
Package ‘hdtg’
January 26, 2026

Title Generate Samples from Multivariate Truncated Normal
Distributions

Version 0.3.3

Maintainer Zhenyu Zhang <zhangzhenyusa@gmail.com>

Description Efficient sampling from high-dimensional truncated Gaussian
distributions, or multivariate truncated normal (MTN). Techniques include
zigzag Hamiltonian Monte Carlo as in Akihiko Nishimura, Zhenyu Zhang and
Marc A. Suchard (2024) <doi:10.1080/01621459.2024.2395587>, and har-
monic Monte Carlo in Ari Pakman
and Liam Paninski (2014) <doi:10.1080/10618600.2013.788448>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports Rcpp, RcppParallel, mgcv, Rdpack

RdMacros Rdpack

LinkingTo Rcpp, RcppEigen, RcppParallel

Suggests TruncatedNormal, testthat (>= 3.0.0)

Config/testthat/edition 3

SystemRequirements CPU with AVX/SSE4.2 (optional for better
performance)

Acknowledgements The package uses the following R infrastructure: Rcpp
(Eddelbuettel & Francois, 2011), RcppEigen (Bates &
Eddelbuettel, 2013), RcppParallel (Allaire et al., 2025), mgcv
(Wood, 2017), and Rdpack (Boshnakov, 2023).

NeedsCompilation yes

Author Zhenyu Zhang [aut, cre],
Andrew Chin [aut],
Akihiko Nishimura [aut],
Marc A. Suchard [aut],
John W. Ratcliff et al. [cph, ctb] (authors and copyright holders of
see2neon.h under an MIT license)

1

https://doi.org/10.1080/01621459.2024.2395587
https://doi.org/10.1080/10618600.2013.788448

2 cholesky

Repository CRAN

Date/Publication 2026-01-26 04:20:02 UTC

Contents

cholesky . 2
createEngine . 3
createNutsEngine . 4
drawLaplaceMomentum . 5
getHarmonicSample . 6
getInitialPosition . 7
getMarkovianZigzagSample . 8
getZigzagSample . 9
harmonicHMC . 10
markovianZigzag . 12
setMean . 14
setPrecision . 14
zigzagHMC . 15

Index 18

cholesky Efficient Cholesky decomposition

Description

Compute Cholesky decomposition of a matrix.

Usage

cholesky(A)

Arguments

A matrix to decompose

Value

upper triangular matrix R such that A = U’U.

See Also

harmonicHMC()

createEngine 3

Examples

Larger example
set.seed(123)
B <- matrix(rnorm(16), 4, 4)
B <- t(B) %*% B # Make symmetric positive definite
U <- cholesky(B)
U
Verify decomposition
all.equal(B, t(U) %*% U)

createEngine Create a Zigzag-HMC engine object

Description

Create the C++ object to set up SIMD vectorization for speeding up calculations for Zigzag-HMC
("Zigzag-HMC engine").

Usage

createEngine(
dimension,
lowerBounds,
upperBounds,
seed,
mean,
precision,
flags = 128L,
numThreads = 1L

)

Arguments

dimension the dimension of MTN.

lowerBounds a vector specifying the lower bounds.

upperBounds a vector specifying the upper bounds.

seed random seed.

mean the mean vector.

precision the precision matrix.

flags which SIMD instruction set to use. 128 = SSE, 256 = AVX.

numThreads number of threads for parallel execution (default = 1). Set to 0 for automatic
detection of available cores.

Value

a list whose only element is the Zigzag-HMC engine object.

4 createNutsEngine

See Also

setMean(), setPrecision(), zigzagHMC(), markovianZigzag()

Examples

Create a 2D engine with simple bounds
dimension <- 2
lowerBounds <- c(-1, -1)
upperBounds <- c(1, 1)
mean <- c(0, 0)
precision <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
engine <- createEngine(dimension, lowerBounds, upperBounds,

seed = 123, mean, precision, flags = 128)
Check the engine structure
str(engine)

createNutsEngine Create a Zigzag-NUTS engine object

Description

Create the C++ object to set up SIMD vectorization for speeding up calculations for Zigzag-NUTS
("Zigzag-NUTS engine").

