Package ‘grandR’

January 14, 2026
Version 0.2.7

Title Comprehensive Analysis of Nucleotide Conversion Sequencing Data

Description Nucleotide conversion sequencing experiments have been
developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such
experiments require specialized tools for primary processing such as GRAND-SLAM,
(see 'Jurges et al' <doi:10.1093/bioinformatics/bty256>) and specialized tools for
downstream analyses. 'grandR' provides a comprehensive toolbox for quality control,
kinetic modeling, differential gene expression analysis and visualization of such data.
Fast Wilcoxon tests are supported via the 'presto’ package (available at <https:
//github.com/immunogenomics/presto>).

Author Florian Erhard [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3574-6983>),
Teresa Rummel [ctb],
Julian Selke [ctb]

Maintainer Florian Erhard <Florian.Erhard@informatik.uni-regensburg.de>
License Apache License (>=2)
Encoding UTF-8

URL https://github.com/erhard-1ab/grandR

BugReports https://github.com/erhard-1lab/grandR/issues
Depends R (>=3.5.0)

Imports stats, Matrix, rlang, ggplot2, grDevices, patchwork, RCurl,
plyr, parallel, reshape2, MASS, scales, cowplot, minpack.Im,
Ifc, labeling, methods, utils, numDeriv

Suggests knitr, rmarkdown, circlize, Seurat, ComplexHeatmap, ggrepel,
DESeq?2, S4Vectors, data.table, clusterProfiler, biomaRt,
msigdbr, fgsea, rclipboard, cubature, DT, shinyjs, shinyjqui,
RColorBrewer, gsl, htmltools, matrixStats, VGAM, quantreg,
graphics, shiny, ggrastr, viridisLite, deSolve, presto

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation yes

https://doi.org/10.1093/bioinformatics/bty256
https://github.com/immunogenomics/presto
https://github.com/immunogenomics/presto
https://orcid.org/0000-0002-3574-6983
https://github.com/erhard-lab/grandR
https://github.com/erhard-lab/grandR/issues

2 Contents

Repository CRAN
Date/Publication 2026-01-14 11:10:02 UTC

Contents
Analyses e 4
AnalyzeGeneSets e e 6
ApplyContrasts e e 8
as.Seurat.grandRo 9
CalibrateEffectiveLabelingTimeKineticFit 10
CalibrateEffectiveLabelingTimeMatchHalflives 11
check.analysis L 12
ClassifyGenes e e e 13
Coldata e e 14
ComputeColumnStatistics o e e 15
ComputeExpressionPercentage 16
ComputeNonConstantParam L L 0. 17
ComputeNtrPosteriorQuantile 18
ComputePseudoNtr e 19
ComputeSteadyStateHalfLives o o L 19
ComputeSummaryStatistics e e e 20
ComputeTotalExpression 21
Condition e 22
correctdropout e e e e e e e e e e e 23
CreateConvolutionTable 24
CreatePdfs e 25
CreatePseudobulkTable 26
data.apply e 26
DefaultSlot 27
Defer e 28
density2d L L e 29
DESeq2BIC e 30
Design e e 31
DesignSemantics e 31
dropout e 32
dropoutpercent e e e e e e e e e e 34
estimate.dispersionl e 36
EstimateRegulation 36
fnonconst 39
fnonconst.linear L e 40
foldequi 41
FilterGenes e 42
FindnodsUPairs e 43
FindReferences L 44
FitKinetics o o o 46
FitKineticsGeneLeastSquares 47

FitKineticsGeneLogSpaceLinear 50

Contents

3
FitKineticsGeneNtr 52
FitKineticsGeneSnapshot L o 54
FitKineticsPulseR e 56
FitKineticsSnapshot 56
FormatCorrelation e 59
Genelnfo e 60
GeNES o e 61
getmode.slot L e 62
GetAnalysisTable 63
GetCOoNMrasts . . . v v v v e e e e e e e e e e e e e e e e e 64
GetData e 66
GetDiagnosticParameters L e 68
GetMatriX e e e e e e e e e e 68
GetPairContrasts e e e 69
GetSignificantGenes e e e e e 70
GetSummarizeMatrix e e e e e e e e e e 71
GetTable e e 73
grandR L e e 75
IsParallel e 78
LEC . . 78
LikelihoodRatioTest e 80
ListGeneSets e e 81
MakeColdata e 82
MAPIOt 83
Normalize o 84
NormalizeBaseline e 86
Pairwise e e e 87
PairwiseDESeq2 88
PlotAnalyses e e 90
PlotConversionFreq L 91
PlotGeneGroupsBars 91
PlotGeneGroupsPoints 93
PlotGeneOIdVsNew e 94
PlotGeneProgressiveTimecourse 95
PlotGeneSnapshotTimecourse e 96
PlotGeneTotal VSNtr. e 98
PlotHeatmap e 99
PlotMismatchPositionForSample oL 101
PlotMismatchPositionForType 102
PlotModelCompareConv e 103
PlotModelCompareErr 103
PlotModelCompareErrPrior 104
PlotModelCompareLL 105
PlotModelCompareNtr e 105
PlotModelConv e 106
PlotModelErr e 106
PlotModelLabelTimeCourse o i ittt e e e 107

PlotModeINtr e 108

4 Analyses
PlotModelShape e e e 108
PlotPCA e 109
PlotProfileLikelihood 110
Plots e e e e e 111
PlotScatter e 112
PlotSimulation e 115
PlotTypeDistribution 116
PoolColumns e e e 117
PSAPPLY . . . e e e 118
ReadCounts e e e e e 118
ReadFeatureCounts e e 120
ReadGRAND e 121
ReadGRAND3 e e e 123
ReadNewTotal e e 124
Renamer e 125
RotatateAxisLabels 126
SaveNtrSIot e e e e 126
Scale e 127
Semantics.concentration e e e e e e e e e e 128
Semantics.time e e e e e 128
ServeGrandR 129
SetParallel e 130
SimulateKinetics e e e 131
SimulateReadsForSample 132
SimulateTimeCourse e e 134
SimulateTimeCourseNonConstant 135
SIOtS . . . e e 137
SIIUCIUIE2VECIOL . . . v v v v ot e o e 138
Summarize e e e e e e 139
Tolndex e e e e e e 139
Transform.no e e e e 140
TransformSnapshot oL 141
UpdateSymbols e 142
UseNtrSIot e e 143
VulcanoPlot e 143
WilcoXon e e e 144

Index 145

Analyses Analysis table functions

Description

Get analysis names and add or remove analyses

Analyses 5

Usage

Analyses(data, description = FALSE)

AddAnalysis(
data,
name,
table,
by = NULL,
warn.present = TRUE,
warn.genes = TRUE

)

DropAnalysis(data, pattern = NULL)

Arguments
data A grandR object
description if TRUE, also return the column names of each analysis table (i.e. a list named
according to the analyses)
name The user-defined analysis name
table The analysis table to add
by Specify a column that contains gene names or symbols (see details)

warn.present Warn if an analysis with the same name is already present (and then overwrite)

warn.genes Warn if genes are missing (and then add NA)
pattern A regular expression that is matched to analysis names
Details

The columns in the analysis tables are defined by the analysis method (e.g. "Synthesis","Half-life"
and "rmse" by FitKinetics). A call to an analysis function might produce more than one table
(e.g. because kinetic modeling is done for multiple Conditions). In this case, AddAnalysisTable
produces more than one analysis table.

AddAnalysis is in most cases not called directly by the user, but is used by analysis methods to add
their final result to a grandR object (e.g., FitKinetics,LikelihoodRatioTest,LFC,PairwiseDESeq?2).

If it is called by the user (e.g. to add analysis results from external tools or from the literature, see
pulse-chase vignette), then the user must make sure that either the rownames of the given table can
be recognized as genes (names or symbols), or that there is a column in the table giving genes (this
must be specified as the "by" parameter). The table does neither have to be sorted the same way the
grandR object is, nor does it have to be complete. AddAnalysis will take care or reordering and
inserting NA for missing genes (and it will issue a warning in case of missing genes).

Value

Either the analysis names or a grandR data with added/removed slots or the metatable to be used
with AddAnalysis

Functions

AnalyzeGeneSets

* Analyses(): Obtain the analyses names

* AddAnalysis(): Add an analysis table

* DropAnalysis(): Remove analyses from the grandR object

See Also

Slots, DefaultSlot

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
Slots(sars)
DefaultSlot(sars)

sars <- DropSlot(sars, "norm")
sars

default behavior is to update the default slot; this calls AddSlot

note that the default slot reverted to count

AnalyzeGeneSets

Gene set analysis

Description

Perform gene-set enrichment and overrepresentation analysis (GSEA/ORA) for a specified set of
genes

Usage

AnalyzeGeneSets(

data,

analysis = Analyses(data)[1],

criteria = LFC,
genes = NULL,
species = NULL,
category = NULL,
subcategory = NULL,
verbose = TRUE,
minSize = 10,
maxSize = 500,
process.genesets =

NULL

AnalyzeGeneSets 7

Arguments
data the grandR object that contains the data to analyze
analysis the analysis to use, can be more than one and can be regexes (see details)
criteria an expression to define criteria for GSEA/ORA (see details)
genes specify genes directly (use analysis and criteria if NULL; see details)
species the species the genes belong to (eg "Homo sapiens"); can be NULL, then the
species is inferred from gene ids (see details)
category the category defining gene sets (see ListGeneSets)
subcategory the category defining gene sets (see ListGeneSets)
verbose Print status messages
minSize The minimal size of a gene set to be considered
maxSize The maximal size of a gene set to be considered

process.genesets
a function to process geneset names; can be NULL (see details)

Details

The analysis parameter (just like for GetAnalysisTable can be a regex (that will be matched against
all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than
one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. The criteria must be
an expression that either evaluates into a numeric or logical vector. In the first case, GSEA is
performed, in the latter it is ORA. The columns of the given analysis table(s) can be used to build
this expression.

If no species is given, a very simple automatic inference is done, which will only work when having
human or mouse ENSEMBL identifiers as gene ids.

The process.genesets parameters can be function that takes the character vector representing the
names of all gene sets. The original names are replaced by the return value of this function.

Value

the clusterprofile object representing the analysis results.

See Also
GSEA ,enricher,msigdbr

Examples

See the differential-expression vignette!

ApplyContrasts

ApplyContrasts

Apply a function over contrasts

Description

Helper function to run many pairwise comparisons using a contrast matrix

Usage

ApplyContrasts(

data,
analysis,

name.prefix,

contrasts,

mode.slot = NULL,

genes = NULL,
table = TRUE,

verbose = FALSE,

FUN,

Arguments
data
analysis

name.prefix

contrasts

mode. slot
genes
table
verbose

FUN

Details

the grandR object
a plain name, only used for status messages

the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

which slot to take expression values from

restrict analysis to these genes; NULL means all genes
use GetTable and not GetMatrix

print status messages?

a function taking 1. the data matrix, 2. a logical vector indicating condition A
and 3. a logical vector indicating condition B

further parameters forward to FUN

To implement most pairwise analyses, you only have to define FUN; see the source code of LFC

for an example!

as.Seurat.grandR 9

Value

a new grandR object with added analysis tables (that were returned by FUN)

See Also
LFC,PairwiseDESeq2,GetContrasts

as.Seurat.grandR Create Seurat object from a grandR object

Description

Create Seurat object from a grandR object

Usage
as.Seurat.grandR(
data,
modalities = c(RNA = "total”, newRNA = "new"),
hls = NULL,
time = NULL,
mode = c("assay"”, "cells"”, "genes", "list")
)
Arguments
data a grandR object
modalities vector defining modalities to include in the Seurat object (see details)
hls half-lives for computing previous RNA, only required for "prev" modality (see
details)
time labeling time, only required for "prev" modality (see details)
mode how to integrate modalities into seurat object (see details)
Details

Modalities must be a named character vector. The only allowed elements are "total" (total counts),
"new" (new counts), "old" (old counts), "prev" (estimated previous time point counts). The names
of the elements are further used depending on mode.

To compute the previous time point counts, a vector of half lives and the labeling time is required.
The half-lives must be given in the correct order (same as in the grandR object).

The mode parameter defines how the defined modalities are represented in the Seurat object. "as-
say" means that for each modality, the Seurat object will contain an assay (named according to
the corresponding name in modalities). "cells" means that cells will be copied for each modal-
ity and cell names are prefixed by the corresponding name in modalities (i.e., if the grandR object

10

CalibrateEffectiveLabelingTimeKineticFit

has 1000 cells named c1,...,c1000, and modalities=c(RNA="total",newRNA="new"), the Seurat ob-
ject will have 2000 cells named RNA.c1,...,RNA.c1000,newRNA.cl,...,newRNA.c1000). "genes"
means that genes fill be copied for each modality and gene names are prefixed by the corresponding
name in modalities. "list" means that instead of a single Seurat object, a list of Seurat objects is

returned.

Value

a Seurat object

CalibrateEffectivelabelingTimeKineticFit

Uses the kinetic model to calibrate the effective labeling time.

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such
systematic deviations and computes labeling durations without systematic deviations.

Usage

CalibrateEffectivelLabelingTimeKineticFit(

data,
slot = Defau

1tSlot(data),

time = Design$dur.4sU,

time.name =

"calibrated_time",

time.conf.name = "calibrated_time_conf",
CIl.size = 0.95,

compute.confidence = FALSE,

n.estimate = 1000,

n.iter = 10000,

verbose = FALSE,

Arguments

data
slot
time
time.name

time.conf.name

CI.size

A grandR object

The data slot to take expression values from

The column in the column annotation table representing the labeling duration
The name in the column annotation table to put the calibrated labeling durations

The name in the column annotation table to put the confidence values for the
labeling durations (half-size of the confidence interval)

The level for confidence intervals

compute.confidence

should CIs be computed or not?

CalibrateEffectiveLabelingTimeMatchHalflives 11

n.estimate the times are calibrated with the top n expressed genes
n.iter the maximal number of iterations for the numerical optimization
verbose verbose output

forwarded to FitKinetics

Details

There are many reasons why the nominal (wall-clock) time of 4sU labeling might be distinct from
the effective labeling time. Most importantly, 4sU needs some time to enter the cells and get acti-
vated to be ready for transcription. Therefore, the 4sU concentration (relative to the U concentra-
tion) rises, based on observations, over the timeframe of 1-2h. GRAND-SLAM assumes a constant
4sU incorporation rate, i.e. specifically new RNA made early during the labeling is underestimated.
This, especially for short labeling (<2h), the effective labeling duration might be significantly less
than the nominal labeling duration.

It is impossible to obtain a perfect absolute calibration, i.e. all durations might be off by a factor.

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

FitKinetics

CalibrateEffectiveLabelingTimeMatchHalflives
Calibrate the effective labeling time by matching half-lives to a .refer-
ence

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such
systematic deviations and computes labeling durations without systematic deviations.

Usage

CalibrateEffectivelLabelingTimeMatchHalflives(
data,
reference.halflives = NULL,
reference.columns = NULL,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
time.name = "calibrated_time”,
n.estimate = 1000,
verbose = FALSE

12 check.analysis

Arguments

data A grandR object

reference.halflives
a vector of reference Half-lives named by genes

reference.columns
the reference column description

slot The data slot to take expression values from

time.labeling the column in the column annotation table denoting the labeling duration or the
labeling duration itself

time.experiment

the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

time.name The name in the column annotation table to put the calibrated labeling durations
n.estimate the times are calibrated with the top n expressed genes
verbose verbose output

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

FitKineticsGeneSnapshot

check.analysis Internal functions to check for a valid analysis or slot names.

Description

Internal functions to check for a valid analysis or slot names.

Usage

check.analysis(data, analyses, regex)
check.slot(data, slot, allow.ntr = TRUE)

check.mode.slot(data, mode.slot, allow.ntr = TRUE)

Arguments
data a grandR object
analyses a regex to be matched to analysis names
regex interpret as regular expression
slot a slot name
allow.ntr whether to allow for the value "ntr" (and throw an error in case)

mode.slot a mode.slot

ClassifyGenes

Details

13

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is
either total, new or old.

Value

Whether or not the given name is valid and unique for the grandR object

ClassifyGenes

Build the type column for the gene info table.

Description

Returns a function to be used as classify.genes parameter for ReadGRAND.

Usage

ClassifyGenes(

use.default = TRUE,
drop.levels = TRUE,
name.unknown = "Unknown"

Arguments

use.default

drop.levels

name . unknown

Details

additional functions to define types (see details)

if TRUE, use the default type inference (priority after the user defined ones); see
details

if TRUE, drop unused types from the factor that is generated

the type to be used for all genes where no type was identified

This function returns a function. Usually, you do not use it yourself but ClassifyGenes is usually
as classify.genes parameter for ReadGRAND to build the 7ype column in the GeneInfo table. See
the example to see how to use it directly.

Each ... parameter must be a function that receives the gene info table and must return a logical
vector, indicating for each row in the gene info table, whether it matches to a specific type. The
name of the parameter is used as the type name.

If a gene matches to multiple type, the first function returning TRUE for a row in the table is used.

By default, this function will recognize mitochondrial genes (MT prefix of the gene symbol), ERCC
spike-ins, and Ensembl gene identifiers (which it will call "cellular"). These three are the last
functions to be checked (in case a user defined type via ...) also matches to, e.g., an Ensembl gene).

