Package ‘hash’

January 21, 2026

Type Package

Title Full Featured Implementation of Hash Tables/Associative
Arrays/Dictionaries

Version 2.2.6.4

Date 2026-01-21

Depends R (>=2.12.0), methods, utils
Suggests testthat, rbenchmark

Description Implements a data structure similar to hashes in Perl and dictionar-
ies in Python but with a purposefully R flavor. For objects of appreciable size, access us-
ing hashes outperforms native named lists and vectors.

License GPL (>=2)

URL http://www. johnhughes.org
NeedsCompilation no

Author Christopher Brown [aut],
John Hughes [cre, ctb]

Maintainer John Hughes <drjphughesjr@gmail.com>
Repository CRAN
Date/Publication 2026-01-21 15:00:09 UTC

Contents

del . . . e e

haskey L
hash e e
hash-accessors. e e
hash-class e

http://www.johnhughes.org

2 hash-package

INVEIT . . . o o e e e 12

ISLBMPLY .« o v e o e e e e e e e e e e e e e e e e 13

Keys . . e e 14

length e 15

make.Keyso 16

vallues e 17
Index 19

hash-package Hash/associative array/dictionary data structure for the R language.

Description

This S4 class is designed to provide a hash-like data structure in a native R style and provides the
necessary methods for all general methods for hash operations.

Note

R is slowly moving toward a native implementation of hashes using environments, (cf. Extract.
Access to environments using $ and [[has been available for some time and recently objects can
inherit from environments, etc. But many features that make hashes/dictionaries great are still
lacking, such as the slice operation, [.

The hash package is the only full featured hash implementation for the R language. It provides
more features and finer control of the hash behavior than the native feature set and has similar and
sometimes better performance.

HASH KEYS must be a valid character value and may not be the empty string "".
HASH VALUES can be any R value, vector or object.

PASS-BY REFERENCE. Environments and hashes are special objects in R because only one copy
exists globally. When provide as an argument to a function, no local copy is made and any changes
to the hash in the functions are reflected globally.

PERFORMANCE. Hashes are based on R’s native environments and are designed to be exceedingly
fast using the environments internal hash table. For small data structures, a list will out-perform a
hash in nearly every case. For larger data structure, i.e. > 500 key value pair the performance of the
hash becomes faster. Much beyond that the performance of the hash far outperforms native lists.

MEMORY. Objects of class hash do not release memory with a call to rm. clear must be called
before rm to properly release the memory.
Author(s)

Christopher Brown

Maintainer: Christopher Brown <chris.brown -at- decisionpatterns -dot- com>

References

http://www.mail-archive.com/r-help @r-project.org/msg37637.html
http://www.mail-archive.com/r-help @r-project.org/msg37650.html

.set 3

See Also

See also hash , hash-accessors and environment

Examples
h <- hash(keys=letters, values=1:26)
h <- hash(letters, 1:26)
h$a # 1

h$foo <- "bar"”
h["foo" 1]
h[["foo" 11

clear(h)
rm(h)

.set assign key-value pair(s) to a hash

Description

.set is an internal method for assigning key-value pairs to a hash. Normally, there is no need to
use this function. Convenient access is provided by: hash, \$, [and [[and their corresponding
replacement methods.

.set takes 4 types of arguments: explicitly named key and value vectors named key-value pairs
named vectors implicit key-value pairs

The keys are automatically coerced to valid keys and are restricted to character classes. Values are
free to be any valid R object.

Usage
.set(hash, ...)
Arguments
hash An hash object on which to set the key-value pair(s)
Any of several ways to specify keys and values. See Details.
Details
.set sets zero or more key-value pairs. If the key(s) already exist, existing values are silently
clobbered. Otherwise, a new value is saved for each key. Keys and values are by the . .. argument.
If...is:

made only of explicitly named keys and values arguments then these are taken as the keys and
values respectively.

4 clear

a named list, then the names are taken as keys and list elements are taken as values.

a named vector, then the names are taken as keys. Vector elements are taken as values.

of length two, keys are taken from the first element, values from the second.

Keys are coerced to type character.

Keys and values are assigned to the hash as follows:

IF keys and values are the same length, key-value pairs are added to the hash pairwise.
IF keys is a vector of length 1, then this key is assigned the entire values vector.