Usage

createNutsEngine(
dimension,
lowerBounds,
upperBounds,
seed,
stepSize,
mean,
precision,
flags = 128L,
numThreads = 1L

)

Arguments

dimension the dimension of MTN.

lowerBounds a vector specifying the lower bounds.

upperBounds a vector specifying the upper bounds.

seed random seed.

stepSize the base step size for Zigzag-NUTS.

mean the mean vector.

drawLaplaceMomentum 5

precision the precision matrix.

flags which SIMD instruction set to use. 128 = SSE, 256 = AVX.

numThreads number of threads for parallel execution (default = 1). Set to 0 for automatic
detection of available cores.

Value

a list whose only element is the Zigzag-NUTS engine object.

See Also

setMean(), setPrecision(), zigzagHMC(), createEngine()

Examples

Create a Zigzag-NUTS engine for a 2D problem
dimension <- 2
lowerBounds <- c(-2, -2)
upperBounds <- c(2, 2)
stepSize <- 0.1
mean <- c(0.5, -0.5)
precision <- matrix(c(2, 0.3, 0.3, 2), nrow = 2)
nuts_engine <- createNutsEngine(dimension, lowerBounds, upperBounds,

seed = 456, stepSize, mean, precision)
str(nuts_engine)

drawLaplaceMomentum Draw a random Laplace momentum

Description

Generate a d-dimensional momentum where the density of each element is proportional to exp(-|pi|).

Usage

drawLaplaceMomentum(d)

Arguments

d dimension of the momentum.

Value

a d-dimensional Laplace-distributed momentum.

See Also

zigzagHMC()

6 getHarmonicSample

Examples

Draw a 3-dimensional Laplace momentum with reproducible results
set.seed(3)
momentum <- drawLaplaceMomentum(3)
momentum

getHarmonicSample One-step Harmonic HMC Sampler (Whitened Coordinates)

Description

One-step Harmonic HMC Sampler (Whitened Coordinates)

Usage

getHarmonicSample(
whitenedPosition,
whitenedConstraints,
integrationTime,
diagnosticMode = FALSE,
seed = NULL

)

Arguments

whitenedPosition

Position in whitened coordinates
whitenedConstraints

List from applyWhitenTransform()

integrationTime

Time for dynamics simulation

diagnosticMode Return bounce diagnostics

seed random seed

See Also

harmonicHMC()

Examples

Basic usage with whitened coordinates
set.seed(123)
whitened_pos <- c(0.1, -0.2, 0.3)
Create example whitened constraints
whitened_constraints <- list(

direc = matrix(c(1, 0, 0, 0, 1, 0), nrow = 2, byrow = TRUE),
direcRowNormSq = c(1, 1),

getInitialPosition 7

bound = c(-0.5, -0.5)
)
result <- getHarmonicSample(

whitenedPosition = whitened_pos,
whitenedConstraints = whitened_constraints,
integrationTime = pi/4

)
result

With diagnostics enabled
result_diag <- getHarmonicSample(

whitenedPosition = whitened_pos,
whitenedConstraints = whitened_constraints,
integrationTime = pi/4,
diagnosticMode = TRUE

)
str(result_diag)

getInitialPosition Get an eligible initial value for a MTN with given mean and trunca-
tions

Description

For a given MTN the function returns an initial vector whose elements are one of: (1) middle point
of the truncation interval if both lower and upper bounds are finite (2) lower (upper) bound +0.1
(-0.1) if only the lower (upper) bound is finite (3) the corresponding mean value if lower bound =
-Inf are upper bound = Inf.

Usage

getInitialPosition(mean, lowerBounds, upperBounds)

Arguments

mean a d-dimensional mean vector.

lowerBounds a d-dimensional vector specifying the lower bounds.

upperBounds a d-dimensional vector specifying the upper bounds.

Value

an eligible d-dimensional initial vector.

See Also

harmonicHMC(), zigzagHMC(), markovianZigzag()

8 getMarkovianZigzagSample

Examples

Example 1: Bounded interval
mean <- c(0, 0)
lower <- c(-1, -2)
upper <- c(1, 2)
getInitialPosition(mean, lower, upper)

Example 2: Mixed bounds (some finite, some infinite)
mean <- c(0, 0, 0)
lower <- c(-Inf, 0, -1)
upper <- c(Inf, 5, Inf)
getInitialPosition(mean, lower, upper)

Example 3: All unbounded (returns mean)
mean <- c(1, 2, 3)
lower <- c(-Inf, -Inf, -Inf)
upper <- c(Inf, Inf, Inf)
getInitialPosition(mean, lower, upper)

getMarkovianZigzagSample

Draw one Markovian zigzag sample

Description

Simulate the Markovian zigzag dynamics for a given position over a specified travel time.