14 Coldata
Value
a function that takes the original Genelnfo table and adds the Type column
See Also
ReadGRAND
Examples
viral.genes <- c('ORF3a','E','M','ORF6', 'ORF7a', 'ORF7b', 'ORF8','N','ORF10', 'ORFlab','S")
sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”, ,Design$dur.4sU,Design$Replicate),
classify.genes=ClassifyGenes(~ SARS-CoV-2"=
function(gene.info) gene.info$Symbol %in% viral.genes),
verbose=TRUE)
table(GeneInfo(sars)$Type)
fun<-ClassifyGenes(viral=function(gene.info) gene.info$Symbol %in% viral.genes)
table(fun(GeneInfo(sars)))
Coldata Get the column annotation table or add additional columns to it
Description
The columns of a grandR object are samples or cells. The column annotation table contains meta
information for the columns of a grandR object. When loaded from the GRAND-SLAM output,
this this constructed from the sample/cell names by MakeColdata
Usage
Coldata(data, column = NULL, value = NULL)
Coldata(data, column) <- value
Arguments
data A grandR object
column The name of the additional annotation column; can also be a data frame (then
value is ignored and the data frame is added)
value The additional annotation per sample or cell

ComputeColumnStatistics 15

Details

A new column can be added either by data<-Coldata(data,name,values) or by Coldata(data,name)<-values.

Several new columns can be added by data<-Coldata(data,df) where df is either a data frame
or matrix.

The column named Condition has a special meaning in this table: It is used by several func-
tions to stratify the columns during the analysis (e.g. to estimate separate kinetic parameters with
FitKinetics or it is used as covariate for LFC or LikelihoodRatioTest). For that reason there
are special functions to set and get this column.

Value
Either the column annotation table or a new grandR object having an updated column annotation
table

See Also

Genelnfo, MakeColdata, Condition

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

head(GeneInfo(sars))

GenelInfo(sars, "LengthCategory”)<-cut(GeneInfo(sars)$Length,c(@,1500,2500,Inf),
labels=c("Short”, "Medium”,"Long"))

table(GeneInfo(sars)$LengthCategory)

ComputeColumnStatistics
Compute statistics for all columns (i.e. samples or cells)

Description

Compute statistics for all columns (i.e. samples or cells)

Usage

ComputeColumnStatistics(data, verbose = TRUE)

Arguments

data a grandR object

verbose output status messages

16 ComputeExpressionPercentage

Value

a new grandR object containing additional columns in the Coldata table:

* p.conv.X: the T-to-C mismatch frequency in the given ("X") subread category
» percent.new: new overall percentage of new RNA

* total.reads: the total number of reads (or UMIs, if UMIs were sequences)

* total.genes: the total number of genes detected

* percentage per type: the percentage (up to 100!) of the counts of each type in the Genelnfo

ComputeExpressionPercentage
Expression percentage computation

Description

Compute the expression percentage for a particular set of genes.

Usage

ComputeExpressionPercentage(
data,
name,
genes = Genes(data),
mode.slot = DefaultSlot(data),
genes.total = Genes(data),
mode.slot.total = mode.slot,
multiply.by.100 = TRUE

)
Arguments
data the grandR object
name the new name by which this is added to the Coldata
genes define the set of genes to compute the percentage for
mode.slot which mode.slot to take the values for computing the percentage from
genes. total define the set of genes defining the total value

mode.slot. total
which mode.slot to take the values for computing the total

multiply.by.100
if TRUE, compute percentage values, otherwise fractions between 0 and 1

ComputeNonConstantParam 17

Details

The percentages are computed for the given genes with the given mode.slot, w.r.t the mode.slot.total
from the genes.total. Thus to compute the percentage of mitochondrial gene expression in total RNA
(unnormalized), only set genes=Genes(data,""MT-",regex=TRUE). To compute the percentage of
new RNA among all genes, set mode.slot="new.count" and mode.slot.total="count".

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to filter by new counts.

Value

a new grandR object having the expression percentage in its Coldata table

See Also

Coldata

ComputeNonConstantParam
Compute and evaluate functions for non constant rates

Description

For simplicity, non constant rates here have the following form $o+f*te$.

Usage

ComputeNonConstantParam(start, end = start, exponent = 1, end.time = 2)

EvaluateNonConstantParam(t, param)

Arguments

start the value at t=0

end the value at t=end.time

exponent the exponent (e above)

end.time the end time

t vector of times

param output of ComputeNonConstantParam(), only a single row!
Value

data frame containing either the parameters o, f and e (ComputeNonConstantParam), or containing
the value of $o+f*t"e$ for the given times (EvaluateNonConstantParam).

18 ComputeNtrPosteriorQuantile

Functions
* ComputeNonConstantParam(): compute a data frame containing the parameters for non con-
stant rates

* EvaluateNonConstantParam(): compute a data frame containing the rates for the given pa-
rameter set (computed from ComputeNonConstantParam)

ComputeNtrPosteriorQuantile
Compute NTR quantiles

Description

Computes quantiles from the NTR posterior and puts them into a new slot

Usage

ComputeNtrPosteriorQuantile(data, quantile, name)
ComputeNtrCI(data, CI.size = 0.95, name.lower = "lower"”, name.upper = "upper”)

0.95, name = "lower")

ComputeNtrPosteriorLower(data, CI.size

ComputeNtrPosteriorUpper(data, CI.size = 0.95, name = "upper")

Arguments
data the grandR object
quantile which quantile to compute
name the name of the new slot to put quantile values in
CI.size A number between 0 and 1 representing the size of the credible interval
name. lower the name of the new slot to put the lower bound of the CI in
name.upper the name of the new slot to put the upper bound of the CI in

Details

The NTR posterior distribution can be approximated by a beta distribution.
ComputeNtrPosteriorQuantile computes any quantile from this Beta approximation
ComputeNtrPosteriorLower computes the (1-Cl.size)/2 quantile
ComputeNtrPosteriorUpper computes the 1-(1-Cl.size)/2 quantile

ComputeNtrCI computes both of these quantiles.

Value

a new grandR object containing an additional slot

ComputePseudoNtr 19

ComputePseudoNtr Compute pseudo NTRs from two count matrices

Description

NTRs can be computed from given new and total counts.

Usage

ComputePseudoNtr(
data,
new.slot,
total.slot = DefaultSlot(data),
detection.rate = 1

)
Arguments
data a grandR object
new.slot the slot containing new RNA counts
total.slot the slot containing total RNA counts

detection.rate the detection rate of T-to-C mismatch reads (see details)

Details

To correct for some bias, a detection rate (as suggested by Cao et al., Nature Biotech 2020) should
be provided. This detection rate defines, how much new RNA is detected on average using the
T-to-C mismatch reads.

Value

a new grandR object

ComputeSteadyStateHalflLives
Steady state half-lives for each sample

Description

Transforms each NTR to a half-life value (assuming steady state gene expression) and puts them
into a new slot or adds an analysis

20 ComputeSummaryStatistics

Usage
ComputeSteadyStateHalfLives(
data,
time = Design$dur.4sU,
name = "HL",
columns = NULL,
max.HL = 48,

CIl.size = 0.95,
compute.CI = FALSE,
as.analysis = FALSE

)

Arguments
data the grandR object
time either a number indicating the labeling time, or a name of the Coldata table
name the name of the new slot/analysis to put half-life values in
columns which columns (i.e. samples or cells) to return; sets as.analysis to TRUE (see

details)

max.HL all values above this will be set to this
CI.size A number between 0 and 1 representing the size of the credible interval
compute.CI it TRUE, credible intervals are computed, this also sets as.analysis to TRUE
as.analysis if TRUE add the results as analysis and not as data slot

Details

An NTR value p can be transformed into an RNA half-live using the equation log(2)/(-1/t*log(1-p))
This is described in our GRAND-SLAM paper (Juerges et al., Bioinformatics 2018).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a new grandR object with an additional slot or analysis

ComputeSummaryStatistics
Compute summary statistics

Description

Summary statistics are computed for all samples (or cells).

ComputeTotalExpression 21

Usage

ComputeSummaryStatistics(
data,
pairs = Findno4sUPairs(data),
coldata = FALSE,
do.bootstrap = FALSE,

seed = 1337
)
Arguments
data a grandR object
pairs ano4sU pairs list as generated by Findno4sUPairs
coldata if TRUE, add the coldata table
do.bootstrap if TRUE, also report standard errors of the 4sU dropout estimated via bootstrap-
ping
seed the seed for the random number generator for bootstrapping

Value

a table of summary statistics including:
* Mean LFC: the mean absolute log2 fold change of each sample vs the corresponding 4sU
naive sample
* 4sU dropout: the estimated 4sU dropout percentage
* p.conv: The 4sU incorporation frequency estimated by GRAND-SLAM
* Frction labelled: the global NTR

ComputeTotalExpression
Total expression computation

Description

Compute the total expression for a particular set of genes.

Usage

ComputeTotalExpression(
data,
name,
genes = Genes(data),
mode.slot = DefaultSlot(data)

22 Condition

Arguments

data the grandR object

name the new name by which this is added to the Coldata

genes define the set of genes to compute the percentage for

mode.slot which mode.slot to take the values for computing the percentage from
Details

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to filter by new counts.

Value

a new grandR object having the total expression in its Coldata table

See Also

Coldata

Condition Get or set the conditions in the column annotation table.

Description

The conditions column from the column annotation table is used by several functions to stratify the
columns (samples or cells) during the analysis (e.g. to estimate separate kinetic parameters with
FitKinetics or it is used as covariate for LFC or LikelihoodRatioTest). For that reason there
are special functions to set and get this column.

Usage

Condition(data, value = NULL)

Condition(data) <- value

Arguments
data A grandR object
value Either a vector of column names from the column annotation table, or the con-

dition names themselves

correctdropout 23

Details

If the conditions column does not exist (or has been set to NULL), all analysis functions will work
without stratifying samples or cells. The condition can also be set up directly when loading data,
by using Condition as one of the design vector entries (see below).

The condition can be set either by data<-Condition(data,names) or by Condition(data)<-names.

Value

Either the values of the condition column for Condition(data) or the grandR data object having the
new condition column

See Also
Coldata

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

Condition(sars)
Condition(sars) <- c("Cell”,"duration.4sU.original")
Condition(sars)

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))
Condition(sars)

correctdropout Correct for 4sU dropout

Description

For several potential reasons, a sample specific percentage of reads from labelled RNA might be
lost. This can be corrected for by increasing the amount of labelled RNA (see details).

Usage

Correct4sUDropoutHLFactor(
data,
pairs = Findno4sUPairs(data),
factors = Estimate4sUDropoutPercentage(data, pairs = pairs, ...),

Correct4sUDropoutHLSpline(data, pairs = Findno4sUPairs(data), spline.df = 15)

24

Arguments

data
pairs

factors

spline.df

Details

CreateConvolutionTable

a grandR object

ano4sU pairs list as generated by Findno4sUPairs

the 4sU dropout percentages

further arguments to be passed to or from other methods.

the degrees of freedom to be used for smoothing splines

The factor based correction approach requires estimates of the 4sU dropout percentage d. Labelled
RNA is multiplied by 1/(1-d), and total count and NTRs are adapted accordingly. alpha and beta are
also adapted such that their sum is maintained, but the mean of the corresponding beta function is
the new NTR. All other slots are treated to be expression estimates (and are adapted accordingly).

The spline approach uses quantile regression to fit a smoothing spline to the 4sU dropout rank plot,
which is then used to correct labelled RNA.

Value

a new grandR object that is corrected for 4sU dropout

See Also

Estimate4sUDropoutPercentage, ComputeSummaryStatistics

CreateConvolutionTable

Create Convolution Table from a Seurat object

Description

Create Convolution Table from a Seurat object

Usage

CreateConvolutionTable(data, n.neighbors = 20, group.column = "Condition"”, ...)
Arguments

data a Seurat object

n.neighbors

group.column

the number of neighbors to be convoluted
character specifying a column to split data by or NULL (see details)

additional parameters for FindNeighbors

CreatePdfs 25

Details
This function returns a table which can be used as input for GRAND3. Note that a data set contain-
ing multiple time points should be split for convolution (can be done by specifying a group. column).
Value

a table with two columns "Cell" and "Pseudobulk"

CreatePdfs Convencience methods for creating QC pdfs

Description

These methods are invoked by GRAND3 to generate pdfs.

Usage

CreatePdfs(data, labels = NULL, estimators = NULL)

CreatePdfsParameters(data, labels = NULL, estimators = NULL)

CreatePdfsComparison(data, labels = NULL, estimators = NULL)

CreatePdfsProfiles(data, labels = NULL, estimators = NULL)

Arguments
data a grandR object
labels which label to consider (see GetDiagnosticParameters); if NULL, all available
estimators are used
estimators which estimator to consider (see GetDiagnosticParameters); if NULL, all avail-
able estimators are used
Functions

* CreatePdfs(): Create all pdfs
* CreatePdfsParameters(): Create pdfs visualizing the estimated parameters
* CreatePdfsComparison(): Create pdfs comparing the estimated parameters

* CreatePdfsProfiles(): Create pdfs visualizing the profile likelihoods

26 data.apply

CreatePseudobulkTable Create Pseudobulk Table from a Seurat object

Description

Create Pseudobulk Table from a Seurat object

Usage
CreatePseudobulkTable(
data,
name.column = "Name"”,
pseudobulk.column = "Condition”
)
Arguments
data a Seurat object
name.column name of the metadata column containing the sample/cell names. Default "Name".

pseudobulk.column
name of the metadata column containing the Pseudobulk names. Default "Con-
dition".
Details

This function returns a table which can be used as input for GRAND3

Value

a table with two columns "Cell" and "Pseudobulk"

data.apply Internal function to apply functions to all slots etc.

Description

Internal function to apply functions to all slots etc.

Usage

data.apply(data, fun, fun.gene.info = NULL, fun.coldata = NULL, ...)

DefaultSlot 27

Arguments
data a grandR object
fun apply this function to each data slot (i.e. it receives each data matrix)

fun.gene.info apply this function to the gene info table
fun.coldata apply this function to the column annotation table

passed further to fun, fun.gene.info and fun.coldata

Details

The additional parameters are provided to each of the functions.

Value

A new grandR object

DefaultSlot Get or set the default slot for a grandR object.

Description

The default slot is used by default by many functions including GetData,GetTable or FitKinetics

Usage

DefaultSlot(data, value = NULL)

DefaultSlot(data) <- value

Arguments

data A grandR object

value the name of the new default slot
Details

The default slot can be set either by data<-DefaultSlot(data, "norm”) or by DefaultSlot(data)<-"norm".

Value
Either the name of the default slot for DefaultSlot(data) or the grandR data object having the new
default slot

See Also

Slots

28 Defer

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

DefaultSlot(sars)

sars <- Normalize(sars) # default behavior is to update the default slot
DefaultSlot(sars)

DefaultSlot(sars)="count”

Defer Defer calling a function

Description

This generates a function with one mandatory parameter (and additional optional parameters) that,
when called, (i) also receives the parameters given when calling Defer, and (ii) after calling it each
element of the add list is appended by +. When no optional parameters are given, the result is

cached.
Usage
Defer(FUN, ..., add = NULL, cache = TRUE, width.height = NULL)
Arguments
FUN the function to be deferred
additional parameters to be used when the deferred function is called
add list containing additional elements to be added + to the result of the deferred
function
cache use caching mechanism

width.height a vector containing the desired width and height (not checked!)

Details

The following expressions are very similar: f <- function(d) Heavy.function(d) and f <- Defer (Heavy.function).
In both cases, you get a function f that you can call for some d, which in turn calls Heavy . function.
The only difference is that in the second case, the result is cached: Heavy. function is called only
once when first calling f, if f is called a second time, the previous result is returned. This makes
sense if the parameter d is constant (like a grandR object) and if Heavy. function is deterministic.

If additional parameters are provided to f, caching is disabled. If any of these additional parame-
ters has the same name as the parameters given to Defer (), the parameters given to Defer () are
overwritten. Be careful if Heavy. function is not deterministic (see examples).

Use case scenario: You want to produce a heatmap from a grandR object to be used as plot.static
in the shiny web interface. PlotHeatmap takes some time, and the resulting object is pretty large in
memory. Saving the heatmap object to disk is very inefficient (the Rdata file will be huge, especially
with many heatmaps). Deferring the call without caching also is bad, because whenever the user
clicks onto the heatmap, it is regenerated.

density2d 29

Value

a function that can be called

Examples

Heavy.function <- function(data) rnorm(5,mean=data)
f1=Defer (Heavy.function)

f2=function(d) Heavy.function(d)

f2(4)

f2(4) # these are not equal, as rnorm is called twice
f1(4)

f1(4) # these are equal, as the result of rnorm is cached

density2d Density estimation in 2d

Description

Estimate point densities on a regular grid for.

