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Abstract

graphPAF is intended to facilitate analysis of large real world epidemiological data
structures linking risk factors (such as smoking or pollution) to disease. It focuses on
estimation and display of different types of population attributable fractions (PAF) and
impact fractions which measure the disease burden attributable to risk factors and can
subsequently be used to prioritise public health interventions that best prevent disease on
a population level.

Features of graphPAF demonstrated in this manuscript include inference for standard
population attributable fraction and impact fractions, the display of these calculations
using attributable fraction fan-plots and nomograms, computation and display of at-
tributable fraction analogues for continuous exposures, inference for attributable fractions
appropriate for specific risk-factor → mediator → outcome pathways (pathway-specific
attributable fractions) and Bayesian network-based calculations and inference for joint,
sequential and average population attributable fractions in multi-risk factor scenarios.

Keywords: PAF, Bayesian network, causal inference, mediation, epidemiology, nomogram.

1. Introduction

Population attributable fractions (PAFs) measure the extent that a particular disease is re-
lated to a particular behaviour or exposure (typical examples being smoking, exercise or
air pollution), often referred to as a risk factor. The most straightforward examples of at-
tributable fractions pertain to risk-factors that can be eliminated from the population, at
least in theory. For instance, one could imagine a population similar to Ireland in almost
every way (for instance having similar demographics, culture, a similar health system and
so on), except that nobody in this population smoked. How might the rate of heart failure
in hypothetical non-smoking Ireland compare to the rate in real Ireland? If the PAF for
heart disease attributable for smoking is 12% (as was estimated in Sinha, Ning, Carnethon,
Allen, Wilkins, Lloyd-Jones, and Khan (2021)), this means that 12% of the cases of heart
failure that occur in the real Ireland, would be avoided in a hypothetical Ireland where no-
body smoked. Population attributable fractions are important metrics for determining how
pertinent particular risk factors are in determining disease, as well as ranking differing risk
factors as targets for health interventions.

There are a number of current R packages for estimating attributable fractions under vari-
ous study designs, mostly designed for the standard setting that considers population-level
elimination of a single binary-valued risk factor. paf, implements methods described in
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Chen, Lin, and Zeng (2010) and concentrates on estimation under Cohort designs using a
Proportional Hazards model. attribrisk, Kahn, O’Fallon, and Sicks (2000), estimates at-
tributable fractions in matched and unmatched case-control designs. More recently, AF and
stdReg described in Dahlqwist, Zetterqvist, Pawitan, and Sjölander (2016) and Sjölander
(2018) enable estimation of PAF in cross-sectional, case-control and cohort settings. pifpaf,
Camacho-García-Formentí and Zepeda-Tello (2019) specialises on estimation of PAF using
cross-sectional summary data over several independent populations. The new R package
graphPAF described here also estimates PAF for cross sectional, case control and cohort study
designs under random samples. Unlike some of the aforementioned packages, graphPAF also
can estimate PAF for multi-category risk factors and under survey data collection schemes.
It also enables PAF calculations in more complicated settings as we describe below.

In the case that many risk factors are under consideration, differing kinds of analyses may be
of interest. graphPAFimplements fan-plots and nomograms that graphically display the inter-
reationships between attributable fractions, relative risk and risk factor prevalence for multiple
risk factors, as described in Ferguson, O’Leary, Maturo, Yusuf, and O’Donnell (2019). These
analyses can be useful in identify clusters of risk factors that behave similarly, in producing
visual rankings of disease burden attributable to differing risk factors, and sometimes in
visualizing the effects of interventions.

Joint PAF refers to collective disease burden represented by a group of risk factors (and
involves consideration of a hypothetical population where all risk factors in the group were
eliminated). Sequential PAFs examine incremental effects on population disease prevalence
when each of the risk factors in the group is eliminated in some order. Average PAFs (literally
an average of all possible sequential PAF for each risk factor), allow one to partition the
joint PAF into contributions for each risk factor. Previous R implementations of average,
sequential and joint PAF (for example the R package (averisk, Ferguson, Alvarez-Iglesias,
Newell, Hinde, and O’Donnell (2018)), have been agnostic to the causal structure linking
risk factors to disease, which can result in biased estimation in scenarios where multiple risk
factors of interest are on the same causal pathway to disease (for instance if smoking affects
blood pressure which affects disease, smoking and blood pressure would be considered to
be on the same pathway). In contrast, in these settings graphPAF incorporates known risk-
factor/risk-factor and risk-factor/disease relationships using a causal Bayesian network model
Ferguson, O’Connell, and O’Donnell (2020b).

Referring to the putative pathway: ‘smoking → blood pressure → heart disease’ mentioned
above, one might wonder about the extent to which this particular pathway contributes to
heart disease. This is measured by the pathway-specific population attributable fraction,
O’Connell and Ferguson (2022), which can be also calculated by graphPAF. Smoking may
affect heart disease by mechanisms other than through blood pressure; provided data is avail-
able, pathway-specific attributable fractions can also be used to determine the most impor-
tant pathways through which smoking affects disease. The previous R package causalPAF,
O’Connell and Ferguson (2021), can be used to calculate pathway-specific PAFs, however we
have updated the estimation routine to be more efficient and robust in graphPAF.

In the case of continuous risk-factors or exposures, zero exposure or alternatively elimination
of the risk factor can be nonsensical to consider. Consider body mass index (BMI) as an
example; zero BMI is obviously unattainable, and extremely low BMI might be as detrimental
to one’s health as high BMI. Versions of attributable fractions appropriate in these settings,
that allow valid comparisons of disease burden across differing exposures and don’t resort
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to categorization, are described in Ferguson, Maturo, Yusuf, and O’Donnell (2020a). These
metrics are also implemented in graphPAF.

In summary, graphPAF extends and consolidates existing packages for PAF estimation in
multiple ways. In this manuscript, we describe its features in more depth, interweaving
between the theory for PAF estimation and using graphPAF in practice.

The manuscript proceeds as follows. Section 2 deals with standard PAF problems that consid-
ering a single categorical risk factor, that is either binary valued, or has multiple risk-elevating
categories and a reference level. We begin Section 2 with definitions of PAF, using the poten-
tial outcomes framework, for prevalent and incident disease. We briefly describe the causal
exchangeability conditions that are necessary to achieve statistically consistent estimators,
and the associated estimators taht are applicable under cross-sectional, case-control cohort,
survey designs and summarised data. Examples of how to implement these estimators with
graphPAF are then illustrated. The section concludes with examples of how to use graphPAF

to estimate PAF with survey data, illustrations of estimating impact fractions with graphPAF,
and how to use graphPAF to produce attributable fraction fan plots and nomograms. Section
3 illustrates definitions and estimators for PAF in continuous expopsure settings, and how
to implement these using graphPAF. Graphical approaches to visualise and compare versions
of PAF across multiple continuous exposures are demonstrated. Section 4 details the idea of
a pathway-specific PAF, a measure of disease burden that is attributable to a single causal
pathway linking a risk factor, mediator and disease. Again, we briefly describe causal ex-
changeability conditions necessary for consistent estimation, and illustrate estimation using
using graphPAF. In Section 5, we describe issues with calculating joint PAF across a set of
risk factors with known causal structure. We illustrate how to consistently estimate joint
PAF via a recursive simulation approach when causal structure is known. Again, examples
are given in the graphPAF package. Section 6 extends the discussion in Section 5 to the
concepts of sequential PAF and average PAF, which are effectively derived by manipulation
of joint PAF for differing subsets of risk factors. Since, exact estimators of average PAF
maybe infeasible in problems with a large number of risk factors, we describe strategies to
derive approximate estimators that utilise random permutations of the risk factors, that are
implemented in graphPAF. We conclude the Section and the paper with further discussion
regarding computational considerations when calculating sequential and average PAF.

2. Basic PAF estimation

In this section, we consider a scenario where the risk factor is either binary, or perhaps multi-
category with some level indicating ‘elimination’ for the risk factor. We will define appropriate
PAF estimands for cross-sectional, case-control and cohort study designs, and describe causal
exchangeability conditions that are needed for estimation.

2.1. Definitions of PAF under differing study designs

PAF for prevalent disease

Cross sectional and case control designs measure the outcome and risk factor at the same time.
Both designs can be used to estimate the proportion of prevalent disease that is attributable
to a risk factor. Let Y denote a binary disease outcome (1 indicating disease) for a randomly
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selected individual from the population, and Y0 the same binary disease outcome but where
the individual is sampled from a hypothetical population with the risk factor eliminated. The
population attributable fraction for prevalent disease can be defined as:

PAF =
P (Y = 1) − P (Y0 = 1)

P (Y = 1)
, (1)

where P (Y = 1) represents the prevalence of disease in the current population, and P (Y0 = 1)
the prevalence of disease in the hypothetical population with the risk factor eliminated.

PAF for incident disease

Often in longitudinal cohort studies, a cohort of healthy individuals are followed over time with
some eventually developing disease. In this setting, a differing kind of population attributable
fraction is calculated where the cumulative incidence of disease for that cohort as a function
of time is compared to what they incidence would be if the factor had been eliminated from
the cohort:

PAF (t) =
P (T ≤ t) − P (T0 ≤ t)

P (T ≤ t)
(2)

Here random sampling is interpreted as random sampling from the cohort of interest and
PAF , Y and Y0 from (1) are replaced by PAF (t), I{T ≤ t} and I{T0 ≤ t}, with the
random variables T and T0 representing time to disease in the current population and under
hypothetical elimination of the risk factor. In the setting of competing events (such as death)
we can interpret T as the time an individual would have developed disease had the competing
event not occurred, and the PAF in terms of prevented disease under elimination of the risk
factor provided the competing event did not happen. It should be noted that, in the presence
of competing events, (2) can only be estimated events under limited conditions, such as non-
informative censoring of the true survival time, T , by the competing event. However we can
also incorporate competing events directly in the definition of PAF. Suppose ∆ represents an
indicator for the event that happens first with ∆ = 1 indicating that disease occurred before
any other event. We can then write:

PAF ∗(t) =
P (T ≤ t and ∆ = 1) − P (T0 ≤ t and ∆0 = 1)

P (T ≤ t and ∆ = 1)
(3)

Note that as t → ∞, PAF ∗(t) converges to the PAF for disease incidence described in
Laaksonen, Härkänen, Knekt, Virtala, and Oja (2010). While (3) may at first seem a more
sensible estimand than (2) in the presence of competing events, care must be taken in its
interpretation. For instance, if the risk factor leads to early mortality due to other mechanisms
than the disease of interest (3) may be negative for large t even when the risk factor causes
disease. In other words, while (3) is the proportional difference in cumulative incidence in
disease by time t due to removing the risk factor, it can’t be interpreted as disease-incidence
prevented by eliminating the risk factor. In contrast (2) does have an interpretation in terms
of prevented hypothetical incidence in the absence of competing events.