Usage

getMarkovianZigzagSample(position, velocity = NULL, engine, travelTime)

Arguments

position a d-dimensional position vector.

velocity optional d-dimensional velocity vector. If NULL, it will be generated within the
function.

engine an object representing the Markovian zigzag engine, typically containing set-
tings and state required for the simulation.

travelTime the duration for which the dynamics are simulated.

Value

A list containing the position and velocity after simulating the dynamics.

See Also

markovianZigzag()

getZigzagSample 9

Examples

First create an engine
set.seed(123)
engine <- createEngine(

dimension = 2,
lowerBounds = c(-1, -1),
upperBounds = c(1, 1),
seed = 123,
mean = c(0, 0),
precision = diag(2)

)

Draw a single Markovian zigzag sample
position <- c(0.1, -0.2)
travel_time <- 0.5
sample_result <- getMarkovianZigzagSample(

position = position,
engine = engine,
travelTime = travel_time

)
sample_result

getZigzagSample Draw one MTN sample with Zigzag-HMC or Zigzag-NUTS

Description

Simulate the Zigzag-HMC or Zigzag-NUTS dynamics on a given MTN.

Usage

getZigzagSample(position, momentum = NULL, nutsFlg, engine, stepSize = NULL)

Arguments

position a d-dimensional initial position vector.

momentum a d-dimensional initial momentum vector.

nutsFlg logical. If TRUE the No-U-Turn sampler will be used (Zigzag-NUTS).

engine list. Its engine element is a pointer to the Zigzag-HMC engine (or Zigzag-
NUTS engine) C++ object that implements fast computations for Zigzag-HMC
(or Zigzag-NUTS).

stepSize step size for Zigzag-HMC. If nutsFlg = TRUE, engine contains the base step
size for Zigzag-NUTS).

Value

one MCMC sample from the target MTN.

10 harmonicHMC

Note

getZigzagSample is particularly efficient when the target MTN has a random mean and covari-
ance/precision where one can reuse the Zigzag-HMC engine object while updating the mean and
covariance. The following example demonstrates such a use.

See Also

zigzagHMC(), drawLaplaceMomentum()

Examples

set.seed(1)
n <- 1000
d <- 10
samples <- array(0, c(n, d))

initialize MTN mean and precision
m <- rnorm(d, 0, 1)
prec <- rWishart(n = 1, df = d, Sigma = diag(d))[, , 1]
call createEngine once
engine <- createEngine(dimension = d, lowerBounds = rep(0, d),
upperBounds = rep(Inf, d), seed = 1, mean = m, precision = prec)

HZZtime <- sqrt(2) / sqrt(min(mgcv::slanczos(
A = prec, k = 1,
kl = 1

)[['values']]))

currentSample <- rep(0.1, d)
for (i in 1:n) {

m <- rnorm(d, 0, 1)
prec <- rWishart(n = 1, df = d, Sigma = diag(d))[,,1]
setMean(engine = engine, mean = m)
setPrecision(engine = engine, precision = prec)
currentSample <- getZigzagSample(position = currentSample,

nutsFlg = FALSE,
engine = engine,
stepSize = HZZtime)

samples[i,] <- currentSample
}

harmonicHMC Sample from a truncated Gaussian distribution with the harmonic
HMC

Description

Generate MCMC samples from a d-dimensional truncated Gaussian distribution with constraints
Fx+g >= 0 using the Harmonic Hamiltonian Monte Carlo sampler (Harmonic-HMC).

harmonicHMC 11

Usage

harmonicHMC(
nSample,
burnin = 0,
mean,
choleskyFactor,
constrainDirec,
constrainBound,
init,
time = c(pi/8, pi/2),
precFlg,
seed = 1,
extraOutputs = c()

)

Arguments

nSample number of samples after burn-in.

burnin number of burn-in samples (default = 0).

mean a d-dimensional mean vector.

choleskyFactor upper triangular matrix R from Cholesky decomposition of precision or covari-
ance matrix into R^TR.

constrainDirec the k-by-d F matrix (k is the number of linear constraints).

constrainBound the k-dimensional g vector.

init a d-dimensional vector of the initial value. init must satisfy all constraints.

time HMC integration time for each iteration. Can either be a scalar value for a fixed
time across all samples, or a length 2 vector of a lower and upper bound for
uniform distribution from which the time is drawn from for each iteration.

precFlg logical. whether choleskyFactor is from precision (TRUE) or covariance matrix
(FALSE).

seed random seed (default = 1).

extraOutputs vector of strings. "numBounces" and/or "bounceDistances" can be requested,
with the latter containing the distances in-between bounces for each sample and
hence incurring significant computational and memory costs.