Usage

n,n

density2d(x, y, facet = NULL, n = 100, margin = "n")

Arguments
X x coordinates
y y coordinates
facet factor: estimate for each unique factor; can be NULL
n size of the grid
margin one of 'n’,’x’ or ’y’; should the density be computed along both axes ('n’), or
along ’x’ or ’y’ axis only
Value

a density value for each point

30 DESeq2BIC

DESeq2BIC Compute the Bayesian information criterion (BIC)

Description

Compute the delta BIC for a list of potential models

Usage

DESeq2BIC(
data,
name = "BIC",
mode = "total”,
normalization = mode,
formulas = list(Condition = ~Condition, Background = ~1),
no4sU = FALSE,
columns = NULL,
verbose = FALSE

)
Arguments
data A grandR object
name the user defined analysis name to store the results
mode either "total", "new" or "old"

normalization normalize on "total", "new", or "old" (see details)

formulas list of formulas specifying the models (you can use any column name from the
Coldata(data))
no4sU Use no4sU columns (TRUE) or not (FALSE)
columns logical vector of which columns (samples or cells) to use (or NULL: use all)
verbose Print status updates
Details

DESeq?2 by default performs size factor normalization. When computing differential expression of
new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed
from total RNA instead of computed from new RNA. This can be accomplished by setting mode to
"new", and normalization to "total"!

Value

a new grandR object including a new analysis table. The columns of the new analysis table are
named as <name in list>.dBIC

Design 31

Design A list of predefined names for design vectors

Description
These predefined names mainly are implemented here to harmonize analyses. It is good practise to
use these names if sensible.

Usage

Design

Format

An object of class 1ist of length 11.

DesignSemantics Build the design semantics list

Description

This is used to add additional columns to the Coldata table by giving additional semantics to
existing columns.

Usage

DesignSemantics(...)

Arguments

named parameter list of functions (see details)

Details

DesignSemantics returns a list of functions that is supposed to be used as semantics parameter
when calling MakeColdata. For each design vector element matching a name of this list the corre-
sponding function is called by MakeColdata to add additional columns.

Each function takes two parameters, the first being the original column in the Coldata table column,
the second being its name.

Semantics.time is such a predefined function: Contents such as 3h or 30min are converted into a
numerical value (in hours), and no4sU is converted into 0.

Semantics.concentration is such a predefined function: Contents such as 200uM or ImM are con-
verted into a numerical value (in uM), and no4sU is converted into 0.

By default, Semantics.time is used for the names duration.4sU and Experimental.time, and Seman-
tics.concentration is used for concentration.4sU

32 dropout

Value

a named list; the names should correspond to column names in the Coldata table, and the values are
functions to add semantics to this table

See Also
MakeColdata

Examples

Semantics.time(c("5h","3@0min", "no4sU"),"Test")

myfun <- function(s,name) {
r<-Semantics.time(s,name)
cbind(r,data.frame(hpi=paste@(r$duration.4suU+3,"h")))
3
sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=function(names)
MakeColdata(names,c("Cell"”,Design$dur.4sU,Design$Replicate),
semantics=DesignSemantics(duration.4sU=myfun)),
verbose=TRUE)
Coldata(sars)

dropout Perform 4sU dropout tests

Description

Testing for RNA dropout of a 4sU sample is performed by comparing half-lives or NTR ranks
against the log2 fold change of the 4sU sample vs equivalent no4sU samples.

Usage

Plot4sUDropoutRankAll (data, pairs = Findno4sUPairs(data), ...)
Plot4sUDropoutAll(data, pairs = Findno4sUPairs(data), ...)
Plot4sUDropoutDeferAll(data, pairs = NULL, ...)
Plot4sUDropoutRankDeferAll(data, pairs = NULL, ...)
Plot4sUDropoutRank(

data,

w4sU,

no4sU = Findno4sUPairs(data)[[w4sU]],
ntr = w4sU,

dropout 33

ylim = NULL,
LFC.fun = 1fc::PsilLFC,
slot = "count”,

correction = 1,
label.corr = TRUE,
return.corr = FALSE,
boxplot.bins = 10,

title = w4sU,
size = 1.5,
invert.ranks = FALSE
)
Plot4sUDropout (
data,
w4sU,
no4sU = Findno4sUPairs(data)[[w4sU]],
ntr = w4sU,
ylim = NULL,
LFC.fun = 1fc::PsilLFC,
slot = "count”,
hl.quantile = 0.8,
hl = NULL,
correction = 1,
label.corr = FALSE,
return.corr = FALSE,
title = w4sU,
size = 1.5,
color.by.ntr = FALSE
)
Arguments
data a grandR object
pairs anodsU pairs list as generated by Findno4sUPairs
further arguments to be passed to or from other methods.
w4sU the name of a 4sU sample
no4sU the name(s) of equivalent no4sU sample(s)
ntr the name of a sample to take NTRs from (usually equal to w4sU)
ylim y axis limits
LFC. fun function to compute log fold change (default: PsiLFC, other viable option:
NormLFC)
slot the slot of the grandR object to take the data from; for PsiLFC, this really should
be "count"!
correction correction factor

label.corr add statistics as subtitle

34 dropoutpercent

return.corr instead of only the ggplot object, return a list with slots plot (what is normally
returned) and label (the correlation statistics)

boxplot.bins how many boxplots for Plot4sUDropoutRank

title the main title for the plot

size the point size

invert.ranks if TRUE, left to right on the plot is largest NTR to smallest NTR
hl.quantile the half-life quantile to cut the plot

hl if NULL, compute half-lives from the ntr column; otherwise, must be a vector
containing half-lives

color.by.ntr if true, compute the density colors along the ntr axis instead of globally

Details

The deferred versions are useful to be used in conjunction with ServeGrandR plot.static. Their
implementation make sure that they are lightweight, i.e. when saving the returned function to an
Rdata file, the grandR object is not stored.

Value

either a ggplot object, a list of ggplot objects, or a list of deferred functions for plotting

See Also
Findno4sUPairs,Defer

dropoutpercent Estimate 4sU dropout percentages

Description

For several potential reasons, a sample specific percentage of reads from labelled RNA might be
lost. This percentage can be estimated from data of this sample and an equivalent 4sU naive control
(see details).

Usage

Estimate4sUDropoutPercentage(data, pairs = Findno4sUPairs(data), ...)

Estimate4sUDropoutPercentageForSample(
data,
w4sU,
no4sU,
ntr = w4sU,
LFC.fun = 1fc::PsilFC,
type = c("spearman”, "quantreg”, "linear”, "lowess"),
bootstrap = FALSE

dropoutpercent 35

Arguments
data a grandR object
pairs a no4sU pairs list as generated by Findno4sUPairs
further arguments to be passed to or from other methods.
w4sU the name of a 4sU sample
no4sU the name(s) of equivalent no4sU sample(s)
ntr the name of a sample to take NTRs from (usually equal to w4sU)
LFC.fun function to compute log fold change (default: PsiLFC, other viable option:
NormLFC)
type one of "spearman","quantreg","linear" or "lowess" (see details)
bootstrap if TRUE, perform a single bootstrap sample (by drawing genes with replace-
ment)
Details

The percentage of 4sU dropout is estimated by numerical optimization of the factor f that has to
be multiplied with the NTR to mitigate the effect of 4sU dropout. The exact objective function
depends on the type parameter:

 spearman: fis estimated such that the spearman correlation coefficient of the log2 fold change
4sU/no4sU vs the ntr rank is O

* quantreg: f is estimated such that the slope of a median regression with the the ntr rank as
independent variable and the log2 fold change 4sU/no4sU as dependent variable is O

* linear: fis estimated such that the slope of a linear regression with the the ntr rank as indepen-
dent variable and the log2 fold change 4sU/no4sU as dependent variable is O

* lowess: f is estimated by minimizing the sum-of-squares of the residuals from a lowess re-
gression with the the ntr rank as independent variable and the log2 fold change 4sU/no4sU as
dependent variable is O

Once f is computed the percentage of 4sU dropout is f/(f+1).

Value
the percentage of 4sU dropout for a single sample (Estimate4dsUDropoutPercentageForSample) or
all samples (Estimate4sUDropoutPercentage)

See Also

Correct4sUDropoutHLFactor,ComputeSummary Statistics

36 EstimateRegulation

estimate.dispersion Estimate dispersion parameters for a count matrix using DESeq2

Description

Estimate dispersion parameters for a count matrix using DESeq2

Usage

estimate.dispersion(ss)

Arguments

ss the count matrix

Value

a vector of dispersion parameters (to be used as size=1/dispersion for Xnbinom functions)

EstimateRegulation Estimate regulation from snapshot experiments

Description

Compute the posterior log2 fold change distributions of RNA synthesis and degradation

Usage
EstimateRegulation(
data,
name.prefix = "Regulation”,
contrasts,

reference.columns = NULL,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
ROPE .max.log2FC = 0.25,
sample.f@.in.ss = TRUE,

N = 10000,

N.max = N % 10,

CIl.size = 0.95,

seed = 1337,

dispersion = NULL,
sample.level = 2,
correct.labeling = FALSE,
verbose = FALSE

EstimateRegulation 37

Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)
contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

reference.columns
areference matrix usually generated by FindReferences to define reference sam-
ples for each sample; can be NULL if all conditions are at steady state (see
details)

slot the data slot to take fO and totals from
time.labeling the column in the Coldata table denoting the labeling duration, or the numeric
labeling duration itself

time.experiment
the column in the Coldata table denoting the experimental time point (can be
NULL, see details)

ROPE .max . log2FC
the region of practical equivalence is [-ROPE.max.1og2FC,ROPE.max.log2FC]
in log2 fold change space

sample.f@.in.ss
whether or not to sample fO under steady state conditions

N the sample size

N.max the maximal number of samples (necessary if old RNA > f0); if more are neces-
sary, a warning is generated

CI.size A number between 0 and 1 representing the size of the credible interval

seed Seed for the random number generator

dispersion overdispersion parameter for each gene; if NULL this is estimated from data

sample.level Define how the NTR is sampled from the hierarchical Bayesian model (must be
0,1, or 2; see details)

correct.labeling
Labeling times have to be unique; usually execution is aborted, if this is not the
case; if this is set to true, the median labeling time is assumed

verbose Print status messages

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample either
must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at
an earlier time point are known from separate samples, so called temporal reference samples. Thus,
if s and d are estimated for a set of samples x_1,...,x_k (that must be from the same time point t),
we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time
difference between t and t0.

38 EstimateRegulation

The temporal reference samples are identified by the reference.columns matrix. This is a square ma-
trix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample
is a temporal reference of the columns sample. This time point is defined by time.experiment. If
time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the steady state samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sam-
pled from a beta distribution that approximates the mixture of betas from the replicate samples. If
sample.level = 1, only the first level from the hierarchical model is sampled (corresponding to the
uncertainty of estimating the biological variability). If sample.level = 2, the first and second levels
are estimated (corresponding to the full hierarchical model).

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates
are returned

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"s.A" the posterior mean synthesis rate for sample A from the comparison
"s.B" the posterior mean synthesis rate for sample B from the comparison
"HL.A" the posterior mean RNA half-life for sample A from the comparison
"HL.B" the posterior mean RNA half-life for sample B from the comparison
"s.log2FC" the posterior mean synthesis rate log2 fold change

s.cred.lower” the lower CI boundary of the synthesis rate log2 fold change
s.cred.upper” the upper CI boundary of the synthesis rate log2 fold change

"s.ROPE" the signed ROPE probability (negative means downregulation) for the synthesis
rate fold change

"HL.log2FC" the posterior mean half-life log2 fold change

"HL.cred.lower”
the lower CI boundary of the half-life log2 fold change

"HL.cred.upper"”
the upper CI boundary of the half-life log2 fold change

"HL .ROPE" the signed ROPE probability (negative means downregulation) for the half-life
fold change

See Also

FitKineticsGeneSnapshot,FitKineticsSnapshot

Examples

banp <- ReadGRAND(system.file("extdata”, "BANP.tsv.gz", package = "grandR"),
design=c("Cell”,"Experimental.time”, "Genotype”,
Design$dur.4sU,Design$has.4sU,Design$Replicate))
contrasts <- GetContrasts(banp,contrast=c("Experimental.time.original”,"@h"),name.format="$A")
reference.columns <- FindReferences(banp,reference= Experimental.time==0)

f.nonconst 39

banp <- EstimateRegulation(banp, "Regulation”,

contrasts=contrasts,

reference.columns=reference.columns,

verbose=TRUE,

time.experiment = "Experimental.time”,

N=0, # don't sample in the example

dispersion=0.1) # don't estimate dispersion in the example

head(GetAnalysisTable(banp))

f.nonconst Function to compute the abundance of new or old RNA at time t for
non-constant rates.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df /dt = s(t) — d(t) f(t), with s(t) being the synthesis rate at time t, d(t) the degradation rate at
time t and fO = f(0) (the abundance at time 0). Here, both s and d have the following form
s(t) = so+ sf -tec.

Usage

f.nonconst(t, fo, s, d)

Arguments

t time in h (can be a vector)

fo the abundance at time t=0

s the synthesis rate (see details)

d the degradation rate (see details)
Details

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "offset",
"factor" and "exponent" (for linear functions, see ComputeNonConstantParam; only one row al-
lowed) or (iii) a unary function time->rate. Functions

Value

the RNA abundance at time t

See Also

f.nonconst.linear

40

f.nonconst.linear

f.nonconst.linear

Function to compute the abundance of new or old RNA at time t for
non-constant rates.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df /dt = s(t) — d(¢t) f(t), with s(t) being the synthesis rate at time t, d(t) the degradation rate at
time t and f0 = f(0) (the abundance at time 0). Here, both s and d have the following form
s(t) = so+ sf - t%€.

Usage

f.nonconst.linear(t, f@, so, sf, se, do, df, de)

Arguments

t

fo
o)
sf
se
do
df
de

Value

time in h (can be a vector)
the abundance at time t=0
synthesis date offset
synthesis date factor
synthesis date exponent
degradation rate offset
degradation rate factor

degradation rate exponent

the RNA abundance at time t

See Also

f.nonconst

f.old.equi 41

f.old.equi Functions to compute the abundance of new or old RNA at time t.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df /dt = s — df (t), with s being the constant synthesis rate, d the constant degradation rate and
f0 = f£(0) (the abundance at time 0).

Usage
f.old.equi(t, s, d)

f.old.nonequi(t, fo, s, d)

f.new(t, s, d)

Arguments
t time in h
s synthesis date in U/h (arbitrary unit U)
d degradation rate in 1/h
fo the abundance at time t=0
Value

the RNA abundance at time t

Functions

* f.old.equi(): abundance of old RNA assuming steady state (i.e. f0=s/d)
* f.old.nonequi(): abundance of old RNA without assuming steady state

* f.new(): abundance of new RNA (steady state does not matter)

Examples

d=log(2)/2
s=10

f.new(2,s,d) # Half-life 2, so after 2h the abundance should be half the steady state
f.old.equi(2,s,d)
s/d

t<-seq(0,10,length.out=100)
plot(t,f.new(t,s,d),type="1",col="blue',ylim=c(0,s/d))
lines(t,f.old.equi(t,s,d),col="red")
abline(h=s/d,1ty=2)

42 FilterGenes

abline(v=2,1ty=2)
so old and new RNA are equal at t=HL (if it is at steady state at t=0)

plot(t,f.new(t,s,d),type="'1",col="blue')
lines(t,f.old.nonequi(t,f0=15,s,d),col="'red")

abline(h=s/d,1lty=2)

abline(v=2,1ty=2)

so old and new RNA are not equal at t=HL (if it is not at steady state at t=0)

FilterGenes Filter genes

Description

Return a grandR object with fewer genes than the given grandR object (usually to filter out weakly
expressed genes).

Usage

FilterGenes(
data,
mode.slot = "count”,
minval = 100,
mincol = ncol(data)/2,
min.cond = NULL,

use = NULL,
keep = NULL,
return.genes = FALSE
)
Arguments
data the grandR object
mode.slot the mode.slot that is used for filtering (see details)
minval the minimal value for retaining a gene
mincol the minimal number of columns (i.e. samples or cells) a gene has to have a value
>= minval
min.cond if not NULL, do not compare values per column, but per condition (see details)
use if not NULL, defines the genes directly that are supposed to be retained (see
details)
keep if not NULL, defines genes directly, that should be kept even though they do not

adhere to the filtering criteria (see details)

return.genes if TRUE, return the gene names instead of a new grandR object

Findno4sUPairs 43

Details

By default genes are retained, if they have 100 read counts in at least half of the columns (i.e.
samples or cells).

The use parameter can be used to define genes to be retained directly. The keep parameter, in
contrast, defines additional genes to be retained. For both, genes can be referred to by their names,
symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to filter by new counts.

if the min. cond parameter is given, first all columns belonging to the same Condition are summed
up, and then the usual filtering is performed by conditions instead of by columns.

Value

either a new grandR object (if return.genes=FALSE), or a vector containing the gene names that
would be retained

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))

nrow(sars)

This is already filtered and has 1045 genes

nrow(FilterGenes(sars,minval=1000))

There are 966 genes with at least 1000 read counts in half of the samples
nrow(FilterGenes(sars,minval=10000,min.cond=1))

There are 944 genes with at least 10000 read counts in the Mock or SARS condition
nrow(FilterGenes(sars,use=GeneInfo(sars, "Type")!="Cellular"))

These are the 11 viral genes.