IF values is a vector of length 1, each key of keys is assigned the value given by values

IF keys and values are of different lengths, both greater than one, then the assignment is considered
ambiguous and an error is thrown.

Value

.set exists solely for its side-effects. An invisible NULL is returned.

Author(s)

Christopher Brown

See Also

See also hash, environment

Examples

h <- hash()

.set(h, keys=letters, values=1:26)

.set(h, a="foo"”, b="bar", c="baz")

.set(h, c(aa="foo", ab="bar", ac="baz"))
clear(h)

.set(h, letters, values)

clear Removes all key-value pairs from a hash

Description

clear removes all key-values from a hash.

Usage

clear(x)

copy-methods 5

Arguments

X A hash object.

Details
Currently clear removes (rm) the key-value pairs on the hash. For large hashes it might be faster
to reinitialize the hash, though this might cause memory leaks.

Value

None. Method clear exists entirely for its side effects.

Note

clear should be called prior to removing a hash. This ensures that the memory from the environ-
ment is freed.

Author(s)

Christopher Brown

See Also

del to remove specific key-values from the hash. hash.

Examples

h <- hash(letters, 1:26)

h # An object of type 'hash' containing 26 key-value pairs.
clear(h)

h # An object of type 'hash' containing @ key-value pairs.

copy-methods Create a seperate copy of a hash object.

Description

The copy hash method creates a independent copy of a hash object. Creating a copy using the
assingment operator, <-, does not work as expected, since hashes are based on environments and
environments are reference objects in R. The assignment operator consequently creates a linked
copy to the original hash and not an independent copy. The copy method provides an identical
unlinked copy of the hash.

Value

A hash object.

6 del

Methods

signature(x = "hash”) Creates and returns an identical, independent, unreferenced copy of the
the hash.

Author(s)

Christopher Brown

See Also

environment

Examples

h <- hash(a=1, b=2)
h.new <- copy(h)

del Remove key-value pair(s) from a hash

Description

Removes key-value pair(s) from a hash.

Usage
del(x,hash)
delete(x,hash)
Arguments
X An object that will be coerced to valid key(s) to be removed from the hash. x
will be coerced to a valid hash keys using make . keys
hash A hash object
Value

None. This method exists solely for the side-effects of removing items from the hash.

Author(s)

Christopher Brown

See Also

See Also as hash, make.keys.

Format hash object for pretty printing

Examples

h <- hash(letters, 1:26)
h # 26 elements

del("a", h)

h # 25 elements

Format hash object for pretty printing
Methods for Function format in Package "hash’

Description

Format a hash for printing.

Methods

x = "hash" Format a hash for pretty printing.

See Also

See also format

has.key Test for existence of key(s) on a hash

Description

has.key returns a logical vector as long as keys, indicating which keys are defined on the hash.

Usage

has.key(key, hash, ...)

Arguments
key A vector whose entries will be coerced to valid keys.
hash A hash object.
arguments passed to further functions
Details

None.

8 hash

Value
logical A logical vector of length key indicating whether the key is defined in the hash.
has.key also accepts . .. to be passed to underlying sapply
Author(s)
Christopher Brown
See Also

See also hash

Examples

h <- hash(letters, 1:26)
all(has.key(letters, h)) # TRUE

hash hash/associative array/dictionary data structure for the R language

Description

Preferred constructor for the hash-class.

Usage

hash(...)
is.hash(x)

S3 method for class 'hash'

as.list(x, all.names = FALSE, ...)
Arguments
X A hash object.
all.names a logical indicating whether to copy all values or (default) only those whose

names do not begin with a dot

Additional arguments passed to the function

hash 9

Details

hash returns a hash object. Key-value pairs may be specified via the ... argument as explicity
arguments keys and values, as named key-value pairs, as a named vector or as implicit key, value
vectors. See examples below for each type.

nn

Keys must be a valid R name, must be a character vector and must not be the empty string,
Values are restricted to any valid R objects.

See . set for further details and how key-value vectors of unequal length are interpretted.
Hashes may be accessed via the standard R accessors [, [[and \$. See hash-accessors for details.
is.hash returns a boolean value indicating if the argument is a hash object.

as.list.hash coerces the hash to a list.

