
Package ‘hassediagrams’
January 17, 2026

Type Package

Title Hasse Diagram of the Layout Structure and Restricted Layout
Structure

Version 2.0

Date 2026-01-17

Maintainer Damianos Michaelides <dm3g15@soton.ac.uk>

Description Returns a Hasse diagram of the layout structure (Bate and Chat-
field (2016)) <doi:10.1080/00224065.2016.11918173> or the restricted layout struc-
ture (Bate and Chatfield (2016)) <doi:10.1080/00224065.2016.11918174> of an experimen-
tal design.

License GPL-2

Encoding UTF-8

URL https://github.com/GSK-Biostatistics/hassediagrams

BugReports https://github.com/GSK-Biostatistics/hassediagrams/issues

Imports igraph, methods, MASS, grDevices, graphics, stats, utils

Depends R (>= 3.5.0)

Suggests dae, knitr, rmarkdown, jsonlite, kableExtra

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Damianos Michaelides [aut, cre],
Simon Bate [aut],
Marion Chatfield [aut]

Repository CRAN

Date/Publication 2026-01-17 15:30:02 UTC

1

https://doi.org/10.1080/00224065.2016.11918173
https://doi.org/10.1080/00224065.2016.11918174
https://github.com/GSK-Biostatistics/hassediagrams
https://github.com/GSK-Biostatistics/hassediagrams/issues

2 analytical

Contents
analytical . 2
concrete . 3
dental . 4
hasselayout . 5
hasserls . 10
human . 17
print.ls . 18

Index 20

analytical A cross-nested design for an analytical method investigation

Description

The reliability of an analytical method was assessed in an experiment consisting of three batches
of material, analysed by four analysts, two at each site. Within each site, there were two chromato-
graphic systems and two columns. For each batch/analyst/system/column combination, two prepa-
rations (dissolved samples) were made. From each preparation, two injections were performed.

Usage

data(analytical)

Format

A data frame of 192 observations on 8 factors:

Site Categoric factor with levels 1 and 2.
Analyst Categoric factor with levels 1-4.
Run Categoric factor with levels 1-16.
Prep Categoric factor with levels 1-96.
Injection Categoric factor with levels 1-192.
System Categoric factor with levels 1-4.
Column Categoric factor with levels 1-4.
Batch Categoric factor with levels 1-3.

Source

Bate, S.T. and Chatfield, M.J. (2016). "Identifying the Structure of the Experimental Design".
Journal of Quality Technology 48, pp. 343-364.

Examples

data("analytical")
analytical

concrete 3

concrete A fractional factorial design for investigating asphalt concrete pro-
duction

Description

This is fractional factorial design given in Anderson and McLean (1974) p.256 from an experiment
to investigate the effect of controllable variables/factors on the quality of asphalt concrete produc-
tion.

Usage

data(concrete)

Format

A half fraction factorial design of 16 runs on 6 factors. The 6 factors, each at two levels, included
in the design are:

Aggregate gradation (AG) Categoric factor with levels being fine and coarse.

Compaction temperature (CoT) Numeric factor with low 250 and high 300.

Asphalt content (AC) Numeric factor with low 5 and high 7.

Curing condition (CC) Categoric factor with levels wrapped and unwrapped.

Curing temperature (CuT) Numeric factor with low 45 and high 72.

Run Categoric factor with levels 1-16.

Source

Anderson, V.L. and McLean, R.A. (1974). *Design of Experiments.* Marcel Dekker Inc.: New
York.

Examples

data("concrete")
concrete

4 dental

dental A crossover design for a dental study

Description

This is a crossover design (Study H) given in Newcombe et al. (1995) to study the effects of CHX
rinses on 4 day plaque regrowth. The study consisted of 24 patients assessed over 3 treatment
periods. The purpose of the study was to compare 2 CHX rinses with saline. The design is based
on pairs of Latin squares balanced for carry over.

Usage

data(dental)

Format

A crossover design of 72 runs on 5 factors. The 5 factors included in the design are:

Sequence Categoric factor with levels 1-6.

Patient Categoric factor with levels 1-32.

Period Categoric factor with levels 1-3.

Treatment Categoric factor with levels CHX1, CHX2 and Saline.

Observation Categoric factor with levels 1-72.

Source

Newcombe, R.G., Addy, M. and McKeown, S. (1995). "Residual effect of chlorhexidine gluconate
in 4-day plaque regrowth crossover trials, and its implications for study design". *Journal of Peri-
odontal Research*, 30, 5, pp. 319-324.