Conditions for estimation

Note that (1), (2) and (3) are causal entities, and unbiased estimation with observational data
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requires relatively strong assumptions. For instance, if the random variable A ∈ {0, 1, ..., nA}
represents the observed risk factor (A = 0 coding for elimination), one cannot say that
P (Y = 1 | A = 0) = P (Y0 = 1) unless the risk factor A could be considered randomly assigned.
Informal sufficient conditions for the possibility of asymptotically unbiased estimation of (1)
are:

1. Unambiguous definition and measurement of the potential outcome: Y0, representing
risk factor elimination. (This is essentially the famous Stable Unit treated value as-
sumption (SUTVA), first described in Rubin (1974))

2. The measurement of a collection of covariates C, so that for observed value of C,
P (Y = 1 | A = 0, C) = P (Y0 = 1 | C) (This will be true if within joint strata of the
covariates C, the risk factor A behaves as if it were randomly assigned). The collection
C is sometimes refered to as a sufficient adjustment set of covariates.

3. The proposed model for disease, conditional on risk factor and covariates, P (Y = 1 |
A = 0, C) is correctly specified.

Similar conditions need to be assumed to estimate (2) and (3). The variables C are often,
but not always, a set of confounders of the risk factor/outcome relationship (that is they are
joint causes of A and Y ). We will assume the veracity of these conditions (including the
measurement of a sufficient adjustment set C) in what follows, although their validity should
be carefully considered in any practical application.

2.2. Estimators of PAF

Differing estimators of PAF are appropriate dependent on the study design. In the following,
we detail estimation formulae for PAF separately for cross-sectional, case-control, cohort and
survey designs. In defining these estimators, the following notation will be used:

i ∈ {1 . . . N} represent the N sampled individuals
Yi ∈ {0, 1} represents the disease outcome for individual i
Ai represents the value of the risk factor in individual i
Ci indicates a ‘sufficient’ vector of covariates in individual i

P̂ (Y = 1 | Ai, Ci) An estimator for the probability of disease given
risk factor value, Ai, and covariate vector, Ci

π disease prevalence

Cross sectional designs

In cross-sectional designs, a random sample i ∈ 1 . . . N , from the population are collected, at
a fixed point in time. In this case, the PAF in the population at the time of data collection,
(1), can be estimated by:

∑N
i=1( ̂P (Y = 1 | Ai, Ci) − ̂P (Y = 1 | Ai = 0, Ci))

∑N
i=1

̂P (Y = 1 | Ai, Ci)
(4)

(4) is implemented by graphPAF and utilises the parametric g-formula, sometimes referred
to as ‘standardisation’, Hernán and Robins (2020), to estimate PAF. Such an approach only
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requires the specification of a model for the response. Double robust approaches have also
been suggested in the literature that require models for both the risk factor and outcome
Sjölander and Vansteelandt (2011).

Case-control designs

In case control studies, disease cases are preferentially selected in the sample, and paired with
healthy controls, often in a 1-1 fashion. This implies that the sampled individuals will not
be representative of the source population, and equation (4) can’t be used directly. However,
if disease prevalence, π, is known, a similar estimator that re-weights contributions for cases
and controls using the same weights, wi, with wi = 1 in controls, to ensure that the empirical

weighted prevalence of disease
∑

wiYi∑
wi

= π, is available:

∑N
i=1 wi(

̂P (Yi = 1 | Ai, Ci) − ̂P (Yi = 1 | Ai = 0, Ci))
∑N

i=1 wi
̂P (Yi = 1 | Ai, Ci)

(5)

One can think of this approach as weighted standardisation. In addition, to re-weighting the
contributions for each individual in equation (5), the estimates P̂ (Yi = 1 | Ai, Ci) may need to
be adjusted so they reflect, on average, the assumed disease prevalence in the population. This
could be achieved by using estimates from a model fit using weighted maximum likelihood,
although this is not what graphPAF does. The correction employed by graphPAF is described
in Section 2.4.

If π is unknown, (5) can’t be used for estimation in case control studies. Instead, the formula
by Bruzzi, Green, Byar, Brinton, and Schairer (1985) should be used:

1 −
1

Nc

∑

i≤N :Yi=1

̂P (Y = 1 | Ai = 0, Ci)
̂P (Y = 1 | Ai, Ci)

= 1 −
1

Nc

∑

i≤N :Yi=1

ˆRRi
−1

(6)

where RRi = P (Y = 1 | Ai, Ci)/P (Y = 1 | Ai = 0, Ci) is the estimated relative increase
in disease risk encountered by individual i based on their risk factor value Ai and Nc =∑

i≤N I{Yi = 1} is the number of cases in the data set. R̂Ri can be approximated by the
corresponding odds ratio in case-control study designs provided the disease is relatively rare.

Surveys

Equation (5) can also used estimate prevalent PAF, (1), for datasets collected with surveys,
where wi is proportional to the inverse of the sampling fraction, that is probability that an
individual with covariates, Ci is selected from the population into the sample. In this case, the
probabilities P̂ (Y = 1 | Ai, Ci) should be estimated using weighted maximum likelihood, using
weights wi, so they reflect population quantities. See Heeringa, Berglund, West, Mellipilán,
and Portier (2015) for more details regarding estimating PAF estimation with survey data.

Cohort designs

In cohort designs, often Cox proportional hazard models are used to estimate (2). Under
the proportional hazards assumption, suppose r̂(Ci, Ai) is the estimated hazard ratio for
an individual with covariates Ci and risk factor Ai compared to their hazard assuming all
covariates and risk factors were at reference levels (defined as 0 for continuous covariates).
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Let Ĥ0(t) be an estimate of the cumulative baseline hazard function. graphPAF uses the
Kalbfleich-Prentice estimate for the baseline cumulative hazard function, the default in the
survival package) for Ĥ(t). PAF (t) is estimated as:

ˆPAF (t) =

∑N
i=1 e−Ĥ0(t)r̂(Ci,Ai=0) − e−Ĥ0(t)r̂(Ci,Ai)

∑N
i=1(1 − e−Ĥ0(t)r̂(Ci,Ai))

(7)

To estimate PAF ∗(t), r̂(Ci, Ai) can be replaced in (7) by the estimated Fine Gray subdistri-

bution hazard ratio: r̂F G(Ci, Ai) for disease incidence, and e−Ĥ0(t) by e−
∫ t

0
ĥF G

0
(u)du, where

hF G
0 (u) is the baseline subdistribution hazard function at time u. As described in the esti-

mation section below, these functions can be estimated by prior weighting of the Cox Model.

Estimates from summarised data

In the case of a binary risk factor, A, Miettinen, Miettinen (1974), showed that equation (1)
can be re-expressed as:

PAF = P (A = 1 | Y = 1)
RRe − 1

RRe
(8)

where Y and A are the indicators for disease and risk factor exposure for a randomly selected
individual from the population, and RRe = P (Y1=1|A=1)

P (Y0=1|A=1) is the causal relative risk in risk-factor
exposed individuals. The above formula can be re-expressed as:

PAF =
P (A = 1)RRu

1 + P (A = 1)RRu

RRe − 1

RRe
(9)

where RRu = P (Y = 1 | A = 1)/P (Y = 1 | A = 0) is the unadjusted relative risk, see
Ferguson (2024) for details. Under a no-effect modification assumption: that is assuming
P (Y1=1|C=c)
P (Y0=1|C=c) is constant across confounder strata C = c, RRe can be replaced by the con-

ditional relative risk RRc = P (Y1 = 1 | C = c)/P (Y0 = 1 | C = c) = P (Y = 1 | A =
1, C = c)/P (Y = 1 | A = 0, C = c), within any stratum C = c. These observations facilitate
estimation of prevalent PAF, by replacing P (A = 1), RRu and RRe in (9) with estimates of
risk-factor prevalence, and unadjusted and adjusted relative risk from the published litera-
ture. Conditions for the approach to be valid, in addition to the conditions listed in Section
2.1, include no-effect modification, so that RRe = RRc, that R̂Rc is been correctly adjusted
for confounding, and transportability of relative risks if the estimates of relative risk and PAF
pertain to differing populations. Extensions to (9) for risk factors with multiple levels and
continuous exposures are given in Ferguson (2024).

Often a simpler approach, based on Levin’s formula, is used to derive estimates of PAF from
summary data:

PAFL =
P (A = 1)(RRc − 1)

1 + P (A = 1)(RRc − 1)
(10)

However, PAFL will only equal equation (1) in special circumstances, such as complete ab-
sence of confounding. In general, Levin’s approach will generate asymptotically biased esti-
mators for PAF, even if consistent estimators for P (A = 1) and RRc are plugged into (10).



8 Estimating and displaying population attributable fractions

2.3. General features of the graphPAF package

The main functions used by graphPAF for estimating differing types of population attributable
fractions are detailed in Table 1. To estimate PAF with individual data, the user needs to
specify a fitted statistical model, usually supplied to the functions in table 1 through the
model argument. As listed in table 1, the supported R model functions vary depending
on the type of PAF, but include glm model objects, that are fit using the binomial family
using the log or logit link, lm objects, polr model objects, fit using the MASS package, and
clogit or coxph model objects, fit using the survival package. Common required arguments
for many of the functions include the dataset used to fit the model, data, the riskfactor of
interest, riskfactor, and the reference value for that risk factor, refval that codes for ‘non-
exposure’. Other exported functions that are listed in Table 1, include auxilliary functions to
assist simulataneous fitting of multiple models, functions for plotting and nomograms, and
fuctions that estimate PAF from summary data.

Confidence intervals

As a default, point estimates of PAF are printed to the screen. For individual data, bootstrap-
calculated confidence intervals for PAF can be requested via extttci=TRUE. The Bootstrap
is assisted by the R-package boot, with confidence interval calculations being produced by
boot::boot.ci. Parallelization over multiple CPU cores is available by setting the option
boot.ncpus to an integer above 1. The number of Bootstrap replications can be changed us-
ing the argument boot_rep, which has a default of 50. As a default, bias-corrected symmetric
confidence intervals are produced, which combine bootstrap estimates of bias and standard
error with the point estimate. This default was set with computational speed in mind, and
might be increased for smaller datasets where bootstrap sampling is relative easy. Efron and
Tibshirani Tibshirani and Efron (1993) show that 200 bootstrap replications is usually suffi-
cient for bootstrap estimates of standard errors, and consequently for symmetric confidence
intervals for normally distributed estimators, but values as low as 25 replications can be useful
to assess variability when sampling is expensive. The default type of bootstrap confidence
interval, ci_type="norm", can be changed by setting the ci_type argument to "basic",
"perc" or "bca". Note that boot_rep should ideally be increased be about 2,000 if this de-
fault is changed. In particular, the number of bootstrap replications needs to be set to larger
than the number of rows in the dataset if ci_type="bca", otherwise the function will return
an error. See the documentation of the "boot" package for more details. When confidence
intervals are produced with individual data, using any of the functions PAF_calc_discrete,
impact_fraction, PAF_calc_continuous, ps_paf, joint_paf, seq_paf and average_paf,
produces additional output in addition to estimates and confidence intervals regarding esti-
mation and inference settings. This extra output can be suppressed by setting the argument
verbose=FALSE.

