
Package ‘healthyR.ts’
January 23, 2026

Title The Time Series Modeling Companion to 'healthyR'

Version 0.3.2

Description Hospital time series data analysis workflow tools, modeling, and automations.
This library provides many useful tools to review common administrative time
series hospital data. Some of these include average length of stay, and
readmission rates. The aim is to provide a simple and consistent verb
framework that takes the guesswork out of everything.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

URL https://www.spsanderson.com/healthyR.ts/,

https://github.com/spsanderson/healthyR.ts

BugReports https://github.com/spsanderson/healthyR.ts/issues

Imports magrittr, rlang (>= 0.1.2), tibble, timetk, tidyr, dplyr,
purrr, ggplot2, lubridate, plotly, recipes, modeltime, cowplot,
forcats, stringi, parsnip, workflowsets, hardhat

Suggests knitr, rmarkdown, scales, rsample, healthyR.ai, stringr,
forecast, tidymodels, glue, xts, zoo, TSA, tune, dials,
workflows, tidyselect, glmnet, earth, smooth, kernlab

VignetteBuilder knitr

Depends R (>= 4.1.0)

NeedsCompilation no

Author Steven Sanderson [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0006-7661-8247>)

Maintainer Steven Sanderson <spsanderson@gmail.com>

Repository CRAN

Date/Publication 2026-01-23 19:50:11 UTC

1

https://www.spsanderson.com/healthyR.ts/
https://github.com/spsanderson/healthyR.ts
https://github.com/spsanderson/healthyR.ts/issues
https://orcid.org/0009-0006-7661-8247


2 Contents

Contents
auto_stationarize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calibrate_and_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ci_hi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ci_lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
color_blind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
internal_ts_backward_event_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
internal_ts_both_event_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
internal_ts_forward_event_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
model_extraction_helper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
step_ts_acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
step_ts_velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
tidy_fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ts_acceleration_augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ts_acceleration_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ts_adf_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ts_arima_simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ts_auto_arima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ts_auto_arima_xgboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ts_auto_croston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ts_auto_exp_smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ts_auto_glmnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ts_auto_lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ts_auto_mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ts_auto_nnetar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ts_auto_prophet_boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ts_auto_prophet_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ts_auto_recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
ts_auto_smooth_es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ts_auto_svm_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
ts_auto_svm_rbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ts_auto_theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ts_auto_xgboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ts_brownian_motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ts_brownian_motion_augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ts_brownian_motion_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
ts_calendar_heatmap_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ts_compare_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ts_event_analysis_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ts_extract_auto_fitted_workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ts_feature_cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ts_feature_cluster_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ts_forecast_simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
ts_geometric_brownian_motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ts_geometric_brownian_motion_augment . . . . . . . . . . . . . . . . . . . . . . . . . 75
ts_get_date_columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ts_growth_rate_augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents 3

ts_growth_rate_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ts_info_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ts_is_date_class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ts_lag_correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ts_ma_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ts_model_auto_tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ts_model_compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ts_model_rank_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ts_model_spec_tune_template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ts_qc_run_chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ts_qq_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
ts_random_walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ts_random_walk_ggplot_layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ts_random_walk_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ts_scale_color_colorblind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ts_scale_fill_colorblind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ts_scedacity_scatter_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ts_sma_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ts_splits_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ts_time_event_analysis_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
ts_to_tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ts_velocity_augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ts_velocity_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ts_vva_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ts_wfs_arima_boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ts_wfs_auto_arima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ts_wfs_ets_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ts_wfs_lin_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ts_wfs_mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ts_wfs_nnetar_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ts_wfs_prophet_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ts_wfs_svm_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
ts_wfs_svm_rbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ts_wfs_xgboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
util_difflog_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
util_doubledifflog_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
util_doublediff_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
util_log_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
util_singlediff_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Index 143



4 auto_stationarize

auto_stationarize Automatically Stationarize Time Series Data

Description

This function attempts to make a non-stationary time series stationary. This function attempts to
make a given time series stationary by applying transformations such as differencing or logarithmic
transformation. If the time series is already stationary, it returns the original time series.

Usage

auto_stationarize(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

If the input time series is non-stationary (determined by the Augmented Dickey-Fuller test), this
function will try to make it stationary by applying a series of transformations:

1. It checks if the time series is already stationary using the Augmented Dickey-Fuller test.

2. If not stationary, it attempts a logarithmic transformation.

3. If the logarithmic transformation doesn’t work, it applies differencing.

Value

If the time series is already stationary, it returns the original time series. If a transformation is
applied to make it stationary, it returns a list with two elements:

• stationary_ts: The stationary time series.

• ndiffs: The order of differencing applied to make it stationary.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(),
internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()
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Examples

# Example 1: Using the AirPassengers dataset
auto_stationarize(AirPassengers)

# Example 2: Using the BJsales dataset
auto_stationarize(BJsales)

calibrate_and_plot Helper function - Calibrate and Plot

Description

This function is a helper function. It will take in a set of workflows and then perform the modeltime::modeltime_calibrate()
and modeltime::plot_modeltime_forecast().

Usage

calibrate_and_plot(
...,
.type = "testing",
.splits_obj,
.data,
.print_info = TRUE,
.interactive = FALSE

)

Arguments

... The workflow(s) you want to add to the function.

.type Either the training(splits) or testing(splits) data.

.splits_obj The splits object.

.data The full data set.

.print_info The default is TRUE and will print out the calibration accuracy tibble and the
resulting plotly plot.

.interactive The defaults is FALSE. This controls if a forecast plot is interactive or not via
plotly.

Details

This function expects to take in workflows fitted with training data.

Value

The original time series, the simulated values and a some plots
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Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(),
internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

## Not run:
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(workflows))

data <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- timetk::time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_obj <- recipe(value ~ ., data = training(splits))

model_spec <- linear_reg(
mode = "regression"
, penalty = 0.1
, mixture = 0.5

) %>%
set_engine("lm")

wflw <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec) %>%
fit(training(splits))

output <- calibrate_and_plot(
wflw
, .type = "training"
, .splits_obj = splits
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, .data = data
, .print_info = FALSE
, .interactive = FALSE
)

## End(Not run)

ci_hi Confidence Interval Generic

Description

Gets the upper 97.5% quantile of a numeric vector.

Usage

ci_hi(.x, .na_rm = FALSE)

Arguments

.x A vector of numeric values

.na_rm A Boolean, defaults to FALSE. Passed to the quantile function.

Details

Gets the upper 97.5% quantile of a numeric vector.

Value

A numeric value.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Statistic: ci_lo(), ts_adf_test()

Examples

x <- mtcars$mpg
ci_hi(x)



8 ci_lo

ci_lo Confidence Interval Generic

Description

Gets the lower 2.5% quantile of a numeric vector.

Usage

ci_lo(.x, .na_rm = FALSE)

Arguments

.x A vector of numeric values

.na_rm A Boolean, defaults to FALSE. Passed to the quantile function.

Details

Gets the lower 2.5% quantile of a numeric vector.

Value

A numeric value.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Statistic: ci_hi(), ts_adf_test()

Examples

x <- mtcars$mpg
ci_lo(x)
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color_blind Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

color_blind()

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A vector of 8 Hex RGB definitions.

Author(s)

Steven P. Sanderson II, MPH

Examples

color_blind()

internal_ts_backward_event_tbl

Event Analysis

Description

This is a function that sits inside of the ts_time_event_analysis_tbl(). It is only meant to be
used there. This is an internal function.

Usage

internal_ts_backward_event_tbl(.data, .horizon)

Arguments

.data The date.frame/tibble that holds the data.

.horizon How far do you want to look back or ahead.
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Details

This is a helper function for ts_time_event_analysis_tbl() only.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_both_event_tbl(),
internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

internal_ts_both_event_tbl

Event Analysis

Description

This is a function that sits inside of the ts_time_event_analysis_tbl(). It is only meant to be
used there. This is an internal function.

Usage

internal_ts_both_event_tbl(.data, .horizon)

Arguments

.data The date.frame/tibble that holds the data.

.horizon How far do you want to look back or ahead.

Details

This is a helper function for ts_time_event_analysis_tbl() only.

Value

A tibble.
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Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

internal_ts_forward_event_tbl

Event Analysis

Description

This is a function that sits inside of the ts_time_event_analysis_tbl(). It is only meant to be
used there. This is an internal function.

Usage

internal_ts_forward_event_tbl(.data, .horizon)

Arguments

.data The date.frame/tibble that holds the data.

.horizon How far do you want to look back or ahead.

Details

This is a helper function for ts_time_event_analysis_tbl() only.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(),
ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

model_extraction_helper

Model Method Extraction Helper

Description

This takes in a model fit and returns the method of the fit object.

Usage

model_extraction_helper(.fit_object)

Arguments

.fit_object A time-series fitted model

Details

Currently supports forecasting model of one of the following from the forecast package:

• Arima

• auto.arima

• ets

• nnetar

• workflow fitted models.

Value

A model description

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

# NOT RUN
## Not run:
suppressPackageStartupMessages(library(forecast))

# Create a model
fit_arima <- auto.arima(AirPassengers)

model_extraction_helper(fit_arima)

## End(Not run)

step_ts_acceleration Recipes Time Series Acceleration Generator

Description

step_ts_acceleration creates a a specification of a recipe step that will convert numeric data into
from a time series into its acceleration.

Usage

step_ts_acceleration(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("ts_acceleration")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used to
create the new variables. The selected variables should have class numeric
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role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, step_ts_acceleration does not remove the original nu-
meric variables. recipes::step_rm() can be used for this purpose.

Value

For step_ts_acceleration, an updated version of recipe with the new step added to the sequence
of existing steps (if any).

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

See Also

Other Recipes: step_ts_velocity()

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

# Create a recipe object
rec_obj <- recipe(a ~ ., data = data_tbl) %>%
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step_ts_acceleration(b)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), data_tbl)

rec_obj %>% prep() %>% juice()

step_ts_velocity Recipes Time Series velocity Generator

Description

step_ts_velocity creates a a specification of a recipe step that will convert numeric data into
from a time series into its velocity.

Usage

step_ts_velocity(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("ts_velocity")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used to
create the new variables. The selected variables should have class numeric

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.
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skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, step_ts_velocity does not remove the original numeric
variables. recipes::step_rm() can be used for this purpose.

Value

For step_ts_velocity, an updated version of recipe with the new step added to the sequence of
existing steps (if any).

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

See Also

Other Recipes: step_ts_acceleration()

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

# Create a recipe object
rec_obj <- recipe(a ~ ., data = data_tbl) %>%

step_ts_velocity(b)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)
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# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), data_tbl)

rec_obj %>% prep() %>% juice()

tidy_fft Tidy Style FFT

Description

Perform an fft using stats::fft() and return a tidier style output list with plots.

Usage

tidy_fft(
.data,
.date_col,
.value_col,
.frequency = 12L,
.harmonics = 1L,
.upsampling = 10L

)

Arguments

.data The data.frame/tibble you will pass for analysis.

.date_col The column that holds the date.

.value_col The column that holds the data to be analyzed.

.frequency The frequency of the data, 12 = monthly for example.

.harmonics How many harmonic waves do you want to produce.

.upsampling The up sampling of the time series.

Details

This function will perform a few different things, but primarily it will compute the Fast Discrete
Fourier Transform (FFT) using stats::fft(). The formula is given as:

y[h] = sumn
k=1z[k] ∗ exp(−2 ∗ pi ∗ 1i ∗ (k − 1) ∗ (h− 1)/n)

There are many items returned inside of a list invisibly. There are four primary categories of data
returned in the list. Below are the primary categories and the items inside of them.

data:

1. data

2. error_data
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3. input_vector

4. maximum_harmonic_tbl

5. differenced_value_tbl

6. dff_tbl

7. ts_obj

plots:

1. harmonic_plot

2. diff_plot

3. max_har_plot

4. harmonic_plotly

5. max_har_plotly

parameters:

1. harmonics

2. upsampling

3. start_date

4. end_date

5. freq

model:

1. m

2. harmonic_obj

3. harmonic_model

4. model_summary

Value

A list object returned invisibly.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: ts_brownian_motion(), ts_brownian_motion_augment(), ts_geometric_brownian_motion(),
ts_geometric_brownian_motion_augment(), ts_random_walk()
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Examples

suppressPackageStartupMessages(library(dplyr))

data_tbl <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

a <- tidy_fft(
.data = data_tbl,
.value_col = value,
.date_col = date_col,
.harmonics = 3,
.frequency = 12

)

a$plots$max_har_plot
a$plots$harmonic_plot

ts_acceleration_augment

Augment Function Acceleration

Description

Takes a numeric vector and will return the acceleration of that vector.