Examples

data("dental")
dental

hasselayout 5

hasselayout Hasse diagram of the layout structure

Description

Returns a Hasse diagram of the layout structure of an experimental design

Usage

hasselayout(
datadesign,
randomfacsid = NULL,
showLS = TRUE,
showpartialLS = TRUE,
showdfLS = TRUE,
check.confound.df = TRUE,
maxlevels.df = TRUE,
table.out = FALSE,
pdf = FALSE,
example = "example",
outdir = NULL,
hasse.font = "sans",
produceBWPlot = FALSE,
structural.colour = "grey",
structural.width = 2,
partial.colour = "orange",
partial.width = 1.5,
objects.colour = "mediumblue",
df.colour = "red",
larger.fontlabelmultiplier = 1,
middle.fontlabelmultiplier = 1,
smaller.fontlabelmultiplier = 1

)

Arguments

datadesign A data frame, list or environment (or object coercible by as.data.frame to a
data frame) containing the factors in the experimental design. The data frame
should only include the factors/columns that the user wants to include in the
Hasse diagram. All factors are treated as categorical. Moreover, the first two
letters of factor names are used for interactions between factors so it is advised
that these be unique.

randomfacsid An optional vector specifying whether the factors are defined as fixed (entry =
0) or random (entry = 1). The default choice is NULL and the function auto-
matically sets all entries to 0. The length of the vector should be equal to the
number of factors in the design, i.e., the length of the vector should be equal to
the number of columns of the argument datadesign.

6 hasselayout

showLS logical. If FALSE then generation of the Hasse diagram is suppressed. The de-
fault is TRUE.

showpartialLS logical. If FALSE then the partial crossing between structural objects (using dot-
ted connecting lines) is not illustrated on the Hasse diagram of the layout struc-
ture. The default is TRUE.

showdfLS logical. If FALSE then the structural object label is not displayed on the Hasse
diagram of the layout structure. The default is TRUE.

check.confound.df

logical. If FALSE then the check for confounded degrees of freedom is not per-
formed. The default is TRUE.

maxlevels.df logical. If FALSE then the potential maximum number of levels of a generalised
factor is removed from the structural object label on the Hasse diagram of the
layout structure. The default is TRUE.

table.out logical. If TRUE then a table that shows the relationships between the structural
objects in the layout structure is printed. The default is FALSE.

pdf logical. If TRUE then a pdf file containing the Hasse diagram of the layout struc-
ture is generated. The default is FALSE, i.e., a pdf file is not generated.

example File name for the pdf output file containing the Hasse diagram. The default is
set to "example".

outdir Location of the pdf output file if pdf=TRUE. The default is set to NULL and in this
case the pdf output file containing the Hasse diagram output is stored to a tem-
porary file. To specify a permanent location this argument needs be specified.

hasse.font The name of the font family used for all text included in the Hasse diagram.
Standard and safe font families to choose are "sans", "serif", and "mono". If the
design’s factor labels contain Unicode characters, or for consistency with Hasse
diagrams of restricted layout structures using hasserls, a Unicode friendly font
family should be selected. For more details on Unicode friendly family options
see the Details section in the hasserls documentation. The default is "sans".

produceBWPlot logical. If TRUE then the Hasse diagram will be generated in black and white
format. The default is set to FALSE, i.e., a coloured version of the plot is pro-
duced.

structural.colour

The colour of the structural lines that connect structural objects on the Hasse
diagram. The default colour is "grey".

structural.width

The width of the structural lines on the Hasse diagram. The default width is 2.

partial.colour The colour of the partial crossing dotted lines of the connecting objects on the
Hasse diagram. The default colour is "orange".

partial.width The width of the partial crossing dotted lines on the Hasse diagram. The default
width is 1.5.

objects.colour The colour of the labels of the structural objects on the Hasse diagram. The
default colour is "mediumblue".

df.colour The colour of the degrees of the freedom labels on the Hasse diagram. The
default colour is "red".

hasselayout 7

larger.fontlabelmultiplier

The large font multiplier is the multiplier for the font used for the labels of
objects on the Hasse diagram where there are four or less objects at that level in
the diagram. The default is 1.

middle.fontlabelmultiplier

The medium font multiplier is the multiplier for the font used for the labels of
objects on the Hasse diagram involving a factor that is equivalent to a generalised
factor. The default is 1.

smaller.fontlabelmultiplier

The small font multiplier is the multiplier for the font used for the labels of
objects on the Hasse diagram where there are five or more objects at that level
of the diagram. The default is 1.