Findno4sUPairs Find equivalent no4sU samples for 4sU samples

Description

Identify all no4sU samples in the same condition, and return everything as a list to be used in
Plot4sUDropout, Plot4sUDropoutRank, Plot4sUDropoutAll, Plot4sUDropoutRankAll

Usage

Findno4sUPairs(data, paired.replicates = FALSE, discard.no4sU = TRUE)

44 FindReferences

Arguments

data a grandR object

paired.replicates
pair replicates, i.e. only no4sU.A is found for 4sU.A

discard.no4sU do not report references for no4sU samples

Value

a named list containing, for each 4sU sample, a vector of equivalent no4sU samples

See Also

Plot4sUDropout, Plot4sUDropoutRank, Plot4sUDropoutAll, Plot4sUDropoutRankAll

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))

Findno4sUPairs(sars)
FindReferences Obtain reference columns (samples or cells) for all columns (samples
or cells) in the data set
Description

In some situations (see examples) it is required to find a reference sample of some kind for each
sample in a data set. This is a convenience method to find such reference samples, and provide them
as a lookup table.

Usage

FindReferences(
data,
reference = NULL,
reference.function = NULL,
group = NULL,
as.list = FALSE,
columns = NULL

FindReferences 45

Arguments
data A grandR object
reference Expression evaluating to a logical vector to indicate which columns are reference

columns; evaluated in an environment having the columns of Coldata(data)

reference.function
Function evaluating to a logical vector to indicate which columns are reference
columns; called with the data frame row corresponding to the sample, and eval-
uated in an environment having the columns of Coldata(data)

group a vector of colnames in Coldata(data)
as.list return it as a list (names correspond to each sample, elements are the reference
samples)
columns find references only for a subset of the columns (samples or cells; can be NULL)
Details

Without any group, the list simply contains all references for each sample/cell. With groups defined,
each list entry consists of all references from the same group.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A logical matrix that contains for each sample or cell (in columns) a TRUE for the corresponding
corresponding reference samples or cells in rows

See Also

Coldata,Findno4sUPairs, Condition

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("”Condition”,Design$dur.4sU,Design$Replicate))

FindReferences(sars,reference=no4sU)

obtain the corresponding no4sU sample for each sample; use the Condition column

FindReferences(sars,Condition=="Mock"”,group="duration.4sU.original"”)

obtain for each sample the corresponding sample in the Mock condition

FindReferences(sars,Condition=="Mock",group=c("duration.4sU.original”,"Replicate”))

obtain for each sample the corresponding Mock sample, paying attention to replicates

46

FitKinetics

FitKinetics Fit kinetic models to all genes.

Description

Fit the standard mass action kinetics model of gene expression by different methods. Some methods
require steady state assumptions, for others data must be properly normalized. The parameters are
fit per Condition.

Usage
FitKinetics(
data,
name.prefix = "kinetics”,
type = c("nlls”, "ntr"”, "1Im", "chase"),
slot = DefaultSlot(data),
time = Design$dur.4sU,

CIl.size = 0.95,
return.fields = c("Synthesis”, "Half-life"),
return.extra = NULL,

)
Arguments
data A grandR object
name.prefix the prefix of the analysis name to be stored in the grandR object
type Which method to use (either one of "full","ntr","Im", "chase")
slot The data slot to take expression values from
time The column in the column annotation table representing the labeling duration
CI.size A number between 0 and 1 representing the size of the confidence interval

return.fields which statistics to return (see details)

return.extra additional statistics to return (see details)

Details

forwarded to FitKineticsGeneNtr, FitKineticsGenelLeastSquares or FitKineticsGenelLogSpacel i

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df Jdt = s — df (1)

This model assumes constant synthesis and degradation rates. Based on this, there are different
ways for fitting the parameters:

FitKineticsGeneLeastSquares 47

* FitKineticsGeneLeastSquares: non-linear least squares fit on the full model; depends on
proper normalization; can work without steady state; assumption of homoscedastic gaussian
errors is theoretically not justified

» FitKineticsGeneLogSpaceLinear: linear model fit on the old RNA; depends on proper normal-
ization; assumes steady state for estimating the synthesis rate; assumption of homoscedastic
gaussian errors in log space is problematic and theoretically not justified

* FitKineticsGeneNtr: maximum a posteriori fit on the NTR posterior transformed to the degra-
dation rate; as it is based on the NTR only, it is independent on proper normalization; assumes
steady state; theoretically well justified

Pulse-chase designs are fit using FitKineticsGeneLeastSquares while only considering the drop of
labeled RNA. Note that in this case the notion "new" / "old" RNA is misleading, since labeled RNA
corresponds to pre-existing RNA!

This function is flexible in what to put in the analysis table. You can specify the statistics using
return.fields and return.extra (see kinetics2vector)

Value

A new grandR object with the fitted parameters as an analysis table

See Also

FitKineticsGeneNtr, FitKineticsGeneLeastSquares, FitKineticsGeneLLogSpaceLinear

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

sars <- FilterGenes(sars,use=1:10)

sars<-FitKinetics(sars,name="kinetics.ntr",type='ntr')

sars<-Normalize(sars)

sars<-FitKinetics(sars,name="kinetics.nlls"”, type='nlls")

sars<-FitKinetics(sars,name="kinetics.1lm", type="1m")

head(GetAnalysisTable(sars,columns="Half-1life"))

FitKineticsGenelLeastSquares
Fit a kinetic model according to non-linear least squares.

Description

Fit the standard mass action kinetics model of gene expression using least squares (i.e. assuming
gaussian homoscedastic errors) for the given gene. The fit takes both old and new RNA into ac-
count and requires proper normalization, but can be performed without assuming steady state. The
parameters are fit per Condition.

48 FitKineticsGeneLeastSquares

Usage
FitKineticsGenelLeastSquares(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,

chase = FALSE,

CIl.size = 0.95,
steady.state = NULL,
use.old = TRUE,

use.new = TRUE,

maxiter = 250,
compute.residuals = TRUE

)
Arguments
data A grandR object
gene The gene for which to fit the model
slot The data slot to take expression values from
time The column in the column annotation table representing the labeling duration
chase is this a pulse-chase experiment? (see details)
CI.size A number between 0 and 1 representing the size of the confidence interval

steady.state either a named list of logical values representing conditions in steady state or
not, or a single logical value for all conditions

use.old a logical vector to exclude old RNA from specific time points
use.new a logical vector to exclude new RNA from specific time points
maxiter the maximal number of iterations for the Levenberg-Marquardt algorithm used

to minimize the least squares
compute.residuals
set this to TRUE to compute the residual matrix

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations. In particular (but not only) without
assuming steady state, also a sample without 4sU (representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df Jdt = s — df (t)

This model assumes constant synthesis and degradation rates (but not necessarily that the system
is in steady state at time 0). From the solution of this differential equation, it is straight forward
to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis

FitKineticsGeneLeastSquares 49

rate), d (degradation rate) and fO=f(0) (the abundance at time 0). These equations are implemented
in f.old.equi (old RNA assuming steady state gene expression, i.e. f0=s/d), f.old.nonequi (old
RNA without assuming steady state gene expression) and f.new (new RNA; whether or not it is
steady state does not matter).

This function finds s and d such that the squared error between the observed values of old and new
RNA and their corresponding functions is minimized. For that to work, data has to be properly
normalized.

For pulse-chase designs, only the drop of the labeled RNA is considered. Note that in this case the
notion "new" / "old" RNA is misleading, since labeled RNA corresponds to pre-existing RNA!

Value

A named list containing the model fit:

data: a data frame containing the observed value used for fitting

residuals: the computed residuals if compute.residuals=TRUE, otherwise NA
Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)
Degradation: the degradation rate (in 1/h)

Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

fO: The abundance at time O (in U)

logLik: the log likelihood of the model

rmse: the total root mean square error

rmse.new: the total root mean square error for all new RNA values used for fitting
rmse.old: the total root mean square error for all old RNA values used for fitting
total: the total sum of all new and old RNA values used for fitting

type: non-equi or equi

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

See Also

FitKinetics, FitKineticsGeneLogSpaceLinear, FitKineticsGeneNtr

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),

design=c("Condition”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
FitKineticsGenelLeastSquares(sars, "SRSF6",steady.state=1ist(Mock=TRUE,SARS=FALSE))

50 FitKineticsGeneLogSpaceLinear

FitKineticsGenelLogSpacelLinear
Fit a kinetic model using a linear model.

Description

Fit the standard mass action kinetics model of gene expression using a linear model after log-
transforming the observed values (i.e. assuming gaussian homoscedastic errors of the logarithmized
values) for the given gene. The fit takes only old RNA into account and requires proper normaliza-
tion, but can be performed without assuming steady state for the degradation rate. The parameters
are fit per Condition.

Usage

FitKineticsGenelLogSpacelLinear(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
Cl.size = 0.95

)
Arguments

data A grandR object

gene The gene for which to fit the model

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

CI.size A number between 0 and 1 representing the size of the confidence interval
Details

The start of labeling for all samples should be the same experimental time point. The fit gets
more precise with multiple samples from multiple labeling durations. Also a sample without 4sU
(representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df Jdt = s — df (t)

This model assumes constant synthesis and degradation rates (but not necessarily that the system
is in steady state at time 0). From the solution of this differential equation, it is straight forward
to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis
rate), d (degradation rate) and f0=f(0) (the abundance at time 0). These equations are implemented
in f.old.equi (old RNA assuming steady state gene expression, i.e. f0=s/d), f.old.nonequi (old

FitKineticsGeneLogSpaceLinear 51

RNA without assuming steady state gene expression) and f.new (new RNA; whether or not it is
steady state does not matter).

This function primarily finds d such that the squared error between the observed values of old and
new RNA and their corresponding functions is minimized in log space. For that to work, data has
to be properly normalized, but this is independent on any steady state assumptions. The synthesis
rate is computed (under the assumption of steady state) as s = f0 - d

Value

A named list containing the model fit:

e data: a data frame containing the observed value used for fitting

* Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)

* Degradation: the degradation rate (in 1/h)

» Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

 conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

* conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

¢ f0: The abundance at time O (in U)

* logLik: the log likelihood of the model

* rmse: the total root mean square error

* adj.r.squared: adjusted R”2 of the linear model fit

* total: the total sum of all new and old RNA values used for fitting
* type: always "Im"

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

See Also

FitKinetics, FitKineticsGeneLeastSquares, FitKineticsGeneNtr

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)

FitKineticsGenelLogSpacelLinear(sars,"”SRSF6") # fit per condition

52 FitKineticsGeneNtr

FitKineticsGeneNtr Fit a kinetic model using the degradation rate transformed NTR pos-
terior distribution.

Description

Fit the standard mass action kinetics model of gene expression by maximum a posteriori on a model
based on the NTR posterior. The fit takes only the NTRs into account and is completely independent
on normalization, but it cannot be performed without assuming steady state. The parameters are fit
per Condition.

Usage

FitKineticsGeneNtr(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
CIl.size = 0.95,
transformed.NTR.MAP = TRUE,
exact.ci = FALSE,
total.fun = median

)
Arguments
data A grandR object
gene The gene for which to fit the model
slot The data slot to take expression values from
time The column in the column annotation table representing the labeling duration
CI.size A number between 0 and 1 representing the size of the credible interval

transformed.NTR.MAP
Use the transformed NTR MAP estimator instead of the MAP of the transformed

posterior
exact.ci compute exact credible intervals (see details)
total.fun use this function to summarize the expression values (only relevant for comput-

ing the synthesis rate s)

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

FitKineticsGeneNtr 53

df /dt = s — df (t)

This model assumes constant synthesis and degradation rates. Further assuming steady state al-
lows to derive the function transforming from the NTR to the degradation rate d as d(ntr) =
—1/tlog(1 — ntr). Furthermore, if the ntr is (approximately) beta distributed, it is possible to de-
rive the distribution of the transformed random variable for the degradation rate (see Juerges et al.,
Bioinformatics 2018).

This function primarily finds d by maximizing the degradation rate posterior distribution. For that,
data does not have to be normalized, but this only works under steady-state conditions. The synthe-
sis rate is then computed (under the assumption of steady state) as s = f0 - d

The maximum-a-posteriori estimator is biased. Bias can be removed by a correction factor (which
is done by default).

By default the chi-squared approximation of the log-posterior function is used to compute credible
intervals. If exact.ci is used, the posterior is integrated numerically.

Value

A named list containing the model fit:

* data: a data frame containing the observed value used for fitting

» Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)

» Degradation: the degradation rate (in 1/h)

* Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

* conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

 conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

¢ f0: The abundance at time O (in U)

* logLik: the log likelihood of the model

* rmse: the total root mean square error

* total: the total sum of all new and old RNA values used for fitting
* type: always "ntr"

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

See Also

FitKinetics, FitKineticsGeneLeastSquares, FitKineticsGeneLogSpaceLinear

54 FitKineticsGeneSnapshot

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("”Condition”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)

sars <- subset(sars,columns=Condition=="Mock")

FitKineticsGeneNtr(sars, "SRSF6")

FitKineticsGeneSnapshot

Compute the posterior distributions of RNA synthesis and degradation
for a particular gene

Description

Compute the posterior distributions of RNA synthesis and degradation for a particular gene

Usage

FitKineticsGeneSnapshot(
data,
gene,
columns = NULL,
reference.columns = NULL,
dispersion = NULL,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
sample.f@.in.ss = TRUE,
sample.level = 2,
beta.prior = NULL,
return.samples = FALSE,
return.points = FALSE,
N = 10000,
N.max = N x 10,
CIl.size = 0.95,
correct.labeling = FALSE

)
Arguments
data the grandR object
gene a gene name or symbol or index
columns samples or cell representing the same experimental condition (must refer to a

unique labeling duration)

FitKineticsGeneSnapshot 55

reference.columns

areference matrix usually generated by FindReferences to define reference sam-
ples for each sample (see details)

dispersion dispersion parameter for the given columns (if NULL, this is estimated from the
data, takes a lot of time!)

slot the data slot to take fO and totals from

time.labeling the column in the column annotation table denoting the labeling duration or the
labeling duration itself

time.experiment
the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

sample.f@.in.ss
whether or not to sample fO under steady state conditions

sample.level Define how the NTR is sampled from the hierarchical Bayesian model (must be
0,1, or 2; see details)

beta.prior The beta prior for the negative binomial used to sample counts, if NULL, a beta
distribution is fit to all expression values and given dispersions

return.samples return the posterior samples of the parameters?
return.points return the point estimates per replicate as well?
N the posterior sample size

N.max the maximal number of posterior samples (necessary if old RNA > {0); if more
are necessary, a warning is generated

CI.size A number between 0 and 1 representing the size of the credible interval

correct.labeling
whether to correct labeling times

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample ei-
ther must be in steady state (this is the case if defined in the reference.columns matrix), or if the
levels of reference samples from a specific prior time point are known. This time point is defined
by time.experiment (i.e. the difference between the reference samples and samples themselves).
If time.experiment is NULL, then the labeling time of the samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the reference samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sam-
pled from a beta distribution that approximates the mixture of betas from the replicate samples. If
sample.level = 1, only the first level from the hierarchical model is sampled (corresponding to the
uncertainty of estimating the biological variability). If sample.level = 2, the first and second levels
are estimated (corresponding to the full hierarchical model).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

56 FitKineticsSnapshot

Value

a list containing the posterior mean of s and s, its credible intervals and, if return.samples=TRUE a
data frame containing all posterior samples

FitKineticsPulseR Fit kinetics using pulseR

Description

Fit kinetics using pulseR

Usage

FitKineticsPulseR(data, name = "pulseR"”, time = Design$dur.4sU)
Arguments

data A grandR object

name the user defined analysis name to store the results

time The column in the column annotation table representing the labeling duration
Details

This is adapted code from https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling

Value

a new grandR object containing the pulseR analyses in a new analysis table

FitKineticsSnapshot Fits RNA kinetics from snapshot experiments

Description

Compute the posterior distributions of RNA synthesis and degradation from snapshot experiments
for each condition

FitKineticsSnapshot 57

Usage
FitKineticsSnapshot(
data,
name.prefix = "Kinetics",

reference.columns = NULL,
slot = DefaultSlot(data),
conditions = NULL,
time.labeling = Design$dur.4sU,
time.experiment = NULL,
sample.f@.in.ss = TRUE,

N = 10000,

N.max = N % 10,

CIl.size = 0.95,

seed = 1337,

dispersion = NULL,
sample.level = 2,
correct.labeling = FALSE,
verbose = FALSE

)
Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

reference.columns
areference matrix usually generated by FindReferences to define reference sam-
ples for each sample (see details), can be NULL if all conditions are at steady

state
slot the data slot to take fO and totals from
conditions character vector of all condition names to estimate kinetics for; can be NULL

(i.e. all conditions)

time.labeling the column in the column annotation table denoting the labeling duration or the
labeling duration itself
time.experiment

the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

sample.f@.in.ss
whether or not to sample fO under steady state conditions

N the sample size

N.max the maximal number of samples (necessary if old RNA > f0); if more are neces-
sary, a warning is generated

CI.size A number between 0 and 1 representing the size of the credible interval

seed Seed for the random number generator

58

FitKineticsSnapshot

dispersion overdispersion parameter for each gene; if NULL this is estimated from data

sample.level Define how the NTR is sampled from the hierarchical Bayesian model (must be
0,1, or 2; see details)

correct.labeling

Labeling times have to be unique; usually execution is aborted, if this is not the
case; if this is set to true, the median labeling time is assumed

verbose Vebose output

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample either
must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at
an earlier time point are known from separate samples, so called temporal reference samples. Thus,
if s and d are estimated for a set of samples x_1,...,x_k (that must be from the same time point t),
we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time
difference between t and t0.