Usage

ts_acceleration_augment(.data, .value, .names = "auto")

Arguments

.data The data being passed that will be augmented by the function.

.value This is passed rlang::enquo() to capture the vectors you want to augment.

.names The default is "auto"

Details

Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time
series is computed by taking the second difference, so

(xt − xt1)− (xt − xt1)t1

This function is intended to be used on its own in order to add columns to a tibble.

Value

A augmented tibble
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Author(s)

Steven P. Sanderson II, MPH

See Also

Other Augment Function: ts_growth_rate_augment(), ts_velocity_augment()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

ts_acceleration_augment(data_tbl, b)

ts_acceleration_vec Vector Function Time Series Acceleration

Description

Takes a numeric vector and will return the acceleration of that vector.

Usage

ts_acceleration_vec(.x)

Arguments

.x A numeric vector

Details

Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time
series is computed by taking the second difference, so

(xt − xt1)− (xt − xt1)t1

This function can be used on it’s own. It is also the basis for the function ts_acceleration_augment().
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Value

A numeric vector

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Vector Function: ts_growth_rate_vec(), ts_velocity_vec()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 25
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

vec_1 <- ts_acceleration_vec(data_tbl$b)

plot(data_tbl$b)
lines(data_tbl$b)
lines(vec_1, col = "blue")

ts_adf_test Augmented Dickey-Fuller Test for Time Series Stationarity

Description

This function performs the Augmented Dickey-Fuller test to assess the stationarity of a time series.
The Augmented Dickey-Fuller (ADF) test is used to determine if a given time series is stationary.
This function takes a numeric vector as input, and you can optionally specify the lag order with the
.k parameter. If .k is not provided, it is calculated based on the number of observations using a
formula. The test statistic and p-value are returned.

Usage

ts_adf_test(.x, .k = NULL)
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Arguments

.x A numeric vector representing the time series to be tested for stationarity.

.k An optional parameter specifying the number of lags to use in the ADF test
(default is calculated).

Value

A list containing the results of the Augmented Dickey-Fuller test:

• test_stat: The test statistic from the ADF test.

• p_value: The p-value of the test.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Statistic: ci_hi(), ci_lo()

Examples

# Example 1: Using the AirPassengers dataset
ts_adf_test(AirPassengers)

# Example 2: Using a custom time series vector
custom_ts <- rnorm(100, 0, 1)
ts_adf_test(custom_ts)

ts_arima_simulator Simulate ARIMA Model

Description

Returns a list output of any n simulations of a user specified ARIMA model. The function returns a
list object with two sections:

• data

• plots

The data section of the output contains the following:

• simulation_time_series object (ts format)

• simulation_time_series_output (mts format)

• simulations_tbl (simulation_time_series_object in a tibble)

• simulations_median_value_tbl (contains the stats::median() value of the simulated data)
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The plots section of the output contains the following:

• static_plot The ggplot2 plot

• plotly_plot The plotly plot

Usage

ts_arima_simulator(
.n = 100,
.num_sims = 25,
.order_p = 0,
.order_d = 0,
.order_q = 0,
.ma = c(),
.ar = c(),
.sim_color = "steelblue",
.alpha = 0.05,
.size = 1,
...

)

Arguments

.n The number of points to be simulated.

.num_sims The number of different simulations to be run.

.order_p The p value, the order of the AR term.

.order_d The d value, the number of differencing to make the series stationary

.order_q The q value, the order of the MA term.

.ma You can list the MA terms respectively if desired.

.ar You can list the AR terms respectively if desired.

.sim_color The color of the lines for the simulated series.

.alpha The alpha component of the ggplot2 and plotly lines.

.size The size of the median line for the ggplot2

... Any other additional arguments for stats::arima.sim

Details

This function takes in a user specified arima model. The specification is passed to stats::arima.sim()

Value

A list object.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Simulator: ts_forecast_simulator()

Examples

output <- ts_arima_simulator()
output$plots$static_plot

ts_auto_arima Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_arima(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_arima",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)
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Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_arima

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the modeltime::arima_reg() with the engine set to arima

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/arima_reg.html

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
ts_auto_theta(), ts_auto_xgboost()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%

https://business-science.github.io/modeltime/reference/arima_reg.html
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ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_aa <- ts_auto_arima(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.cv_slice_limit = 2,
.tune = FALSE

)

ts_aa$recipe_info

ts_auto_arima_xgboost Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_arima_xgboost(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
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.prefix = "ts_arima_boost",

.tune = TRUE,

.grid_size = 10,

.num_cores = 1,

.cv_assess = 12,

.cv_skip = 3,

.cv_slice_limit = 6,

.best_metric = "rmse",

.bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_arima_boost

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the modeltime::arima_boost() with the engine set to xgboost

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/arima_boost.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_glmnet(),
ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

https://business-science.github.io/modeltime/reference/arima_boost.html
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Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_auto_arima_xgboost <- ts_auto_arima_xgboost(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.cv_slice_limit = 2,
.tune = FALSE

)

ts_auto_arima_xgboost$recipe_info

ts_auto_croston Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot
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Usage

ts_auto_croston(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_croston",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_exp_smooth

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the forecast::croston() for the parsnip engine. This model does not use exoge-
nous regressors, so only a univariate model of: value ~ date will be used from the .date_col and
.value_col that you provide.

Value

A list
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Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details

https://pkg.robjhyndman.com/forecast/reference/croston.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
ts_auto_theta(), ts_auto_xgboost()

Other exp_smoothing: ts_auto_exp_smoothing(), ts_auto_smooth_es(), ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_exp <- ts_auto_croston(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_exp$recipe_info

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details
https://pkg.robjhyndman.com/forecast/reference/croston.html


ts_auto_exp_smoothing 31

ts_auto_exp_smoothing Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_exp_smoothing(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_exp_smooth",
.tune = TRUE,
.grid_size = 20,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_exp_smooth

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1
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.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses modeltime::exp_smoothing() under the hood with the engine set to ets

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details

https://pkg.robjhyndman.com/forecast/reference/ets.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_glmnet(),
ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other exp_smoothing: ts_auto_croston(), ts_auto_smooth_es(), ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_exp <- ts_auto_exp_smoothing(
.data = data,

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details
https://pkg.robjhyndman.com/forecast/reference/ets.html
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.num_cores = 2,

.date_col = date_col,

.value_col = value,

.rsamp_obj = splits,

.formula = value ~ .,

.grid_size = 20,

.tune = FALSE
)

ts_exp$recipe_info

ts_auto_glmnet Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_glmnet(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_glmnet",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)
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Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_glmnet

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses parsnip::linear_reg() and sets the engine to glmnet

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/linear_reg.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Examples

library(dplyr)
library(timetk)
library(modeltime)
library(glmnet)

data <- AirPassengers %>%

https://parsnip.tidymodels.org/reference/linear_reg.html
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ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_glmnet <- ts_auto_glmnet(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_glmnet$recipe_info

ts_auto_lm Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• calibration tibble and plot

Usage

ts_auto_lm(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_lm",
.bootstrap_final = FALSE

)
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Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_lm

.bootstrap_final

Not yet implemented.

Details

This uses parsnip::linear_reg() and sets the engine to lm

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/linear_reg.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_lm <- ts_auto_lm(

https://parsnip.tidymodels.org/reference/linear_reg.html
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.data = data,

.date_col = date_col,

.value_col = value,

.rsamp_obj = splits,

.formula = value ~ .,
)

ts_lm$recipe_info

ts_auto_mars Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_mars(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_mars",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)
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Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_mars

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the parsnip::mars() function with the engine set to earth.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/mars.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Examples

library(dplyr)
library(timetk)
library(modeltime)
library(earth)

data <- AirPassengers %>%

https://parsnip.tidymodels.org/reference/mars.html
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ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_auto_mars <- ts_auto_mars(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 20,
.tune = FALSE

)

ts_auto_mars$recipe_info

ts_auto_nnetar Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_nnetar(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_nnetar",
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.tune = TRUE,

.grid_size = 10,

.num_cores = 1,

.cv_assess = 12,

.cv_skip = 3,

.cv_slice_limit = 6,

.best_metric = "rmse",

.bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_nnetar

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the modeltime::nnetar_reg() function with the engine set to nnetar.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/nnetar_reg.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

https://business-science.github.io/modeltime/reference/nnetar_reg.html
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Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_nnetar <- ts_auto_nnetar(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_nnetar$recipe_info

ts_auto_prophet_boost Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot
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Usage

ts_auto_prophet_boost(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_prophet_boost",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_prophet_boost

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the modeltime::prophet_boost() function with the engine set to prophet_xgboost.

Value

A list
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Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/prophet_boost.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other prophet: ts_auto_prophet_reg()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_prophet_boost <- ts_auto_prophet_boost(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_prophet_boost$recipe_info

ts_auto_prophet_reg Boilerplate Workflow

https://business-science.github.io/modeltime/reference/prophet_boost.html
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Description

This is a boilerplate function to create automatically the following:

• recipe
• model specification
• workflow
• tuned model (grid ect)
• calibration tibble and plot

Usage

ts_auto_prophet_reg(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_prophet_reg",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_prophet

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.



ts_auto_prophet_reg 45

Details

This uses the modeltime::prophet_reg() function with the engine set to prophet.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/prophet_reg.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()
Other prophet: ts_auto_prophet_boost()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_prophet_reg <- ts_auto_prophet_reg(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_prophet_reg$recipe_info

https://business-science.github.io/modeltime/reference/prophet_reg.html
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ts_auto_recipe Build a Time Series Recipe

Description

Automatically builds generic time series recipe objects from a given tibble.

Usage

ts_auto_recipe(
.data,
.date_col,
.pred_col,
.step_ts_sig = TRUE,
.step_ts_rm_misc = TRUE,
.step_ts_dummy = TRUE,
.step_ts_fourier = TRUE,
.step_ts_fourier_period = 365/12,
.K = 1,
.step_ts_yeo = TRUE,
.step_ts_nzv = TRUE

)

Arguments

.data The data that is going to be modeled. You must supply a tibble.

.date_col The column that holds the date for the time series.

.pred_col The column that is to be predicted.

.step_ts_sig A Boolean indicating should the timetk::step_timeseries_signature() be
added, default is TRUE.

.step_ts_rm_misc

A Boolean indicating should the following items be removed from the time se-
ries signature, default is TRUE.

• iso$
• xts$
• hour
• min
• sec
• am.pm

.step_ts_dummy A Boolean indicating if all_nominal_predictors() should be dummied and with
one hot encoding.

.step_ts_fourier

A Boolean indicating if timetk::step_fourier() should be added to the recipe.
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.step_ts_fourier_period

A number such as 365/12, 365/4 or 365 indicting the period of the fourier term.
The numeric period for the oscillation frequency.

.K The number of orders to include for each sine/cosine fourier series. More orders
increase the number of fourier terms and therefore the variance of the fitted
model at the expense of bias. See details for examples of K specification.

.step_ts_yeo A Boolean indicating if the recipes::step_YeoJohnson() should be added to
the recipe.

.step_ts_nzv A Boolean indicating if the recipes::step_nzv() should be run on all predic-
tors.

Details

This will build out a couple of generic recipe objects and return those items in a list.