Data sets available

Two simulated datasets are provided with the graphPAF package. stroke_reduced is a
matched case-control dataset including 10 stroke risk factors for 6,856 stroke cases and 6,856
stroke controls. The simulations were calibrated accorded to probability distributions esti-
mated using a Bayesian network model fitted to real data from the INTERSTROKE project,
O’Donnell, Chin, Sumathy, and et al (2016). Stroke cases and healthy controls, cases being in-
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Table 1: The main estimation functions in the graphPAF package and supported model types

Type of
PAF

Function purpose
Supported
modeling
functions

discrete
risk
factor

PAF_calc_discrete() estimate PAF glm, clogit, coxph

impact_fraction() estimate impact fraction glm, clogit, coxph

paf_levin()
estimate PAF with
summary data

NA

paf_miettinen()
estimate PAF with
summary data

NA

rf_summary()

create an
rf_summary object
for plotting
nomograms

NA

continuous
exposure

plot_continuous()
plot of estimated
relationship between
exposure and
outcome

glm, clogit,

coxph

PAF_calc_continuous()estimate PAF_q for a
continuous exposure

glm, clogit,

coxph

mediating
pathway

ps_paf()
estimate pathway
specific PAF

A list of
lm,polr and
glm objects for
mediators, a
glm object for
the response

multiple
risk
factors

data_clean()

Calculate
prevalence-based
weights for modeling

NA

automatic_fit()

Automatic fitting of
statistical models for
a specified DAG and
dataset

NA

joint_paf() estimate joint PAF
A list of lm,
polr and glm

models

seq_paf()
estimate sequential
PAF

A list of lm,
polr and glm

models

average_paf()
estimate average
PAF

A list of lm,
polr and glm

models
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dicated by case=1, are matched by age-group, gender and region. Matched cases and controls
share the same value of the strata variables. Risk factors have differing datatypes, including
binary (smoking, stress, diabetes, high_blood_pressure, early_stage_heart_disease,
exercise), ordinal (alcohol), and continuous (waist_hip_ratio, lipids diet). To illus-
trate survival analyses, a time to event variable, time>0 and event indicator, event, with 0
indicating right censored observations, are also included. Hordaland_data is a 2nd example of
a case control dataset, pertaining to 5,000 individuals with chronic cough and 5,000 controls,
with two binary risk factors (urban.rural, occupational.exposure), and one ordinal risk
factor smoking.exposure, simulated based on the relationships in Eide and Gefeller (1995).

2.4. Estimation of prevalent and incident PAF

The function PAF_calc_discrete allows PAF estimation for categorical risk factors (binary
risk factors, or multiple-category risk factors) for cross-sectional, case control and longitudinal
cohort designs. As an example, consider estimating the PAF for the variable exercise, a
binary indicator for physical inactivity, using the dataframe: stroke_reduced.

First, to deal with the case-control matching, we fit a conditional logistic model to describe
the relationships between the prevalence of stroke, exercise and assumed confounders, with
the following commands:

> library(splines)

> library(survival)

> library(graphPAF)

> model_exercise <- clogit(formula = case ~ age

+ education +exercise + ns(diet, df = 3) + smoking + alcohol

+ stress + ns(lipids,df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure +strata(strata),data=stroke_reduced

)

The PAF for physical inactivity can then be calculated using the function PAF_calc_discrete.
Note that the reference value of the risk factor variable in R, that is the value corresponding
to no risk factor exposure, is specified below as refval.

> PAF_calc_discrete(model = model_exercise,

riskfactor = "exercise", refval = 0,

data = stroke_reduced

)

0.3322625

For case-control datasets such as stroke_reduced, the ‘Bruzzi’ method is recommended as
it doesn’t require specification of disease prevalence, provided the disease is relatively rare
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(the approximation of risk-ratios with odds-ratios might be unacceptably inaccurate oth-
erwise). This is the default method employed by graphPAF. If the prevalence or alterna-
tively the average incidence over a period of time is known, the ’direct’ approach, as de-
scribed by equation (5), can also be used to estimate PAF in case-control studies, by spec-
ifying calculation_method="D" and a value for prev as arguments, as indicated below.
Note that when disease prevalence is specified as π, graphPAF adjusts predicted probabil-
ities via adding a constant to the linear predictor of the estimated model to ensure that∑

i≤N wiP̂ (Yi = 1 | Ai, Ci)/ =
∑

i≤N wiπ .

> PAF_calc_discrete(model_exercise, "exercise",

refval = 0, data = stroke_reduced,

calculation_method = "D", prev = 0.0035

)

0.3196773

The above calculation assumes that the yearly incidence (averaged over the cohort) of first
stroke is 0.0035, which effectively estimates PAF (1), that is equation (2) at t = 1. If disease
prevalence (rather than an estimated incidence) is used in the argument prev, PAF_calc_discrete

will estimate (1). Note that when lifetime disease incidence across the cohort is low, relative
risks and hazard ratios should correspond and one would expect equation (1) to be approxi-
mately equal to (2) at varying t.

For PAF calculations with cross sectional datasets, a glm model should first be fit that de-
scribes the relationship between risk factor and disease, conditional on covariates. Note in this
case that only logistic or log-linear binomial models are permitted in graphPAF. Provided the
sample is representative of the source population, standardisation (calculation_method="D")
should be used, but disease prevalence, prev, no longer needs to be specified. PAF_calc_discrete

will then estimate equation (1).

By default the reference level for a binary risk factor (that is a risk factor coded as 0/1) is
set to 0. In the example above, 1 codes physical inactivity. The function can also estimate
PAF for multiple-category risk factors provided refval is set correctly.

> library(parallel)

> options(boot.parallel = "snow")

# use all the detected cores on computer

> options(boot.ncpus = parallel::detectCores())

> PAF_calc_discrete(model_exercise, riskfactor="exercise",

refval = 0, data = stroke_reduced,

calculation_method = "B", ci = TRUE, boot_rep = 50,

ci_type = "norm", ci_level = .95, verbose=TRUE

)
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The estimate is 0.332

An estimated 95 % confidence interval is (0.262,0.407)

Type of statistical model originally fit: clogit

Method used to produce estimate: Bruzzi formula

Type of Bootstrap confidence interval used: norm

Number of bootstrap draws: 50

In Cohort datasets, often survival regression methods are used and estimation focuses on (2).
Often the initial model considered is a proportional hazards regression model, fit via the R-
function phreg, from the survival library. As an example in the dataframe stroke_reduced,
time denotes a simulated survival time to some event in the stroke controls (individuals with
event=0 are considered to not have experienced the event at study completion or when they
left the study, and are censored). The following model might be fit:

> model_high_blood_pressure_coxph <- coxph(formula = Surv(time, event) ~

ns(age, df = 5) + education + exercise + ns(diet, df = 3) + smoking +

alcohol + stress + ns(lipids, df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure,

data = stroke_reduced[stroke_reduced$case == 0, ]

)

Suppose we are interested in the proportion of the events in the sub-cohort that might have
been avoided if nobody in the cohort was hypertensive (hypertension being represented by
the binary variable high_blood_pressure. At time 0, nobody had experienced an event, and
over time the cumulative number of events (and also the proportion of events that might be
avoided) will change. The user can specify the times, t, at which to calculate PAF (t) using
the argument t_vector:

> PAF_calc_discrete(model=model_high_blood_pressure_coxph,

riskfactor = "high_blood_pressure", refval = 0,

data = stroke_reduced[stroke_reduced$case == 0, ],

calculation_method = "D", ci = TRUE,

boot_rep = 50, ci_type = c("norm"),

t_vector = c(1, 2, 3, 4, 5, 6, 7, 8, 9), verbose=TRUE

)

Time Estimated_PAF CI

1 0.397 (0.353,0.428)

2 0.391 (0.352,0.422)

3 0.379 (0.342,0.415)

4 0.361 (0.324,0.404)

5 0.327 (0.281,0.39)

6 0.293 (0.234,0.374)
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7 0.256 (0.19,0.354)

8 0.220 (0.148,0.327)

9 0.176 (0.099,0.286)

Type of statistical model originally fit: coxph

Method used to produce estimate: Weighted Standardisation

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

The results indicating that while 39.7% of events that happen within a year might have been
avoided in a hypertension-free population, only 17.6% of events that happen within 9 years
would be avoided. This is the typical pattern one expects for an event such as death which
(unfortunately) can only be delayed but not prevented by the risk factor’s absense.

If it is preferred to estimate (3) rather than (2), and data on competing events exists a weighted
Cox model should instead be used with weights calculated using the function finegray from
the survival package. Sending the weighted cox model to PAF_calc_discrete will utilise
the Fine Gray modification of (7) described earlier. See Therneau, Crowson, and Atkinson
(2021) for more details.

Estimation of PAF for data collected on surveys

PAF can be estimated with survey data by using the argument weight_vec in the PAF_calc_discrete

function, where weight_vec is a vector of survey weights, that correspond to the inverse of
the sampling fractions. A regression model (glm or coxph) estimated with weighted maxi-
mum likelihood with the same weights should be given as the model argument in this case.
For instance, stroke_reduced, contains a column of weights, weights, giving approximate
inverse sampling fractions, 0.9965 for a control and 0.0035 for a case. We can use these as
illustration for how to estimate PAF from a survey. First, a glm is fit with weighted likeli-
hood to ensure that the estimated probabilisties are representative of the population, using
the inverse sampling fractions as the argument weights:

> library(splines)

> library(survival)

> library(graphPAF)

> model_exercise <- glm(formula = case ~ age

+ education +exercise + ns(diet, df = 3) + smoking + alcohol

+ stress + ns(lipids,df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure,

family="binomial", weights=weights,data=stroke_reduced

)

Then PAF is estimated using calc_PAF_discrete, with the argument weight_vec set to the
same vector of inverse sampling weights:
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PAF_calc_discrete(model=model_exercise, riskfactor="exercise",

refval = 0, data = stroke_reduced,

calculation_method = "D", weight_vec=stroke_reduced$weights

)

0.3189574

Note that confidence intervals will be calculated using standard Bootstrap techniques (includ-
ing Bootstraping the inverse sampling fractions weight_vec) and may give incorrect results
for surveys involving cluster sampling. One work-around would be to use graphPAF as a
tool to generate point estimates, but to design a custom resampling regime that replicates
the population sampling scheme used in the survey, and Bootstrap according to this custom
sampling scheme.

Estimation of PAF using Summary data

The functions paf_miettenen and paf_levin implement estimators based on (9) and (10). If
confidence intervals for the relative risk and prevalence are available, these functions will re-
turn confidence intervals for PAF based on approximate propagation of imprecision, Ferguson
and Alvarez (2023).

As an example, suppose we did not have the full stroke_reduced dataset, but instead only
had 95% confidence intervals for the prevalence of inactivity: (0.843,0.855), unadjusted odds
ratio relating inactivity and stroke (1.514, 1.833) and the odds ratio between inactivity and
stroke, estimated according to the clogit model given earlier in this section: (1.427, 1.806).
We will use these odds ratios to provide approximate estimates for the relative risks, RRu

and RRc in (9) and (10). Estimates for PAF and associated confidence intervals are produced
by:

> paf_levin(conf_prev=c(0.843,0.855),

conf_RR=c(1.427,1.806)

)

0.339 (0.266,0.406)

> paf_miettinen(conf_prev=c(0.843,0.855),

conf_RR=c(1.427,1.806),

conf_RRu=c(1.514, 1.833)

)

0.341 (0.27,0.403)

If the risk factor has multiple non-reference levels, conf_prev, conf_RR and conf_RRu should be
specified as matrices, with each row giving separate confidence intervals for prevalence and relative
risk at each level, compared to the non-exposure to the risk factor. In this above example, the es-
timated PAF and confidence interval from paf_miettinen are very similar to those produced via
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calc_PAF_discrete, with the default setting calculation_method="B". If the relative risk of in-
activity varies substantially over strata of confounders and this effect modification is reflected by
appropriate interaction terms in a statistical model, the results of the two approaches will differ, with
PAF_calc_discrete being more accurate. As mentioned in Section 2.2, Levin’s formula generates
asymptotically biased estimates of PAF when RRc and RRu differ, even if the estimate of RRC sub-
stituted into the formula is correctly adjusted for confounding. Here, the extent of confounding is
relatively minor, and the results of paf_miettinen and paf_levin are very similar.

