type="l", lty=1,
xlab=NA, ylab="Index", ylim=c(80,120))

lines(x=t, y=x.old, col="black")
abline(v=as.Date("2021-12-01"), lty="dashed")
legend(x="topleft",

legend=c("One-month overlap using December 2021",
"Annual overlap using 2021",
"Annual overlap using 2020"),

fill=c("red","green","blue"), bty = "n")

compute level-shift factors:
lsf(x=x.old, x.new=x.new, t=t, t.overlap=c("2020","2021"))

level-shift factors can be applied to already chain-linked index series
to obtain linked series using another overlap period:
x.new.chained <- link(x=x.old, x.new=x.new, t=t, t.overlap="2021-12")

level-shift adjustment:
x.new.adj <- ifelse(test=t>as.Date("2021-12-01"),

yes=x.new.chained*lsf(x=x.old, x.new=x.new, t=t, t.overlap="2020"),
no=x.new.chained)

compare:
all.equal(x.new.adj, link(x=x.old, x.new=x.new, t=t, t.overlap="2020"))

rates Change rates and contributions

Description

Function rates() derives monthly, quarterly and annual rates of change from an index series.

Function contrib() computes the contributions of a subcomponent (e.g., food, energy) to the
change rate of the overall index (for chained indices with price reference period December of the
previous year).

16 rates

Usage

rates(x, t, type="year", settings=list())

contrib(x, w, t, x.all, w.all, type="year", settings=list())

Arguments

x, x.all numeric vector of index values of the subcomponent (x) and the overall index
(x.all).

w, w.all numeric vector of weights of the subcomponent (w) and the overall index (w.all).
t date vector in format YYYY-MM-DD with monthly frequency, that is, one observa-

tion per month. Quarterly and yearly frequencies are also supported.
type character specifying the type of change rate. Allowed values are month for

monthly change rates, quarter for quarterly change rates, and year for annual
change rates. See also details.

settings list of control settings to be used. The following settings are supported:
• chatty : logical indicating if package-specific warnings and info messages

should be printed or not. The default is getOption("hicp.chatty").
• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• method : character specifying the method for decomposing the change
rates. Allowed values are ribe (the default) and kirchner.

Details

For monthly frequency, the change rates show the percentage change of x in the current month com-
pared to the previous month (monthly change rates, m-1), compared to three months ago (quarterly
change rates, m-3), or compared to the same month one year before (annual change rates, m-12).

For quarterly frequency, the change rates show the percentage change of x in the current quarter
compared to the previous quarter (quarterly change rates, q-1) or compared to the same quarter one
year before (annual change rates, q-4).

For yearly frequency, the change rates show the percentage change of x in the current year compared
to the previous year (annual change rates, y-1). If x is an annual index produced by convert(), the
annual change rates correspond to annual average change rates.

Value

A numeric vector of the same length as x.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

https://doi.org/10.2785/055028

rates 17

Examples

EXAMPLE 1

p <- rnorm(n=37,mean=100,sd=5)
t <- seq.Date(from=as.Date("2020-12-01"), by="1 month", length.out=length(p))

compute change rates:
rates(x=p, t=t, type="month") # one month to the previous month
rates(x=p, t=t, type="year") # month to the same month of previous year

compute annual average rate of change:
pa <- convert(x=p, t=t, type="y") # now annual frequency
rates(x=pa, t=as.Date(names(pa)), type="year")

compute 12-month average rate of change:
pmvg <- convert(x=p, t=t, type="12mavg") # still monthly frequency
rates(x=pmvg, t=t, type="year")