Value

For hash, an object of class hash.

Author(s)

Christopher Brown

See Also

.set, hash-accessors

Examples

hash()
hash(key=letters, values=1:26)
hash(1:3, lapply(1:3, seq, 1))

hash(a=1, b=2, ¢c=3)
hash(c(a=1, b=2, c=3))
hash(list(a=1,b=2,c=3))

hash(c("foo","bar","baz"), 1:3)
hash(c("foo”,"bar","baz"), lapply(1:3, seq, 1))
hash(letters, 1:26)

h <- hash(letters, 1:26)
h$a

h$b

h{["a" 1]

h[letters[1:3]]

h$a<-100
h[['a']ll<-letters

is.hash(h)

10 hash-accessors

as.list(h)

clear(h)
rm(h)

hash-accessors Accessor methods for the hash class.

Description

R style accesors for the hash-class.

Details

These are the hash accessor methods. They closely follow an R style.

$ is a look-up operator for a single key. The native $ method is used. The key is taken as a string
literal and is not interpreted.

L[is the look-up, extraction operator. It returns the values of a single key.

[is a subseting operator. It returns a (sub) hash with the specified keys. All other keys are removed.

Value

$ and [[return the value for the supplied argument. If a key does not match an existing key, then
NULL is returned with a warning.

[returns a hash slice, a sub hash with only the defined keys.

Author(s)

Christopher Brown

See Also

hash, values, .set, as.list

Examples

h <- hash()
h <- hash(letters, 1:26)

h$a
h$a <- "2"
h$z <- NULL # Removes 'z' from

h[['a']]
h{['a']] <- 23

h[letters[1:4]] # hash with a,b,c,d

hash-class 11

h[letters[1:4] 1 <- 4:1

hash-class Class "hash"

Description

Implements a S4 hash class in R similar to hashes / associated arrays / dictionaries in other pro-
gramming languages. Where possible, the hash class uses the standard R accessors: $, [and [[.
Hash construction is flexible and takes several syntaxes and all hash operations are supported.

For shorter key-value pairs, lists might yield higher performance, but for lists of appreciable length
hash objects handly outperform native lists.

Slots

.xData: Object of class "environment”. This is the hashed environment used for key-value stor-
age.

Extends

environment

Methods
HASH ACCESSORS:

signature(x = "hash”, i = "ANY", j = "missing”): Slice Replacement
[[signature(x = "hash”, i = "ANY", j = "missing"”, drop = "missing”) : Slice

[[<- signature(x ="hash”, i ="ANY", j ="missing"): Single key replacement with interpola-
tion.

[[signature(x ="hash”, i ="ANY", j ="missing"): i Single key look-up with interpolation
$<- signature(x = "hash"): Single key replacement no interpolation

$ signature(x = "hash"): Single key lookup no interpolation
Manipulation:

clear signature(x = "hash"”): Remove all key-value pairs from hash

del signature(x ="ANY", hash = "hash"): Remove specified key-value pairs from hash
has.key signature(key ="ANY", hash = "hash"): Test for existence of key

is.empty signature(x = "hash"): Test if no key-values are assigned

length signature(x = "hash"): Return number of key-value pairs from the hash

keys signature(hash = "hash"): Retrieve keys from hash

values signature(x = "hash"): Retrieve values from hash

copy signature(x = "hash"): Make a copy of a hash using a new environment.

format signature(x = "hash"): Internal function for displaying hash

12 invert

Note

nn

HASH KEYS must be a valid character value and may not be the empty string "".
HASH VALUES can be any R value, vector or object.

PASS-BY REFERENCE. Environments and hashes are special objects in R because only one copy
exists globally. When provide as an argument to a function, no local copy is made and any changes
to the hash in the functions are reflected globally.

PERFORMANCE. Hashes are based on environments and are designed to be exceedingly fast using
the environments internal hash table. For small data structures, a list will out-perform a hash in
nearly every case. For larger data structure, i.e. >100-1000 key value pair the performance of the
hash becomes faster. Much beyond that the performance of the hash far outperforms native lists.

MEMORY. Objects of class hash do not release memory with a call to rm. clear must be called
before rm to properly release the memory.