2.5. Estimation of Impact fractions

While population attributable fractions (PAF) can summarise the overall impact or importance of a
risk factor on disease burden, they tend to give an overly optimistic impression of what an intervention
on that risk factor might achieve. The predominant reasons for this are first that it may be difficult if
not impossible to eliminate the risk factor from the population (think of the difficulties in preventing
all forms of smoking or alcohol-use or enticing an entire population to change their dietary habits) and
second that even if one could eliminate the risk factor, disease risk in individuals who previously were
exposed might not equal the disease risk if they were never exposed (for instance, former smokers may
have higher disease risk than comparable individuals who never smoked) Bulterys, Morgenstern, and
Weed (1997).

In contrast, population impact fractions purport to measure the proportional reduction in disease
risk from a realistic health intervention that may reduce the prevalence of a risk factor (rather than
eliminate the risk factor), or perhaps favorably change the collective statistical distribution of many
risk factors. The function impact_fraction in graphPAF can estimate impact fractions under the
study designs considered above (cross-sectional, cohort and case-control). We first need to specify
how the health intervention changes the distribution of risk factors that might affect disease, through
the new_data argument. For instance, imagine a health-intervention (perhaps a national campaign
to encourage walking) reduces the prevalence of inactivity by 20%. Assuming the intervention has no
effect on any other risk factor, the following code shows how such an intervention might be specified
using the new_data argument

> new_data <- stroke_reduced

> N <- nrow(new_data)

> inactive_patients <- (1:N)[stroke_reduced$exercise == 1]

> N_inactive <- sum(stroke_reduced$exercise)

> newly_active_patients <-

inactive_patients[sample(1:N_inactive, 0.2 * N_inactive)]

> new_data$exercise[newly_active_patients] <- 0

The impact fraction for such an intervention is then calculated using:

> impact_fraction(

model = model_exercise, stroke_reduced, new_data,

calculation_method = "B", ci=TRUE, verbose=TRUE

)

The estimate is 0.0674

An estimated 95 % confidence interval is (0.0537,0.0768)
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Type of statistical model originally fit: clogit

Method used to produce estimate: Bruzzi formula

Type of Bootstrap confidence interval used: norm

Number of bootstrap draws: 50

indicating that the health intervention might result in a 6.7% reduction in the rate of strokes.
Note that this calculation really refers to the difference in disease risk in two comparable
populations, one with a reduced rate of inactivity. Since changing one’s behaviour may not
completely eliminate cumulative damage due to prior unhealthy lifestyle, this estimated 6.7%
might overestimate the impact of the intervention at least in the short term. If the 20%
reduction in ‘inactivity’ is sustained over many years, it is reasonable that this estimate
represents a long run effect of the health intervention.

2.6. PAF nomograms

graphPAF facilitates plotting of the inter-relationships between prevalence, odds ratios and
attributable fractions over multiple risk factors using methods described in detail in Ferguson
et al. (2019). These plots utilise the concept of ‘approximate-PAF’, derived in the same paper:

PAFapprox = log(OR)πcontrol ≈ PAF (11)

where OR is the causal odds ratio between a risk factor and disease, and πcontrol is the
prevalence of the risk factor in controls. This approximation stems from a Taylor expansion
of the PAF around a relative-risk of 1, and will be most accurate for risk factors that have
relatively small effects on a relatively rare outcome. One interesting observation regarding
approximate PAF is the symmetric roles that risk factor prevalence and log-odds ratio play
in its definition; indicating that similar changes in either lead to a similar impact on disease
on a population level. To create a fan plot, risk factor data (names, prevalences and log-odds
ratios) must be first summarised into an rf_summary object before plotting. For instance:

> rfs <- rf_summary(rf_names = c(

"Hypertension", "Inactivity", "ApoB/ApoA", "Diet",

"waist_hip_ratio", "Smoking", "Cardiac causes",

"Alcohol", "Global Stress","Diabetes"

), rf_prev = c(

.474, .837, .669, .67, .67, .224, .049,

.277, .144, .129

), risk = c(

1.093, 0.501, 0.428, 0.378, 0.294,

0.513, 1.156, 0.186, 0.301, 0.148

), log = TRUE)

creates such an object for 10 risk factors from the INTERSTROKE database. rf_prev

represents the prevalence of the risk factor in controls. For risk factors with more than
2-levels (here ApoB/ApoA, waist_hip_ratio and alcohol have 3 levels), the prevalence of
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the non-reference levels of the risk factor should be used as rf_prev. While technically,
rf_prev should be the prevalence of the risk factor in controls, this can be substituted with
population-prevalence when prevalence in controls is unavailable if the disease is rare. By
default, the argument risk should specify confounder-adjusted log-odds ratios for association
between risk factor and outcome , although odds ratios or risk ratios can be used via the
setting extttlog=FALSE. Note that log-odds ratios can be conveniently estimated via logistic
regression models. Plotting this rf_summary object, using default settings, produces Figure 1
below.

> plot(rfs)

1: Hypertension

2: Inactivity

3: ApoB/ApoA

4: Diet

5: waist_hip_ratio

6: Smoking

7: Cardiac causes

8: Alcohol

9: Global Stress

10: Diabetes
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Figure 1: Fan Plot displaying Prevalences, odds ratios and approximate PAF for INTER-
STROKE risk factors. Approximate PAF is represented as both the slope of the line adjoining
a point to the y-axis, and also the y-axis intercept of that adjoining line. The fan plot in-
dicates that hypertension and inactivity are the two most prominent risk factors in stroke
pathogenesis. Cardiac disease is an outlier on the plot. While it has the highest estimated
relative risk, it has low prevalence (less than 5%) in comparison with the other risk factors
and is only ranked 7th in terms of disease burden

Approximate PAF is represented on a fan plot as both the slope of the line adjoining a point
to the y-axis, and also the y-axis intercept of that adjoining line. Fan plots are read clockwise
from the upper left corner along the rays of decreasing approximate PAF (which is again the
slope of the ray), and display risk factor prevalence and odds ratio (based on the x-axis and
y-axis intercept of a particular point) for the risk factors under comparison, in addition to
the approximate PAF.

Imagine now a successful health intervention that reduces the prevalence of smoking by about
50%. This information might be displayed in a rf_summary object as follows:

> rfs <- rf_summary(

rf_names = c(

"Hypertension", "Smoking",
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"Smoking (after health intervention)"

), rf_prev = c(.474, .224, .11),

risk = c(1.093, 0.513, 0.513), log = TRUE

)

Like a fan plot, attributable fraction nomograms display joint information on prevalence, odds
ratio and approximate PAF, but this time on three vertical axes, with a risk factor represented
by the line connecting these three data-points. An intervention will usually work by changing
the population prevalence of the risk factor, without affecting the odds ratio. This can be
graphically represented by rotating the line for the risk factor, using the (unaffected) odds
ratio as a pivot, from the old prevalence through the new prevalence, as Figure 2 represents.
Of course, other risk factors can also be represented on this plot (as is hypertension here).
Plotting a rf_summary object with argument exttttype=‘rn’ produces the Figure below. If
preferred, using type = `n', uses the odds ratio, rather than prevalence as the center-axis,
with risk factor prevalence being the left-hand axis, but is otherwise interpreted similarly.

> plot(rfs,type='rn')
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Figure 2: Attributable fraction nomogram for INTERSTROKE risk factors. Nomograms
like the above give an alternative way to display joint intervention regarding odds ratios,
prevalences and approximate PAF. They can also be used to visualise interventions. For
instance, the green and blue lines represent smoking in a population pre and post intervention.
The odds ratio for smoking isn’t affected by the intervention, but the prevalence is. The effect
of the intervention for smoking PAF can be visualised by rotating the line for smoking (using
the left axis odds ratio as a pivot) through the new prevalence post intervention

3. Estimation with Continuous Exposures



John Ferguson University of Galway Maurice O’Connell University of Galway 19

Frequently, a discrete risk factor such as hypertension is generated by the truncating an
underlying continuous exposure, such as blood pressure. Not accounting for this underlying
continuity may result in underestimation of disease burden attributable to the exposure. This
is because individuals categorised within the lower of two exposure categories may still be still
at elevated risk of disease. As an example, suppose hypertensive is defined as systolic blood
pressure above 140mm/Hg. Then an individual with systolic blood pressure of 139 would
fall into the ‘reference’ group, but might have some increased risk of cardiovascular disease
compared to if their blood pressure was 120. A discrete PAF for hypertension, which as defined
by Section 2 imagines a world with ‘no hypertension’, but in this world some individuals still
have elevated risk due to their blood pressure and as a result, a disease burden estimated by
comparing current prevalence to prevalence in this hypothetical world may underestimate the
disease exposure due to high blood pressure. Ferguson et al. (2020a) discusses these issues
and suggests a variety of appropriate estimands for continuous exposures.

3.1. Estimands for PAF with continuous exposures

Using the notation from Ferguson et al. (2020a), we consider the exposure for a randomly
selected individual from the population as a continuous random variable, X, with Y repre-
senting a binary disease outcome. We let Yx represent the potential outcome if X = x, which
we assume is well defined. Assuming that P (Yx = 1), considered as a function of x, has some
minimum value xmin within the physiological limits of the exposure X, we define PAF as:

PAF =
P (Y = 1) − P (Yxmin

= 1)

P (Y = 1)
, (12)

As explained in Ferguson et al. (2020a), the estimand (12) may be difficult to estimate when
xmin falls in the extremes of the exposure distribution since it will require estimating prob-
abilities of disease or relative risks at xmin; these are possibly extreme extrapolations of the
fitted model. As an alternative, the family of estimands: PAFq for q ∈ (0, 1) are suggested in
Ferguson et al. (2020a) as alternative metrics. PAFq is the impact fraction for an intervention
that changes the exposure only for the 100(1-q)% of individuals who have the most hazardous
values of exposure. Suppose an individual, who is affected by this intervention, has exposure
value x. The intervention shifts their exposure to the value fq(x), closest to x, from the set of
physiologically possible exposure values having the lowest 100q% of risk. For instance, the in-
tervention corresponding to PAF0.3 for the variable, lipids in stroke_reduced is illustrated
by the region shaded blue, in the bottom panel of Figure 3. An individual with exposure value
x = 1 is affected by the intervention. Their exposure value is shifted to the closest value,
f0.3(1) = 0.59 that is within the lowest 30% of risk, noting that the density curve in the figure
describes the distribution of physiologically possible exposure values. Individuals who have
exposure values in the blue shaded region are unaffected by the intervention.