Details

The hasselayout function generates the Hasse diagram of the layout structure of the experimental
design, as described in Bate and Chatfield (2016a). The diagram consists of a set of structural
objects, corresponding to the factors and generalised factors, and the relationships between the
structural objects (either crossed, nested, partially crossed or equivalent), as defined by the structure
of the experimental design.

The function requires a dataframe containing only the factors corresponding to the experimental
factors that define the experimental design (i.e., no response should be included).

In the dataframe the levels of the factors must be uniquely identified and have a physical meaning,
otherwise the function will not correctly identify the nesting/crossing of the factors. For example,
consider an experiment consisting of Factor A (with k levels) that nests Factor B (with q levels per
level of Factor A). The levels of Factor B should be labelled 1 to k x q and not 1 to q (repeated k
times).

Where present, two partially crossed factors are illustrated on the diagram with a dotted line con-
necting them. This feature can be excluded using the showpartialLS option.

The maximum number of possible levels of each generalised factor, along with the actual num-
ber present in the design and the "skeleton ANOVA" degrees of freedom, can be included in the
structural object label on the Hasse diagram.

Using the randomfacsid argument the factors that correspond to random effects can be highlighted
by underlining them on the Hasse diagram. The vector should be equal to the number of factors in
the design and consist of fixed (entry = 0) or random (entry = 1) values.

The hasselayout function evaluates the design in order to identify if there are any confounded
degrees of freedom across the design. It is not recommended to perform this evaluation for large de-
signs due to the potential high computational cost. This can be controlled using the check.confound.df
= FALSE option.

Value

The function hasselayout returns:

1. The Hasse diagram of the layout structure (if showLS=TRUE).

2. The layout structure table shows the relationships between the structural objects in the layout
structure (if table.out=TRUE). The individual entries in the table consist of blanks on the main

8 hasselayout

diagonal and 0’s, (0)’s or 1’s elsewhere. If the factor (or generalised factor) corresponding to the
ith row and the factor (or generalised factor) corresponding to the jth column are fully crossed, then
a 0 is entered in the (i,j)th entry in the table. If these factors (or generalised factors) are partially
crossed, or the ith row factor (or generalised factor) only has one level and nests the jth column
factor (or generalised factor), then the (i,j)th entry is (0). If the ith row factor (or generalised factor)
is nested within the jth column factor (or generalised factor), then a 1 is entered in the (i,j)th entry.
If two factors (or generalised factors) are equivalent, then they share a single row and column in
the table, where the row and column headers include both factor (or generalised factor) names,
separated by an "=" sign.

3. If there are confounded degrees of freedom, a table of the structural objects and a description of
the associated degrees of freedom is printed. Confounded degrees of freedom often indicate that the
design objects are not specified appropriately (for example a factor or pseudofactor or supremum
may have been missed from the design supplied) or that the design needs to be changed. However,
sometimes once appropriate randomization is performed the layout structure, modified to account
for this, no longer contains confounded degrees of freedom.

In addition, the function returns an object of class "ls", which is a list with the following compo-
nents:

str_objects A character vector containing the names of all structural objects derived from the
design.

rand_template A character vector giving a template for use in hasserls. Structural objects not
present in the restricted layout structure are set to "NULL".

str_rand_map A two-column matrix pairing/mapping all structural objects with their suggested
randomisation entries. This matrix assists users when constructing the rand.objects argu-
ment for hasserls.

notes A short explanatory message describing how to use the returned objects when preparing
inputs for hasserls.

The returned object allows programmatic access to the structural objects and can be passed to
summary() or print() methods for compact inspection.

Author(s)

Damianos Michaelides, Simon Bate, and Marion Chatfield

References

Bate, S.T. and Chatfield, M.J. (2016a), Identifying the structure of the experimental design. Journal
of Quality Technology, 48, 343-364.

Bate, S.T. and Chatfield, M.J. (2016b), Using the structure of the experimental design and the
randomization to construct a mixed model. Journal of Quality Technology, 48, 365-387.

Box, G.E.P., Hunter, J.S., and Hunter, W.G., (1978), Statistics for Experimenters. Wiley.

Joshi, D.D. (1987), Linear Estimation and Design of Experiments. Wiley Eastern, New Delhi.