Author(s)

Steven P. Sanderson II, MPH

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- initial_time_split(
data_tbl
, prop = 0.8

)

ts_auto_recipe(
.data = data_tbl
, .date_col = date_col
, .pred_col = value

)

ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)
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ts_auto_smooth_es Boilerplate Workflow

Description

This is a boilerplate function to automatically create the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_smooth_es(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_smooth_es",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_smooth_es

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1
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.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses modeltime::exp_smoothing() and sets the parsnip::engine to smooth_es.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#ref-examples

https://github.com/config-i1/smooth

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other exp_smoothing: ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_smooth_es <- ts_auto_smooth_es(
.data = data,

https://business-science.github.io/modeltime/reference/exp_smoothing.html#ref-examples
https://github.com/config-i1/smooth
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.num_cores = 2,

.date_col = date_col,

.value_col = value,

.rsamp_obj = splits,

.formula = value ~ .,

.grid_size = 3,

.tune = FALSE
)

ts_smooth_es$recipe_info

ts_auto_svm_poly Boilerplate Workflow

Description

This is a boilerplate function to automatically create the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot

Usage

ts_auto_svm_poly(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_svm_poly",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)
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Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_smooth_es

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses parsnip::svm_poly() and sets the parsnip::engine to kernlab.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/svm_poly.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other SVM: ts_auto_svm_rbf()

https://parsnip.tidymodels.org/reference/svm_poly.html
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Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_auto_poly <- ts_auto_svm_poly(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 3,
.tune = FALSE

)

ts_auto_poly$recipe_info

ts_auto_svm_rbf Boilerplate Workflow

Description

This is a boilerplate function to automatically create the following:

• recipe

• model specification

• workflow

• tuned model (grid ect)

• calibration tibble and plot
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Usage

ts_auto_svm_rbf(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_svm_rbf",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_smooth_es

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses parsnip::svm_rb() and sets the parsnip::engine to kernlab.

Value

A list
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Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/svm_rbf.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_theta(), ts_auto_xgboost()

Other SVM: ts_auto_svm_poly()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_auto_rbf <- ts_auto_svm_rbf(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 3,
.tune = FALSE

)

ts_auto_rbf$recipe_info

ts_auto_theta Boilerplate Workflow

https://parsnip.tidymodels.org/reference/svm_rbf.html
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Description

This is a boilerplate function to create automatically the following:

• recipe

• model specification

• workflow

• calibration tibble and plot

Usage

ts_auto_theta(
.data,
.date_col,
.value_col,
.rsamp_obj,
.prefix = "ts_theta",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.rsamp_obj The splits object

.prefix Default is ts_theta

.bootstrap_final

Not yet implemented.

Details

This uses the forecast::thetaf() for the parsnip engine. This model does not use exoge-
nous regressors, so only a univariate model of: value ~ date will be used from the .date_col
and .value_col that you provide.

Value

A list

Author(s)

Steven P. Sanderson II, MPH



56 ts_auto_xgboost

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details

https://pkg.robjhyndman.com/forecast/reference/thetaf.html

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
ts_auto_xgboost()

Other exp_smoothing: ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_smooth_es()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_theta <- ts_auto_theta(
.data = data,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits

)

ts_theta$recipe_info

ts_auto_xgboost Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

• recipe
• model specification
• workflow
• tuned model (grid ect)
• calibration tibble and plot

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details
https://pkg.robjhyndman.com/forecast/reference/thetaf.html
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Usage

ts_auto_xgboost(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_xgboost",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE

)

Arguments

.data The data being passed to the function. The time-series object.

.date_col The column that holds the datetime.

.value_col The column that has the value

.formula The formula that is passed to the recipe like value ~ .

.rsamp_obj The rsample splits object

.prefix Default is ts_xgboost

.tune Defaults to TRUE, this creates a tuning grid and tuned model.

.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.

.num_cores How many cores do you want to use. Default is 1

.cv_assess How many observations for assess. See timetk::time_series_cv()

.cv_skip How many observations to skip. See timetk::time_series_cv()

.cv_slice_limit

How many slices to return. See timetk::time_series_cv()

.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()

.bootstrap_final

Not yet implemented.

Details

This uses the parsnip::boost_tree() with the engine set to xgboost

Value

A list



58 ts_brownian_motion

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Boiler_Plate: ts_auto_arima(), ts_auto_arima_xgboost(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_xgboost <- ts_auto_xgboost(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE

)

ts_xgboost$recipe_info

ts_brownian_motion Brownian Motion

Description

Create a Brownian Motion Tibble
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Usage

ts_brownian_motion(
.time = 100,
.num_sims = 10,
.delta_time = 1,
.initial_value = 0,
.return_tibble = TRUE

)

Arguments

.time Total time of the simulation.

.num_sims Total number of simulations.

.delta_time Time step size.

.initial_value Integer representing the initial value.

.return_tibble The default is TRUE. If set to FALSE then an object of class matrix will be
returned.

Details

Brownian Motion, also known as the Wiener process, is a continuous-time random process that
describes the random movement of particles suspended in a fluid. It is named after the physicist
Robert Brown, who first described the phenomenon in 1827.

The equation for Brownian Motion can be represented as:

W(t) = W(0) + sqrt(t) * Z

Where W(t) is the Brownian motion at time t, W(0) is the initial value of the Brownian motion,
sqrt(t) is the square root of time, and Z is a standard normal random variable.

Brownian Motion has numerous applications, including modeling stock prices in financial markets,
modeling particle movement in fluids, and modeling random walk processes in general. It is a useful
tool in probability theory and statistical analysis.

Value

A tibble/matrix

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion_augment(), ts_geometric_brownian_motion(),
ts_geometric_brownian_motion_augment(), ts_random_walk()
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Examples

ts_brownian_motion()

ts_brownian_motion_augment

Brownian Motion

Description

Create a Brownian Motion Tibble

Usage

ts_brownian_motion_augment(
.data,
.date_col,
.value_col,
.time = 100,
.num_sims = 10,
.delta_time = NULL

)

Arguments

.data The data.frame/tibble being augmented.

.date_col The column that holds the date.

.value_col The value that is going to get augmented. The last value of this column becomes
the initial value internally.

.time How many time steps ahead.

.num_sims How many simulations should be run.

.delta_time Time step size.

Details

Brownian Motion, also known as the Wiener process, is a continuous-time random process that
describes the random movement of particles suspended in a fluid. It is named after the physicist
Robert Brown, who first described the phenomenon in 1827.

The equation for Brownian Motion can be represented as:

W(t) = W(0) + sqrt(t) * Z

Where W(t) is the Brownian motion at time t, W(0) is the initial value of the Brownian motion,
sqrt(t) is the square root of time, and Z is a standard normal random variable.

Brownian Motion has numerous applications, including modeling stock prices in financial markets,
modeling particle movement in fluids, and modeling random walk processes in general. It is a useful
tool in probability theory and statistical analysis.
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Value

A tibble/matrix

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion(), ts_geometric_brownian_motion(),
ts_geometric_brownian_motion_augment(), ts_random_walk()

Examples

rn <- rnorm(31)
df <- data.frame(
date_col = seq.Date(from = as.Date("2022-01-01"),

to = as.Date("2022-01-31"),
by = "day"),

value = rn
)

ts_brownian_motion_augment(
.data = df,
.date_col = date_col,
.value_col = value

)

ts_brownian_motion_plot

Auto-Plot a Geometric/Brownian Motion Augment

Description

Plot an augmented Geometric/Brownian Motion.

Usage

ts_brownian_motion_plot(.data, .date_col, .value_col, .interactive = FALSE)

Arguments

.data The data you are going to pass to the function to augment.

.date_col The column that holds the date

.value_col The column that holds the value

.interactive The default is FALSE, TRUE will produce an interactive plotly plot.



62 ts_calendar_heatmap_plot

Details

This function will take output from either the ts_brownian_motion_augment() or the ts_geometric_brownian_motion_augment()
function and plot them. The legend is set to "none" if the simulation count is higher than 9.

Value

A ggplot2 object or an interactive plotly plot

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Plot: ts_event_analysis_plot(), ts_qq_plot(), ts_random_walk_plot(), ts_scedacity_scatter_plot()

Examples

library(dplyr)

df <- ts_to_tbl(AirPassengers) %>% select(-index)

augmented_data <- df %>%
ts_brownian_motion_augment(
.date_col = date_col,
.value_col = value,
.time = 144

)

augmented_data %>%
ts_brownian_motion_plot(.date_col = date_col, .value_col = value)

ts_calendar_heatmap_plot

Time Series Calendar Heatmap

Description

Takes in data that has been aggregated to the day level and makes a calendar heatmap.

Usage

ts_calendar_heatmap_plot(
.data,
.date_col,
.value_col,
.low = "red",
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.high = "green",

.plt_title = "",

.interactive = TRUE
)

Arguments

.data The time-series data with a date column and value column.

.date_col The column that has the datetime values

.value_col The column that has the values

.low The color for the low value, must be quoted like "red". The default is "red"

.high The color for the high value, must be quoted like "green". The default is "green"

.plt_title The title of the plot

.interactive Default is TRUE to get an interactive plot using plotly::ggplotly(). It can
be set to FALSE to get a ggplot plot.

Details

The data provided must have been aggregated to the day level, if not funky output could result and
it is possible nothing will be output but errors. There must be a date column and a value column,
those are the only items required for this function to work.

This function is intentionally inflexible, it complains more and does less in order to force the user
to supply a clean data-set.

Value

A ggplot2 plot or if interactive a plotly plot

Author(s)

Steven P. Sanderson II, MPH

Examples

data_tbl <- data.frame(
date_col = seq.Date(

from = as.Date("2020-01-01"),
to = as.Date("2022-06-01"),
length.out = 365*2 + 180
),

value = rnorm(365*2+180, mean = 100)
)

ts_calendar_heatmap_plot(
.data = data_tbl
, .date_col = date_col
, .value_col = value
, .interactive = FALSE

)
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ts_compare_data Compare data over time periods

Description

Given a tibble/data.frame, you can get date from two different but comparative date ranges. Lets
say you want to compare visits in one year to visits from 2 years before without also seeing the
previous 1 year. You can do that with this function.

Usage

ts_compare_data(.data, .date_col, .start_date, .end_date, .periods_back)

Arguments

.data The date.frame/tibble that holds the data

.date_col The column with the date value

.start_date The start of the period you want to analyze

.end_date The end of the period you want to analyze

.periods_back How long ago do you want to compare data too. Time units are collapsed using
lubridate::floor_date(). The value can be:

• second
• minute
• hour
• day
• week
• month
• bimonth
• quarter
• season
• halfyear
• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed.

Details

• Uses the timetk::filter_by_time() function in order to filter the date column.

• Uses the timetk::subtract_time() function to subtract time from the start date.

Value

A tibble.
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Author(s)

Steven P. Sanderson II, MPH

See Also

Other Time_Filtering: ts_time_event_analysis_tbl()

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

ts_compare_data(
.data = data_tbl
, .date_col = date_col
, .start_date = "1955-01-01"
, .end_date = "1955-12-31"
, .periods_back = "2 years"
) %>%
summarise_by_time(

.date_var = date_col
, .by = "year"
, visits = sum(value)

)

ts_event_analysis_plot

Time Series Event Analysis Plot

Description

Plot out the data from the ts_time_event_analysis_tbl() function.

Usage

ts_event_analysis_plot(
.data,
.plot_type = "mean",
.plot_ci = TRUE,
.interactive = FALSE

)
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Arguments

.data The data that comes from the ts_time_event_analysis_tbl()

.plot_type The default is "mean" which will show the mean event change of the output
from the analysis tibble. The possible values for this are: mean, median, and
individual.

.plot_ci The default is TRUE. This will only work if you choose one of the aggregate
plots of either "mean" or "median"

.interactive The default is FALSE. TRUE will return a plotly plot.

Details

This function will take in data strictly from the ts_time_event_analysis_tbl() and plot out the
data. You can choose what type of plot you want in the parameter of .plot_type. This will give
you a choice of "mean", "median", and "individual".

You can also plot the upper and lower confidence intervals if you choose one of the aggregate plots
("mean"/"median").

Value

A ggplot2 object

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Plot: ts_brownian_motion_plot(), ts_qq_plot(), ts_random_walk_plot(), ts_scedacity_scatter_plot()

Examples

library(dplyr)
df <- ts_to_tbl(AirPassengers) %>% select(-index)

ts_time_event_analysis_tbl(
.data = df,
.horizon = 6,
.date_col = date_col,
.value_col = value,
.direction = "both"

) %>%
ts_event_analysis_plot()

ts_time_event_analysis_tbl(
.data = df,
.horizon = 6,
.date_col = date_col,
.value_col = value,
.direction = "both"
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) %>%
ts_event_analysis_plot(.plot_type = "individual")

ts_extract_auto_fitted_workflow

Extract Boilerplate Items

Description

Extract the fitted workflow from a ts_auto_ function.

Usage

ts_extract_auto_fitted_workflow(.input)

Arguments

.input This is the output list object of a ts_auto_ function.