The temporal reference samples are identified by the reference.columns matrix. This is a square ma-
trix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample
is a temporal reference of the columns sample. This time point is defined by time.experiment. If
time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the steady state samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sam-
pled from a beta distribution that approximates the mixture of betas from the replicate samples. If
sample.level = 1, only the first level from the hierarchical model is sampled (corresponding to the
uncertainty of estimating the biological variability). If sample.level = 2, the first and second levels
are estimated (corresponding to the full hierarchical model).

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates
are returned

Value

a new grandR object including new analysis tables (one per condition). The columns of the new
analysis table are

nan

s the posterior mean synthesis rate
"HL" the posterior mean RNA half-life
"s.cred.lower” the lower CI boundary of the synthesis rate

"s.cred.upper” the upper CI boundary of the synthesis rate
"HL.cred.lower"

the lower CI boundary of the half-life
"HL.cred.upper”

the upper CI boundary of the half-life

FormatCorrelation 59

FormatCorrelation Formatting function for correlations

Description

Returns a function that takes x and y and returns a formatted output to describe the correlation of x
andy

Usage

FormatCorrelation(
method = "pearson”,
n.format = NULL,
coeff.format = "%.2f",
p.format = "%.2g",
slope.format = NULL,
rmsd. format = NULL,
min.obs = 5

)

Arguments
method how to compute correlation coefficients (can be pearson, spearman or kendall)
n.format format string for the number of data points (see sprintf); can be NULL (don’t

output the number of data points)

coeff.format format string for the correlation coefficient (see sprintf); can be NULL (don’t
output the correlation coefficient)

p.format format string for the P value (see sprintf); can be NULL (don’t output the P
value)

slope.format format string for the slope (see sprintf); can be NULL (don’t output the slope)

rmsd. format format string for the root mean square deviation (see sprintf); can be NULL
(don’t output the rmsd)
min.obs minimum number of observations (no output outerwise)
Details

Use this for the correlation parameter of PlotScatter

The slope is computed via a principal component analysis and *not* by linear regression

Value

a function

60 Genelnfo

Examples

set.seed(42)

data <- data.frame(u=runif(500)) # generate some correlated data
data$x <- rnorm(500,mean=datas$u)

datas$y <- rnorm(500,mean=datas$u)

fun <- FormatCorrelation()
fun(data$x,datasy)

fun <- FormatCorrelation(method="spearman”,p.format="%.4g")
fun(data$x,datasy)

GeneInfo Get the gene annotation table or add additional columns to it

Description

The gene annotation table contains meta information for the rows of a grandR object. When loaded
from the GRAND-SLAM output, this this contains gene ids, gene symbols, the transcript length
and the type.

Usage

GeneInfo(data, column = NULL, value = NULL)

GeneInfo(data, column) <- value

Arguments
data A grandR object
column The name of the additional annotation column
value The additional annotation per gene

Details

New columns can be added either by data<-GeneInfo(data,name,values) or by GeneInfo(data,name)<-values.

Value

Either the gene annotation table or a new grandR object having an updated gene annotation table

See Also
Genes, Coldata, ReadGRAND

Genes 61

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

head(GeneInfo(sars))

GenelInfo(sars, "LengthCategory”)<-cut(GeneIlnfo(sars)$Length,c(@,1500,2500,Inf),
labels=c("Short”,"Medium”,"Long"))

table(GenelInfo(sars)$LengthCategory)

Genes Gene and sample (or cell) names

Description
Get the genes and sample (or cell) names for a grandR object, or add an additional gene annotation
column

Usage

Genes(data, genes = NULL, use.symbols = TRUE, regex = FALSE)

Columns(data, columns = NULL, reorder = FALSE)
Arguments

data A grandR object

genes which genes to use

use.symbols obtain the gene symbols instead of gene names

regex treat genes as a regex, and return all that match

columns which columns (i.e. samples or cells) to return (see details)

reorder if TRUE, do not enforce the current order of columns
Details

The genes are either the (often unreadable) gene ids (e.g. Ensembl ids), or the symbols.

Genes(data,use.symbols=FALSE) it the same as rownames(data), and Columns(data) is the
same as colnames(data)

If both column and value are specified for GeneInfo, a new column is added to the gene annotation
table

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

62 get.mode.slot

Value
Either the gene or column names of the grandR data object, or the columns of an analysis table in
the grandR object

See Also

Coldata, Genelnfo, Analyses

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

all(Genes(sars,use.symbols = FALSE)==rownames(sars))
all(Columns(sars)==colnames(sars))

get.mode.slot Internal functions to parse mode.slot strings

Description

Internal functions to parse mode.slot strings

Usage

get.mode.slot(data, mode.slot, allow.ntr = TRUE)

Arguments

data a grandR object

mode.slot a mode.slot

allow.ntr whether to allow for the value "ntr" (and throw an error in case)
Details

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is
either fotal, new or old

Value

a named list with elements mode and slot (or only slot in case of ntr,alpha or beta)

GetAnalysisTable 63

GetAnalysisTable Obtain a table of analysis results values

Description

This is the main function to access analysis results. For slot data, use GetTable (as a large matrix)
or GetData (as tidy table).

Usage

GetAnalysisTable(
data,
analyses = NULL,
regex = TRUE,
columns = NULL,
genes = Genes(data),
by.rows = FALSE,
gene.info = TRUE,
name.by = "Symbol”,
prefix.by.analysis = TRUE

)
Arguments

data A grandR object

analyses One or several regex to be matched against analysis names (Analyses); all anal-
ysis tables if NULL

regex Use regex for analyses (TRUE) or don’t (FALSE, i.e. must specify the exact
name)

columns Regular expressions to select columns from the analysis table (all have to match!);
all columns if NULL

genes Restrict the output table to the given genes

by.rows if TRUE, add rows if there are multiple analyses; otherwise, additional columns
are appended; TRUE also sets prefix.by.analysis to FALSE!

gene.info Should the table contain the Genelnfo values as well (at the beginning)?

name. by A column name of Coldata(data). This is used as the rownames of the output

table
prefix.by.analysis
Should the column names in the output prefixed by the analysis name?
Details

The names for the output table are <Analysis name>.<columns name>

64 GetContrasts

Value

A data frame containing the analysis results

See Also
GetTable,GetData,Genes

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))

sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))

head(GetAnalysisTable(sars,columns="LFC"))

GetContrasts Create a contrast matrix

Description

Each column of a contrast matrix represents a pairwise comparison of all samples or cells of a
grandR object (or a column annotation table). Elements being 1 are contrasted vs. elements being
-1 (and all O are irrelevant for this comparison).

Usage

GetContrasts(x, ...)

S3 method for class 'grandR'
GetContrasts(

X,

contrast = "Condition”,

no4sU = FALSE,

columns = NULL,

group = NULL,

name.format = NULL,

Default S3 method:
GetContrasts(
X,
contrast,
columns = NULL,
group = NULL,
name.format = NULL,

GetContrasts 65

Arguments
X A grandR object or a column annotation table
further arguments to be passed to or from other methods.
contrast A vector describing what should be contrasted
no4sU Use no4sU columns (TRUE) or not (FALSE)
columns logical vector of which columns (samples or cells) to use (or NULL: use all);
for grandR objects, see details
group Split the samples or cells according to this column of the column annotation
table (and adapt the of the output table)
name.format Format string for generating the column from the contrast vector (see details)
Details

To compare one specific factor level A against another level B in a particular column COL of the
column annotation table, specify contrast=c("COL","A","B")

To compare all levels against a specific level A in a particular column COL of the column annotation
table, specify contrast=c("COL","A")

To perform all pairwise comparisons of all levels from a particular column COL of the column
annotation table, specify contrast=c("COL")

If the column COL only has two levels, all three are equivalent.

In all cases, if groups is not NULL, the columns annotation table is first split and contrasts are
applied within all samples or cells with the same group factor level.

The format string specifies the column name in the generated contrast matrix (which is used as the
Analysis name when calling ApplyContrasts, LFC, PairwiseDESeq?2, etc.). The keywords $GRP,
3COL, $A and $B are substituted by the respective elements of the contrast vector or the group
this comparison refers to. By default, it is "$A vs $B" if group is NULL, and "$A vs $B.$GRP"
otherwise.

The method for grandR objects simply calls the general method

For grandR objects, columns can be given as a logical, integer or character vector representing a
selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition="x").

Value

A data frame representig a contrast matrix to be used in ApplyContrasts, LFC, PairwiseDESeq2

See Also

ApplyContrasts, LFC, PairwiseDESeq2

66 GetData

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,"Time" ,Design$Replicate))

GetContrasts(sars,contrast="Condition")

Compare all Mock vs. all SARS

GetContrasts(sars,contrast=c(”"Condition”,"SARS", "Mock"))

This direction of the comparison is more reasonable

GetContrasts(sars,contrast=c(”"Condition”, "SARS", "Mock"),group="Time")

Compare SARS vs Mock per time point

GetContrasts(sars,contrast=c("Time.original”,"no4sU"), group="Condition",no4sU=TRUE,
name.format="$A vs $B ($GRP)")

Compare each sample against the respective no4sU sample

See the differential-expression vignette for more examples!

GetData Obtain a tidy table of values for a gene or a small set of genes

Description

This is the main function to access slot data data from a particular gene (or a small set of genes) as
a tidy table. If data for all genes must be retrieved (as a large matrix), use the GetTable function.
For analysis results, use the GetAnalysisTable function.

Usage

GetData(
data,
mode.slot = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
by.rows = FALSE,
coldata = TRUE,
ntr.na = TRUE,
name.by = "Symbol",
count.as.integer = TRUE

)
Arguments
data A grandR object
mode.slot Which kind of data to access (see details)
columns A vector of columns (see details); all condition/cell names if NULL
genes Restrict the output table to the given genes (this typically is a single gene, or

very few genes)

GetData 67

by.rows if TRUE, add rows if there are multiple genes / mode.slots; otherwise, additional
columns are appended

coldata Should the table contain the Coldata values as well (at the beginning)?

ntr.na For columns representing a 4sU naive sample, should mode.slot ntr,new.count

and old.count be 0,0 and count (ntr.na=FALSE; can be any other slot than count)
or NA,NA and NA (ntr.na=TRUE)

name. by A column name of Coldata(data). This is used as the colnames of the output
table

count.as.integer
Convert table to integers if slot="count"?

Details

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

If only one mode.slot and one gene is given, the output table contains one column (and potentially
columns from Coldata) named Value. If one gene and multiple mode.slots are given, the columns
are named according to the mode.slots. If one mode.slot and multiple genes are given, the columns
are named according to the genes. If multiple genes and mode.slots are given, columns are named
gene.mode.slot.

If by.rows=TRUE, the table is molten such that each row contains only one value (for one of the
genes and for one of the mode.slots). If only one gene and one mode.slot is given, melting does not
have an effect.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A data frame containing the desired values

See Also
GetTable,GetAnalysisTable,DefaultSlot,Genes

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz"”, package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

GetData(sars,mode.slot="ntr",gene="MYC")

one gene, one mode.slot

GetData(sars,mode.slot=c("count”,"ntr"),gene="MYC",coldata = FALSE)

one gene, multiple mode.slots

GetData(sars,mode.slot=c("count”,"ntr"),gene=c("SRSF6","MYC"),by.rows=TRUE)

multiple genes, multiple mode.slots, by rows

68

GetMatrix

GetDiagnosticParameters

Describe parameters relevant to diagnostics

Description

Many of the diagnostics functions expect (optional or mandatory) parameters that are described by
this function

Usage

GetDiagnosticParameters(data)

Arguments

data

Value

a grandR object

a list with

orientation: Sense or Antisense, only relevant to mismatches for strand unspecific data

category: all available categories (Exonic/Intronic, genomes). Note that this might differ from
what is available from Genelnfo(data,"Category"), since Grand3 might not have estimated
NTRs for all categories!

label: which nucleoside analogs have been used
model: which model (binom or tbbinom) to inspect
estimator: which estimator (joint or separate NTRs were estimated for subreads)

GetMatrix Obtain a genes x values table as a large matrix

Description

This is the main function to access slot data for all genes as a (potentially sparse) matrix.

Usage

GetMatrix(
data,
mode.slot = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
count.as.integer = TRUE,
name.by = "Symbol”,
summarize = NULL

GetPairContrasts 69

Arguments
data A grandR object
mode.slot Which kind of data to access (see details)
columns which columns (i.e. samples or cells) to return (see details)
genes Restrict the output table to the given genes

count.as.integer
Round to integers?

name. by A column name of Coldata(data). This is used as the rownames of the output
table
summarize Should replicates by summarized? see details
Details

To refer to data slots, the mode.slot syntax can be used: It is either a data slot, or one of (new,old,total)
followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr.
This can be used e.g. to obtain the new counts.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

The summarization parameter can only be specified if columns is NULL. It is either a summariza-
tion matrix (GetSummarizeMatrix) or TRUE (in which case GetSummarizeMatrix(data) is called).
If there a NA values, they are imputed as the mean per group!

Value

A (potentially) sparse matrix containing the desired values

See Also

GetData,GetAnalysisTable,DefaultSlot,Genes,GetSummarizeMatrix

GetPairContrasts Create a contrast matrix for two given conditions

Description

Each column of a contrast matrix represents a pairwise comparison of all samples or cells of a
grandR object (or a column annotation table). Elements being 1 are contrasted vs. elements being
-1 (and all O are irrelevant for this comparison).

Usage

GetPairContrasts(d, name, A, B)

70 GetSignificantGenes

Arguments
d A grandR object or a column annotation table
name the name of the contrast
A definition of the condition of interest, see details
B definition of the reference condition , see details
Details

This creates a contrast A vs B (i.e. the fold change would be A/B)
Columns that belong to A or B can be given as a logical, integer or character vector representing a
selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition="x").

Value
A data frame with a single column representig a contrast matrix to be used in ApplyContrasts,
LFC, PairwiseDESeq2

See Also

ApplyContrasts, LFC, PairwiseDESeq2, GetContrasts

GetSignificantGenes Significant genes

Description

Return significant genes for this grandR object

Usage

GetSignificantGenes(
data,
analysis = NULL,
regex = TRUE,
criteria = NULL,
as.table = FALSE,
use.symbols = TRUE,
gene.info = TRUE

GetSummarizeMatrix 71

Arguments
data the grandR object
analysis the analysis to use, can be more than one and can be regexes (see details)
regex interpret analyses as regex?
criteria the criteria used to define what significant means; if NULL, Q<0.05 & abs(LFC)>=1
is used; can use the column names of the analysis table as variables, should be a
logical or numerical value per gene (see Details)
as.table return a table
use.symbols return them as symbols (gene ids otherwise)
gene.info add gene infos to the output table
Details

The analysis parameter (just like for GetAnalysisTable can be a regex (that will be matched against
all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than
one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. If criteria is a logical, it
obtains significant genes defined by cut-offs (e.g. on q value and LFC). If it is a numerical, all genes
are returned sorted (descendingly) by this value. The columns of the given analysis table(s) can be
used to build this expression.

Value

a vector of gene names (or symbols), or a table

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))

sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)

sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition”,"Mock")))

GetSignificantGenes(sars,criteria=LFC>1)

GetSummarizeMatrix Create a summarize matrix

Description

If this matrix is multiplied with a count table (e.g. obtained by GetTable), either the average
(average=TRUE) or the sum (average=FALSE) of all columns (samples or cells) belonging to the
same Condition is computed.

72 GetSummarizeMatrix
Usage
GetSummarizeMatrix(x, ...)

S3 method for class 'grandR'
GetSummarizeMatrix(x, no4sU = FALSE, columns = NULL, average = TRUE, ...)

Default S3 method:

GetSummarizeMatrix(x, subset = NULL, average = TRUE, ...)
Arguments
X A grandR object or a named vector (the names indicate the sample names, the

value the conditions to be summarized)

further arguments to be passed to or from other methods.

no4suU Use no4sU columns (TRUE) or not (FALSE)

columns which columns (i.e. samples or cells) to return (see details)

average matrix to compute the average (TRUE) or the sum (FALSE)

subset logical vector of which elements of the vector v to use (or NULL: use all)
Details

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition="x").

The method for grandR object simply calls the general method

Value

A matrix to be multiplied with a count table

See Also
GetTable

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c(”"Condition",Design$dur.4sU,Design$Replicate))

GetSummarizeMatrix(sars)
head(as.matrix(GetTable(sars)) %*% GetSummarizeMatrix(sars)) # average by matrix multiplication

head(GetTable(sars,summarize = TRUE)) # shortcut, does the same

See the data-matrices-and-analysis-results vignette for more examples!