Williams, E.R., Matheson, A.C. and Harwood, C.E. (2002), Experimental design and analysis for
tree improvement. 2nd edition. CSIRO, Melbourne, Australia.

hasselayout 9

Examples

Examples using the package build-in data concrete, dental, human, analytical.

A fractional factorial design for investigating asphalt concrete production
hasselayout(datadesign=concrete, larger.fontlabelmultiplier=1.6,

smaller.fontlabelmultiplier=1.3, table.out=TRUE)

A crossover design for a dental study
hasselayout(datadesign=dental, randomfacsid = c(0,1,0,0,0),

larger.fontlabelmultiplier = 1.6)

A block design for an experiment assessing human-computer interaction
hasselayout(datadesign=human, randomfacsid = c(1,1,0,0,0,0,1),

larger.fontlabelmultiplier=1.4)

A cross-nested design for an analytical method investigation
hasselayout(datadesign=analytical, randomfacsid = c(0,0,1,1,1,0,0,0),

showpartialLS=FALSE, check.confound.df=FALSE,
larger.fontlabelmultiplier=1,
smaller.fontlabelmultiplier=1.6)

Examples using data from the dae package (conditionally loaded)

if (requireNamespace("dae", quietly = TRUE)) {

Data for a balanced incomplete block experiment, Joshi (1987)

data(BIBDWheat.dat, package = "dae")
remove the response from the dataset
BIBDWheat <- BIBDWheat.dat[, -4]
hasselayout(datadesign=BIBDWheat, example = "BIBDWheat")

Data for an un-replicated 2^4 factorial experiment to investigate a chemical process
from Table 10.6 of Box, Hunter and Hunter (1978)

data(Fac4Proc.dat, package = "dae")
remove the response from the dataset
Fac4Proc <- Fac4Proc.dat[, -6]
hasselayout(datadesign=Fac4Proc, example = "Fac4Proc", showpartialLS=FALSE,

smaller.fontlabelmultiplier=2)

Data for an experiment with rows and columns from p.144 of
Williams, Matheson and Harwood (2002)

data(Casuarina.dat, package = "dae")
remove the response from the dataset
Casuarina <- Casuarina.dat[, -7]
create unique factor level labels
Casuarina$Row <- paste(Casuarina$Reps, Casuarina$Rows)

10 hasserls

Casuarina$Col <- paste(Casuarina$Reps, Casuarina$Columns)
Casuarina <- Casuarina[, -c(2,3)]
hasselayout(datadesign=Casuarina, randomfacsid=c(1,0,1,0,0,0),

example="Casuarina", check.confound.df=FALSE,
showpartialLS=FALSE)

} else {
message("Examples using data from the 'dae' package

require 'dae' to be installed.")
}

hasserls Hasse diagram of the restricted layout structure

Description

Returns a Hasse diagram of the restricted layout structure of an experimental design

Usage

hasserls(
datadesign,
rand.objects,
rand.arrows = NULL,
randomfacsid = NULL,
showRLS = TRUE,
showpartialRLS = TRUE,
showdfRLS = TRUE,
showrandRLS = TRUE,
check.confound.df = TRUE,
maxlevels.df = TRUE,
table.out = FALSE,
equation.out = FALSE,
pdf = FALSE,
example = "example",
outdir = NULL,
hasse.font = "sans",
produceBWPlot = FALSE,
structural.colour = "grey",
structural.width = 2,
partial.colour = "orange",
partial.width = 1.5,
objects.colour = "mediumblue",
df.colour = "red",
arrow.colour = "mediumblue",

hasserls 11

arrow.width = 1.5,
arrow.pos = 7.5,
larger.fontlabelmultiplier = 1,
middle.fontlabelmultiplier = 1,
smaller.fontlabelmultiplier = 1

)

Arguments

datadesign A data frame, list or environment (or object coercible by as.data.frame to a
data frame) containing the factors in the experimental design. The data frame
should only include the factors/columns that the user wants to include in the
Hasse diagram. All factors are treated as categorical. Moreover, the first two
letters of factor names are used for interactions between factors so it is advised
that these be unique.

rand.objects A character vector specifying the randomisation objects that define the Re-
stricted Layout Structure (RLS).
The vector must have the same length and order as the structural objects of the
layout structure as produced by hasselayout. Each element is either "NULL"
(if there is no randomisation object in the restricted layout structure that corre-
sponds to the structural object) or the name of the randomisation object corre-
sponding to the structural object. The user supplies labels for the randomisation
objects
The recommended workflow is:

1. Run hasselayout to obtain the list of structural objects (in the order re-
quired for hasserls) and a template for the randomisation objects.