Details

Extract the fitted workflow from a ts_auto_ function. This will only work on those functions that
are designated as Boilerplate.

Value

A fitted workflow object.

Author(s)

Steven P. Sanderson II, MPH

Examples

## Not run:
library(dplyr)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)
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ts_lm <- ts_auto_lm(
.data = data,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,

)

ts_extract_auto_fitted_workflow(ts_lm)

## End(Not run)

ts_feature_cluster Time Series Feature Clustering

Description

This function returns an output list of data and plots that come from using the K-Means clustering
algorithm on a time series data.

Usage

ts_feature_cluster(
.data,
.date_col,
.value_col,
...,
.features = c("frequency", "entropy", "acf_features"),
.scale = TRUE,
.prefix = "ts_",
.centers = 3

)

Arguments

.data The data passed must be a data.frame/tibble only.

.date_col The date column.

.value_col The column that holds the value of the time series where you want the features
and clustering performed on.

... This is where you can place grouping variables that are passed off to dplyr::group_by()

.features This is a quoted string vector using c() of features that you would like to pass.
You can pass any feature you make or those from the tsfeatures package.

.scale If TRUE, time series are scaled to mean 0 and sd 1 before features are computed

.prefix A prefix to prefix the feature columns. Default: "ts_"

.centers An integer of how many different centers you would like to generate. The default
is 3.



ts_feature_cluster 69

Details

This function will return a list object output. The function itself requires that a time series tib-
ble/data.frame get passed to it, along with the .date_col, the .value_col and a period of data. It
uses the underlying function timetk::tk_tsfeatures() and takes the output of that and performs
a clustering analysis using the K-Means algorithm.

The function has a parameter of .features which can take any of the features listed in the tsfeatures
package by Rob Hyndman. You can also create custom functions in the .GlobalEnviron and it will
take them as quoted arguments.

So you can make a function as follows

my_mean <- function(x){return(mean(x, na.rm = TRUE))}

You can then call this by using .features = c("my_mean").

The output of this function includes the following:

Data Section

• ts_feature_tbl

• user_item_matrix_tbl

• mapped_tbl

• scree_data_tbl

• input_data_tbl (the original data)

Plots

• static_plot

• plotly_plot

Value

A list output

Author(s)

Steven P. Sanderson II, MPH

See Also

https://pkg.robjhyndman.com/tsfeatures/index.html

Other Clustering: ts_feature_cluster_plot()

Examples

library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
mutate(group_id = rep(1:12, 12))

ts_feature_cluster(
.data = data_tbl,

https://pkg.robjhyndman.com/tsfeatures/index.html
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.date_col = date_col,

.value_col = value,
group_id,
.features = c("acf_features","entropy"),
.scale = TRUE,
.prefix = "ts_",
.centers = 3

)

ts_feature_cluster_plot

Time Series Feature Clustering

Description

This function returns an output list of data and plots that come from using the K-Means clustering
algorithm on a time series data.

Usage

ts_feature_cluster_plot(
.data,
.date_col,
.value_col,
...,
.center = 3,
.facet_ncol = 3,
.smooth = FALSE

)

Arguments

.data The data passed must be the output of the ts_feature_cluster() function.

.date_col The date column.

.value_col The column that holds the value of the time series that the featurs were built
from.

... This is where you can place grouping variables that are passed off to dplyr::group_by()

.center An integer of the chosen amount of centers from the ts_feature_cluster()
function.

.facet_ncol This is passed to the timetk::plot_time_series() function.

.smooth This is passed to the timetk::plot_time_series() function and is set to a
default of FALSE.
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Details

This function will return a list object output. The function itself requires that the ts_feature_cluster()
be passed to it as it will look for a specific attribute internally.

The output of this function includes the following:

Data Section

• original_data

• kmm_data_tbl

• user_item_tbl

• cluster_tbl

Plots

• static_plot

• plotly_plot

K-Means Object

• k-means object

Value

A list output

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Clustering: ts_feature_cluster()

Examples

library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
mutate(group_id = rep(1:12, 12))

output <- ts_feature_cluster(
.data = data_tbl,
.date_col = date_col,
.value_col = value,
group_id,
.features = c("acf_features","entropy"),
.scale = TRUE,
.prefix = "ts_",
.centers = 3

)
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ts_feature_cluster_plot(
.data = output,
.date_col = date_col,
.value_col = value,
.center = 2,
group_id

)

ts_forecast_simulator Time-series Forecasting Simulator

Description

Creating different forecast paths for forecast objects (when applicable), by utilizing the underlying
model distribution with the simulate function.

Usage

ts_forecast_simulator(
.model,
.data,
.ext_reg = NULL,
.frequency = NULL,
.bootstrap = TRUE,
.horizon = 4,
.iterations = 25,
.sim_color = "steelblue",
.alpha = 0.05

)

Arguments

.model A forecasting model of one of the following from the forecast package:

• Arima

• auto.arima

• ets

• nnetar

• Arima() with xreg

.data The data that is used for the .model parameter. This is used with timetk::tk_index()

.ext_reg A tibble or matrix of future xregs that should be the same length as the horizon
you want to forecast.

.frequency This is for the conversion of an internal table and should match the time fre-
quency of the data.

.bootstrap A boolean value of TRUE/FALSE. From forecast::simulate.Arima() Do
simulation using resampled errors rather than normally distributed errors.
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.horizon An integer defining the forecast horizon.

.iterations An integer, set the number of iterations of the simulation.

.sim_color Set the color of the simulation paths lines.

.alpha Set the opacity level of the simulation path lines.

Details

This function expects to take in a model of either Arima, auto.arima, ets or nnetar from the
forecast package. You can supply a forecasting horizon, iterations and a few other items. You
may also specify an Arima() model using xregs.

Value

The original time series, the simulated values and a some plots

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Simulator: ts_arima_simulator()

Examples

suppressPackageStartupMessages(library(forecast))
suppressPackageStartupMessages(library(dplyr))

# Create a model
fit <- auto.arima(AirPassengers)
data_tbl <- ts_to_tbl(AirPassengers)

# Simulate 50 possible forecast paths, with .horizon of 12 months
output <- ts_forecast_simulator(

.model = fit
, .horizon = 12
, .iterations = 50
, .data = data_tbl

)

output$ggplot
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ts_geometric_brownian_motion

Geometric Brownian Motion

Description

Create a Geometric Brownian Motion.

Usage

ts_geometric_brownian_motion(
.num_sims = 100,
.time = 25,
.mean = 0,
.sigma = 0.1,
.initial_value = 100,
.delta_time = 1/365,
.return_tibble = TRUE

)

Arguments

.num_sims Total number of simulations.

.time Total time of the simulation.

.mean Expected return

.sigma Volatility

.initial_value Integer representing the initial value.

.delta_time Time step size.

.return_tibble The default is TRUE. If set to FALSE then an object of class matrix will be
returned.

Details

Geometric Brownian Motion (GBM) is a statistical method for modeling the evolution of a given
financial asset over time. It is a type of stochastic process, which means that it is a system that
undergoes random changes over time.

GBM is widely used in the field of finance to model the behavior of stock prices, foreign exchange
rates, and other financial assets. It is based on the assumption that the asset’s price follows a random
walk, meaning that it is influenced by a number of unpredictable factors such as market trends, news
events, and investor sentiment.

The equation for GBM is:

dS/S = mdt + sdW
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where S is the price of the asset, t is time, m is the expected return on the asset, s is the volatility of
the asset, and dW is a small random change in the asset’s price.

GBM can be used to estimate the likelihood of different outcomes for a given asset, and it is often
used in conjunction with other statistical methods to make more accurate predictions about the
future performance of an asset.

This function provides the ability of simulating and estimating the parameters of a GBM process. It
can be used to analyze the behavior of financial assets and to make informed investment decisions.

Value

A tibble/matrix

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion(), ts_brownian_motion_augment(),
ts_geometric_brownian_motion_augment(), ts_random_walk()

Examples

ts_geometric_brownian_motion()

ts_geometric_brownian_motion_augment

Geometric Brownian Motion

Description

Create a Geometric Brownian Motion.

Usage

ts_geometric_brownian_motion_augment(
.data,
.date_col,
.value_col,
.num_sims = 10,
.time = 25,
.mean = 0,
.sigma = 0.1,
.delta_time = 1/365

)
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Arguments

.data The data you are going to pass to the function to augment.

.date_col The column that holds the date

.value_col The column that holds the value

.num_sims Total number of simulations.

.time Total time of the simulation.

.mean Expected return

.sigma Volatility

.delta_time Time step size.

Details

Geometric Brownian Motion (GBM) is a statistical method for modeling the evolution of a given
financial asset over time. It is a type of stochastic process, which means that it is a system that
undergoes random changes over time.

GBM is widely used in the field of finance to model the behavior of stock prices, foreign exchange
rates, and other financial assets. It is based on the assumption that the asset’s price follows a random
walk, meaning that it is influenced by a number of unpredictable factors such as market trends, news
events, and investor sentiment.

The equation for GBM is:

dS/S = mdt + sdW

where S is the price of the asset, t is time, m is the expected return on the asset, s is the volatility of
the asset, and dW is a small random change in the asset’s price.

GBM can be used to estimate the likelihood of different outcomes for a given asset, and it is often
used in conjunction with other statistical methods to make more accurate predictions about the
future performance of an asset.

This function provides the ability of simulating and estimating the parameters of a GBM process. It
can be used to analyze the behavior of financial assets and to make informed investment decisions.

Value

A tibble/matrix

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion(), ts_brownian_motion_augment(),
ts_geometric_brownian_motion(), ts_random_walk()
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Examples

rn <- rnorm(31)
df <- data.frame(
date_col = seq.Date(from = as.Date("2022-01-01"),

to = as.Date("2022-01-31"),
by = "day"),

value = rn
)

ts_geometric_brownian_motion_augment(
.data = df,
.date_col = date_col,
.value_col = value

)

ts_get_date_columns Get date or datetime variables (column names)

Description

Get date or datetime variables (column names)

Usage

ts_get_date_columns(.data)

Arguments

.data An object of class data.frame

Details

ts_get_date_columns returns the column names of date or datetime variables in a data frame.

Value

A vector containing the column names that are of date/date-like classes.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

ts_to_tbl(AirPassengers) %>%
ts_get_date_columns()

ts_growth_rate_augment

Augment Data with Time Series Growth Rates

Description

This function is used to augment a data frame or tibble with time series growth rates of selected
columns. You can provide a data frame or tibble as the first argument, the column(s) for which
you want to calculate the growth rates using the .value parameter, and optionally specify custom
names for the new columns using the .names parameter.

Usage

ts_growth_rate_augment(.data, .value, .names = "auto")

Arguments

.data A data frame or tibble containing the data to be augmented.

.value A quosure specifying the column(s) for which you want to calculate growth
rates.

.names Optional. A character vector specifying the names of the new columns to be
created. Use "auto" for automatic naming.

Value

A tibble that includes the original data and additional columns representing the growth rates of
the selected columns. The column names are either automatically generated or as specified in the
.names parameter.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Augment Function: ts_acceleration_augment(), ts_velocity_augment()

Examples

data <- data.frame(
Year = 1:5,
Income = c(100, 120, 150, 180, 200),
Expenses = c(50, 60, 75, 90, 100)

)
ts_growth_rate_augment(data, .value = c(Income, Expenses))

ts_growth_rate_vec Vector Function Time Series Growth Rate

Description

This function computes the growth rate of a numeric vector, typically representing a time series,
with optional transformations like scaling, power, and lag differences.

Usage

ts_growth_rate_vec(.x, .scale = 100, .power = 1, .log_diff = FALSE, .lags = 1)

Arguments

.x A numeric vector

.scale A numeric value that is used to scale the output

.power A numeric value that is used to raise the output to a power

.log_diff A logical value that determines whether the output is a log difference

.lags An integer that determines the number of lags to use

Details

The function calculates growth rates for a time series, allowing for scaling, exponentiation, and lag
differences. It can be useful for financial data analysis, among other applications.