Value

When extraOutputs is empty (default), returns an nSample-by-d matrix of samples.

When extraOutputs contains "numBounces" and/or "bounceDistances", returns a list with ele-
ments:

samples nSample-by-d matrix of samples

numBounces Vector of bounce counts per sample (if requested)
bounceDistances

List of bounce distances per sample (if requested)

12 markovianZigzag

References

Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo for Truncated Multivariate
Gaussians. Journal of Computational and Graphical Statistics. doi:10.1080/10618600.2013.788448

See Also

getHarmonicSample(), cholesky(), getInitialPosition()

Examples

set.seed(1)
d <- 10
A <- matrix(runif(d^2)*2 - 1, ncol=d)
precMat <- t(A) %*% A
R <- cholesky(precMat)
mu <- rep(0, d)
constrainDirec <- diag(d)
constrainBound <- rep(0,d)
initial <- rep(1, d)
results <- harmonicHMC(1000, 1000, mu, R, constrainDirec, constrainBound, initial, precFlg = TRUE)

markovianZigzag Markovian Zigzag Sampler

Description

Sample from a truncated multivariate normal distribution using the Markovian Zigzag process, a
continuous-time, non-reversible Markov chain Monte Carlo method based on piecewise determin-
istic Markov processes (PDMPs).

Usage

markovianZigzag(
nSample,
burnin = 0,
mean,
prec,
lowerBounds,
upperBounds,
init = NULL,
stepSize = NULL,
seed = 1,
numThreads = 1,
diagnosticMode = FALSE,
nStatusUpdate = 0L

)

markovianZigzag 13

Arguments

nSample Number of samples after burn-in.

burnin Number of burn-in samples (default = 0).

mean A d-dimensional mean vector.

prec A d-by-d precision matrix of the Gaussian distribution.

lowerBounds A d-dimensional vector specifying the lower bounds. -Inf is accepted.

upperBounds A d-dimensional vector specifying the upper bounds. Inf is accepted.

init A d-dimensional vector of the initial value. init must satisfy all constraints. If
init = NULL, a random initial value will be used.

stepSize Step size for the Markovian Zigzag sampler. Default value is the empirically
optimal choice:

√
2λ−1/2, where λ is the minimal eigenvalue of the precision

matrix.

seed Random seed (default = 1).

numThreads number of threads for parallel execution (default = 1). Set to 0 for automatic
detection of available cores.

diagnosticMode Logical. TRUE for also returning diagnostic information such as the step size
used.

nStatusUpdate Number of status updates to print during sampling. If 0 (default), no updates are
printed.

Value

An nSample-by-d matrix of samples. If diagnosticMode is TRUE, a list with additional diagnostic
information is returned.

References

Bierkens, J., Roberts, G. O., and Zitt, P.-A. (2019). Ergodicity of the zigzag process. The Annals of
Applied Probability, 29(4): 2266-2301.

See Also

getMarkovianZigzagSample(), createEngine()

Examples

set.seed(1)
d <- 5
A <- matrix(runif(d^2)*2-1, ncol=d)
precMat <- t(A) %*% A
initial <- rep(1, d)
results <- markovianZigzag(

nSample = 1000,
burnin = 1000,
mean = rep(0, d),
prec = precMat,

14 setPrecision

lowerBounds = rep(0, d),
upperBounds = rep(Inf, d)

)

setMean Set the mean for the target MTN

Description

Set the mean vector for a given Zigzag-HMC engine object.

Usage

setMean(engine, mean)

Arguments

engine A Zigzag-HMC engine container object.

mean the mean vector.

See Also

createEngine(), createNutsEngine()

Examples

First create an engine
engine <- createEngine(dimension = 2,

lowerBounds = c(-1, -1),
upperBounds = c(1, 1),
seed = 123,
mean = c(0, 0),
precision = diag(2))

Update the mean
setMean(engine, mean = c(0.5, 0.5))

setPrecision Set the precision matrix for the target MTN

Description

Set the precision matrix for a given Zigzag-HMC engine object.

Usage

setPrecision(engine, precision)

zigzagHMC 15

Arguments

engine A Zigzag-HMC engine container object.

precision the precision matrix.