2. Observe the structural objects using hasselayout(datadesign)$str_objects
and create a vector of the randomisation objects potential using the sug-
gested vector using hasselayout(datadesign)$rand_template.

3. Modify only those entries that correspond to randomisation objects present
in the restricted layout structure.

The labels specified in rand.objects represent the labels of the randomisa-
tion objects on the Hasse diagram of the restricted layout structure. If the la-
bels include Unicode symbols (e.g., the Kronecker product symbol), a Unicode-
friendly font is required.

rand.arrows A matrix of two columns that takes integer entries. Each row of the matrix
corresponds to one randomisation arrow on the Hasse diagram of the restricted
layout structure. The entries in the first column contain the object(s) at the
start of the randomisation arrow and the second column contains the object(s)
at the end. The values correspond to the entry number for the randomisation
object in rand.objects. Therefore, any randomisation object(s) involved in the
randomisation arrow(s) must first be specified in the rand.objects argument.
The randomisation arrows must point downwards, hence, in each row of the
matrix the second column entry must be larger than the first column entry.

randomfacsid An optional vector specifying whether the factors are defined as fixed (entry =
0) or random (entry = 1). The default choice is NULL and the function auto-
matically sets all entries to 0. The length of the vector should be equal to the

12 hasserls

number of factors in the design, i.e., the length of the vector should be equal to
the number of columns of the argument datadesign.

showRLS logical. If FALSE then generation of the Hasse diagram of the restricted layout
structure is suppressed. The default is TRUE.

showpartialRLS logical. If FALSE then the partial crossing between randomisation objects (using
dotted connecting lines) is not illustrated on the Hasse diagram of the restricted
layout structure. The default is TRUE.

showdfRLS logical. If FALSE then the randomisation object label is not displayed on the
Hasse diagram of the restricted layout structure. The default is TRUE.

showrandRLS logical. If FALSE then the randomisations are not illustrated (using arrows) on
the Hasse diagram of the restricted layout structure. The default is TRUE. If
rand.arrows=NULL, then showrandRLS defaults to FALSE.

check.confound.df

logical. If FALSE then the check for confounded degrees of freedom is not per-
formed. The default is TRUE.

maxlevels.df logical. If FALSE then the potential maximum number of levels of a generalised
factor is removed from the randomisation object label on the Hasse diagram of
the restricted layout structure. The default is TRUE.

table.out logical. If TRUE then a table that shows the relationships between the randomi-
sation objects in the restricted layout structure is printed. The default is FALSE.

equation.out logical. If TRUE then a recommended mixed model to use in the statistical anal-
ysis is printed. The default is FALSE.

pdf logical. If TRUE then a pdf file containing the Hasse diagram of the restricted
layout structure is generated. The default is FALSE, i.e., a pdf file is not gener-
ated.

example character. Filename for the pdf output file containing the Hasse diagram. The
default is set to "example".

outdir character. Location of the pdf output file if pdf=TRUE. The default is set to NULL
and in this case the pdf output file containing the Hasse diagram output is stored
to a temporary file. To specify a permanent location this argument needs be
specified.

hasse.font character. The name of the font family used for all text included on the Hasse di-
agram. Standard and safe font families to choose are "sans", "serif", and "mono".
If any of the labels of the randomisation objects (as defined in the second col-
umn of rand.objects matrix) contain Unicode characters, a Unicode friendly
font family should be selected. For more details on Unicode friendly family op-
tions see the Details section. If the font family selected fails to render, the font
is automatically changed to "sans" instead. The default is "sans".

produceBWPlot logical. If TRUE then the Hasse diagram will be generated in black and white
format. The default is set to FALSE, i.e., a coloured version of the plot is pro-
duced.

structural.colour

character. The colour of the structural lines that connect randomisation objects
on the Hasse diagram. The default colour is "grey".

hasserls 13

structural.width

numeric. The width of the structural lines on the Hasse diagram. The default
width is 2.

partial.colour character. The colour of the partial crossing dotted lines of the connecting ran-
domisation objects on the Hasse diagram. The default colour is "orange".

partial.width numeric. The width of the partial crossing dotted lines on the Hasse diagram.
The default width is 1.5.