The growth rate is computed as follows:

• If lags is positive and log_diff is FALSE: growth_rate = (((x / lag(x, lags))^power) - 1) * scale

• If lags is positive and log_diff is TRUE: growth_rate = log(x / lag(x, lags)) * scale

• If lags is negative and log_diff is FALSE: growth_rate = (((x / lead(x, -lags))^power) - 1) *
scale

• If lags is negative and log_diff is TRUE: growth_rate = log(x / lead(x, -lags)) * scale



80 ts_info_tbl

Value

A list object of workflows.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Vector Function: ts_acceleration_vec(), ts_velocity_vec()

Examples

# Calculate the growth rate of a time series without any transformations.
ts_growth_rate_vec(c(100, 110, 120, 130))

# Calculate the growth rate with scaling and a power transformation.
ts_growth_rate_vec(c(100, 110, 120, 130), .scale = 10, .power = 2)

# Calculate the log differences of a time series with lags.
ts_growth_rate_vec(c(100, 110, 120, 130), .log_diff = TRUE, .lags = -1)

# Plot
plot.ts(AirPassengers)
plot.ts(ts_growth_rate_vec(AirPassengers))

ts_info_tbl Get Time Series Information

Description

This function will take in a data set and return to you a tibble of useful information.

Usage

ts_info_tbl(.data, .date_col)

Arguments

.data The data you are passing to the function

.date_col This is only needed if you are passing a tibble.
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Details

This function can accept objects of the following classes:

• ts

• xts

• mts

• zoo

• tibble/data.frame

The function will return the following pieces of information in a tibble:

• name

• class

• frequency

• start

• end

• var

• length

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(),
util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()

Examples

ts_info_tbl(AirPassengers)
ts_info_tbl(BJsales)
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ts_is_date_class Check if an object is a date class

Description

Check if an object is a date class

Usage

ts_is_date_class(.x)

Arguments

.x A vector to check

Value

Logical (TRUE/FALSE)

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

seq.Date(from = as.Date("2022-01-01"), by = "day", length.out = 10) %>%
ts_is_date_class()

letters %>% ts_is_date_class()

ts_lag_correlation Time Series Lag Correlation Analysis
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Description

This function outputs a list object of both data and plots.

The data output are the following:

• lag_list

• lag_tbl

• correlation_lag_matrix

• correlation_lag_tbl

The plots output are the following:

• lag_plot

• plotly_lag_plot

• correlation_heatmap

• plotly_heatmap

Usage

ts_lag_correlation(
.data,
.date_col,
.value_col,
.lags = 1,
.heatmap_color_low = "white",
.heatmap_color_hi = "steelblue"

)

Arguments

.data A tibble of time series data

.date_col A date column

.value_col The value column being analyzed

.lags This is a vector of integer lags, ie 1 or c(1,6,12)

.heatmap_color_low

What color should the low values of the heatmap of the correlation matrix be,
the default is ’white’

.heatmap_color_hi

What color should the low values of the heatmap of the correlation matrix be,
the default is ’steelblue’

Details

This function takes in a time series data in the form of a tibble and outputs a list object of data and
plots. This function will take in an argument of ’.lags’ and get those lags in your data, outputting a
correlation matrix, heatmap and lag plot among other things of the input data.
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Value

A list object

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

library(dplyr)

df <- ts_to_tbl(AirPassengers) %>% select(-index)
lags <- c(1,3,6,12)

output <- ts_lag_correlation(
.data = df,
.date_col = date_col,
.value_col = value,
.lags = lags

)

output$data$correlation_lag_matrix
output$plots$lag_plot

ts_ma_plot Time Series Moving Average Plot

Description

This function will produce a ggplot2 plot with facet wrapping. The plot contains three moving
average panels stacked on top of each other using facet_wrap. The panels show the main time series
with moving average, and two difference calculations: Diff A shows sequential period-over-period
percentage changes (e.g., month-over-month or week-over-week), and Diff B shows year-over-year
percentage changes.
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Usage

ts_ma_plot(
.data,
.date_col,
.value_col,
.ts_frequency = "monthly",
.main_title = NULL,
.secondary_title = NULL,
.tertiary_title = NULL

)

Arguments

.data The data you want to visualize. This should be pre-processed and the aggrega-
tion should match the .frequency argument.

.date_col The data column from the .data argument.

.value_col The value column from the .data argument

.ts_frequency The frequency of the aggregation, quoted, ie. "monthly", anything else will
default to weekly, so it is very important that the data passed to this function be
in either a weekly or monthly aggregation.

.main_title The title of the main plot.

.secondary_title

The title of the second plot.
.tertiary_title

The title of the third plot.

Details

This function expects to take in a data.frame/tibble. It will return a list object so it is a good idea to
save the output to a variable and extract from there.

Value

A list containing the ggplot2 plot object and the summary data table.

Author(s)

Steven P. Sanderson II, MPH

Examples

suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

output <- ts_ma_plot(
.data = data_tbl,
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.date_col = date_col,

.value_col = value
)

output$pgrid
output$data_summary_tbl %>% tail()

output <- ts_ma_plot(
.data = data_tbl,
.date_col = date_col,
.value_col = value,
.ts_frequency = "month"

)

output$pgrid
output$data_summary_tbl %>% tail()

ts_model_auto_tune Time Series Model Tuner

Description

This function will create a tuned model. It uses the ts_model_spec_tune_template() under the
hood to get the generic template that is used in the grid search.

Usage

ts_model_auto_tune(
.modeltime_model_id,
.calibration_tbl,
.splits_obj,
.drop_training_na = TRUE,
.date_col,
.value_col,
.tscv_assess = "12 months",
.tscv_skip = "6 months",
.slice_limit = 6,
.facet_ncol = 2,
.grid_size = 30,
.num_cores = 1,
.best_metric = "rmse"

)

Arguments

.modeltime_model_id

The .model_id from a calibrated modeltime table.
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.calibration_tbl

A calibrated modeltime table.

.splits_obj The time_series_split object.

.drop_training_na

A boolean that will drop NA values from the training(splits) data

.date_col The column that holds the date values.

.value_col The column that holds the time series values.

.tscv_assess A character expression like "12 months". This gets passed to timetk::time_series_cv()

.tscv_skip A character expression like "6 months". This gets passed to timetk::time_series_cv()

.slice_limit An integer that gets passed to timetk::time_series_cv()

.facet_ncol The number of faceted columns to be passed to plot_time_series_cv_plan

.grid_size An integer that gets passed to the dials::grid_latin_hypercube() function.

.num_cores The default is 1, you can set this to any integer value as long as it is equal to or
less than the available cores on your machine.

.best_metric The default is "rmse" and this can be set to any default dials metric. This must
be passed as a character.

Details

This function can work with the following parsnip/modeltime engines:

• "auto_arima"

• "auto_arima_xgboost"

• "ets"

• "croston"

• "theta"

• "stlm_ets"

• "tbats"

• "stlm_arima"

• "nnetar"

• "prophet"

• "prophet_xgboost"

• "lm"

• "glmnet"

• "stan"

• "spark"

• "keras"

• "earth"

• "xgboost"

• "kernlab"
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This function returns a list object with several items inside of it. There are three categories of items
that are inside of the list.

• data

• model_info

• plots

The data section has the following items:

• calibration_tbl This is the calibration data passed into the function.

• calibration_tuned_tbl This is a calibration tibble that has used the tuned workflow.

• tscv_data_tbl This is the tibble of the time series cross validation.

• tuned_results This is a tuning results tibble with all slices from the time series cross vali-
dation.

• best_tuned_results_tbl This is a tibble of the parameters for the best test set with the
chosen metric.

• tscv_obj This is the actual time series cross validation object returned from timetk::time_series_cv()

The model_info section has the following items:

• model_spec This is the original modeltime/parsnip model specification.

• model_spec_engine This is the engine used for the model specification.

• model_spec_tuner This is the tuning model template returned from ts_model_spec_tune_template()

• plucked_model This is the model that we have plucked from the calibration tibble for tuning.

• wflw_tune_spec This is a new workflow with the model_spec_tuner attached.

• grid_spec This is the grid search specification for the tuning process.

• tuned_tscv_wflw_spec This is the final tuned model where the workflow and model have
been finalized. This would be the model that you would want to pull out if you are going to
work with it further.

The plots section has the following items:

• tune_results_plt This is a static ggplot of the grid search.

• tscv_pl This is the time series cross validation plan plot.

Value

A list object with multiple items.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Model Tuning: ts_model_spec_tune_template()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

## Not run:
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))

data <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = data
, .date_col = date_col
, .pred_col = value

)

wfsets <- ts_wfs_mars(
.model_type = "earth"
, .recipe_list = rec_objs

)

wf_fits <- wfsets %>%
modeltime_fit_workflowset(
data = training(splits)
, control = control_fit_workflowset(
allow_par = TRUE
, verbose = TRUE
)

)

models_tbl <- wf_fits %>%
filter(.model != "NULL")

calibration_tbl <- models_tbl %>%
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modeltime_calibrate(new_data = testing(splits))

output <- ts_model_auto_tune(
.modeltime_model_id = 1,
.calibration_tbl = calibration_tbl,
.splits_obj = splits,
.drop_training_na = TRUE,
.date_col = date_col,
.value_col = value,
.tscv_assess = "12 months",
.tscv_skip = "3 months",
.num_cores = parallel::detectCores() - 1

)

## End(Not run)

ts_model_compare Compare Two Time Series Models

Description

This function will expect to take in two models that will be used for comparison. It is useful to use
this after appropriately following the modeltime workflow and getting two models to compare. This
is an extension of the calibrate and plot, but it only takes two models and is most likely better suited
to be used after running a model through the ts_model_auto_tune() function to see the difference
in performance after a base model has been tuned.

Usage

ts_model_compare(
.model_1,
.model_2,
.type = "testing",
.splits_obj,
.data,
.print_info = TRUE,
.metric = "rmse"

)

Arguments

.model_1 The model being compared to the base, this can also be a hyperparameter tuned
model.

.model_2 The base model.

.type The default is the testing tibble, can be set to training as well.

.splits_obj The splits object
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.data The original data that was passed to splits

.print_info This is a boolean, the default is TRUE

.metric This should be one of the following character strings:

• "mae"
• "mape"
• "mase"
• "smape"
• "rmse"
• "rsq"

Details

This function expects to take two models. You must tell it if it will be assessing the training or
testing data, where the testing data is the default. You must therefore supply the splits object to this
function along with the origianl dataset. You must also tell it which default modeltime accuracy
metric should be printed on the graph itself. You can also tell this function to print information to
the console or not. A static ggplot2 polot and an interactive plotly plot will be returned inside of
the output list.

Value

The function outputs a list invisibly.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

## Not run:
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(
data = data_tbl,
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date_var = date_col,
assess = "12 months",
cumulative = TRUE

)

rec_obj <- ts_auto_recipe(
.data = data_tbl,
.date_col = date_col,
.pred_col = value

)

wfs_mars <- ts_wfs_mars(.recipe_list = rec_obj)

wf_fits <- wfs_mars %>%
modeltime_fit_workflowset(

data = training(splits)
, control = control_fit_workflowset(

allow_par = FALSE
, verbose = TRUE

)
)

calibration_tbl <- wf_fits %>%
modeltime_calibrate(new_data = testing(splits))

base_mars <- calibration_tbl %>% pluck_modeltime_model(1)
date_mars <- calibration_tbl %>% pluck_modeltime_model(2)

ts_model_compare(
.model_1 = base_mars,
.model_2 = date_mars,
.type = "testing",
.splits_obj = splits,
.data = data_tbl,
.print_info = TRUE,
.metric = "rmse"
)$plots$static_plot

## End(Not run)

ts_model_rank_tbl Model Rank

Description

This takes in a calibration tibble and computes the ranks of the models inside of it.

Usage

ts_model_rank_tbl(.calibration_tbl)
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Arguments

.calibration_tbl

A calibrated modeltime table.

Details

This takes in a calibration tibble and computes the ranks of the models inside of it. It computes for
now only the default yardstick metrics from modeltime These are the following using the dplyr
min_rank() function with desc use on rsq:

• "rmse"

• "mae"

• "mape"

• "smape"

• "rsq"

Value

A tibble with models ranked by metric performance order

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(
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data_tbl,
date_var = date_col,
assess = "12 months",
cumulative = TRUE

)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")

wflw_fit_arima <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_arima) %>%
fit(training(splits))

wflw_fit_mars <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_mars) %>%
fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
modeltime_calibrate(new_data = testing(splits))

ts_model_rank_tbl(calibration_tbl)

## End(Not run)

ts_model_spec_tune_template

Time Series Model Spec Template

Description

This function will create a generic tuneable model specification, this function can be used by itself
and is called internally by ts_model_auto_tune().