Estimating PAFq for q ≥ 0.1 will often involve less extrapolation than (12), and consequently
estimators of PAFq are likely to have lower variance. PAFq also has a more concrete real
world interpretation as the impact fraction for an achievable intervention. In practice, we
may want to compare estimated values of PAFq across a range of reasonable values for q.

PAFq is defined more precisely as:
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PAFq =
P (Y = 1) − P (I{X ∈ Rq}Y + I{X /∈ Rq}Y fq(X) = 1}

P (Y = 1)
(13)

where Rq is the interval of exposure values corresponding to the bottom 100q% of risk and
fq(X) is the closest point in the closure of Rq to X. Note that as q ↓ 0, PAFq ↑ PAF .

Under continuous analogs of the conditions 1), 2) and 3) listed on pages 5 and 6, (13) can be
estimated as

ˆPAF q =

∑N
i=1 I{Xi /∈ Rq}( ̂P (Y = 1 | Xi, Ci) − P̂ (Y = 1 | f̂q(Xi), Ci))∑N

i=1 Yi

, (14)

ˆPAF q = 1 −
1

Nc

∑

i≤N :Yi=1

I{Xi /∈ Rq}
P̂ (Y = 1 | f̂q(Xi), Ci)

̂P (Y = 1 | Xi, Ci)
, (15)

and

ˆPAFq(t) =

∑N
i=1(e−Ĥ0(t)ĥ(Ci,Ai) − e−Ĥ0(t)ĥ(Ci,f̂q(X)))

∑N
i=1 e−Ĥ0(t)ĥ(Ci,Xi)

, (16)

respectively for cross sectional, case control and cohort designs, where Nc =
∑N

i=1 Yi and

f̂q(x) the estimated value for fq(x) and ̂P (Y = 1 | x, c), the estimated probability of disease,
when the risk factor is x and the covariates are c.

Estimation using PAF_calc_continuous

Here we consider the convenient case where a group of continuous risk factors: waist_hip_ratio,
diet and lipids all have the same set of underlying confounders, and subsequently estimated
effects of each risk factor can be obtained from a single statistical model. The following code
demonstrates how such a model might be specified for a case-control dataset. Note that the
continuous exposures waist_hip_ratio, diet and lipids appear in the model as natural
spline terms.

> model_continuous_clogit <- clogit(formula = case ~

region * ns(age, df = 5) + sex * ns(age, df = 5) +

education + exercise + ns(diet, df = 3) + alcohol

+ stress + ns(lipids, df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure + strata(strata),

data = stroke_reduced

)

Having fit the model, the function PAF_calc_continuous estimates PAFq at any desired set of
quantiles, q_vec, by implementing equations (14), (15) and (16). One call to PAF_calc_continuous

can estimate PAFq for a number of exposures, by using the argument riskfactor_vec. The
resulting object is essentially a dataframe with rows for each risk factor,PAFq combination
and columns corresponding to quantiles which can be printed and plotted as follows:
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> out <- PAF_calc_continuous(model=model_continuous_clogit,

riskfactor_vec =

c("diet", "lipids", "waist_hip_ratio"),

q_vec = c(0.01, 0.1, 0.3, 0.5, 0.7, 0.9),

ci = TRUE, calculation_method = "B",

data = stroke_reduced, boot_rep = 50, verbose=TRUE

)

out

riskfactor q paf_q.est CI

diet 0.01 0.16200 (0.0111,0.223)

diet 0.10 0.14600 (0.0987,0.183)

diet 0.30 0.11100 (0.0858,0.142)

diet 0.50 0.07990 (0.0641,0.0973)

diet 0.70 0.04860 (0.0314,0.0641)

diet 0.90 0.01600 (0.00706,0.0237)

lipids 0.01 0.37900 (0.344,0.414)

lipids 0.10 0.36500 (0.335,0.395)

lipids 0.30 0.28200 (0.256,0.303)

lipids 0.50 0.17300 (0.15,0.193)

lipids 0.70 0.07330 (0.0591,0.0885)

lipids 0.90 0.01290 (0.00701,0.0208)

waist_hip_ratio 0.01 0.17200 (0.022,0.259)

waist_hip_ratio 0.10 0.16100 (0.0914,0.211)

waist_hip_ratio 0.30 0.11400 (0.0828,0.142)

waist_hip_ratio 0.50 0.06810 (0.0496,0.0885)

waist_hip_ratio 0.70 0.03080 (0.018,0.0488)

waist_hip_ratio 0.90 0.00691 (0.00147,0.0153)

Type of statistical model originally fit: clogit

Method used to produce estimate: Bruzzi formula

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

Using the argument "calculation_method="B", as above uses (15) to estimate PAFq (ap-
propriate in case-control designs), in contrast, "calculation_method="D" uses (14), whereas
(16) will be used for proportional hazard models. Note that in the case of a survival re-
sponse, PAFq(t) can only be evaluated at a single time, t, specified as t_vector being a
single element.

Plots

One can evaluate the estimated shape of the exposure/outcome relationship, and visualise the
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interventions corresponding to a particular value of PAFq using the function plot_continuous.
As an example:

> plot_continuous(model_continuous_clogit,

riskfactor = "lipids",

data = stroke_reduced, min_risk_q = .1,

n_x = nrow(stroke_reduced)

)

> plot_continuous(model_continuous_clogit,

riskfactor = "lipids",

data = stroke_reduced, min_risk_q = .2,

n_x = nrow(stroke_reduced)

)

> plot_continuous(model_continuous_clogit,

riskfactor = "lipids",

data = stroke_reduced, min_risk_q = .3,

n_x = nrow(stroke_reduced)

)

produce estimated relationships between lipids and OR of stroke (with the median value
for lipids as a reference by default), in addition to highlighting the exposure-ranges for the
interventions corresponding to PAF0.1,PAF0.2 and PAF0.3. To enable assessment of the
physiologically possible values for the exposure, the estimated population density of exposure
values is included in the plot.

PAFq can be plotted against q for several risk factors by simply plotting the returned object
from a call to PAF_calc_continuous, as seen in Figure 4. Such a plot allows one to visually
assess the relative benefits of comparable and achievable interventions on differing risk factors.

> plot(out)

The results in Figure 4 indicate that comparable interventions targeting waist hip ratio and
diet may have similar effects on disease burden, with interventions on lipids having larger
effects. This might motivate an intervention on lipid levels (for example, increased statin use
when appropriate) over interventions on diet or BMI, although admittedly many other factors
may dictate what if any intervention may be chosen in practice.

4. Pathway-specific PAF calculations

While PAF provides an overall measure of the importance of a particular disease risk factor
in causing disease on a population level, the mechanisms by which the risk factor effects
disease may also be of interest. For instance, perhaps physical inactivity increases blood
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Figure 3: Estimated effects of blood lipid levels on the OR of stroke. The density of lipids
and pointwise 95% confidence bands for the odds ratios are also plotted. Also shaded blue
are the target regions for the intervention associated with PAFq for various q. For instance
PAF0.1 corresponds to the smallest 10% of risk

pressure which subsequently increases the risk of stroke. Alternatively, physical inactivity
might indirectly increase the risk of stroke through weight gain or increased cholesterol levels.
In this context, the variables blood pressure, weight gain and cholesterol are regarded as
‘mediators’, that is they are intermediate variables on differing causal pathways each partially
explaining the causal relationship between inactivity and stroke. How important might each
pathway be in disease pathogenesis? In O’Connell and Ferguson (2022), this question is
addressed by defining an attributable fraction for a particular mediating pathway. Roughly
this ‘pathway-specific’ attributable fraction (PS-PAF for short) can be interpreted as the
relative decrease in disease prevalence if a particular mediating pathway didn’t exist. For
instance imagine there was no effect of physical inactivity on blood pressure; what percentage
of stroke might be avoided in such a population? Letting M1, ..., MK represent K known
mediators of the risk factor outcome relationship, A ∈ {0, 1} a risk factor and Y ∈ {0, 1} a
disease outcome, the PS-PAF for mediator k ≤ K is denoted as:

PAFA−>Mk−>Y =
P (Y = 1) − P (YA,Mk

0

= 1)

P (Y = 1)
(17)
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Figure 4: plotting PAFq over multiple risk factors. The figure indicates that comparable in-
terventions on diet and waist hip ratio (for instance intervening on the 50% of most hazardous
exposure values as is the case in PAF0.5 may have similar effects for diet and waist hip ratio,
but much larger effects for lipids). As can be seen in the plot, the confidence intervals for
PAFq, q ≥ 0.1 are narrower than the confidence interval for PAF0.01 ≈ PAF , reflecting the
fact that PAFq is easier to estimate than PAF .

P (YA,Mk
0

= 1) can be interpreted as disease prevalence in a hypothetical population which
mirrors the actual population in the values of the risk factor A, but where the values for
mediator, Mk, behave as if the risk factor didn’t exist (note that on an individual level Mk

0

is the potential outcome for the kth mediator assuming no exposure to the risk factor, that is
A = 0). As described in O’Connell and Ferguson (2022), interpretations for pathway-specific
attributable fractions subtly differ based on the causal identifiability assumptions assumed.
We are describing the mechanistic interpretation here, although two other interpretations
exist. We won’t go into these details here and instead refer the interested reader to O’Connell
and Ferguson (2022).

In addition to pathway specific PAF for indirect pathways, one can also define an attributable
fraction for all ‘unobserved’ or unknown pathways:

PAFA−>Y =
P (Y = 1) − P (Y0,M1,...,MK = 1)

P (Y = 1)
(18)

(18) denotes the ‘direct’ pathway specific population attributable fraction, and represents the
contribution of mechanisms by which the risk factor affects disease, other than those repre-
sented by pathways through M1,....,MK (Note that P (Y0,M1,...,MK = 1) can be interpreted
as the disease prevalence in a population where the risk factor was eliminated but with the
joint distribution of mediators M1, ..., MK being unaffected).