objects.colour character. The colour of the labels of the randomisation objects on the Hasse
diagram. The default colour is "mediumblue".

df.colour character. The colour of the degrees of the freedom labels on the Hasse diagram.
The default colour is "red".

arrow.colour character. The colour of the randomisation arrows on the Hasse diagram. The
default colour is "mediumblue".

arrow.width numeric. The randomisation arrows width on the Hasse diagram. The default
width is 1.5.

arrow.pos numeric. Specifies the position of the randomisation arrows, i.e., how far the
randomisation arrows will be from the objects they point at. The default is 7.5.
A smaller number specifies longer arrows and a higher number specifies shorter
arrows.

larger.fontlabelmultiplier

numeric. The large font multiplier is the multiplier for the font used for the
labels of objects on the Hasse diagram where there are four or less objects at
that level in the diagram. The default is 1.

middle.fontlabelmultiplier

numeric. The medium font multiplier is the multiplier for the font used for the
labels of objects on the Hasse diagram involving a factor that is equivalent to a
generalised factor. The default is 1.

smaller.fontlabelmultiplier

numeric. The small font multiplier is the multiplier for the font used for the
labels of objects on the Hasse diagram where there are five or more objects at
that level of the diagram. The default is 1.

Details

The hasserls function generates the Hasse diagram of the restricted layout structure. The Hasse
diagram consists of a set of randomisation objects, corresponding to the factors and generalised
factors, and the relationships between the objects (either crossed, nested, partially crossed or equiv-
alent), as defined by the structure of the experimental design and the randomisation performed, see
Bate and Chatfield (2016b).

Where present, two partially crossed factors are illustrated on the diagram with a dotted line con-
necting them. This feature can be excluded using the showpartialRLS option.

The maximum number of possible levels of each generalised factor, along with the actual num-
ber present in the design and the "skeleton ANOVA" degrees of freedom, can be included in the
randomisation object label on the Hasse diagram.

The randomisation arrows that illustrate the randomisation performed can be included on the Hasse
diagram.

14 hasserls

The hasserls function evaluates the design in order to identify if there are any confounded degrees
of freedom across the design. It is not recommended to perform this evaluation for large designs,
due to the potential high computational cost. This can be controlled using the check.confound.df
= FALSE option.

The rendering of Unicode symbols (e.g., u2297, u2192 for Kronecker symbol and arrow, respec-
tively) in the Hasse diagram depends on the operating system and the font selected in hasse.font.

macOS / Linux: Most system fonts that support Unicode work directly in plotting and PDF out-
put without explicit registration. In many cases, the default "sans" family is sufficient for PDF
rendering of these symbols. However, for on-screen rendering usually unicode-friendly fonts like
"AppleMyungjo", "Arial Unicode MS", .SF Compact, and "Noto Sans Math" are needed.

Windows: Base R plotting often requires explicit font registration before the font can be used. Even
if the font is installed, it may not be accessible to the graphics device until registered. Unicode-
friendly fonts are "Lucida Sans Unicode", "Arial Unicode MS", "Segoe UI Symbol", "Cambria",
"Noto Sans Math" and "Ebrima". The aforementioned fonts may not be available in your R ses-
sion. The available system fonts can be printed by systemfonts::system_fonts()$family. System
available fonts can be imported by running showtext::font_import() or extrafont::font_import(). To
check which fonts have been successfully imported, run showtext::fonts() or extrafont::fonts(). The
Arial Unicode MS font can be downloaded from online sources. The Noto Sans Math font can
be installed using sysfonts::font_add_google("Noto Sans Math"). For Windows, fonts might not
be accessible to the graphics device until registered using: windowsFonts(LucidaSansUnicode =
windowsFont("Lucida Sans Unicode")) adapted to the font need to use.

For ease of execution in the examples below, we are using –> for the arrow symbol and (x) for the
kronecker symbol.

Value

The function hasserls returns: 1. The Hasse diagram of the restricted layout structure (if showRLS
= TRUE).