Usage

ts_model_spec_tune_template(.parsnip_engine = NULL, .model_spec_class = NULL)
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Arguments

.parsnip_engine

The model engine that is used by parsnip::set_engine().
.model_spec_class

The model spec class that is use by parsnip. For example the ’kernlab’ engine
can use both svm_poly and svm_rbf.

Details

This function takes in a single parameter and uses that to output a generic tuneable model specifi-
cation. This function can work with the following parsnip/modeltime engines:

• "auto_arima"

• "auto_arima_xgboost"

• "ets"

• "croston"

• "theta"

• "smooth_es"

• "stlm_ets"

• "tbats"

• "stlm_arima"

• "nnetar"

• "prophet"

• "prophet_xgboost"

• "lm"

• "glmnet"

• "stan"

• "spark"

• "keras"

• "earth"

• "xgboost"

• "kernlab"

Value

A tuneable parsnip model specification.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Model Tuning: ts_model_auto_tune()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

ts_model_spec_tune_template("ets")
ts_model_spec_tune_template("prophet")

ts_qc_run_chart Quality Control Run Chart

Description

A control chart is a specific type of graph that shows data points between upper and lower limits
over a period of time. You can use it to understand if the process is in control or not. These charts
commonly have three types of lines such as upper and lower specification limits, upper and lower
limits and planned value. By the help of these lines, Control Charts show the process behavior over
time.

Usage

ts_qc_run_chart(
.data,
.date_col,
.value_col,
.interactive = FALSE,
.median = TRUE,
.cl = TRUE,
.mcl = TRUE,
.ucl = TRUE,
.lc = FALSE,
.lmcl = FALSE,
.llcl = FALSE

)

Arguments

.data The data.frame/tibble to be passed.

.date_col The column holding the timestamp.
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.value_col The column with the values to be analyzed.

.interactive Default is FALSE, TRUE for an interactive plotly plot.

.median Default is TRUE. This will show the median line of the data.

.cl This is the first upper control line

.mcl This is the second sigma control line positive

.ucl This is the third sigma control line positive

.lc This is the first negative control line

.lmcl This is the second sigma negative control line

.llcl This si the thrid sigma negative control line

Details

• Expects a time-series tibble/data.frame

• Expects a date column and a value column

Value

A static ggplot2 graph or if .interactive is set to TRUE a plotly plot

Author(s)

Steven P. Sanderson II, MPH

Examples

library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

data_tbl %>%
ts_qc_run_chart(
.date_col = date_col
, .value_col = value
, .llcl = TRUE

)
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ts_qq_plot Time Series Model QQ Plot

Description

This takes in a calibration tibble and will produce a QQ plot.

Usage

ts_qq_plot(.calibration_tbl, .model_id = NULL, .interactive = FALSE)

Arguments

.calibration_tbl

A calibrated modeltime table.

.model_id The id of a particular model from a calibration tibble. If there are multiple
models in the tibble and this remains NULL then the plot will be returned using
ggplot2::facet_grid(~ .model_id)

.interactive A boolean with a default value of FALSE. TRUE will produce an interactive
plotly plot.

Details

This takes in a calibration tibble and will create a QQ plot. You can also pass in a model_id and a
boolean for interactive which will return a plotly::ggplotly interactive plot.

Value

A QQ plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

Other Plot: ts_brownian_motion_plot(), ts_event_analysis_plot(), ts_random_walk_plot(),
ts_scedacity_scatter_plot()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
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Examples

# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(
data_tbl,
date_var = date_col,
assess = "12 months",
cumulative = TRUE

)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")

wflw_fit_arima <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_arima) %>%
fit(training(splits))

wflw_fit_mars <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_mars) %>%
fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
modeltime_calibrate(new_data = testing(splits))

ts_qq_plot(calibration_tbl)

## End(Not run)
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ts_random_walk Random Walk Function

Description

This function takes in four arguments and returns a tibble of random walks.

Usage

ts_random_walk(
.mean = 0,
.sd = 0.1,
.num_walks = 100,
.periods = 100,
.initial_value = 1000

)

Arguments

.mean The desired mean of the random walks

.sd The standard deviation of the random walks

.num_walks The number of random walks you want generated

.periods The length of the random walk(s) you want generated

.initial_value The initial value where the random walks should start

Details

Monte Carlo simulations were first formally designed in the 1940’s while developing nuclear weapons,
and since have been heavily used in various fields to use randomness solve problems that are po-
tentially deterministic in nature. In finance, Monte Carlo simulations can be a useful tool to give a
sense of how assets with certain characteristics might behave in the future. While there are more
complex and sophisticated financial forecasting methods such as ARIMA (Auto-Regressive Inte-
grated Moving Average) and GARCH (Generalized Auto-Regressive Conditional Heteroskedastic-
ity) which attempt to model not only the randomness but underlying macro factors such as sea-
sonality and volatility clustering, Monte Carlo random walks work surprisingly well in illustrating
market volatility as long as the results are not taken too seriously.

Value

A tibble

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion(), ts_brownian_motion_augment(),
ts_geometric_brownian_motion(), ts_geometric_brownian_motion_augment()
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Examples

ts_random_walk(
.mean = 0,
.sd = 1,
.num_walks = 25,
.periods = 180,
.initial_value = 6
)

ts_random_walk_ggplot_layers

Get Random Walk ggplot2 layers

Description

Get layers to add to a ggplot graph from the ts_random_walk() function.

Usage

ts_random_walk_ggplot_layers(.data)

Arguments

.data The data passed to the function.

Details

• Set the intercept of the initial value from the random walk

• Set the max and min of the cumulative sum of the random walks

Value

A ggplot2 layers object

Author(s)

Steven P. Sanderson II, MPH

Examples

library(ggplot2)

df <- ts_random_walk()

df %>%
ggplot(

mapping = aes(
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x = x
, y = cum_y
, color = factor(run)
, group = factor(run)

)
) +
geom_line(alpha = 0.8) +
ts_random_walk_ggplot_layers(df)

ts_random_walk_plot Auto-Plot a Random Walk

Description

Plot a random walk with side-by-side facets showing both the random variable and cumulative
product (random walk path).

Usage

ts_random_walk_plot(.data, .interactive = FALSE)

Arguments

.data The data from ts_random_walk() function.

.interactive The default is FALSE, TRUE will produce an interactive plotly plot.

Details

This function will take output from the ts_random_walk() function and create a side-by-side
faceted plot. The left panel shows the random variable (y) over time, and the right panel shows
the cumulative product (cum_y, i.e., the random walk path) over time. Each simulation run is
shown as a separate line. The legend is set to "none" if the simulation count is higher than 9.

Value

A ggplot2 object or an interactive plotly plot

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Plot: ts_brownian_motion_plot(), ts_event_analysis_plot(), ts_qq_plot(), ts_scedacity_scatter_plot()
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Examples

df <- ts_random_walk(
.mean = 0,
.sd = 1,
.num_walks = 25,
.periods = 180,
.initial_value = 100

)

ts_random_walk_plot(df)

ts_scale_color_colorblind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

ts_scale_color_colorblind(..., theme = "ts")

Arguments

... Data passed in from a ggplot object

theme Right now this is ts only. Anything else will render an error.

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A gggplot layer

Author(s)

Steven P. Sanderson II, MPH
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ts_scale_fill_colorblind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

ts_scale_fill_colorblind(..., theme = "ts")

Arguments

... Data passed in from a ggplot object

theme Right now this is ts only. Anything else will render an error.

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A gggplot layer

Author(s)

Steven P. Sanderson II, MPH

ts_scedacity_scatter_plot

Time Series Model Scedacity Plot

Description

This takes in a calibration tibble and will produce a scedacity plot.

Usage

ts_scedacity_scatter_plot(
.calibration_tbl,
.model_id = NULL,
.interactive = FALSE

)
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Arguments

.calibration_tbl

A calibrated modeltime table.

.model_id The id of a particular model from a calibration tibble. If there are multiple
models in the tibble and this remains NULL then the plot will be returned using
ggplot2::facet_grid(~ .model_id)

.interactive A boolean with a default value of FALSE. TRUE will produce an interactive
plotly plot.

Details

This takes in a calibration tibble and will create a scedacity plot. You can also pass in a model_id
and a boolean for interactive which will return a plotly::ggplotly interactive plot.

Value

A Scedacity plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://en.wikipedia.org/wiki/Homoscedasticity

Other Plot: ts_brownian_motion_plot(), ts_event_analysis_plot(), ts_qq_plot(), ts_random_walk_plot()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(

https://en.wikipedia.org/wiki/Homoscedasticity
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data_tbl,
date_var = date_col,
assess = "12 months",
cumulative = TRUE

)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")

wflw_fit_arima <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_arima) %>%
fit(training(splits))

wflw_fit_mars <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec_mars) %>%
fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
modeltime_calibrate(new_data = testing(splits))

ts_scedacity_scatter_plot(calibration_tbl)

## End(Not run)

ts_sma_plot Simple Moving Average Plot

Description

This function will take in a value column and return any number n moving averages.

Usage

ts_sma_plot(
.data,
.date_col,
.value_col,
.sma_order = 2,
.func = mean,
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.align = "center",

.partial = FALSE
)

Arguments

.data The data that you are passing, must be a data.frame/tibble.

.date_col The column that holds the date.

.value_col The column that holds the value.

.sma_order This will default to 1. This can be a vector like c(2,4,6,12)

.func The unquoted function you want to pass, mean, median, etc

.align This can be either "left", "center", "right"

.partial This is a bool value of TRUE/FALSE, the default is TRUE

Details

This function will accept a time series object or a tibble/data.frame. This is a simple wrapper around
timetk::slidify_vec(). It uses that function to do the underlying moving average work.

It can only handle a single moving average at a time and therefore if multiple are called for, it will
loop through and append data to a tibble object.

Value

Will return a list object.

Author(s)

Steven P. Sanderson II, MPH

Examples

df <- ts_to_tbl(AirPassengers)
out <- ts_sma_plot(df, date_col, value, .sma_order = c(3,6))

out$data

out$plots$static_plot
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ts_splits_plot Time Series Splits Plot

Description

Sometimes we want to see the training and testing data in a plot. This is a simple wrapper around a
couple of functions from the timetk package.

Usage

ts_splits_plot(.splits_obj, .date_col, .value_col)

Arguments

.splits_obj The predefined splits object.

.date_col The date column for the time series.

.value_col The value column of the time series.

Details

You should already have a splits object defined. This function takes in three parameters, the splits
object, a date column and the value column.

Value

A time series cv plan plot

Author(s)

Steven P. Sanderson II, MPH

See Also

• https://business-science.github.io/timetk/reference/index.html#section-cross-validation-plan-visualization-resample-sets-
(timetk)

• https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.
html(tk_time_sers_cv_plan)

• https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.
html(plot_time_series_cv_plan)

https://business-science.github.io/timetk/reference/index.html#section-cross-validation-plan-visualization-resample-sets-
https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.html
https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.html
https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.html
https://business-science.github.io/timetk/reference/plot_time_series_cv_plan.html
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Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))

data <- ts_to_tbl(AirPassengers) %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

ts_splits_plot(
.splits_obj = splits,
.date_col = date_col,
.value_col = value

)

ts_time_event_analysis_tbl

Event Analysis

Description

Given a tibble/data.frame, you can get information on what happens before, after, or in both di-
rections of some given event, where the event is defined by some percentage increase/decrease in
values from time t to t+1

Usage

ts_time_event_analysis_tbl(
.data,
.date_col,
.value_col,
.percent_change = 0.05,
.horizon = 12,
.precision = 2,
.direction = "forward",
.filter_non_event_groups = TRUE

)
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Arguments

.data The date.frame/tibble that holds the data.

.date_col The column with the date value.

.value_col The column with the value you are measuring.

.percent_change

This defaults to 0.05 which is a 5% increase in the .value_col.

.horizon How far do you want to look back or ahead.

.precision The default is 2 which means it rounds the lagged 1 value percent change to 2
decimal points. You may want more for more finely tuned results, this will result
in fewer groupings.

.direction The default is forward. You can supply either forward, backwards or both.

.filter_non_event_groups

The default is TRUE, this drops groupings with no events on the rare occasion
it does occur.