Author(s)

Christopher Brown

References

http://en.wikipedia.org/wiki/Hash_table

http://en.wikipedia.org/wiki/Associative_array

See Also

hash-accessors, environment.

Examples

showClass("hash")

invert Create an inverted hash.

Description

THIS IS AN EXPERIMENTAL FUNCTION. THE IMPLEMENTATION OR INTERFACE MAY
CHANGE WITHOUT WARNING.

Invert creates an inverted hash from an existing hash. An inverted hash is one in which the keys and
values are exchanged.

Usage

invert(x)
inverted.hash(...)

is.empty 13

Arguments
X A hash object
Arguments passed to the hash function.
Details

For invert, keys and value elements switch. Each element of the values(x) is coerced to a key.
The value becomes the associated key.

For inverted.hash, a hash is created than inverted. It is defined as:

function(...) invert(hash(...))

Value

A hash object with: keys as the unique elements of values(x) and values as the associated keys{x}

Author(s)

Christopher Brown

See Also

See also 1ink{hash} and make.keys

Examples

h <- hash(a=1, b=1:2, c=1:3)
invert(h)

inverted.hash(a=1, b=1:2, c=1:3)

is.empty Test if a hash has no key-value pairs.

Description

is.empty tests to see if any key value pairs are assigned on a hash object.

Usage

is.empty(x)

Arguments

X hash object.

14

Details

Returns TRUE if no key-value pairs are defined for the hash, FALSE otherwise.

keys

Value
logical.
Author(s)
Christopher Brown.
See Also
exists.
Examples
h <- hash(a=1, b=2, ¢=3)
is.empty(h) # FALSE
clear(h)
is.empty(h) # TRUE
h <- hash()
is.empty(h) # TRUE
keys Returns key(s) from a hash
Description

Returns the key(s) from a hash

Usage
keys(x)

S3 method for class 'hash'
names (x)

Arguments

X A hash object.

Details

Returns the character vector containing the keys of a hash object.

Value

keys A vector of type character

length

Author(s)

Christopher Brown

See Also
See Also hash.

Examples

h <- hash(letters, 1:26)
keys(h) # letters

names(h) # same

15

length Returns the number of items in a hash

Description

Returns the number of items in a hash

Details

Return the number of items in the hash by calling 1ength on the internal environment.

Value

integer Number of items in the hash.

Author(s)

Christpher Brown

See Also
See Also hash, length

Examples

h <- hash(letters, 1:26)
length(h) # 26

16 make.keys

make.keys creates/coerces objects to proper hash keys

Description

Given an vector of any type, make. keys tries to coerce it into a character vector that can be used as
a hash key. This is used internally by the hash package and should not be normally needed.
Usage

make.keys (key)

Arguments

key An object that represents the key(s) to be coerced to a valid hash keys.

Details

This function is used internally by the hash class to ensure that the keys are valid. There should be
no need to use this externally and is only documented for completeness.

Value

A character vector of valid keys

Author(s)

Christopher Brown

See Also

See also as hash

Examples

make.keys(letters)
make.keys(1:26)

values 17

values Extract values of a hash object.

Description
Extract values from a hash object. This is a pseudo- accessor method that returns hash values
(without keys) as a vector if possible, a list otherwise.

simplifies them to the lowest order (c.f. simplify). Itis very similar to h[[keys(h) 11, An optional
key. It is identical to h[[keys(h) 17 .

For details about hash accessors, please see hash-class

Usage

S4 method for signature 'hash'
values(x, keys=NULL, ...)

S4 replacement method for signature 'hash'
values(keys=NULL) <- value

Arguments
X The hash from where the values retrieved
keys A vector of keys to be returned.
Arguments passed to sapply
value For the replacement method, the value(s) to be set.
Details

The values method returns the values from a hash. It is similar to h[[keys(h) 1] except that a
named vector or list is returned instead of a hash. : By default, the returned values are simplified
by coercing to a vector or matrix if possible; elements are named after the corresponding key. If
the values are of different types or of a complex class than a named list is returned. Argument
simplify can be used to control this behavior.

If a character vector of keys is provided, only these keys are returned. This also allows for returning
values mulitple times as in:

values(h, keys=c('a','a','b"'))
This is now the preferred method for returning multiple values for the same key.