EXAMPLE 2: Ribe contributions using published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

import monthly price indices:
prc <- hicp::data(id="prc_hicp_midx", filters=list(unit="I15", geo="EA"))
prc[, "time":=as.Date(paste0(time, "-01"))]
prc[, "year":=as.integer(format(time, "%Y"))]
setnames(x=prc, old="values", new="index")

import item weights:
inw <- hicp::data(id="prc_hicp_inw", filters=list(geo="EA"))
inw[, "time":=as.integer(time)]
setnames(x=inw, old=c("time","values"), new=c("year","weight"))

merge price indices and item weights:
hicp.data <- merge(x=prc, y=inw, by=c("geo","coicop","year"), all.x=TRUE)

add all-items hicp:
hicp.data <- merge(x=hicp.data,

y=hicp.data[coicop=="CP00", list(geo,time,index,weight)],
by=c("geo","time"), all.x=TRUE, suffixes=c("","_all"))

ribe decomposition:
hicp.data[, "ribe" := contrib(x=index, w=weight, t=time,

x.all=index_all, w.all=weight_all,
type="year", settings=list(method="ribe")), by="coicop"]

plot annual change rates over time:
plot(rates(x=index, t=time, type="year")~time,

data=hicp.data[coicop=="CP00",],

18 tree

type="l", ylim=c(-2,12))

add contribution of energy to plot:
lines(ribe~time, data=hicp.data[coicop=="NRG"], col="red")

spec.aggs Special aggregates

Description

This dataset contains the special aggregates and their composition of COICOP codes valid since
2017.

Usage

special aggregates:
spec.aggs

Format

A data.table with the following variables.

• code: the special aggregate code

• name_[en|fr|de]: the special aggregate description in English, French, and German

• composition: a list of the COICOP product codes forming the special aggregate

Author(s)

Sebastian Weinand

Examples

subset to services:
spec.aggs[code=="SERV", composition[[1]]]

tree Derive and fix COICOP tree

Description

Function tree() derives the COICOP tree at the lowest possible level. In HICP data, this can be
done separately for each country and year. Consequently, the COICOP tree can differ across space
and time. If needed, however, specifying the argument by in tree() allows to merge the COICOP
trees at the lowest possible level, e.g. to obtain a unique composition of COICOP codes over time.

tree 19

Usage

tree(id, by=NULL, w=NULL, flag=FALSE, settings=list())

Arguments

id character vector of COICOP codes.

by vector specifying the variable to be used for merging the tree, e.g. vector of
dates for merging over time or a vector of countries for merging across space. If
by=NULL (the default), no merging is performed.

w numeric weight of id. If supplied, it is checked that the weights of children add
up to the weight of their parent (allowing for tolerance w.tol). If w=NULL (the
default), no checking of weight aggregation is performed.

flag logical specifying the function output. For FALSE (the default), a list with the
codes defining the COICOP tree at each level. For TRUE, a logical vector of the
same length as id indicating which elements in id define the lowest level of the
COICOP tree.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• coicop.version : character specifying the COICOP version to be used
for flagging valid COICOP codes. See coicop for the allowed values. The
default is getOption("hicp.coicop.version").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

• coicop.bundles : named list specifying the COICOP bundle code dictio-
nary used for unbundling any bundle codes in id. The default is getOption("hicp.coicop.bundles").

• max.lvl : integer specifying the maximum depth or deepest COICOP level
allowed. If NULL (the default), the deepest level found in id is used.

• w.tol : numeric tolerance for checking of weights. Only relevant if w is not
NULL. The default is 1/100.

Details

The derivation of the COICOP tree follows a top-down-approach. Starting from the top level (usu-
ally the all-items code), it is checked if

1. the code in id has children,

2. the children’s weights correctly add up to the weight of the parent (if w provided),

3. all children can be found in all the groups in by (if by provided).

Only if all three conditions are met, the children are stored and further processed. Otherwise, the
parent is kept and the processing stops in the respective node. This process is followed until the
lowest level of all codes is reached.

If by is provided, function tree() first subsets all codes in id to the intersecting levels. This ensures
that the derivation of the COICOP tree does not directly stops if, for example, the all-items code is
missing in one of the groups in by. For example, assume the codes(00,01,02,011,012,021) for

20 tree

by=1 and (01,011,012,021) for by=2. In this case, the code 00 would be dropped internally first
because its level is not available for by=2. The other codes would be processed since their levels
intersect across by. However, since (01,02) do not fulfill the third check, the derivation would stop
and no merged tree would be available though codes (011,012,021) seem to be a solution.