Details

This takes in a data.frame/tibble of a time series. It requires a date column, and a value column.
You can convert a ts/xts/zoo/mts object into a tibble by using the ts_to_tbl() function.

You will provide the function with a percentage change in the form of -1 to 1 inclusive. You then
provide a time horizon in which you want to see. For example you may want to see what happens
to AirPassengers after a 0.1 percent increase in volume.

The next most important thing to supply is the direction. Do you want to see what typically happens
after such an event, what leads up to such an event, or both.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Time_Filtering: ts_compare_data()

Examples

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))

df_tbl <- ts_to_tbl(AirPassengers) %>% select(-index)

tst <- ts_time_event_analysis_tbl(df_tbl, date_col, value, .direction = "both",
.horizon = 6)
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glimpse(tst)

tst %>%
ggplot(aes(x = x, y = mean_event_change)) +
geom_line() +
geom_line(aes(y = event_change_ci_high), color = "blue", linetype = "dashed") +
geom_line(aes(y = event_change_ci_low), color = "blue", linetype = "dashed") +
geom_vline(xintercept = 7, color = "red", linetype = "dashed") +
theme_minimal() +
labs(
title = "'AirPassengers' Event Analysis at 5% Increase",
subtitle = "Vertical Red line is normalized event epoch - Direction: Both",
x = "",
y = "Mean Event Change"

)

ts_to_tbl Coerce a time-series object to a tibble

Description

This function takes in a time-series object and returns it in a tibble format.

Usage

ts_to_tbl(.data)

Arguments

.data The time-series object you want transformed into a tibble

Details

This function makes use of timetk::tk_tbl() under the hood to obtain the initial tibble object.
After the inital object is obtained a new column called date_col is constructed from the index
column using lubridate if an index column is returned.

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(),
util_log_ts(), util_singlediff_ts()

Examples

ts_to_tbl(BJsales)
ts_to_tbl(AirPassengers)

ts_velocity_augment Augment Function Velocity

Description

Takes a numeric vector and will return the velocity of that vector.

Usage

ts_velocity_augment(.data, .value, .names = "auto")

Arguments

.data The data being passed that will be augmented by the function.

.value This is passed rlang::enquo() to capture the vectors you want to augment.

.names The default is "auto"

Details

Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is
computed by taking the first difference, so

xt − xt1

This function is intended to be used on its own in order to add columns to a tibble.

Value

A augmented

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Augment Function: ts_acceleration_augment(), ts_growth_rate_augment()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

ts_velocity_augment(data_tbl, b)

ts_velocity_vec Vector Function Time Series Acceleration

Description

Takes a numeric vector and will return the velocity of that vector.

Usage

ts_velocity_vec(.x)

Arguments

.x A numeric vector

Details

Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is
computed by taking the first difference, so

xt − xt1

This function can be used on it’s own. It is also the basis for the function ts_velocity_augment().

Value

A numeric vector
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Author(s)

Steven P. Sanderson II, MPH

See Also

Other Vector Function: ts_acceleration_vec(), ts_growth_rate_vec()

Examples

suppressPackageStartupMessages(library(dplyr))

len_out = 25
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
a = rnorm(len_out),
b = runif(len_out)

)

vec_1 <- ts_velocity_vec(data_tbl$b)

plot(data_tbl$b)
lines(data_tbl$b)
lines(vec_1, col = "blue")

ts_vva_plot Time Series Value, Velocity and Acceleration Plot

Description

This function will produce three plots faceted on a single graph. The three graphs are the following:

• Value Plot (Actual values)
• Value Velocity Plot
• Value Acceleration Plot

Usage

ts_vva_plot(.data, .date_col, .value_col)

Arguments

.data The data you want to visualize. This should be pre-processed and the aggrega-
tion should match the .frequency argument.

.date_col The data column from the .data argument.

.value_col The value column from the .data argument
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Details

This function expects to take in a data.frame/tibble. It will return a list object that contains the
augmented data along with a static plot and an interactive plotly plot. It is important that the data
be prepared and have at minimum a date column and the value column as they need to be supplied
to the function. If your data is a ts, xts, zoo or mts then use ts_to_tbl() to convert it to a tibble.

Value

The original time series augmented with the differenced data, a static plot and a plotly plot of the
ggplot object. The output is a list that gets returned invisibly.

Author(s)

Steven P. Sanderson II, MPH

Examples

suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
select(-index)

ts_vva_plot(data_tbl, date_col, value)$plots$static_plot

ts_wfs_arima_boost Auto Arima XGBoost Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_arima_boost(
.model_type = "all_engines",
.recipe_list,
.trees = 10,
.min_node = 2,
.tree_depth = 6,
.learn_rate = 0.015,
.stop_iter = NULL,
.seasonal_period = 0,
.non_seasonal_ar = 0,
.non_seasonal_differences = 0,
.non_seasonal_ma = 0,
.seasonal_ar = 0,
.seasonal_differences = 0,
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.seasonal_ma = 0
)

Arguments

.model_type This is where you will set your engine. It uses modeltime::arima_boost()
under the hood and can take one of the following:

• "arima_xgboost"
• "auto_arima_xgboost
• "all_engines" - This will make a model spec for all available engines.

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.trees An integer for the number of trees contained in the ensemble.

.min_node An integer for the minimum number of data points in a node that is required for
the node to be split further.

.tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

.learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only).

.stop_iter The number of iterations without improvement before stopping (xgboost only).

.seasonal_period

Set to 0,
.non_seasonal_ar

Set to 0,
.non_seasonal_differences

Set to 0,
.non_seasonal_ma

Set to 0,
.seasonal_ar Set to 0,
.seasonal_differences

Set to 0,
.seasonal_ma Set to 0,

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This uses the option set_engine("auto_arima_xgboost") or set_engine("arima_xgboost")

modeltime::arima_boost() arima_boost() is a way to generate a specification of a time series
model that uses boosting to improve modeling errors (residuals) on Exogenous Regressors. It works
with both "automated" ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms
are:

• Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
• ARIMA + XGBoost Errors (engine = arima_xgboost)
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Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://business-science.github.io/modeltime/reference/arima_boost.html

Other Auto Workflowsets: ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(),
ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)

wf_sets <- ts_wfs_arima_boost("all_engines", rec_objs)
wf_sets

ts_wfs_auto_arima Auto Arima (Forecast auto_arima) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

https://workflowsets.tidymodels.org/
https://business-science.github.io/modeltime/reference/arima_boost.html
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Usage

ts_wfs_auto_arima(.model_type = "auto_arima", .recipe_list)

Arguments

.model_type This is where you will set your engine. It uses modeltime::arima_reg() under
the hood and can take one of the following:

• "auto_arima"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This only uses the option set_engine("auto_arima") and therefore the .model_type is not needed.
The parameter is kept because it is possible in the future that this could change, and it keeps with
the framework of how other functions are written.

modeltime::arima_reg() arima_reg() is a way to generate a specification of an ARIMA model
before fitting and allows the model to be created using different packages. Currently the only
package is forecast.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://business-science.github.io/modeltime/reference/arima_reg.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(),
ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

https://workflowsets.tidymodels.org/
https://business-science.github.io/modeltime/reference/arima_reg.html
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splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)

wf_sets <- ts_wfs_auto_arima("auto_arima", rec_objs)
wf_sets

ts_wfs_ets_reg Auto ETS Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_ets_reg(
.model_type = "all_engines",
.recipe_list,
.seasonal_period = "auto",
.error = "auto",
.trend = "auto",
.season = "auto",
.damping = "auto",
.smooth_level = 0.1,
.smooth_trend = 0.1,
.smooth_seasonal = 0.1

)

Arguments

.model_type This is where you will set your engine. It uses modeltime::exp_smoothing()
under the hood and can take one of the following:

• "ets"
• "croston"
• "theta"
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• "smooth_es"
• "all_engines" - This will make a model spec for all available engines.

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

.error The form of the error term: "auto", "additive", or "multiplicative". If the error is
multiplicative, the data must be non-negative.

.trend The form of the trend term: "auto", "additive", "multiplicative" or0 "none".

.season The form of the seasonal term: "auto", "additive", "multiplicative" or "none".

.damping Apply damping to a trend: "auto", "damped", or "none".

.smooth_level This is often called the "alpha" parameter used as the base level smoothing factor
for exponential smoothing models.

.smooth_trend This is often called the "beta" parameter used as the trend smoothing factor for
exponential smoothing models.

.smooth_seasonal

This is often called the "gamma" parameter used as the seasonal smoothing fac-
tor for exponential smoothing models.

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This uses the following engines:

modeltime::exp_smoothing() exp_smoothing() is a way to generate a specification of an Expo-
nential Smoothing model before fitting and allows the model to be created using different packages.
Currently the only package is forecast. Several algorithms are implemented:

• "ets"

• "croston"

• "theta"

• "smooth_es

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH
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See Also

https://workflowsets.tidymodels.org/

https://business-science.github.io/modeltime/reference/exp_smoothing.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_lin_reg(),
ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)

wf_sets <- ts_wfs_ets_reg("all_engines", rec_objs)
wf_sets

ts_wfs_lin_reg Auto Linear Regression Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_lin_reg(.model_type, .recipe_list, .penalty = 1, .mixture = 0.5)

https://workflowsets.tidymodels.org/
https://business-science.github.io/modeltime/reference/exp_smoothing.html
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Arguments

.model_type This is where you will set your engine. It uses parsnip::linear_reg() under
the hood and can take one of the following:

• "lm"
• "glmnet"
• "all_engines" - This will make a model spec for all available engines.

Not yet implemented are:

• "stan"
• "spark"
• "keras"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.penalty The penalty parameter of the glmnet. The default is 1

.mixture The mixture parameter of the glmnet. The default is 0.5

Details

This function expects to take in the recipes that you want to use in the modeling process. This is
an automated workflow process. There are sensible defaults set for the glmnet model specification,
but if you choose you can set them yourself if you have a good understanding of what they should
be.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/(workflowsets)

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

https://workflowsets.tidymodels.org/
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splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)

wf_sets <- ts_wfs_lin_reg("all_engines", rec_objs)
wf_sets

ts_wfs_mars Auto MARS (Earth) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_mars(
.model_type = "earth",
.recipe_list,
.num_terms = 200,
.prod_degree = 1,
.prune_method = "backward"

)

Arguments

.model_type This is where you will set your engine. It uses parsnip::mars() under the
hood and can take one of the following:

• "earth"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.num_terms The number of features that will be retained in the final model, including the
intercept.

.prod_degree The highest possible interaction degree.

.prune_method The pruning method. This is a character, the default is "backward". You can
choose from one of the following:

• "backward"
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• "none"
• "exhaustive"
• "forward"
• "seqrep"
• "cv"

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This only uses the option set_engine("earth") and therefore the .model_type is not needed. The
parameter is kept because it is possible in the future that this could change, and it keeps with the
framework of how other functions are written.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://parsnip.tidymodels.org/reference/mars.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/mars.html
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)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value

)

wf_sets <- ts_wfs_mars("earth", rec_objs)
wf_sets

ts_wfs_nnetar_reg Auto NNETAR Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_nnetar_reg(
.model_type = "nnetar",
.recipe_list,
.non_seasonal_ar = 0,
.seasonal_ar = 0,
.hidden_units = 5,
.num_networks = 10,
.penalty = 0.1,
.epochs = 10

)

Arguments

.model_type This is where you will set your engine. It uses modeltime::nnetar_reg()
under the hood and can take one of the following:

• "nnetar"
.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)
.non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

.seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

.hidden_units An integer for the number of units in the hidden model.

.num_networks Number of networks to fit with different random starting weights. These are
then averaged when producing forecasts.

.penalty A non-negative numeric value for the amount of weight decay.

.epochs An integer for the number of training iterations.
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Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This uses the following engines:

modeltime::nnetar_reg() nnetar_reg() is a way to generate a specification of an NNETAR model
before fitting and allows the model to be created using different packages. Currently the only
package is forecast.