GetTable 73

GetTable Obtain a genes x values table

Description

This is the main function to access slot data for all genes as a large matrix. If data from a particular
gene (or a small set of genes) must be retrieved, use the GetData function. For analysis results, use
the GetAnalysisTable function.

Usage

GetTable(
data,
type = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
ntr.na = TRUE,
gene.info = FALSE,
summarize = NULL,
prefix = NULL,
name.by = "Symbol”

)
Arguments

data A grandR object

type Either a mode.slot (see details) or a regex to be matched against analysis names.
Can also be a vector

columns A vector of columns (either condition/cell names if the type is a mode.slot, or
names in the output table from an analysis; use Columns(data,<analysis>) to
learn which columns are available); all condition/cell names if NULL

genes Restrict the output table to the given genes

ntr.na For columns representing a 4sU naive sample, should types ntr,new.count and
old.count be 0,0 and count (ntr.na=FALSE; can be any other slot than count) or
NA,NA and NA (ntr.na=TRUE)

gene.info Should the table contain the Genelnfo values as well (at the beginning)?

summarize Should replicates by summarized? see details

prefix Prepend each column in the output table (except for the gene.info columns) by
the given prefix

name. by A column name of Coldata(data). This is used as the rownames of the output

table

74 GetTable

Details

This is a convenience wrapper for GetData (values from data slots) and GetAnalysisTable (values
from analyses). Types can refer to any of the two (and can be mixed). If there are types from both
data and analyses, columns must be NULL. Otherwise columns must either be condition/cell names
(if type refers to one or several data slots), or regular expressions to match against the names in the
analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing
a selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition=="x").

To refer to data slots via type, the mode.slot syntax can be used: Each name is either a data slot,
or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is
multiplied by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

The summarization parameter can only be specified if columns is NULL. It is either a summariza-
tion matrix (GetSummarizeMatrix) or TRUE (in which case GetSummarizeMatrix(data) is called).
If there a NA values, they are imputed as the mean per group!

Value

A data frame containing the desired values

See Also

GetData,GetAnalysisTable,DefaultSlot,Genes,GetSummarizeMatrix

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))
sars <- Normalize(FilterGenes(sars))

head(GetTable(sars))

DefaultSlot values, i.e. size factor normalized read counts for all samples
head(GetTable(sars,summarize=TRUE))

DefaultSlot values averaged over the two conditions

head(GetTable(sars, type="new.count"”,columns=!no4sU))

Estimated counts for new RNA for all samples with 4sU

sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))
head(GetAnalysisTable(sars,columns="LFC"))
Estimated fold changes SARS vs Mock for each time point

grandR

75

grandR

Create a grandR object and retrieve basic information

Description

The grandR object contains

Usually, this constructor is not invoked directly (but by ReadGRAND or SimulateTimeCourse).

Usage

* metadata about the origin (file/url) of the GRAND-SLAM output
* the current state (e.g., what is the current default slot) of the grandR object
* a gene info table (i.e. metadata for the rows of the data matrices)

¢ a column annotation table (i.e. metadata for the columns of the data matrices)

* several data matrices for read counts, normalized expression values, NTRs, etc. (genes x

samples or genes x cells; stored in so-called slots)

* potentially several analysis output tables (for kinetic modeling, differential gene expression

testing)

grandR (

)

prefix = parent$prefix,
gene.info = parent$gene.info,
slots = parent$data,

coldata = parent$coldata,
metadata = parent$metadata,
analyses = NULL,

plots = NULL,

parent = NULL

Title(data)

IsSparse(data)

S3 method for class 'grandR'
dim(x)

is.grandR(x)

S3 method for class 'grandR'
dimnames(x)

S3 method for class 'grandR'
print(x, ...)

76

grandR

Metadata(x, ...)

S3 method for class 'grandR'
subset(x, columns, reorder = TRUE, ...)

S3 method for class 'grandR'
split(x, f = Design$Condition, drop = FALSE, ...)

NULL)

RenameColumns(data, map = NULL, fun
SwapColumns(data, s1, s2)

S3 method for class 'grandR'

merge(..., list

Arguments

prefix

gene.info
slots
coldata
metadata
analyses
plots

parent

data, x

columns
reorder
.F

drop

map

fun
s1, s2
list

by.columns

column.name

= NULL, by.columns = TRUE, column.name = Design$0Origin)

Can either be the prefix used to call GRAND-SLAM with, or the main output
file ($prefix.tsv.gz); if the RCurl package is installed, this can also be a URL

a data frame with metadata for all genes

A list of matrices representing the slots

a data frame with metadata for all samples (or cells)
a metadata list

the analyses list

the plots list

A parent object containing default values for all other parameters (i.e. all pa-
rameters not specified are obtained from this object)

a grandR object

further arguments to be passed to or from other methods.

which columns (i.e. samples or cells) to return (see details)

reorder all factors in coldata (if columns for subset define a different order)

The name of the annotation table according to which the object is split or the
new annotation table column name denoting the origin after merging

unused

named list or vector representing a lookup table (names are current column
names)

a function that maps a vector of names to a new vector of names
column names
a list of grandR objects

merge by columns (i.e. add additional columsn to the first) or not (i.e. add
additional genes to the first)

a new name for the Coldata table to annotate the merged objects

grandR 77

Details

The dimensions (nrow, ncol) of the grandR object are considered to be the dimensions of the data
tables, i.e. nrow(data) provides the number of genes and ncol (data) the number of samples (or
cells).

Currently, the object is implemented as a list of the above mentioned items. This implementation is
subject to change. Make sure to use accessor functions to obtain the information you want.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

Functions

Title Obtain a useful title for the project (from the prefix parameter)

dim Obtain the dimensions (genes x samples or genes x cells)

is Check whether it is a grandR object

dimnames Obtain the row and column names of this object (genes x samples or genes x cells)
print Print information on this grandR object

subset Create a new grandR object with a subset of the columns (use FilterGenes to subset on
genes)

split Split the grandR object into a list of multiple grandR objects (according to the levels of an
annotation table column)

RenameColumns Rename the column names according to a lookup table (map) or a function
(invoked on the current names)

SwapColumns Swap two columns (samples or cells); this is what you do if samples were misla-
beled!

Metadata Obtain global metadata

merge Merge several grandR objects into one

See Also
Slots, DefaultSlot, Genes, Genelnfo, Coldata, GetTable, GetData, Analyses, GetAnalysisTable

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

this is part of the corona data from Finkel et al.

dim(sars)

head(rownames(sars))

78 LFC

IsParallel Checks for parallel execution

Description

Checks for parallel execution

Usage
IsParallel()

Value

whether or not parallelism is activated

LFC Estimation of log?2 fold changes

Description

Estimate the log fold changes based on a contrast matrix, requires the LFC package.

Usage
LFC(

data,
name.prefix = mode,
contrasts,
slot = "count”,
LFC.fun = 1fc::PsilLFC,
mode = "total”,

normalization = NULL,
compute.M = TRUE,
genes = NULL,

verbose = FALSE,

)
Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast

matrix are appended; can be NULL (then only the contrast matrix names are
used)

LFC 79

contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

slot the slot of the grandR object to take the data from; for PsiLFC, this really should
be "count"!

LFC.fun function to compute log fold changes (default: PsiLFC, other viable option:
NormLFC)

mode compute LFCs for "total", "new", or "old" RNA

normalization normalize on "total", "new", or "old" (see details)

compute.M also compute the mean expression (in log10 space)
genes restrict analysis to these genes; NULL means all genes
verbose print status messages?

further arguments forwarded to LFC.fun

Details

Both PsiLFC and NormLFC) by default perform normalization by subtracting the median log2
fold change from all log2 fold changes. When computing LFCs of new RNA, it might be sensible
to normalize w.r.t. to total RNA, i.e. subtract the median log2 fold change of total RNA from
all the log2 fold change of new RNA. This can be accomplished by setting mode to "new", and
normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized
values, but specify a slot of unnormalized values (which are used to compute the size factors for
normalization!) Can also be a numeric vector of size factors with the same length as the data as
columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"LFC" the log2 fold change

See Also

PairwiseDESeq2,GetContrasts

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))
sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total"”,contrasts=GetContrasts(sars,contrast=c("Condition”,"Mock")))
sars<-LFC(sars,mode="new",normalization="total",
contrasts=GetContrasts(sars,contrast=c("Condition”, "Mock")))
head(GetAnalysisTable(sars))

80

LikelihoodRatioTest

LikelihoodRatioTest Compute a likelihood ratio test.

Description

The test is computed on any of total/old/new counts using DESeq2 based on two nested models
specified using formulas.

Usage
LikelihoodRatioTest(
data,
name = "LRT",
mode = "total”,
slot = "count”,
normalization = mode,
target = ~Condition,
background = ~1,
columns = NULL,
logFC = FALSE,
verbose = FALSE
)
Arguments
data A grandR object
name the user defined analysis name to store the results
mode either "total", "new" or "old"
slot which slot to use (should be a count slot, not normalized values)
normalization normalize on "total", "new", or "old" (see details)
target formula specifying the target model (you can use any column name from the
Coldata(data))
background formula specifying the background model (you can use any column name from
the Coldata(data))
columns logical vector of which columns (samples or cells) to use (or NULL: use all)
logFC compute and add the log2 fold change as well
verbose Print status updates
Details

This is a convenience wrapper around the likelihood ratio test implemented in DESeq?2.

DESeq?2 by default performs size factor normalization. When computing differential expression of
new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed
from total RNA instead of computed from new RNA. This can be accomplished by setting mode to
"new", and normalization to "total"!

ListGeneSets 81

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"M" the base mean
"s" the difference in deviance between the reduced model and the full model
"p the likelihood ratio test P value
"Q" same as P but Benjamini-Hochberg multiple testing corrected
"LFC" the log2 fold change for the target model (only with the logFC parameter set to
TRUE)
ListGeneSets List available gene sets
Description

Helper function to return a table with all available gene sets for AnalyzeGeneSets.

Usage

ListGeneSets()

Details

This is a convenience wrapper for msigdbr_collections.

Value

the gene set table; use the values in the category and subcategory columns for the corresponding
parameters of AnalyzeGeneSets

See Also

AnalyzeGeneSets

82 MakeColdata

MakeColdata Extract an annotation table from a formatted names vector

Description

If columns (i.e. sample or cell) follow a specific naming pattern, this can be used to conveniently
set up an annotation table.

Usage

MakeColdata(
names,
design,
semantics = DesignSemantics(),
rownames = TRUE,
keep.originals = TRUE

)
Arguments
names Formatted names vector (see details)
design Titles for the columns of the annotation table
semantics Additional semantics to apply to given annotations (see details)
rownames Add rownames to the annotation table

keep.originals To not discard the original values for all annotations where semantics were ap-
plied

Details

The names have to contain dots (.) to separate the fields for the column annotation table. E.g. the
name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector of
length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment”,"Time", "Replicate”). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0).

Semantics can be user-defined via the semantics list: For each name in the design vector matching to
a name in this list, the corresponding function in the list is run. Functions must accept 2 parameters,
the first is the original column in the annotation table, the second the original name. The function
must return a data.frame with the number of rows matching to the annotation table. In most cases
it is easier to manipulate the returned data frame instead of changing the semantics. However, the
build-in semantics provide a convenient way to reduce this kind of manipulation in most cases.

MAPIot 83

Value

A data frame representing the annotation table

See Also
ReadGRAND,DesignSemantics,Coldata

Examples

coldata <- MakeColdata(c("Mock.@h.A","Mock.@h.B","Mock.2h.A","Mock.2h.B"),
design=c("Cell"”,Design$dur.4sU,Design$Replicate))

MAPlot Make an MA plot

Description

Plot average expression vs. log2 fold changes

Usage

MAPlot (
data,
analysis = Analyses(data)[1],
p.cutoff = 0.05,
1fc.cutoff =1,
annotate.numbers = TRUE,

)
Arguments
data the grandR object that contains the data to be plotted
analysis the analysis to plot (default: first analysis)
p.cutoff p-value cutoff (default: 0.05)
1fc.cutoff log fold change cutoff (default: 1)

annotate.numbers
if TRUE, label the number of genes

further parameters passed to PlotScatter

Value

a ggplot object

84

Normalize

Normalize Normalization

Description

Normalizes data in a grandR object and puts the normalized data into a new slot

Usage
Normalize(
data,
genes = Genes(data),
name = "norm”,
slot = "count”,

set.to.default = TRUE,
size.factors = NULL,
return.sf = FALSE

)
NormalizeFPKM(
data,
genes = Genes(data),
name = "fpkm",
slot = "count”,

set.to.default = TRUE,
tlen = GeneInfo(data, "Length")

)
NormalizeRPM(
data,
genes = Genes(data),
name = "rpm”,
slot = "count”,

set.to.default = TRUE,
factor = 1e+06

)
NormalizeTPM(
data,
genes = Genes(data),
name = "tpm”,
slot = "count”,

set.to.default = TRUE,
tlen = Genelnfo(data, "Length")

Normalize 85

Arguments
data the grandR object
genes compute the normalization w.r.t. these genes (see details)
name the name of the new slot for the normalized data
slot the name of the slot for the data to normalize

set.to.default setthe new slot as the default slot

size.factors numeric vector; if not NULL, use these size factors instead of computing size

factors
return.sf return the size factors and not a grandR object
tlen the transcript lengths (for FPKM and TPM)
factor the rpm factor (default: 1 (m)illion)

Details

Normalize will perform DESeq2 normalization, i.e. it will use estimateSizeFactorsForMatrix to
estimate size factors, and divide each value by this. If genes are given, size factors will be computed
only w.r.t. these genes (but then all genes are normalized).

NormalizeFPKM will compute fragments per kilobase and million mapped reads. If genes are
given, the scaling factor will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeRPM will compute reads per million mapped reads. If genes are given, the scaling factor
will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeTPM will compute transcripts per million mapped reads. If genes are given, the scaling
factor will only be computed w.r.t. these genes (but then all genes are normalized).

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows.
Value

a new grandR object with a new data slot

See Also

NormalizeBaseline

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
DefaultSlot(sars)

86 NormalizeBaseline

NormalizeBaseline Normalization to a baseline

Description

Normalizes data in a grandR object to a baseline and puts the normalized data into a new slot

Usage

NormalizeBaseline(
data,
baseline = FindReferences(data, reference = Condition == levels(Condition)[1]),
name = "baseline”,
slot = DefaultSlot(data),
set.to.default = FALSE,
LFC.fun = 1fc::PsilLFC,

Arguments
data the grandR object
baseline matrix defining the corresponding baseline (row) for each column (sample or
cell; see details)
name the name of the new slot for the normalized data
slot the name of the slot for the data to normalize

set.to.default setthe new slot as the default slot
LFC. fun either NormLFC or PsiLFC from the Ifc package
forwarded to LFC.fun

Details

Baseline normalization computes the log2 fold change for a column (i.e. sample or cell) to a baseline
columns (or several baseline columns). This is by default done using the PsiLFC function from the
Ifc package, which, by default, also normalizes log2 fold changes by adding a constant such that
the median is zero.

Baselines are defined by a square logical matrix, defining for each sample or cell of the grandR
object, represented by the column of the matrix, which samples or cells are indeed the baseline
(represented by the rows). Such matrices can conveniently be obtained by FindReferences.

Value

a new grandR object with an additional slot

Pairwise 87

See Also

Normalize,FindReferences

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

blmat <- FindReferences(sars,reference = duration.4sU==0, group = "Cell"”)

the Mock.no4sU or SARS.no4sU sample are the baselines for each sample

sars <- NormalizeBaseline(sars,baseline=blmat)

head(GetTable(sars, type="baseline"))

Pairwise Log?2 fold changes and Wald tests for differential expression

Description

This function is a shortcut for first calling PairwiseDESeq2 and then LFC.

Usage
Pairwise(
data,
name.prefix = mode,
contrasts,
LFC.fun = 1fc::PsilLFC,
slot = "count”,
mode = "total”,
normalization = mode,
genes = NULL,
verbose = FALSE
)
Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)
contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts
LFC.fun function to compute log fold changes (default: PsiLFC, other viable option:
NormLFC)
slot the slot of the grandR object to take the data from; should contain counts!

mode compute LFCs for "total", "new", or "old" RNA

88 PairwiseDESeq2

normalization normalize on "total", "new", or "old" (see details)

genes restrict analysis to these genes; NULL means all genes
verbose print status messages?
Details

Both PsiLFC and NormLFC) by default perform normalization by subtracting the median log2
fold change from all log2 fold changes. When computing LFCs of new RNA, it might be sensible
to normalize w.r.t. to total RNA, i.e. subtract the median log2 fold change of total RNA from
all the log2 fold change of new RNA. This can be accomplished by setting mode to "new", and
normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized
values, but specify a slot of unnormalized values (which are used to compute the size factors for
normalization!) Can also be a numeric vector of size factors with the same length as the data as
columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"M" the base mean
"S" the log2FoldChange divided by IfcSE
"p" the Wald test P value
"Q" same as P but Benjamini-Hochberg multiple testing corrected
"LFC” the log2 fold change
See Also

PairwiseDESeq2,GetContrasts

PairwiseDESeq?2 Perform Wald tests for differential expression

Description

Apply DESeq?2 for comparisons defined in a contrast matrix, requires the DESeq2 package.