Under the assumptions listed in O’Connell and Ferguson (2022) (with the additional assump-
tion that mediators are on separate causal pathways between the risk ractor and disease),
estimating (17) requires fitting a model for the mediator Mk conditional on both the risk fac-
tor, A, and the confounder-vector for the exposure outcome relationship C (Note that these
models estimate P (Mk = m | A, C) for a discrete mediator and E(Mk | A, C) for a continu-
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Figure 5: Mediators on separate causal pathways. M1, M2 and M3 mediate the causal
relationship between A and Y . These mediators represent independent mechanisms by which
A affects Y in that any pathway of direct arrows originating from A and ending at Y can
only involve one of the three mediators.

ous mediator), in addition to fitting a model for the disease outcome, Y , conditional on the
exposure A, mediators M1, ..., MK and the same set of confounders C. (This second model
estimates P (Y = 1 | A, C, M1, ..., MK)). When Mk is continuous, the following estimator for
(17) is used:

P̂AF A−>Mk−>Y =

∑N
i=1 wiYi −

∑N
i=1 wiP̂ (Y = 1 | Ai, Ci, M̂k

i , M̸
=k

i
)

∑N
i=1 wiYi

(19)

with M̂k
i = Mk

i − ̂E(Mk | A = 0, Ci), with Ci and Mk
i representing the observed values of

the confounder vector and kth mediator for person i, and M̸
=k

i
, the observed values for other

mediators for the same individual. Weights wi are used to account for possible case-control
structure. For representative cross sectional samples, these weights should be set to 1 (the
default). In contrast, for case control data, these weights can be set based on estimated
disease prevalence. In the case that the mediator Mk is discrete, having possible values given
by the set Mk, a slightly different estimator is used:

P̂ AF A−>Mk−>Y =

∑N

i=1
wi(Yi −

∑
m∈Mk

̂P (Mk = m | Ai = 0, Ci)P̂ (Y = 1 | Ai, Ci, Mk = m, M
̸=k

i
)

∑N

i=1
wiYi

(20)

The direct PS-PAF is slightly easier to estimate, as one only needs to fit the outcome model
that conditions on the risk factor, A, covariates C and mediators, M1,...,MK :
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P̂AF A−>Y =

∑N
i=1 wiYi −

∑N
i=1 wi

̂P (Y = 1 | Ai = 0, Ci, M1
i , ..., MK

i )
∑N

i=1 wiYi

(21)

Examples

To illustrate these calculations with graphPAF, suppose we wish to estimate pathway-specific
attributable fractions for the 4 pathways from physical inactivity to stroke through waist hip
ratio, through blood lipid counts, through high-blood pressure, and through any mediating
pathways other than waist hip ratio, blood pressure and lipids from the simulated dataset
stroke_reduced included in the graphPAF library. The assumed causal structure is repre-
sented by the DAG in Figure 5. Since stroke_reduced is a case control dataset, weighted
models for each mediator and the response need to be fit, to replicate the fits one would
expect from a representative sample of the population. In stroke_reduced, these weights
are already in the dataset and are based on an average incidence of 0.0035 new strokes per
person per year (as explained earlier). To calculate the weights vector for a different preva-
lence, stroke_reduced could be sent to the data_clean function. For instance, if we instead
thought that 0.01 was the correct incidence, we could use

stroke_reduced_2 <- data_clean(data=stroke_reduced, prev=0.01)

An appropriate column of weights, appropriate to estimate probabilities of disease when
the prevalence is 0.01, is then included in the dataframe stroke_reduced_2. As a default,
data_clean returns a data frame having the same number of columns as the input dataset,
but removes rows having at least one missing value. If only a subset of columns from the
dataset are required, these can be specified through the vars argument.

Having calculated these weights, models for the response and a list of models for the mediators
can be specified:

> response_model <- glm(

case ~ region * ns(age, df = 5) + sex * ns(age, df = 5) +

education + exercise + ns(diet, df = 3) +

smoking + alcohol + stress + ns(lipids, df = 3) +

ns(waist_hip_ratio, df = 3) + high_blood_pressure,

data = stroke_reduced, family = "binomial", weights = weights

)

> mediator_models <- list(

glm(

high_blood_pressure ~ region * ns(age, df = 5) +

sex * ns(age, df = 5) + education + exercise + ns(diet, df = 3)

+ smoking + alcohol + stress, data = stroke_reduced,

family = "binomial", weights = weights

),

lm(

lipids ~ region * ns(age, df = 5) + sex * ns(age, df = 5)

+ education + exercise + ns(diet, df = 3) + smoking

+ alcohol + stress, weights = weights,

data = stroke_reduced

),

lm(
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waist_hip_ratio ~ region * ns(age, df = 5) + sex * ns(age, df = 5)

+ education + exercise + ns(diet, df = 3) + smoking

+ alcohol + stress, weights = weights,

data = stroke_reduced

)

)

The response model and the list of mediator models is then sent to ps_paf, which implements
the estimators: (19),(20) or (21) with the fitted models. Again, for case control datasets, the
argument prev needs to be specified for correct calculation of the weights.

> ps_paf(

response_model = response_model, mediator_models = mediator_models,

riskfactor = "exercise", refval = 0, data = stroke_reduced,

prev = 0.0035, ci = TRUE, boot_rep = 50, ci_type = "norm", verbose=TRUE

)

est CI

Direct 0.3350 (0.257,0.404)

high_blood_pressure 0.0174 (-0.0097,0.0496)

lipids 0.0207 (0.00287,0.0395)

waist_hip_ratio 0.0314 (0.0185,0.0428)

Assumed prevalence: 0.0035

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

The results indicate that only a small proportion of the disease burden due to physical in-
activity is attributable to pathways involving lipids, blood pressure and waist hip ratio. For
instance, if the pathway from physical inactivity to stroke through waist hip ratio were dis-
abled (in that physical inactivity had no deleterious affect on waist hip ratio), relative stroke
prevalence would only decrease by 3.1%, with similar interpretations and small PS-PAFs for
the pathways through lipids and high blood pressure.

5. Joint PAF

Joint attributable fractions refer to the collective disease burden that can be appropriated to
a collection of risk factors. For instance the INTERSTROKE study O’Donnell et al. (2016)
estimates that roughly 90 % of incident strokes might be avoided if 10 major modifiable
stroke risk factors were removed from the population. More formally, the joint population
attributable fraction for a set of risk factors, S can be defined as:
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PAFS =
P (Y = 1) − P (Y (0S) = 1)

P (Y = 1)
, (22)

with the shorthand: Y (0S) representing the potential outcome where the subset of risk factors
S have been set to their reference levels. Traditionally, such calculations were performed via
multivariable regression models that include the set of variables that are to be eliminated. For
instance to estimate a joint PAF for stroke associated with stress and a diagnosis of diabetes,
disease risk in the data-collected might be compared to predicted disease risk if diabetes status
and stress were set to their reference levels, with the predicted disease risk being computed
via a single fitted logistic model. While this approach may be fine if diabetes status and stress
share the same set of confounding variables (proviso that the model for stroke risk includes
these confounders and is correctly specified) bias may result when effects of one of the risk
factors confounds the relationship between the response and other risk factors of interest. This
is the case here as blood pressure, which is an effect of stress according to Figure 6, confounds
the relationship between diabetes and stroke. For these kinds of causal structures, while
predicted risks derived via a single regression may correctly reflect the probability that an
individual in the dataset has disease, conditional on their having reference values for the risk
factors under investigation, they will not reflect the probability of disease in the population if
all individuals had reference levels for those same risk factors. In other words, the associated
estimated joint PAF will not have a causal interpretation.

Ferguson et al. (2020b) describes how the intervention corresponding to a joint population
attributable fraction (the intervention being the ‘elimination’ of a subset of risk factors) can
be conceptualised via recursive application of Pearl’s do-operator Pearl (2009) on the true
causal graph (assumed to be a directed acyclic graph or DAG), linking risk factors, outcome
and associated risk factor/outcome confounders. This observation facilitates asymptotically
unbiased estimation of joint attributable fractions under general causal structures. To achieve
this in practice, we need to first know the causal DAG, second have collected data on indi-
viduals i = 1, ...., N for all variables represented in the DAG, and finally correctly specify
and fit statistical models linking each node in the causal DAG to all of its direct causes (the
direct causes being those variables with arrows pointing to the node of interest). Having done
this, one can use these fitted models to simulate from the joint-distribution of all variables
in the graph (confounders, risk factors and outcome) corresponding to each application of
the do-operator. For each application of the do-operator (corresponding to a population level
elimination of a single risk factor), this simulation is itself recursive. For instance, if smoking
is eliminated, smoking is first set to its reference level (no smoking) for all individuals in the
current simulated dataset. Values for the direct effects of smoking (that is the nodes for which
smoking is a parent in the causal graph) are then simulated from the conditional distribution
of these variables assuming no smoking. Suppose blood pressure is one of the effects of smok-
ing. Next the direct effects of variables such as blood pressure are simulated, conditional on
prior simulated values for blood pressure and the other direct effects of smoking. This process
(simulations of a particular node being made conditional on the simulated values for parent
nodes) is continued until the response node is simulated. More details are given in Ferguson
et al. (2020b).

Suppose then that upon elimination of a subset S of risk factors, the population distribution
of all variables in the causal graph is PS, and via the recursive algorithm above, we have
simulated new data DS for all variables in the causal graph (excluding the response) under
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PS. Our estimate for (22) is then:

PAFS =

∑N
i=1[wiYi − wi

̂P (Yi = 1 | DS)]
∑N

i=1 wiYi

, (23)

where P̂ (Yi = 1 | DS) represents the estimated probability of disease for individual i under
the simulated data structure for risk factors and confounders represented by DS (this proba-
bility depends on DS through the simulated values for individual i at those risk factors and
covariates that are assumed to directly affect the outcome). This approach can be applied
to cross-sectional and case-control datasets, where as before the argument prev is utilised to
change the weighting in case-control datasets. Note that the above estimator may be ran-
domised, that is estimating joint PAF twice using the same data may give slightly different
results, since differing simulated datasets DS will likely be used in (20) on each ocassion. The
degree of randomization in the resulting estimator will generally be small for large datasets,
although if desired the estimator (23) can be averaged over several independently simulated
versions of DS to reduce variability. In some cases, DS may not vary over over differing
simulations. For instance, for reasons described O’Connell and Ferguson (2022), continuous
variables in DS are simulated by adding model predicted residuals to the predicted values
given the current values of their parents. As a result, randomness in DS can only be gener-
ated by discrete risk factors or confounders that are graph-descendants of risk factors that
are eliminated.

5.1. Data examples

The joint_paf function in graphPAF implements the procedure described above. As an
example, suppose we are interested in estimating the joint PAF for stroke due to stress and
blood pressure. First we need to specify the causal graph linking stress, blood pressure
and stroke. In doing this, one must ensure that the confounders of any two nodes in the
graph are also specified: for instance, any joint causes of stress and blood pressure must also
be included. In Figure 5, we illustrate our assumed causal structure for INTERSTROKE
risk factors, which includes many confounders and risk factors other than stress and blood
pressure. However, in the context of this estimation problem (and assuming Figure 5 is
correct), we can give graphPAF a reduced causal structure: we actually don’t need to specify
pre-clinical disease variables PCD or physiology variables P, other than blood pressure, since
they are not common causes of variables in the set (stress, blood pressure and stroke). In
graphPAF we specify the causal graph with a list of the parents of all relevant variables in the
graph (parent_list), together with a vector of variable names (corresponding to the nodes
of the graph) (node_vec). When doing this it is important that node_vec and parent_list

are in the same order. In addition, node_vec should be ordered so that parent nodes (that is
causes) are positioned in the vector before their children (that is their effects).