• "nnetar"

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://business-science.github.io/modeltime/reference/nnetar_reg.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col

https://workflowsets.tidymodels.org/
https://business-science.github.io/modeltime/reference/nnetar_reg.html
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, .pred_col = value
)

wf_sets <- ts_wfs_nnetar_reg("nnetar", rec_objs)
wf_sets

ts_wfs_prophet_reg Auto PROPHET Regression Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_prophet_reg(
.model_type = "all_engines",
.recipe_list,
.growth = NULL,
.changepoint_num = 25,
.changepoint_range = 0.8,
.seasonality_yearly = "auto",
.seasonality_weekly = "auto",
.seasonality_daily = "auto",
.season = "additive",
.prior_scale_changepoints = 25,
.prior_scale_seasonality = 1,
.prior_scale_holidays = 1,
.logistic_cap = NULL,
.logistic_floor = NULL,
.trees = 50,
.min_n = 10,
.tree_depth = 5,
.learn_rate = 0.01,
.loss_reduction = NULL,
.stop_iter = NULL

)

Arguments

.model_type This is where you will set your engine. It uses modeltime::prophet_reg()
under the hood and can take one of the following:

• "prophet" Or modeltime::prophet_boost() under the hood and can take
one of the following:

• "prophet_xgboost" You can also choose:
• "all_engines" - This will make a model spec for all available engines.
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.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.

.changepoint_num

Number of potential changepoints to include for modeling trend.
.changepoint_range

Adjusts the flexibility of the trend component by limiting to a percentage of data
before the end of the time series. 0.80 means that a changepoint cannot exist
after the first 80% of the data.

.seasonality_yearly

One of "auto", TRUE or FALSE. Set to FALSE for prophet_xgboost. Toggles
on/off a seasonal component that models year-over-year seasonality.

.seasonality_weekly

One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that mod-
els week-over-week seasonality. Set to FALSE for prophet_xgboost

.seasonality_daily

One of "auto", TRUE or FALSE. Toggles on/off a seasonal componet that mod-
els day-over-day seasonality. Set to FALSE for prophet_xgboost

.season ’additive’ (default) or ’multiplicative’.

.prior_scale_changepoints

Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

.prior_scale_seasonality

Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality.

.prior_scale_holidays

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

.logistic_cap When growth is logistic, the upper-bound for "saturation".

.logistic_floor

When growth is logistic, the lower-bound for "saturation"

.trees An integer for the number of trees contained in the ensemble.

.min_n An integer for the minimum number of data points in a node that is required for
the node to be split further.

.tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

.learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only).

.loss_reduction

A number for the reduction in the loss function required to split further (specific
engines only).

.stop_iter The number of iterations without improvement before stopping (xgboost only).
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Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the prophet and prophet_xgboost
model specification, but if you choose you can set them yourself if you have a good understanding
of what they should be.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/(workflowsets)

https://business-science.github.io/modeltime/reference/prophet_reg.html

https://business-science.github.io/modeltime/reference/prophet_boost.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value
)

wf_sets <- ts_wfs_prophet_reg("all_engines", rec_objs)
wf_sets

https://workflowsets.tidymodels.org/
https://business-science.github.io/modeltime/reference/prophet_reg.html
https://business-science.github.io/modeltime/reference/prophet_boost.html


130 ts_wfs_svm_poly

ts_wfs_svm_poly Auto SVM Poly (Kernlab) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_svm_poly(
.model_type = "kernlab",
.recipe_list,
.cost = 1,
.degree = 1,
.scale_factor = 1,
.margin = 0.1

)

Arguments

.model_type This is where you will set your engine. It uses parsnip::svm_poly() under
the hood and can take one of the following:

• "kernlab"
.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)
.cost A positive number for the cose of predicting a sample within or on the wrong

side of the margin.
.degree A positive number for polynomial degree.
.scale_factor A positive number for the polynomial scaling factor.
.margin A positive number for the epsilon in the SVM insensitive loss function (regres-

sion only.)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This only uses the option set_engine("kernlab") and therefore the .model_type is not needed.
The parameter is kept because it is possible in the future that this could change, and it keeps with
the framework of how other functions are written.

parsnip::svm_poly() svm_poly() defines a support vector machine model. For classification,
the model tries to maximize the width of the margin between classes. For regression, the model
optimizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision
boundary or regression line.
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Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://parsnip.tidymodels.org/reference/svm_poly.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_rbf(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value
)

wf_sets <- ts_wfs_svm_poly("kernlab", rec_objs)
wf_sets

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_poly.html
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ts_wfs_svm_rbf Auto SVM RBF (Kernlab) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_svm_rbf(
.model_type = "kernlab",
.recipe_list,
.cost = 1,
.rbf_sigma = 0.01,
.margin = 0.1

)

Arguments

.model_type This is where you will set your engine. It uses parsnip::svm_rbf() under the
hood and can take one of the following:

• "kernlab"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin.

.rbf_sigma A positive number for the radial basis function.

.margin A positive number for the epsilon in the SVM insensitive loss function (regres-
sion only).

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This only uses the option set_engine("kernlab") and therefore the .model_type is not needed.
The parameter is kept because it is possible in the future that this could change, and it keeps with
the framework of how other functions are written.

parsnip::svm_rbf() svm_rbf() defines a support vector machine model. For classification, the
model tries to maximize the width of the margin between classes. For regression, the model opti-
mizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision
boundary or regression line.
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Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://parsnip.tidymodels.org/reference/svm_rbf.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(),
ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value
)

wf_sets <- ts_wfs_svm_rbf("kernlab", rec_objs)
wf_sets

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_rbf.html
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ts_wfs_xgboost Auto XGBoost (XGBoost) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

ts_wfs_xgboost(
.model_type = "xgboost",
.recipe_list,
.trees = 15L,
.min_n = 1L,
.tree_depth = 6L,
.learn_rate = 0.3,
.loss_reduction = 0,
.sample_size = 1,
.stop_iter = Inf

)

Arguments

.model_type This is where you will set your engine. It uses parsnip::boost_tree under the
hood and can take one of the following:

• "xgboost"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.trees The number of trees (type: integer, default: 15L)

.min_n Minimal Node Size (type: integer, default: 1L)

.tree_depth Tree Depth (type: integer, default: 6L)

.learn_rate Learning Rate (type: double, default: 0.3)

.loss_reduction

Minimum Loss Reduction (type: double, default: 0.0)

.sample_size Proportion Observations Sampled (type: double, default: 1.0)

.stop_iter The number of ierations Before Stopping (type: integer, default: Inf)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This only uses the option set_engine("xgboost") and therefore the .model_type is not needed.
The parameter is kept because it is possible in the future that this could change, and it keeps with
the framework of how other functions are written.
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parsnip::boost_tree() xgboost::xgb.train() creates a series of decision trees forming an ensem-
ble. Each tree depends on the results of previous trees. All trees in the ensemble are combined to
produce a final prediction.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html

https://arxiv.org/abs/1603.02754

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(),
ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(),
ts_wfs_svm_rbf()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE

)

rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value
)

wf_sets <- ts_wfs_xgboost("xgboost", rec_objs)
wf_sets

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html
https://arxiv.org/abs/1603.02754
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util_difflog_ts Differencing with Log Transformation to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying differencing
with a logarithmic transformation. It iteratively increases the differencing order until stationarity is
achieved or informs the user if the transformation is not possible.

Usage

util_difflog_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency function
and checks if the minimum value of the time series is greater than 0. It then applies differencing
with a logarithmic transformation incrementally until the Augmented Dickey-Fuller test indicates
stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.

If differencing with a logarithmic transformation successfully makes the time series stationary, it
returns the stationary time series and related information as a list with the following elements:

• stationary_ts: The stationary time series after the transformation.

• ndiffs: The order of differencing applied to make it stationary.

• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.

• trans_type: Transformation type, which is "diff_log" in this case.

• ret: TRUE to indicate a successful transformation.

If the data either had a minimum value less than or equal to 0 or requires more differencing than
its frequency allows, it informs the user and suggests trying double differencing with a logarithmic
transformation.

Value

If the time series is already stationary or the differencing with a logarithmic transformation is suc-
cessful,

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_doublediff_ts(), util_doubledifflog_ts(),
util_log_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_difflog_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_difflog_ts(BJsales)$ret

util_doubledifflog_ts Double Differencing with Log Transformation to Make Time Series
Stationary

Description

This function attempts to make a non-stationary time series stationary by applying double differenc-
ing with a logarithmic transformation. It iteratively increases the differencing order until stationarity
is achieved or informs the user if the transformation is not possible.

Usage

util_doubledifflog_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency func-
tion and checks if the minimum value of the time series is greater than 0. It then applies double
differencing with a logarithmic transformation incrementally until the Augmented Dickey-Fuller
test indicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of
the data.

If double differencing with a logarithmic transformation successfully makes the time series station-
ary, it returns the stationary time series and related information as a list with the following elements:

• stationary_ts: The stationary time series after the transformation.

• ndiffs: The order of differencing applied to make it stationary.
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• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.

• trans_type: Transformation type, which is "double_diff_log" in this case.

• ret: TRUE to indicate a successful transformation.

If the data either had a minimum value less than or equal to 0 or requires more differencing than its
frequency allows, it informs the user that the data could not be stationarized.

Value

If the time series is already stationary or the double differencing with a logarithmic transformation
is successful, it returns a list as described in the details section. If the transformation is not possible,
it informs the user and returns a list with ret set to FALSE, indicating that the data could not be
stationarized.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(),
util_log_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_doubledifflog_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_doubledifflog_ts(BJsales)$ret

util_doublediff_ts Double Differencing to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying double differ-
encing. It iteratively increases the differencing order until stationarity is achieved.

Usage

util_doublediff_ts(.time_series)
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Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency func-
tion. It then applies double differencing incrementally until the Augmented Dickey-Fuller test in-
dicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the
data.

If double differencing successfully makes the time series stationary, it returns the stationary time
series and related information as a list with the following elements:

• stationary_ts: The stationary time series after double differencing.

• ndiffs: The order of differencing applied to make it stationary.

• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.

• trans_type: Transformation type, which is "double_diff" in this case.

• ret: TRUE to indicate a successful transformation.

If the data requires more double differencing than its frequency allows, it informs the user and
suggests trying differencing with the natural logarithm instead.

Value

If the time series is already stationary or the double differencing is successful, it returns a list as
described in the details section. If additional differencing is required, it informs the user and returns
a list with ret set to FALSE, suggesting trying differencing with the natural logarithm.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doubledifflog_ts(),
util_log_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_doublediff_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_doublediff_ts(BJsales)$ret
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util_log_ts Logarithmic Transformation to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying a logarithmic
transformation. If successful, it returns the stationary time series. If the transformation fails, it
informs the user.

Usage

util_log_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

This function checks if the minimum value of the input time series is greater than or equal to zero.
If yes, it performs the Augmented Dickey-Fuller test on the logarithm of the time series. If the
p-value of the test is less than 0.05, it concludes that the logarithmic transformation made the time
series stationary and returns the result as a list with the following elements:

• stationary_ts: The stationary time series after the logarithmic transformation.

• ndiffs: Not applicable in this case, marked as NA.

• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.

• trans_type: Transformation type, which is "log" in this case.

• ret: TRUE to indicate a successful transformation.

If the minimum value of the time series is less than or equal to 0 or if the logarithmic transformation
doesn’t make the time series stationary, it informs the user and returns a list with ret set to FALSE.

Value

If the time series is already stationary or the logarithmic transformation is successful, it returns a list
as described in the details section. If the transformation fails, it returns a list with ret set to FALSE.

Author(s)

Steven P. Sanderson II, MPH
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See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(),
util_doubledifflog_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_log_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_log_ts(BJsales.lead)$ret

util_singlediff_ts Single Differencing to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying single differenc-
ing. It iteratively increases the differencing order until stationarity is achieved.

Usage

util_singlediff_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency func-
tion. It then applies single differencing incrementally until the Augmented Dickey-Fuller test in-
dicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the
data.

If single differencing successfully makes the time series stationary, it returns the stationary time
series and related information as a list with the following elements:

• stationary_ts: The stationary time series after differencing.

• ndiffs: The order of differencing applied to make it stationary.

• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.

• trans_type: Transformation type, which is "diff" in this case.
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• ret: TRUE to indicate a successful transformation.

If the data requires more single differencing than its frequency allows, it informs the user and returns
a list with ret set to FALSE, indicating that double differencing may be needed.

Value

If the time series is already stationary or the single differencing is successful, it returns a list as
described in the details section. If additional differencing is required, it informs the user and returns
a list with ret set to FALSE.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(),
util_doubledifflog_ts(), util_log_ts()

Examples

# Example 1: Using a time series dataset
util_singlediff_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_singlediff_ts(BJsales)$ret
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