Usage

PairwiseDESeq2(
data,
name.prefix = mode,
contrasts,
separate = FALSE,
mode = "total”,
slot = "count”,

PairwiseDESeq?2 89

normalization = NULL,
logFC = FALSE,

genes = NULL,
verbose = FALSE
)
Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)
contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts
separate model overdispersion separately for all pairwise comparison (TRUE), or fit a
single model per gene, and extract contrasts (FALSE)
mode compute LFCs for "total", "new", or "old" RNA
slot which slot to use (should be a count slot, not normalized values)

normalization normalize on "total", "new", or "old" (see details)

logFC compute and add the log2 fold change as well
genes restrict analysis to these genes; NULL means all genes
verbose print status messages?

Details

DESeq?2 by default performs size factor normalization. When computing differential expression of
new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed
from total RNA instead of computed from new RNA. This can be accomplished by setting mode to
"new", and normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized
values, but specify a slot of unnormalized values (which are used to compute the size factors for
normalization!) Can also be a numeric vector of size factors with the same length as the data as
columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"M" the base mean

"SY the log2FoldChange divided by IfcSE

"p" the Wald test P value

"Q" same as P but Benjamini-Hochberg multiple testing corrected

"LFC” the log2 fold change (only with the logFC parameter set to TRUE)

90 PlotAnalyses

See Also

LFC,GetContrasts

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))

sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)

sars<-PairwiseDESeq2(sars,mode="total",
contrasts=GetContrasts(sars,contrast=c("Condition”,"Mock")))

sars<-PairwiseDESeq2(sars,mode="new",normalization="total",
contrasts=GetContrasts(sars,contrast=c(”"Condition”, "Mock")))

head(GetAnalysisTable(sars,column="Q"))

PlotAnalyses Convenience function to make the same type of plot for multple analy-
ses.

Description

Convenience function to make the same type of plot for multple analyses.

Usage

PlotAnalyses(data, plot.fun, analyses = Analyses(data), add = NULL, ...)
Arguments

data the grandR object that contains the data to be plotted

plot.fun the plottinf function to apply

analyses the analyses to plot (default: all)

add additional ggplot (e.g., geoms) objects to add

passed further to plot.fun

Value

ggplot objects

PlotConversionFreq 91

PlotConversionFreq Diagnostic plot for conversion frequencies

Description

This is the second diagnostic plot (estimated conversions) generated by GRAND3.

Usage

PlotConversionFreq(data, category, sample = NULL, max.columns = 120)

Arguments
data the grandR object
category show a specific category (see GetDiagnosticParameters); cannot be NULL
sample compare subreads for a specific sample; can be NULL, then compare all samples
per subread
max.columns if there are more columns (samples for bulk, cells for single cell) than this, show
boxplots instead of points
Details

Show the percentage of all conversion types for all samples. In contrast to mismatches (see PlotMis-
matchPositionForSample and PlotMismatchPositionForType), the correct strand is already inferred
for conversions, i.e. conversions refer to actual conversion events on RNA, whereas mismatches are
observed events in mapped reads.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotGeneGroupsBars Plot gene values as bars

Description

Plot old and new RNA of a gene in a row.

92 PlotGeneGroupsBars

Usage

PlotGeneGroupsBars(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,
show.CI = FALSE,

xlab = NULL,
transform = NULL
)
Arguments
data the grandR object to get the data to be plotted from
gene the gene to plot
slot the slot of the grandR object to get the data from
columns which columns (i.e. samples or cells) to show (see details)
show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)
x1lab The names to show at the x axis;
transform function that is called on the data frame directly before plotting (can be NULL)
Details

xlab can be given as a character vector or an expression that evaluates into a character vector. The
expression is evaluated in an environment having the Coldata, i.e. you can use names of Coldata
as variables to conveniently it.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotal VsNtr,PlotGeneOldVsNew,PlotGeneGroupsBars

PlotGeneGroupsPoints 93

PlotGeneGroupsPoints Plot gene groups as points

Description

Plot either old, new or total RNA of a gene in a row, per condition.

Usage
PlotGeneGroupsPoints(
data,
gene,
group = "Condition”,

mode.slot = DefaultSlot(data),
columns = NULL,

log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2,
transform = NULL
)
Arguments
data the grandR object to get the data to be plotted from
gene the gene to plot
group how to group the genes (default: Condition)
mode.slot the mode.slot of the grandR object to get the data from
columns which columns (i.e. samples or cells) to show (see details)
log show the y axis in log scale
show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)
aest parameter to set the visual attributes of the plot
size the point size used for plotting; overridden if size is defined via aest
transform function that is called on the data frame directly before plotting (can be NULL)
Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

94 PlotGeneOldVsNew

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotal VsNtr,PlotGeneOldVsNew,PlotGeneGroupsBars

PlotGeneOldVsNew Gene plot comparing old vs new RNA

Description

Plot the old vs new RNA values of a gene

Usage

PlotGeneOldVsNew(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,

log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2
)
Arguments
data the grandR object to get the data to be plotted from
gene the gene to plot
slot the slot of the grandR object to get the data from
columns which columns (i.e. samples or cells) to show (see details)
log show both axes in log scale
show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)
aest parameter to set the visual attributes of the plot

size the point size used for plotting; overridden if size is defined via aest

PlotGeneProgressiveTimecourse 95

Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotal VsNtr,PlotGeneGroupsPoints,PlotGeneGroupsBars

PlotGeneProgressiveTimecourse
Plot progressive labeling timecourses

Description

Plot the abundance of new and old RNA and the fitted model over time for a single gene.

Usage
PlotGeneProgressiveTimecourse(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
type = c¢("nlls”, "ntr”, "Im"),

exact.tics = TRUE,
show.CI = FALSE,
return.tables = FALSE,
rescale = TRUE,

96 PlotGeneSnapshotTimecourse

Arguments
data a grandR object
gene the gene to be plotted
slot the data slot of the observed abundances
time the labeling duration column in the column annotation table
type how to fit the model (see FitKinetics)
exact.tics use axis labels directly corresponding to the available labeling durations?
show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

return.tables also return the tables used for plotting
rescale for type=ntr or type=chase, rescale all samples to the same total value?
given to the fitting procedures

Details

For each Condition there will be one panel containing the values and the corresponding model fit.

Value

either a ggplot object, or a list containing all tables used for plotting and the ggplot object.

See Also

FitKineticsGeneNtr, FitKineticsGeneLeastSquares, FitKineticsGeneLLogSpaceLinear

PlotGeneSnapshotTimecourse
Gene plot for snapshot timecourse data

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

PlotGeneSnapshotTimecourse(
data,
gene,
time = Design$dur.4sU,
mode.slot = DefaultSlot(data),
columns = NULL,
average.lines = TRUE,
exact.tics = TRUE,

log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2

PlotGeneSnapshotTimecourse 97

average.lines

exact.tics
log
show.CI
aest

size

Details

Arguments
data the grandR object to get the data to be plotted from
gene the gene to plot
time the times to show on the x axis (see details)
mode.slot the mode.slot of the grandR object to get the data from
columns which columns (i.e. samples or cells) to show (see details)

add average lines?

use axis labels directly corresponding to the available temporal values?
show the y axis in log scale

show confidence intervals; one of TRUE/FALSE (default: FALSE)
parameter to set the visual attributes of the plot

the point size used for plotting; overridden if size is defined via aest

The x axis of this plot will show a temporal dimension. The time parameter defines a name in the
Coldata table containing the temporal values for each sample.

The value of the aest parameter must be an Aesthetic mapping as generated by aes.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.

you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneOldVsNew,PlotGeneGroupsPoints,PlotGeneGroupsBars

98 PlotGeneTotal VsNtr

PlotGeneTotalVsNtr Gene plot comparing total RNA vs the NTR

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

PlotGeneTotalVsNtr(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,

log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2
)
Arguments
data the grandR object to get the data to be plotted from
gene the gene to plot
slot the slot of the grandR object to get the data from
columns which columns (i.e. samples or cells) to show (see details)
log show the x axis (total RNA) in log scale
show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)
aest parameter to set the visual attributes of the plot
size the point size used for plotting; overridden if size is defined via aest
Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

PlotHeatmap

See Also

99

GetData, PlotGeneOldVsNew,PlotGeneGroupsPoints,PlotGeneGroupsBars

PlotHeatmap

Create heatmaps from grandR objects

Description

Convenience method to compare among more two variables (slot data or analyses results).

Usage

PlotHeatmap(
data,

type = DefaultSlot(data),
columns = NULL,

genes = NULL,

summarize = NULL,
transform = "7",

cluster.genes

= TRUE,

cluster.columns = FALSE,

label.genes =
xlab = NULL,

breaks = NULL
colors = NULL
title = NULL,
return.matrix
na.to = NA,

Arguments
data
type

columns

genes

summarize

transform

NULL,

’

’

= FALSE,

the grandR object that contains the data to plot

Either a mode.slot (see details) or a regex to be matched against analysis names.
Can also be a vector

a vector of columns (either condition/cell names if the type is a mode.slot, or
names in the output table from an analysis; use Columns(data,<analysis>) to
learn which columns are available); all condition/cell names if NULL

the genes to be included in the plot (default: all genes)

Should replicates by summarized? Can only be specified if columns is NULL;
either a summarization matrix (GetSummarizeMatrix) or TRUE (in which case
GetSummarizeMatrix(data) is called)

apply a transformation to the selected data; can be a function, or a character (see
details)

100 PlotHeatmap

cluster.genes should genes be clustered?
cluster.columns
should samples (or cells) be clustered?

label.genes should genes be labeled?

xlab The names to show at the x axis (only works if type is a single slot)
breaks vector of color breaks; can be NULL (see details)

colors an RColorBrewer palette name; can be NULL (see details)

title the title for the plot; can be NULL

return.matrix if TRUE, return a list containing the data matrix and the heatmap instead of the
heatmap alone

na.to convert NA values in the matrix to this value immediately before computing the
heatmap

additional parameters forwarded to Heatmap

Details
This is just a convenience function which

1. Calls GetTable with the parameter type,columns, summarize,genes
2. Transforms the returned table using the transform parameter
3. Determines reasonable colors using breaks and colors

4. and then calls ComplexHeatmap::Heatmap

type and columns can refer to values from data slots values from analyses (and can be mixed).
If there are types from both data and analyses, columns must be NULL. Otherwise columns must
either be condition/cell names (if type refers to one or several data slots), or regular expressions to
match against the names in the analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing
a selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition=="x").

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

The transform parameter either is a function that transforms a matrix (which can conveniently be
done using the Transform. XXX functions described next), or a character (which must be the XXX
to find such a function). Available data transformations are

¢ transform=Transform.Z() or transform="Z": compute z scores for each row (see Transform.Z)

o transform=Transform.VST() or transform="VST": do a variance stabilizing transformation
(see Transform.VST)

¢ transform=Transform.logFC() or transform="logFC": compute log2 fold changes to one or
several reference columns; which must be defined via parameters (see Transform.logFC)

e transform=Transform.no() or transform="no": do not transform (see Transform.no)

PlotMismatchPositionForSample 101

Reasonable coloring is chosen depending on the value distribution in the matrix. If the values are
zero centered (e.g. z scores or most often log fold changes), then by default the 50 quantile with
the larger value. The breaks are -q90,q50,0,q50,q90, and, by default, the red to blue "RdBu" palette
from RColorBrewer is taken. If the values are not zero centered, the 5

xlab can be given as a character vector or an expression that evaluates into a character vector. The
expression is evaluated in an environment having the Coldata, i.e. you can use names of Coldata
as variables.

Value

a ComplexHeatmap object

See Also

GetTable,Heatmap

PlotMismatchPositionForSample
Diagnostic plot for mismatch position for columns (by sample)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

PlotMismatchPositionForSample(
data,
sample,
orientation = NULL,
category = NULL,
max.pos = 2500

)
Arguments
data a grandR object
sample a sample name
orientation restrict to either Sense or Antisense; can be NULL
category restrict to a specific category (see GetDiagnosticParameters); can be NULL

max.pos remove everything behind this position

102 PlotMismatchPositionForType

Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the
percentage of all mismatch types. The panel in column T and row C shows T-to-C mismatches.
Positions outside of shaded areas are clipped. Uncorrected and Retained means before and after
correcting multiply sequenced bases. Sense/Antisense means reads (first read for paired end) that
are (based on the annotation) oriented in sense or antisense direction to a gene (i.e. this is only
relevant for sequencing protocols that do not preserve strand information).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotMismatchPositionForType
Diagnostic plot for mismatch position for columns (by mismatch type)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

PlotMismatchPositionForType(
data,
genomic,
read,
orientation = NULL,
category = NULL,
max.pos = 2500

)
Arguments
data a grandR object
genomic the nucleotide as it occurs in the genome
read the nucleotide as it occurs in the read
orientation restrict to either Sense or Antisense; can be NULL
category restrict to a specific category (see GetDiagnosticParameters); can be NULL
max.pos remove everything behind this position
Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the
percentage of a specific mismatch type for all samples. Positions outside of shaded areas are
clipped. Uncorrected and Retained means before and after correcting multiply sequenced bases.
Sense/Antisense means reads (first read for paired end) that are (based on the annotation) oriented
in sense or antisense direction to a gene (i.e. this is only relevant for sequencing protocols that do
not preserve strand information).

PlotModelCompareConv 103

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareConv Diagnostic plot for estimated models (global conversion rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareConv(data, label = "4sU"”, estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
Details

Compares the estimated conversion rate (i.e., the probability for a conversion on a new RNA
molecule) for the binom and tbbinom models (mean conversion rate).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErr Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareErr(data, label = "4sU”, estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

104 PlotModelCompareErrPrior

Details
Compares the estimated error rate (i.e., the probability for a conversion on an old RNA molecule)
for the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErrPrior
Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage
PlotModelCompareErrPrior(
data,
label = "4sU",
estimator = "Separate”,
model = "Binom"
)
Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
model which model to consider (see GetDiagnosticParameters); cannot be NULL
Details

Compares the prior error rate (estimated from no4sU samples or from all other mismatch types)
against the final error rate estimate.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareLLL 105

PlotModelComparelL Diagnostic plot for estimated models (log likelihoods)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelComparelLL(data, label = "4sU"”, estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the difference in log likelihoods between the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareNtr Diagnostic plot for estimated models (global NTR)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareNtr(data, label = "4sU”, estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
Details

Compares the global NTR (i.e. for all reads used for estimation of global parameters, what is the
percentage of new RNA) for the binom and tbbinom models.

106 PlotModelErr

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelConv Diagnostic plot for estimated models (global conversion rate)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelConv(data, label = "4sU”, estimator = "Separate”, model = "Binom")

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
model which model to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the estimated conversion rate (i.e., the probability for a conversion on a new RNA molecule)
for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelErr Diagnostic plot for estimated models (global error rate)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelErr(data, label = "4sU", estimator = "Separate”, model = "Binom")

PlotModelLabelTimeCourse 107

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
model which model to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the estimated error rate (i.e., the probability for a conversion on an old RNA molecule) for
each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelLabelTimeCourse
Diagnostic plot for estimated models (4sU increase)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModellLabelTimeCourse(data, label = "4sU", estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the estimated time evolution of 4sU increase in the tbbinom model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

108 PlotModelShape

PlotModelNtr Diagnostic plot for estimated models (global NTR)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelNtr(data, label = "4sU", estimator = "Separate”, model = "Binom")

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
model which model to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the estimated global NTR (i.e. for all reads used for estimation of global paramters, what is
the percentage of new RNA) for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelShape Diagnostic plot for estimated models (global shape parameter)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelShape(data, label = "4sU”, estimator = "Separate”)

Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

PlotPCA 109

Details
Shows the estimated shape parameter (describing the increase of 4sU over time) in the tbbinom
model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotPCA Make a PCA plot

Description

Make a PCA plot

Usage

PlotPCA(
data,
mode.slot = DefaultSlot(data),
ntop = 500,
aest = NULL,
x =1,
y = 2,
columns = NULL,
do.vst = TRUE

)

Arguments
data the grandR object that contains the data to plot
mode.slot the mode and slot of data to plot; slot in the grandr object (eg "count")
ntop how many genes to use
aest parameter to set the visual attributes
X number of principal component to show on the x axis (numeric)
y number of principal component to show on the y axis (numeric)
columns which columns (i.e. samples or cells) to perform PCA on (see details)
do.vst perform a variance stabilizing transformation for count data?

Details

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

110 PlotProfileLikelihood

Value

a PCA plot

PlotProfilelLikelihood Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fifth kind (profile likelihoods) of diagnostic plots

Usage
PlotProfilelLikelihood(
data,
label = "4sU",

estimator = NULL,
sample = NULL,
subread = NULL

)
Arguments
data a grandR object
label which label to consider (see GetDiagnosticParameters); cannot be NULL
estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL
sample which sample to consider (see GetDiagnosticParameters); cannot be NULL
subread which subread to consider (see GetDiagnosticParameters); cannot be NULL
Details

Shows the profile likelihoods for all parameters of the tbbinom model.