> node_vec <- c(

"exercise", "diet", "smoking", "alcohol", "stress",

"high_blood_pressure", "case"

)

> parents_exercise <- c("education")

> parents_diet <- c("education")
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> parents_smoking <- c("education")

> parents_alcohol <- c("education")

> parents_stress <- c("education")

> parents_high_blood_pressure <- c(

"education", "exercise", "diet",

"smoking", "alcohol", "stress"

)

> parents_case <- c(

"education", "exercise", "diet", "smoking",

"alcohol", "stress", "high_blood_pressure"

)

> parent_list <- list(

parents_exercise, parents_diet, parents_smoking, parents_alcohol,

parents_stress, parents_high_blood_pressure, parents_case

)

Next, models for each variable (each time conditioning on its parents) need to be fit. In the
context of joint PAF (as well as the sequential and average attributable fractions detailed
in the following section), graphPAF supports simulation from linear models (fit using lm),
logistic models (fit using glm) and ordinal logistic models (fit using polr from the R library
MASS). Given that specification of multiple models can be time-consuming, graphPAF has a
function automatic_fit that automatically fits additive models for each node in node_vec,
conditioned on the parents of that node. This function can also fit non-linear relationships for
continuous riskfactors or confounders using the spline_nodes argument. In the code below,
diet is assumed to have a non-linear effect. Common interactions between variables that
appear in all of the models can be specified by the argument common. However, in reality
some of these models may require individual specification of interactions, in which case the
models must be fit separately with either lm, glm or polr, before populating model_list.
For case-control datasets, these models need to be fit with appropriate weighting (so that
the weighted dataset set could be regarded as a representative sample) as described earlier.
If automatic_fit is used, this can again be achieved automatically my specifying the prev

argument. As mentioned earlier, appropriate weights can also be calculated by passing the
original dataset through data_clean before model fitting.

> model_list <- automatic_fit(

data = stroke_reduced, parent_list = parent_list,

node_vec = node_vec, prev = .0035, common = "region*ns(age,df=5)

+sex*ns(age,df=5)", spline_nodes = c("diet")

)

Once model_list is specified, it can be passed to joint_paf for estimating joint PAF. Below,
we compare estimated single risk factor attributable fractions for smoking and blood pressure
to the joint attributable fraction for both smoking and blood pressure together. Note that
the estimated joint attributable fraction (0.375) is slightly less than the sum of individual
attributable fractions (0.113+0.269=0.382). This is actually expected Rowe, Powell, and
Flanders (2004): as some of the disease cases that might be prevented in a population where



John Ferguson University of Galway Maurice O’Connell University of Galway 31

nobody smokes would equally be prevented in a population where nobody was hypertensive.
As mentioned earlier, joint_paf can average (23) over multiple independently estimated
datasets using the argument nsim. However, since no discrete graph-descendants of smoking

(other than high_blood_pressure) are specified in the causal graph specified in joint_paf,
DS will not vary over differing simulation iterates in this example.

> joint_paf(

data = stroke_reduced, model_list = model_list,

parent_list = parent_list, node_vec = node_vec,

riskfactor_vec = c("smoking"), prev = .0035,

ci = TRUE, boot_rep = 50, verbose=FALSE

)

est CI

joint PAF 0.12 (0.102,0.151)

Risk factors: smoking

Assumed prevalence: 0.0035

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

> joint_paf(

data = stroke_reduced, model_list = model_list,

parent_list = parent_list, node_vec = node_vec,

riskfactor_vec = c("high_blood_pressure"),

prev = .0035, ci = TRUE,

boot_rep = 50, verbose=FALSE

)

est CI

joint PAF 0.269 (0.244,0.289)

> joint_paf(

data = stroke_reduced, model_list = model_list,

parent_list = parent_list, node_vec = node_vec,

riskfactor_vec = c("smoking", "high_blood_pressure"),

prev = .0035, ci = TRUE, boot_rep = 50, verbose=FALSE

)

est CI

joint PAF 0.375 (0.353,0.389)
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Figure 6: DAG showing causal structure assumed for the applied examples in this manuscript.
For the simulated INTERSTROKE dataset, we might assume that each node represents
multiple risk factors as follows: C represents the Confounders (age,region,sex and education),
B represents Behavioural risk factors: (exercise, alcohol use, smoking, stress levels and diet),
P represents risk factors indicating physiology: (blood pressure, blood lipids and waist hip
ratio), PCD represents pre-clinical disease: (diabetes and cardiac symptoms such as atrial
fibrilation). Y is a 0/1 indicator for stroke occurance

6. Sequential and Average PAF

Sequential attributable fractions (SAF), first described by Eide and Gefeller (1995) are closely
related to joint attributable fractions as discussed in the previous section. They pertain to the
incremental disease burden attributable to a risk factor (or more specificially to the removal
of that risk factor from the population) in a population where a subset of risk factors have
already been eliminated. Suppose that we number disease risk factors under consideration
as: {1, ..., K}. We can define the sequential PAF for eliminating risk factor j ≤ K, condi-
tional on the subset of risk factors S ⊂ {1, ..., K} \ {j} already having being removed from
the population, as the difference in joint PAF pertaining to removing S ∪ {j} and the PAF
pertaining to removing S alone:

PAFj|S = PAFS∪{j} − PAFS (24)

Given this link between joint and sequential PAF, the same issues (in particular risk factors
of interest acting as confounders of causally downstream risk factors of interest) mentioned
in the section above can also cause biases in estimating sequential PAF and average PAF.
These can again be handled by recursive application of the do-operator and simulation from
the corresponding distributions. Practically sequential PAF may be of interest if population
health interventions are to be applied incrementally (for instance, what would be the next risk
factor to target in a health intervention after a successful intervention that targets smoking?),
but another use is in the definition and estimation of average population attributable fractions,
again first introduced in Eide and Gefeller (1995).

As explained above, individual population attributable fractions for differing risk factors in
a set are not expected to sum to the joint PAF corresponding to eliminating all risk factors
in the set. Over the years, differing proposals have been made to contstruct versions of
attributable fractions for individual risk factors that do form a partition for the joint PAF
(that is they sum up to the corresponding joint PAF). The most convincing of convincing
of these are average attributable fractions. Again suppose there are K risk factors, labeled
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again {1...K}. Imagine eliminating these K risk factors in some sequence. This can be done
in K! different ways. Each of these K! permutations can be represented as σ = σ(1), ..., σ(K),
where σ(j) = k if the risk factor k is the jth risk factor eliminated according to that ordering,
and as such each permutation is associated with a sequential PAF for each risk factor. For
instance, in the previous example the sequential PAF for risk factor k according to σ would
be SAFk|{σ(1)...σ(j−1)} if j ≥ 2 or just the PAF for risk factor k if j = 1. The average
PAF, APAFk, for risk farctor k is the average of the sequential PAF s over all K! different
permutations. By definition, the sequential PAFs for differing risk factors corresponding to a
particular permutation must add to the joint PAF. From this it follows easily that the average
of these sequential PAFs for each risk factor across differing permutations (that is the average
PAF) must also add over differing risk factors to the joint PAF.

6.1. Estimation

At first look, it seems that one must calculate K! differing sequential PAFs to calculate
average PAF for a risk factor. However, examining (24) we see that any sequential PAF is
the difference between two differing joint PAFs. The number of joint PAF calculations is the
same as the number of non-empty subsets of {1...K} (that is 2K − 1, much smaller than K!).
Provided the number of risk factors isn’t too large (say 10 or fewer) this it is quite feasible
to calculate all possible sequential PAFs utilizing this approach. Average PAF for risk factor
k ≤ K can then be calculated using:

APAFk =

∑K
j=1(K − j)!(j − 1)!

∑
S⊂{1,...,K}\k:|S|=j−1 PAFk|S
K!

. (25)

The ‘exact’ approach to estimating APAFk is to first estimate PAFk|S for all possible subsets:
S ⊂ {1, ...K} \ k of risk factors sets that exclude k, and then plug these estimates into (25).
This is done most efficiently when calculating APAF for all K risk factors together.

When 2K is very large, estimating (25) exactly may be too time consuming. Recognizing
instead that APAFk is a ‘population’ average of K! sequential PAFs, each sequential PAF
corresponding to a single permutation (with admittedly many of these permutations lead to
the same SAF), one can approximate the APAF by randomly sampling a smaller number
nperm ≤ K! of permutations. Obviously, the larger nperm is, the smaller the approximation
error from this step, which like any sample average decreases probabilistically at rate 1√

nperm

as nperm increases. In practice, nperm= 1000 has been suggested to achieve acceptable
accuracy Ferguson et al. (2018). Stratified sampling of permutations (ensuring for instance
that each risk factor appears in position 1 in the elimination order an equal number of times
in the nperm permutations) can somewhat reduce the approximation error. We will describe
this in the next section.

6.2. Examples

Let’s extend the example from earlier where we looked at the joint PAF for smoking and
high_blood_pressure, to include a 3rd risk factor diabetes. Note that lipids and waist_hip_ratio

are joint causes of diabetes and stroke (see Figure 5), and we now need to extend our
causal graph and associated list of statistical models to include these variables in addition to
diabetes.
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> node_vec <- c(

"exercise", "diet", "smoking", "alcohol", "stress",

"high_blood_pressure", "waist_hip_ratio", "lipids", "diabetes", "case"

)

> parents_exercise <- c("education")

> parents_diet <- c("education")

> parents_smoking <- c("education")

> parents_alcohol <- c("education")

> parents_stress <- c("education")

> parents_high_blood_pressure <- c(

"education", "exercise", "diet",

"smoking", "alcohol", "stress"

)

> parents_waist_hip_ratio <- c(

"education", "exercise", "diet",

"smoking", "alcohol", "stress"

)

> parents_lipids <- c(

"education", "exercise", "diet",

"smoking", "alcohol", "stress"

)

> parents_diabetes <- c(

"education", "exercise", "diet",

"smoking", "alcohol", "stress",

"high_blood_pressure", "waist_hip_ratio", "lipids"

)

> parents_case <- c(

"education", "exercise", "diet", "smoking", "alcohol", "stress",

"high_blood_pressure", "waist_hip_ratio", "lipids", "diabetes"

)

> parent_list <- list(

parents_exercise, parents_diet, parents_smoking,

parents_alcohol, parents_stress, parents_high_blood_pressure,

parents_waist_hip_ratio, parents_lipids, parents_diabetes,

parents_case

)

Again we can automatically specify models using the automatic_fit function which now will
fit models for the extra variables specified in node_vec. Note that lipids and waist_hip_ratio

are also continuous risk factors and we can allow non-linear effects by adding these variable
names to the spline_nodes argument.

> model_list <- automatic_fit(

data = stroke_reduced, parent_list = parent_list,

node_vec = node_vec, prev = .0035,

common = "region*ns(age,df=5)+sex*ns(age,df=5)",

spline_nodes = c("waist_hip_ratio", "lipids", "diet")

)

Single sequential PAFs can be estimated with the function seq_paf, which has the same
structure as joint_paf. The most important argument is vars, a vector of risk factors.
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Sequential PAF is estimated for the risk factor specified in the last position of vars conditional
on the risk factors in earlier positions. For instance, the code below estimates sequential
PAF for eliminating diabetes, in a population where smoking and high_blood_pressure

are already eliminated. As can be seen below, this estimator is randomised: the estimate
varies slightly based on the simulated data. The reason for this is that now the discrete
variable diabetes is included in the dataset: D{smoking, high_blood_pressure}, and the
simulated value for diabetes under interventions for smoking and high_blood_pressure

will vary slightly from simulation to simulation. Nevertheless as demonstrated below, the
variation over simulation repetitions is fairly minimal and this variability will be accounted
for in the Bootstrap confidence interval. Overall, this analysis suggests that in a population
where smoking and high_blood_ pressure were already eliminated, an extra 2.4% of strokes
(taken as a percentage of the number of strokes in the current population) might be prevented
if there was no diabetes.