2. The restricted layout structure table shows the relationships between the randomisation objects
in the restricted layout structure (if table.out=TRUE). The individual entries in the table consist
of blanks on the main diagonal and 0’s, (0)’s or 1’s elsewhere. If the factor (or generalised factor)
corresponding to the ith row and the factor (or generalised factor) corresponding to the jth column
are fully crossed, then a 0 is entered in the (i,j)th entry in the table. If these factors (or generalised
factors) are partially crossed, or the ith row factor (or generalised factor) only has one level and nests
the jth column factor (or generalised factor), then the (i,j)th entry is (0). If the ith row factor (or
generalised factor) is nested within the jth column factor (or generalised factor), then a 1 is entered
in the (i,j)th entry. If two factors (or generalised factor) are equivalent, then they share a single
row and column in the table, where the row and column headers include both factor (or generalised
factor) names, separated by an "=" sign.

3. An equation that suggests the mixed model to be fitted (if equation.out=TRUE).

4. If there are confounded degrees of freedom, a table of the structural objects and a description of
the associated degrees of freedom is printed.

Author(s)

Damianos Michaelides, Simon Bate, and Marion Chatfield

hasserls 15

References

Bate, S.T. and Chatfield, M.J. (2016a), Identifying the structure of the experimental design. Journal
of Quality Technology, 48, 343-364.

Bate, S.T. and Chatfield, M.J. (2016b), Using the structure of the experimental design and the
randomization to construct a mixed model. Journal of Quality Technology, 48, 365-387.

Box, G.E.P., Hunter, J.S., and Hunter, W.G., (1978), Statistics for Experimenters. Wiley.

Joshi, D.D. (1987), Linear Estimation and Design of Experiments. Wiley Eastern, New Delhi.

Williams, E.R., Matheson, A.C. and Harwood, C.E. (2002), Experimental design and analysis for
tree improvement. 2nd edition. CSIRO, Melbourne, Australia.

Examples

NOTE TO USERS:
In the examples below you may use Unicode symbols (e.g., "u2297 and "u2192"
with a backslash, for the Kronecker and arrow symbols respectively),
but we use ASCII fallbacks such as "(x)" and "-->" to ensure
compatibility across systems.
To render proper Unicode symbols in diagrams, update the labels manually
and set a Unicode-friendly font via the hasse.font argument.

Example: Asphalt concrete production (fractional factorial design)
Obtain the structural objects from the layout structure
ls_concrete <- hasselayout(datadesign = concrete,

showLS = FALSE,
showpartialLS = FALSE,
showdfLS = FALSE)

Observe the structural objects and then use the suggested
template for randomisation objects
ls_concrete$str_objects
rand_spec <- ls_concrete$rand_template
Fill in the randomisation objects that occur in the RLS
rand_spec[] <- ls_concrete$str_objects
rand_spec[length(rand_spec)] <- "AC^AG^CC^CoT^CuT --> Run"

Generate the Hasse diagram of the restricted layout structure
hasserls(datadesign = concrete,

rand.objects = rand_spec,
larger.fontlabelmultiplier = 1.6,
smaller.fontlabelmultiplier = 1.3)

Example: Crossover dental study
Obtain the structural objects from the layout structure
ls_dental <- hasselayout(datadesign = dental,

randomfacsid = c(0, 1, 0, 0, 0),
showLS = FALSE,
showpartialLS = FALSE,
showdfLS = FALSE)

Observe the structural objects and then use the suggested
template for randomisation objects

16 hasserls

ls_dental$str_objects
rand_spec <- ls_dental$rand_template
Fill in the randomisation objects that occur in the RLS
rand_spec[c(2:5, 7, 8)] <- c("Period", "Sequence",

"Treatment", "Subject[Sequence]",
"Period (x) Sequence",
"Observation")

Create a matrix for the randomisation arrows
dental_rand_arrows <- matrix(c(3, 5, 4, 7), ncol = 2, byrow = TRUE)
Generate the Hasse diagram of the restricted layout structure
hasserls(datadesign = dental,

rand.objects = rand_spec,
rand.arrows = dental_rand_arrows,
randomfacsid = c(0, 1, 0, 0, 0),
larger.fontlabelmultiplier = 1.6,
arrow.pos = 15)

Conditionally run examples requiring 'dae'
if (requireNamespace("dae", quietly = TRUE)) {

data(BIBDWheat.dat, package = "dae")
BIBDWheat <- BIBDWheat.dat[, -4]
BIBDWheat$Plots <- 1:30

ls_BIBDWheat <- hasselayout(datadesign = BIBDWheat,
showLS = FALSE,
showpartialLS = FALSE,
showdfLS = FALSE)