The replacement method, values<- can replace all the values or simply those associated with the
supplied keys. Use of the accessor ’[is almost always preferred.

Value

Please see details for which value will be returned:

vector Vector with the type as the values of the hash

list list containing the values of the hash

18 values

Author(s)

Christopher Brown

References

http://blog.opendatagroup.com/2009/10/21/r-accessors-explained/

See Also

See also hash, sapply.

Examples

h <- hash(letters, 1:26)
values(h) # 1:26

values(h, simplify = FALSE)
values(h, USE.NAMES = FALSE)

h <- hash(1:26, letters)
values(h)

values(h, keys=1:5)
values(h, keys=c(1,1,1:5))
values(h, keys=1:5) <- 6:10
values(h) <- rev(letters)

Index

x classes

hash-class, 11

x data

.set, 3

clear, 4

del, 6

has.key, 7

hash, 8
hash-accessors, 10
invert, 12

keys, 14
make.keys, 16
values, 17

* manip

.set, 3

clear, 4

del, 6

has.key, 7

hash, 8
hash-accessors, 10
invert, 12

keys, 14
make.keys, 16
values, 17

* methods

.set, 3

clear, 4

copy-methods, 5

del, 6

Format hash object for pretty
printing, 7

has.key, 7

hash-accessors, 10

invert, 12

is.empty, 13

keys, 14

length, 15

make.keys, 16

values, 17

19

+ package
hash-package, 2
.set, 3,9 10
[,hash,ANY,missing,missing-method
(hash-accessors), 10
[,hash,missing,missing,missing-method
(hash-accessors), 10
[<-,hash,ANY,missing, ANY-method
(hash-accessors), 10
[<-,hash,ANY,missing,NULL-method
(hash-accessors), 10
[<-,hash,ANY,missing-method
(hash-accessors), 10
[[,hash,ANY,missing-method
(hash-accessors), 10
[[<-,hash,ANY,missing, ANY-method
(hash-accessors), 10
[[<-,hash,ANY,missing,NULL-method
(hash-accessors), 10
[[<-,hash,ANY,missing-method
(hash-accessors), 10
$,hash-method (hash-accessors), 10
$<-,hash, ANY, ANY-method
(hash-accessors), 10
$<-,hash,ANY,NULL-method
(hash-accessors), 10
$<-,hash,ANY-method (hash-accessors), 10
$<-,hash,NULL-method (hash-accessors),
10
$<-,hash,missing,NULL-method
(hash-accessors), 10
$<-,hash-method (hash-accessors), 10

as.list, 10
as.list.hash (hash), 8

clear, 4

clear,hash-method (clear), 4
clear-methods (clear), 4
copy (copy-methods), 5

20

copy, hash-method (copy-methods), 5
copy-methods, 5

del, 5,6

del,ANY, hash-method (del), 6
del-methods (del), 6

delete (del), 6

delete, ANY,hash-method (del), 6
delete-methods (del), 6

environment, 3, 4, 6, 12
exists, 14

Extract, 2

format, 7

format (Format hash object for pretty

printing), 7
Format hash object for pretty
printing, 7

format,hash-method (Format hash object

for pretty printing), 7

has.key, 7

has.key,ANY,hash-method (has.key), 7

has.key-methods (has.key), 7
hash, 3-8, 8, 10, 13—18
hash-accessors, 10
hash-class, 11
hash-package, 2

invert, 12

invert,hash-method (invert), 12
invert-methods (invert), 12
inverted.hash (invert), 12
is.empty, 13

is.hash (hash), 8

keys, 14
keys,hash-method (keys), 14
keys-methods (keys), 14
length, 15, 15
length,hash-method (length), 15
length-methods (length), 15
make.keys, 6, 13, 16

names (keys), 14

sapply, 17, 18

INDEX

values, 10, 17

values,hash-method (values), 17
values-methods (values), 17

values<- (values), 17
values<-,hash,ANY-method (values), 17
values<-,hash-method (values), 17
values<--methods (values), 17

	hash-package
	.set
	clear
	copy-methods
	del
	Format hash object for pretty printing
	has.key
	hash
	hash-accessors
	hash-class
	invert
	is.empty
	keys
	length
	make.keys
	values
	Index