> seq_paf(stroke_reduced, model_list, parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure", "diabetes"),

ci = FALSE, nsim = 1

)

0.02382662

> seq_paf(stroke_reduced, model_list, parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure", "diabetes"),

ci = FALSE, nsim = 1

)

0.02267426

> seq_paf(stroke_reduced, model_list, parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure", "diabetes"),

ci = TRUE, nsim = 1,

boot_rep = 50, verbose=TRUE

)

est CI

sequential PAF 0.0228 (0.0142,0.0292)

Risk factors: smoking, high_blood_pressure, diabetes

Assumed prevalence: 0.0035

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50
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The function average_paf generates results for average PAF for the three risk factors:
smoking, high_blood_pressure and diabetes. The default estimation method is to first
estimate joint PAF for all possible risk factor subsets, S, next to estimate all sequential
PAFs, PAFj|S, from the vector of joint PAFs and finally substitute these estimated sequen-
tial PAF into (??). Recall that in estimating joint PAF for the risk factor set S, a data set
DS corresponding to this joint intervention is simulated recursively. The recursive nature of
this simulation can be exploited to perform the estimation of all 2K joint PAFs efficiently. For
instance, when simulating data: DS∪{j} corresponding to eliminating risk factors: S ∪ {j},
with j being the final risk factor eliminated, data corresponding to eliminating the risk fac-
tors in S, DS has already been simulated. average_paf calculates joint PAF for the 2K risk
factor subsets in an order that allows extensive use of this fact. As illustrated in the results
below, estimated average PAF is highest for high_blood_pressure at 0.259, with smoking at
0.106 and diabetes at 0.0395. These three quantities sum to estimated joint PAF, 0.405, as
expected. In addition, average sequential PAF by elimination position for each risk factor is
provided. Note that the sequential PAF for diabetes is most effected by elimination position.
This makes sense based on its position in the causal graph (causally upstream of smoking

and high_blood_pressure)

> average_paf(stroke_reduced, model_list, parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure", "diabetes"),

ci = FALSE, exact = TRUE

)

position risk factor estimate

elimination position 1 smoking 0.0993

elimination position 2 smoking 0.1010

elimination position 3 smoking 0.1030

elimination position 1 high_blood_pressure 0.2750

elimination position 2 high_blood_pressure 0.2640

elimination position 3 high_blood_pressure 0.2540

elimination position 1 diabetes 0.0541

elimination position 2 diabetes 0.0387

elimination position 3 diabetes 0.0245

Average smoking 0.1010

Average high_blood_pressure 0.2640

Average diabetes 0.0391

Joint 0.4050

In the above analysis, the estimator is again randomised. While all 2K − 1 joint PAFs need
to be estimated to enable this calculation for all risk factors; each estimated joint PAF cor-
responds to a single simulated data set DS, which can generate substantial Monte Carlo
variability for small datasets and small K. As an alternative, one can sample nperm differing
permutations of {1, ..., K}: corresponding to differing risk factor elimination orders, calculate
sequential PAFs associated with each permutation and average the associated sequential PAF
for a particular risk factor. For small K and nperm 2K this approach is likely to have reduced
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Monte Carlo error (compared to the ‘exact’ approach), despite some Monte Carlo error due
to the sampling of permutations. If the argument extttexact=FALSE, this approach is used
in place of the estimator based on (??). Stratified sampling of permutations (so that the joint
empirical distribution of permutation positions σ(1), ..., σ(S) for some S < K is uniform (as
it would be if we calculated sequential PAFs for all K! permutations), can help further reduce
Monte Carlo error. For K risk factors, an integer multiple of K(K − 1)...(K − S + 1) permu-
tations are needed to implement such a strategy. Such stratified sampling of permutations
is implemented through the argument correct_order (correct_order=S in the preceding
example).

For larger K, averaging sequential PAF over a number of sampled permutations nperm≈ 2K

or nperm< 2K may be less accurate than (22) due to the Monte Carlo error associated with
sampling permutations. When confidence intervals are not requested an upper bound on the
margin of error of the point estimate (in terms of how close to the calculation with nperm = ∞)
is given (with 95%) confidence as calculated in Ferguson et al. (2018), provided permutations
are sampled (using the argument extttexact=FALSE). Note that this margin of error assumes
non-stratified sampling rather than the more accurate stratified sampling implemented here.
The results below indicate that the three average PAFs are calculated to within an accuracy
of 0.004 (with 95% confidence) compared to the exact estimate when nperm → ∞.

> average_paf(stroke_reduced, model_list, parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure", "diabetes"),

ci = FALSE, exact = FALSE, correct_order = 2, nperm = 60

)

position risk factor estimate Margin error lower bound Upper bound

elimination position 1 smoking 0.1070 2.99e-03 0.1050 0.1100

elimination position 2 smoking 0.1060 2.15e-03 0.1040 0.1080

elimination position 3 smoking 0.1030 0.00e+00 0.1030 0.1030

elimination position 1 high_blood_pressure 0.2760 4.91e-04 0.2750 0.2760

elimination position 2 high_blood_pressure 0.2610 6.96e-03 0.2540 0.2680

elimination position 3 high_blood_pressure 0.2430 2.45e-03 0.2410 0.2450

elimination position 1 diabetes 0.0541 0.00e+00 0.0541 0.0541

elimination position 2 diabetes 0.0389 6.67e-03 0.0323 0.0456

elimination position 3 diabetes 0.0241 5.46e-04 0.0235 0.0246

Average smoking 0.1060 1.23e-03 0.1040 0.1070

Average high_blood_pressure 0.2600 4.20e-03 0.2560 0.2640

Average diabetes 0.0390 3.82e-03 0.0352 0.0429

Joint 0.4050 4.94e-18 0.4050 0.4050

Of courses, sampling error also needs to be accounted for when making a statement about
estimation accuracy. While in this case with only K = 3 risk factors, estimation with 60
permutations should give a slightly more accurate point estimate for average PAF compared
to using equation (22) directly, the approximation error in both cases is much smaller than the
sampling error. In fact, confidence intervals suggest comparable accuracy of using equation
(22) (full_results_a) and calculating average PAF using 60 sampled permutations with
stratified sampling (full_results_b).
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> full_results_a <- average_paf(stroke_reduced, model_list,

parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure",

"diabetes"),

exact = TRUE, ci = TRUE,

boot_rep = 50, verbose=TRUE

)

> full_results_b <- average_paf(stroke_reduced, model_list,

parent_list, node_vec,

prev = 0.0035,

riskfactor_vec = c("smoking", "high_blood_pressure",

"diabetes"),

ci = TRUE, exact = FALSE,

boot_rep = 50, correct_order = 2, nperm = 60, verbose=TRUE

)

full_results_a

position risk factor est CI

elimination position 1 smoking 0.0996 (0.0695,0.114)

elimination position 2 smoking 0.1010 (0.0801,0.111)

elimination position 3 smoking 0.1030 (0.089,0.116)

elimination position 1 high_blood_pressure 0.2750 (0.253,0.297)

elimination position 2 high_blood_pressure 0.2630 (0.241,0.292)

elimination position 3 high_blood_pressure 0.2530 (0.233,0.289)

elimination position 1 diabetes 0.0541 (0.0372,0.0655)

elimination position 2 diabetes 0.0389 (0.0217,0.0519)

elimination position 3 diabetes 0.0258 (0.0174,0.0344)

Average smoking 0.1010 (0.0814,0.112)

Average high_blood_pressure 0.2640 (0.244,0.291)

Average diabetes 0.0396 (0.0265,0.0496)

Joint PAF 0.4050 (0.378,0.426)

Risk factors: smoking, high_blood_pressure, diabetes

Using exact PAF formula

Assumed prevalence: 0.0035

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

> full_results_b

position risk factor est CI

elimination position 1 smoking 0.1060 (0.0857,0.122)

elimination position 2 smoking 0.1050 (0.0868,0.119)

elimination position 3 smoking 0.1030 (0.0868,0.118)

elimination position 1 high_blood_pressure 0.2760 (0.255,0.291)

elimination position 2 high_blood_pressure 0.2610 (0.24,0.28)
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elimination position 3 high_blood_pressure 0.2440 (0.219,0.264)

elimination position 1 diabetes 0.0541 (0.038,0.0688)

elimination position 2 diabetes 0.0401 (0.0284,0.0524)

elimination position 3 diabetes 0.0246 (0.0164,0.0333)

Average smoking 0.1050 (0.0868,0.119)

Average high_blood_pressure 0.2600 (0.238,0.278)

Average diabetes 0.0396 (0.0277,0.0514)

Joint PAF 0.4050 (0.376,0.426)

Risk factors: smoking, high_blood_pressure, diabetes

Using approximate PAF formula

Using 60 permutations

Balance over risk factors in first 2 positions in sampled permutations

Assumed prevalence: 0.0035

Type of Bootstrap confidence interval used: norm

Confidence level: 0.95

Number of bootstrap draws: 50

Results (average PAF and sequential PAF by elimination position, along with associated
variability bands) can be plotted over differing risk factors as follows:

> plot(full_results_b,number_rows=1, max_PAF= 0.35,

axis.text.size = 20, axis.title.size=20

)
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Figure 7: Estimated average PAF and sequential PAF for the group of risk factors: smoking,
blood pressure and diabetes. Risk factors are plotted in decreasing order of estimated APAF .
Average PAF is shaded in pink, and the average sequential PAF for particular risk factors
by elimination position in blue. One expects sequential PAF to decrease over elimination
position which is what we observe here.

Note that if exact=‘FALSE’ and ci=‘FALSE’, the plotted variability bands will not be inter-
pretable as confidence intervals, but rather as bands for the degree of possibility approximation
error in the point estimate.
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6.3. Computational considerations

As described here, graphPAF, facilitates incorporation of causal structure into estimation of
joint, sequential and average PAF, essentially by incorporating recursive simulation methods
based on an assumed causal structure. Ignoring such causal structure, as other approaches
have in the past (for example, Rückinger, von Kries, and Toschke (2009), Ferguson et al.
(2018)) may lead to bias. A drawback of this simulation based strategy is computational
cost. Techniques such as Bootstrap-parallelization (through the boot library), intelligent or-
dering of calculations when calculating joint PAF for differing risk factor subsets, stratified
sampling of permutations when the number of risk factors is large and the use of the more ef-
ficient formula for average PAF (??) can somewhat reduce these computational requirements.
Computational cost depends jointly the size of the Bayesian networks and the size of the
underlying dataset. The dataset stroke_reduced used in this manuscript has 13,712 rows
and the algorithms described here can be run in reasonable time on most modern laptops
when using this data. For larger datasets, splitting into independent subsets and rerunning
these methods independently on each subset before averaging might be recommended to avoid
memory management problems.

7. Conclusions

In addition to implementing standard PAF estimation, graphPAF collates many recently de-
veloped tools for estimation of disease burden in non-standard settings into one package. We
hope it will be useful to statisticians and epidemiologists who are interested in comparisons
of disease burden over multiple risk factors, both discrete and continuous.
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