Value

Either a list (for flag=FALSE) or a logical vector of the same length as id (for flag=TRUE).

Author(s)

Sebastian Weinand

See Also

unbundle, parent

Examples

EXAMPLE 1

derive COICOP tree from top to bottom:
tree(id=c("01","011","012","0111","0112")) # (0111,0112,012) at lowest level

or just flag lowest level of COICOP tree:
tree(id=c("01","011","012","0111","0112"), flag=TRUE)

still same tree because weights add up:
tree(id=c("01","011","012","0111","0112"), w=c(0.2,0.08,0.12,0.05,0.03))

now (011,012) because weights do not correctly add up at lower levels:
tree(id=c("01","011","012","0111","0112"), w=c(0.2,0.08,0.12,0.05,0.01))

again (011,012) because maximum (or deepest) coicop level to 3 digits:
tree(id=c("01","011","012","0111","0112","01121"),

w=c(0.2,0.08,0.12,0.02,0.06,0.06),
settings=list(max.lvl=3))

coicop bundles are used if their underlying codes are not all present:
tree(id=c("08","081","082","082_083"), w=c(0.25,0.05,0.15,0.2))
(081,082_083) where 082 is dropped because 083 is missing

merge (or fix) coicop tree over groups:
tree(id=c("00","01","011","012", "00","01","011"), by=c(1,1,1,1,2,2,2))
01 is present in both by=(1,2) while 012 is missing in by=2

EXAMPLE 2: Working with published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

tree 21

load HICP item weights:
coicops <- hicp::data(id="prc_hicp_inw",

filters=list(geo=c("EA","DE","FR")),
date.range=c("2005", NA))

coicops <- coicops[grepl("^CP", coicop),]
coicops[, "coicop":=gsub("^CP", "", coicop)]

derive seperate trees for each time period and country:
coicops[, "t1" := tree(id=coicop, w=values,

flag=TRUE, settings=list(w.tol=0.1)), by=c("geo","time")]
coicops[t1==TRUE,

list("n"=uniqueN(coicop), # varying coicops over time and space
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

derive merged trees over time, but not across countries:
coicops[, "t2" := tree(id=coicop, by=time, w=values,

flag=TRUE, settings=list(w.tol=0.1)), by="geo"]
coicops[t2==TRUE,

list("n"=uniqueN(coicop), # same selection over time in a country
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

derive merged trees over countries and time:
coicops[, "t3" := tree(id=coicop, by=paste(geo,time), w=values,

flag=TRUE, settings=list(w.tol=0.1))]
coicops[t3==TRUE,

list("n"=uniqueN(coicop), # same selection over time and across countries
"w"=sum(values, na.rm=TRUE)), # weight sums should equal 1000

by=c("geo","time")]

Index

aggregate, 3
aggregate (index.aggregation), 10
aggregate(), 2

carli (index.aggregation), 10
chain, 11, 14
chain (chaining), 2
chaining, 2
child (coicop), 4
coicop, 4, 11, 19
contrib (rates), 15
convert (chaining), 2
countries, 7

data (hicp.data), 8
datafilters (hicp.data), 8
datasets (hicp.data), 8
disaggregate (index.aggregation), 10

fisher (index.aggregation), 10

get_eurostat_data, 9
get_eurostat_dsd, 9
get_eurostat_toc, 9
grepl, 9

harmonic (index.aggregation), 10
hicp.data, 8

index.aggregation, 10
is.bundle (coicop), 4
is.coicop (coicop), 4

jevons (index.aggregation), 10

laspeyres (index.aggregation), 10
level (coicop), 4
link (linking), 13
linking, 13
lsf (linking), 13

paasche (index.aggregation), 10

parent, 20
parent (coicop), 4

rates, 15
rebase, 11
rebase (chaining), 2

spec.aggs, 18

toernqvist (index.aggregation), 10
tree, 6, 18

unbundle, 20
unbundle (coicop), 4
unchain, 11
unchain (chaining), 2

walsh (index.aggregation), 10

22

	chaining
	coicop
	countries
	hicp.data
	index.aggregation
	linking
	rates
	spec.aggs
	tree
	Index