Observe the structural objects and then use the suggested
template for randomisation objects
ls_BIBDWheat$str_objects
rand_spec <- ls_BIBDWheat$rand_template
Fill in the randomisation objects that occur in the RLS
rand_spec[c(2:4)] <- c("Blocks", "Varieties", "Plot[Block]")
Create a matrix for the randomisation arrows
IBDWheat_rand_arrows <- matrix(c(3, 4), ncol = 2, byrow = TRUE)
Generate the Hasse diagram of the restricted layout structure
hasserls(datadesign = BIBDWheat,

rand.objects = rand_spec,
rand.arrows = IBDWheat_rand_arrows,
equation.out = TRUE)

data(Fac4Proc.dat, package = "dae")
Fac4Proc <- Fac4Proc.dat[, -6]
Obtain the structural objects from the layout structure
ls_Fac4Proc <- hasselayout(datadesign = Fac4Proc,

showLS = FALSE,
showpartialLS = FALSE,
showdfLS = FALSE)

Observe the structural objects and then use the suggested
template for randomisation objects
ls_Fac4Proc$str_objects
rand_spec <- ls_Fac4Proc$rand_template

human 17

Fill in the randomisation objects that occur in the RLS
rand_spec[] <- ls_Fac4Proc$str_objects
rand_spec[length(rand_spec)] <- "Catal^Conc^Press^Temp --> Run"
Generate the Hasse diagram of the restricted layout structure
hasserls(datadesign = Fac4Proc,

rand.objects = rand_spec,
showpartialRLS = FALSE,
smaller.fontlabelmultiplier = 2)

} else {
message("Install package 'dae' to run the final examples.")

}

human A block design for an experiment in human-computer interaction

Description

This is a block design to compare two methods (mouse and stylus) of drawing a map in a computer
file. The design involved 12 subjects randomised in 6 days and 2 tests (morning/afternoon) within
each day, across 2 rooms. The design is based on 2x2 Latin squares; see Example 7 Brien and
Bailey (2006) for more details.

Usage

data(human)

Format

A data frame of 24 observations on 7 factors The 7 factors included in the design are:

Subject Categoric factor with levels 1-12.

Day Categoric factor with levels 1-6.

Room Categoric factor with levels A and B.

Period Categoric factor with levels Morning and Afternoon.

Method Categoric factor with levels Mouse and Stylus.

Sequence Categoric factor with levels 1 and 2.

Test Categoric factor with levels 1-24.

Source

Brien, C.J. and Bailey, R.A. (2006). "Multiple randomizations (with discussion)". *Journal of the
Royal Statistical Society B*, 68, pp. 571-609.

18 print.ls

Examples

data("human")
human

print.ls Print and Summary Methods for "ls" Objects

Description

These functions provide printing and summarising methods for objects of class "ls", which are
returned from hasselayout.

Usage

S3 method for class 'ls'
print(x, ...)

S3 method for class 'ls'
summary(object, ...)

Arguments

x An object of class "ls" for print.ls.
... Additional arguments for consistency with S3 methods (unused).
object An object of class "ls" for summary.ls.

Details

Objects of class "ls" contain: (i) the structural objects of the layout structure; (ii) a template ran-
domisation objects vector; and (iii) a combined mapping matrix showing structural objects along-
side editable placeholders for the randomisation objects used in hasserls.

The print method displays the structural objects. The summary method returns a structured object
for programmatic use.

Value

print.ls Prints the structural objects to the console. Invisibly returns the original "ls" object so
that it may be used in further computations.

summary.ls Returns a list with class "summary.ls" containing:
• str_objects – vector of structural objects.
• rand_template – a template vector indicating how to populate rand.objects for hasserls().
• str_rand_map – two-column matrix showing structural objects and user-editable ran-

domisation objects.
• notes – guidance text for using this information in hasserls().

Unlike print.ls, this method is designed for programmatic inspection, returning structured
data without printing.

print.ls 19

Note

See hasserls for examples demonstrating how to use the output of hasselayout() to construct
the restricted layout structure.

Author(s)

Damianos Michaelides, Simon Bate, and Marion Chatfield

Index

∗ datasets
analytical, 2
concrete, 3
dental, 4
human, 17

analytical, 2
as.data.frame, 5, 11

concrete, 3

dental, 4

hasselayout, 5, 7, 11, 18
hasserls, 6, 8, 10, 11, 13, 14, 18, 19
human, 17

print.ls, 18

summary.ls (print.ls), 18

20

	analytical
	concrete
	dental
	hasselayout
	hasserls
	human
	print.ls
	Index