See Also

createEngine(), createNutsEngine()

Examples

First create an engine
engine <- createEngine(dimension = 2,

lowerBounds = c(-1, -1),
upperBounds = c(1, 1),
seed = 123,
mean = c(0, 0),
precision = diag(2))

Update with a correlated precision matrix
new_precision <- matrix(c(2, 0.8, 0.8, 2), nrow = 2)
setPrecision(engine, precision = new_precision)

zigzagHMC Sample from a truncated Gaussian distribution

Description

Generate MCMC samples from a d-dimensional truncated Gaussian distribution with element-wise
truncations using the Zigzag Hamiltonian Monte Carlo sampler (Zigzag-HMC).

Usage

zigzagHMC(
nSample,
burnin = 0,
mean,
prec,
lowerBounds,
upperBounds,
init = NULL,
stepSize = NULL,
nutsFlg = FALSE,
precondition = FALSE,
seed = 1,
numThreads = 1,
diagnosticMode = FALSE

)

16 zigzagHMC

Arguments

nSample number of samples after burn-in.

burnin number of burn-in samples (default = 0).

mean a d-dimensional mean vector.

prec a d-by-d precision matrix of the Gaussian distribution.

lowerBounds a d-dimensional vector specifying the lower bounds. -Inf is accepted.

upperBounds a d-dimensional vector specifying the upper bounds. Inf is accepted.

init a d-dimensional vector of the initial value. init must satisfy all constraints. If
init = NULL, a random initial value will be used.

stepSize step size for Zigzag-HMC or Zigzag-NUTS (if nutsFlg = TRUE). Default value
is the empirically optimal choice: sqrt(2)(lambda)^(-1/2) for Zigzag-HMC and
0.1(lambda)^(-1/2) for Zigzag-NUTS, where lambda is the minimal eigenvalue
of the precision matrix.

nutsFlg logical. If TRUE the No-U-Turn sampler will be used (Zigzag-NUTS).

precondition logical. If TRUE, the precision matrix will be preconditioned so that its diagonals
(i.e. conditional variances) are all 1.

seed random seed (default = 1).

numThreads number of threads for parallel execution (default = 1). Set to 0 for automatic
detection of available cores.

diagnosticMode logical. TRUE for also returning diagnostic information such as the stepsize used.

Value

When diagnosticMode = FALSE (default), returns an nSample-by-d matrix of samples.

When diagnosticMode = TRUE, returns a list with elements:

samples nSample-by-d matrix of samples

stepsize The step size used for sampling

References

Nishimura, A., Zhang, Z., and Suchard, M. A. (2024). Zigzag path connects two Monte Carlo
samplers: Hamiltonian counterpart to a piecewise deterministic Markov process. Journal of the
American Statistical Association, 1-13.

Nishimura, A., Dunson, D. B., and Lu, J. (2020). Discontinuous Hamiltonian Monte Carlo for
discrete parameters and discontinuous likelihoods. Biometrika, 107(2): 365-380.

See Also

getZigzagSample(), createEngine(), createNutsEngine(), setMean(), setPrecision()

zigzagHMC 17

Examples

set.seed(1)
d <- 10
A <- matrix(runif(d^2)*2-1, ncol=d)
precMat <- t(A) %*% A
initial <- rep(1, d)
results <- zigzagHMC(nSample = 1000, burnin = 1000, mean = rep(0, d), prec = precMat,
lowerBounds = rep(0, d), upperBounds = rep(Inf, d))

Index

cholesky, 2
cholesky(), 12
createEngine, 3
createEngine(), 5, 13–16
createNutsEngine, 4
createNutsEngine(), 14–16

drawLaplaceMomentum, 5
drawLaplaceMomentum(), 10

getHarmonicSample, 6
getHarmonicSample(), 12
getInitialPosition, 7
getInitialPosition(), 12
getMarkovianZigzagSample, 8
getMarkovianZigzagSample(), 13
getZigzagSample, 9
getZigzagSample(), 16

harmonicHMC, 10
harmonicHMC(), 2, 6, 7

markovianZigzag, 12
markovianZigzag(), 4, 7, 8

setMean, 14
setMean(), 4, 5, 16
setPrecision, 14
setPrecision(), 4, 5, 16

zigzagHMC, 15
zigzagHMC(), 4, 5, 7, 10

18

	cholesky
	createEngine
	createNutsEngine
	drawLaplaceMomentum
	getHarmonicSample
	getInitialPosition
	getMarkovianZigzagSample
	getZigzagSample
	harmonicHMC
	markovianZigzag
	setMean
	setPrecision
	zigzagHMC
	Index