Value

a list with a ggplot object, a description, and the desired size for the plot

Plots 111

Plots Stored plot functions

Description

Get plot names and add or remove plots

Usage
Plots(data)
AddGenePlot(data, name, FUN)
AddGlobalPlot(data, name, FUN, floating = FALSE)
PlotGene(data, name, gene)
PlotGlobal(data, name)

DropPlots(data, pattern = NULL)

Arguments
data A grandR object
name The user-defined plot name
FUN The plotting function to add
floating whether or not the plot should be shown as a floating window
gene The gene to plot
pattern A regular expression that is matched to plot names
Details

FUN has to be a function with a single parameter for global plots (i.e., the grandR object) or two
parameters for gene plots (i.e., the grandR object and the gene name). Usually, it is either the name
of a plotting function, such as PlotGeneOldVsNew, or, if it is necessary to parametrize it, a call to
Defer (which takes care of caching plots without storing an additional copy of the grandR object).

For floating window plots, if names are given in the format <title>.<name>, a plot is created for
each <title> with several subplots.

Value

Either the plot names or a grandR data with added/removed plots

112

Functions

* Plots(): Obtain the plot names

AddGenePlot(): Add a gene plot to the grandR object
AddGlobalPlot(): Add a global plot to the grandR object

* PlotGene(): Create a gene plot

PlotGlobal(): Create a global plot
* DropPlots(): Remove plots from the grandR object

PlotScatter

PlotScatter

Make a scatter plot

Description

Convenience method to compare two variables (slot data or analyses results).

Usage

PlotScatter(

data,
x = NULL,
y = NULL,

analysis = NULL,
mode.slot = NULL,

xcol = NULL,
ycol = NULL,
xlab = NULL,
ylab = NULL,
log = FALSE,
log.x = log,
log.y = log,
axis = TRUE,

axis.x = axis,
axis.y = axis,

remove.outlier = 1.5,

show.outlier =
lim = NULL,
xlim = lim,
ylim = lim,
size = 0.3,
cross = NULL,
diag = NULL,
filter = NULL,
genes = NULL,

highlight = NULL,

TRUE,

highlight.label = NULL,

PlotScatter 113

label = NULL,
label.repel = 1,
facet = NULL,
color = NULL,

colorpalette = NULL,
colorbreaks = NULL,
color.label = NULL,
na.color = "grey50",
density.margin = "n",
density.n = 100,
rasterize = NULL,
correlation = NULL,
correlation.x = -Inf,
correlation.y = Inf,

correlation.hjust = 0.5,
correlation.vjust = 0.5,
layers.below = NULL
)
Arguments
data the grandR object (can also be a plain data frame)
X an expression to compute the x value or a character corresponding to a sample
(or cell) name or a fully qualified analysis result name (see details)
y an expression to compute the y value or a character corresponding to a sample
(or cell) name or a fully qualified analysis result name (see details)
analysis the name of an analysis table (can be NULL; see details)
mode.slot the mode.slot (only relevant if data is a dense grandR object and analysis=NULL)
xcol a character corresponding to a sample (or cell) name or a fully qualified analysis
result name (see details)
ycol a character corresponding to a sample (or cell) name or a fully qualified analysis
result name (see details)
xlab the label for x (can be NULL, then the x parameter is used)
ylab the label for y (can be NULL, then the y parameter is used)
log if TRUE, use log scales for x and y axis
log.x if TRUE, use log scale for the x axis
log.y if TRUE, use log scale for the y axis
axis if FALSE, don’t show x and y axes
axis.x if FALSE, don’t show the x axis
axis.y if FALSE, don’t show the y axis

remove.outlier configure how outliers are selected (is the coef parameter to boxplot.stats); can
be FALSE, in which case no points are considered outliers (see details)

show.outlier if TRUE, show outlier as gray points at the border of the plotting plane

114
lim
x1lim
ylim
size
cross
diag
filter

genes

highlight

highlight.label

label

label.repel

facet
color
colorpalette

colorbreaks

color.label

na.color

density.margin

density.n
rasterize
correlation
correlation.

correlation.

X

y

PlotScatter

define the both x and y axis limits (vector of length 2 defining the lower and
upper bound, respectively)

define the x axis limits (vector of length 2 defining the lower and upper bound,
respectively)

define the y axis limits (vector of length 2 defining the lower and upper bound,
respectively)

the point size to use
add horizontal and vertical lines through the origin?
if TRUE, add main diagonal; if numeric vector, add these diagonals

restrict to these rows; is evaluated for the data frame, and should result in a
logical vector

restrict to these genes; can be either numeric indices, gene names, gene symbols
or a logical vector

highlight these genes; can be either numeric indices, gene names, gene symbols,
a logical vector or a list thereof (see details)

labels for the highlighted genes (see details)

label these genes; can be either numeric indices, gene names, gene symbols or a
logical vector (see details)

force to repel labels from points and each other (increase if labels overlap)

an expression (evaluated in the same environment as x and y); for each unique
value a panel (facet) is created; can be NULL

either NULL (use point density colors), or a name of the Genelnfo table (use
scale_color_xxx to define colors), or a color for all points

either NULL (use default colors), or a palette name from color brewer or viridis

either NULL (use default algorithm of using quantiles of the values), or "min-
max" for 5 breaks in between the minimum and maximum of the values, or the
actual color breaks to distribute the colors from the palette

the label for the color legend

the color for NA values

for density colors, one of 'n’,’x” or ’y’; should the density be computed along
both axes ('n’), or along ’x’ or 'y’ axis only

how many bins to use for density calculation (see kde2d)

use ggrastr to rasterize points? (can be NULL, see details)

a function to format correlation statistics to be annotated (see details)

x coordinate to put the correlation annotation in the plot (see details)

y coordinate to put the correlation annotation in the plot (see details)

correlation.hjust

x adjustment to put the correlation annotation in the plot (see details)

correlation.vjust

layers.below

y adjustment to put the correlation annotation in the plot (see details)

list of ggplot geoms to add before adding the layer containing the points

PlotSimulation 115

Details

Both the x and y parameter are either expressions or names. Names are either sample (or cell, in case
of single cell experiments) names or fully qualified analysis results (analysis name followed by a dot
and the analysis result table column). If the analysis parameter is given, the analysis name must be
omitted from x and y. These names can be used within expressions using non-standard evaluation.
Defining by names only works with character literals like "kinetics.Synthesis", but if you give an
expression (e.g. a variable name that contains a character), the situation is more complicated, since
PlotScatter will try to evaluate this for defining the values, not the name of the column. If the
expression evaluates into a single character string that is equal to a name (see above!), PlotScatter
knows what to do. For more complicated situations that cannot be resolved by this, you can use the
xcol and ycol parameters instead of the x and y parameters!

By default the limits of x and y axis are chosen after removing outliers (using the same algorithm
used for boxplot). Thus, larger numbers filter less stringently. remove.outlier can also be set to
FALSE (no outlier filtering). If xlim or ylim are set, this overrides outlier filtering. Points outside
of the limits (i.e. outliers or points outside of xlim or ylim) are set to infinity (such that they are
shown at the border of the plot in gray)

By default, all genes are shown. This can be restricted using the genes parameter (see Tolndex). It
is also possible to highlight a subset of the genes using highlight. This parameter either describes
a subset of the genes (either numeric indices, gene names, gene symbols or a logical vector), in
which case these genes are plotted in red and with larger points size, or it can be a list of such
vectors. The names of this list must be valid colors. Genes can also be labeled (make sure that this
is really only a small subset of the genes).

When rendering to vector based devices (such as svg or pds), a genome-wide scatterplot often is
painfully big (and rendering therefore slow). The rasterize parameter can be used to automati-
cally rasterize the points only (via the ggrastr package). If this parameter is NULL, ggrastr is used
if more than 1000 points are plotted!

Often scatter plots show that x and y coordinates are correlated. Correlations can be annotated using

the FormatCorrelation function. Most often you will use PlotScatter(data, x,y,correlation=FormatCorrelation()).
To use a different correlation measure, other formats for correlation coefficient and P values or omit

one of these statistics, parametrize FormatCorrelation. Use correlation.x and correlation.y to

place the annotation in the plot, and correlation.hjust/correlation.vjust to align the annotation at the

given x,y coordinates. Infinite values for correlation.x/correlation.y will put the annotation at the

border of the plot.

Value

a ggplot object with the data frame used as the df attribute

PlotSimulation Plot simulated data

Description

The input data is usually created by SimulateKinetics

116 PlotTypeDistribution

Usage

PlotSimulation(
sim.df,
ntr = TRUE,
old = TRUE,
new = TRUE,
total = TRUE,
line.size =1

Arguments

sim.df the input data frame
ntr show the ntr?

old show old RNA?
new show new RNA?
total show total RNA?

line.size which line size to use

Value

a ggplot object

See Also

SimulateKinetics for creating the input data frame

Examples

PlotSimulation(SimulateKinetics(hl=2))

PlotTypeDistribution Plot the distribution of gene types

Description

Plot the distribution of gene types

Usage

PlotTypeDistribution(data, mode.slot = DefaultSlot(data), relative = FALSE)

Arguments
data the grandR object to get the data to be plotted from
mode.slot which mode and slot to use

relative show percentage values?

PoolColumns 117

Value

a ggplot object

PoolColumns Pool reads across columns

Description

Pool read counts, ntrs, and alpha/beta values across columns defined by a pooling matrix

Usage

PoolColumns(

data,

pooling = GetSummarizeMatrix(data, average = FALSE, no4sU = TRUE)
)

Arguments

data grandR object

pooling a pooling matrix (see details)
Details

The pooling matrix must have as many rows as there are columns (i.e., samples or cells) in data, and
as many columns as you want to have columns in the resulting object. The matrix should consist of
0 and 1, where 1 indicates a column of the original object that should go into a column of the new
object. In essence, to obtain the new count matrix, the old count matrix is matrix-multiplied with
the pooling matrix.

The new ntr matrix is computed by componentwise division of the new count and total count matri-
ces derived as just described. alpha and beta are computed using matrix multiplication, i.e. summing
up all alpha and beta values of all the columns belonging to a pool.

Value

a new grandR object

118 ReadCounts

psapply Parallel (s/l)apply

Description

Depending on whether SetParallel has been called, execute in parallel or not.

Usage
psapply(..., seed = NULL, enforce = NA)
plapply(..., seed = NULL, enforce = NA)
Arguments
forwarded to lapply or parallel::mclapply
seed Seed for the random number generator
enforce if TRUE, do it parallelized no matter what IsParallel() says, if FALSE do it non-
parallelized no matter what IsParallel() says
Details

If the code uses random number specify the seed to make it deterministic

Value

a vector (psapply) or list (plapply)

ReadCounts Read a count table

Description

grandR can also be used to analyze standard RNA-seq data, and this function is here to read such
data.

Usage

ReadCounts(
file,
design = c(Design$Condition, Design$Replicate),
classify.genes = ClassifyGenes(),
rename.sample = NULL,
filter.table = NULL,
num.samples = NULL,
verbose = FALSE,
sep = "\t"

ReadCounts 119

Arguments
file a file containing a count matrix
design Either a design vector (see details), or a data.frame providing metadata for all

columns (samples/cells), or a function that is called with the condition name
vector and is supposed to return this data.frame.

classify.genes A function that is used to add the fype column to the gene annotation table,
always a call to ClassifyGenes

rename.sample function that is applied to each sample name before parsing (or NULL)

filter.table function that is applied to the table directly after read it (or NULL)

num. samples number of sample columns containing read counts (can be NULL, see details)
verbose Print status updates
sep The column separator used in the file

Details

The table is assumed to have read counts in the last n columns, which must be named according
to sample names. If num.samples is NULL this n is automatically recognized as the number of
numeric columns (so make sure to either specify num.samples, or that the column immediately
prior to the first sample column is *not* numeric).

If these columns are named systematically in a particular way, the design vector provides a powerful
and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector
of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment”,"Time", "Replicate”). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Sometimes the table contains more than you want to read. In this case, use the filter.table parameter
to preprocess it. This should be a function that receives a data.frame, and returns a data.frame.

If there are no columns named "Gene" or "Symbol", the first column is used!

Value

a grandR object

120 ReadFeatureCounts

ReadFeatureCounts Read featureCounts

Description

grandR can also be used to analyze standard RNA-seq data, and this function is here to read such
data.

Usage

ReadFeatureCounts(
file,
design = c(Design$Condition, Design$Replicate),
classify.genes = ClassifyGenes(),
rename.sample = NULL,
filter.table = NULL,
num.samples = NULL,
verbose = FALSE,

sep = "\t"
)
Arguments
file a file containing featureCounts
design Either a design vector (see details), or a data.frame providing metadata for all

columns (samples/cells), or a function that is called with the condition name
vector and is supposed to return this data.frame.

classify.genes A function that is used to add the fype column to the gene annotation table,
always a call to ClassifyGenes

rename.sample function that is applied to each sample name before parsing (or NULL)
filter.table function that is applied to the table directly after read it (or NULL)

num.samples number of sample columns containing read counts (can be NULL, see details)
verbose Print status updates
sep The column separator used in the file

Details

The table is assumed to have read counts in the last n columns, which must be named according
to sample names. If num.samples is NULL this n is automatically recognized as the number of
columns containing .bam (so make sure to either specify num.samples, or that the count columns
are called after the bam files).

If these columns are named systematically in a particular way, the design vector provides a powerful
and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector

ReadGRAND 121

of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment”, "Time"”, "Replicate”). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Sometimes the table contains more than you want to read. In this case, use the filter.table parameter
to preprocess it. This should be a function that receives a data.frame, and returns a data.frame.

If there are no columns named "Geneid", "Gene" or "Symbol", the first column is used!

Value

a grandR object

ReadGRAND Read the output of GRAND-SLAM 2.0 into a grandR object.

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq, TimeLapse-
seq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-
SLAM is a software package that employs a binomial mixture modeling approach to obtain precise
estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly
reads the output of GRAND-SLAM 2.0 into a grandR object.

Usage

ReadGRAND (
prefix,
design = c(Design$Condition, Design$Replicate),
classify.genes = ClassifyGenes(),
read.percent.conv = FALSE,
read.min2 = FALSE,
rename.sample = NULL,
verbose = FALSE

122 ReadGRAND

Arguments
prefix Can either be the prefix used to call GRAND-SLAM with, or the main output
file ($prefix.tsv.gz); if the RCurl package is installed, this can also be a URL
design Either a design vector (see details), or a data.frame providing metadata for all

columns (samples/cells), or a function that is called with the condition name
vector and is supposed to return this data.frame.

classify.genes A function that is used to add the fype column to the gene annotation table,
always a call to ClassifyGenes

read.percent.conv
Should the percentage of conversions also be read?

read.min2 Should the read count with at least 2 mismatches also be read?
rename.sample function that is applied to each sample name before parsing (or NULL)

verbose Print status updates

Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides
a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector
of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment”,"Time", "Replicate”). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

ReadGRAND3,ClassifyGenes,MakeColdata,DesignSemantics

ReadGRAND3 123

Examples

sars <- ReadGRAND("https://zenodo.org/record/5834034/files/sars.tsv.gz",
design=c("Cell"”,Design$dur.4sU,Design$Replicate), verbose=TRUE)

ReadGRAND3 Read the output of GRAND-SLAM 3.0 into a grandR object.

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq, TimeLapse-
seq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-
SLAM is a software package that employs a binomial mixture modeling approach to obtain precise
estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly
reads the output of GRAND-SLAM 3.0 into a grandR object.

Usage

ReadGRAND3(
prefix,
pseudobulk.name = NULL,
targets.name = "targets”,
design = NULL,
label = "4sU",
estimator = "Binom",
classify.genes = ClassifyGenes(),
read.posterior = NULL,
rename.sample = NULL,
verbose = FALSE

Arguments

prefix the prefix used to call GRAND-SLAM
pseudobulk.name
the pseudobulkName used to call GRAND-SLAM

targets.name the targetsName used to call GRAND-SLAM

design Either a design vector (see details), or a data.frame providing metadata for all
columns (samples/cells), or a function that is called with the condition name vec-
tor and is supposed to return this data.frame. if NULL, a library,sample,barcode
design is used for sparse data, and a condition,replicate design for dense data

label which nucleoside analog
estimator which estimator to use (one of Binom,TbBinom,TbBinomShape)

classify.genes A function that is used to add the fype column to the gene annotation table,
always a call to ClassifyGenes

124 ReadNewTotal

read.posterior also read the posterior parameters alpha and beta? if NULL, TRUE for dense
data, FALSE for sparse data

rename.sample function that is applied to each sample name before parsing (or NULL; use the
Renamer function)

verbose Print status updates

Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides
a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector
of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment”,"Time", "Replicate”). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

ReadGRAND,ClassifyGenes,MakeColdata,DesignSemantics,Renamer

ReadNewTotal Read sparse new/total matrices

Description

This function can be used to load matrix market data in case genes were quantified by (i) counting
all reads (for total RNA) and (ii) counting T-to-C mismatch reads (for new RNA)

Renamer

Usage

ReadNewTotal(
genes,
cells,
new.matrix,

total.matrix,

125

detection.rate = 1,

verbose =

Arguments

genes
cells
new.matrix
total.matrix
detection.rate

verbose

Details

FALSE

csv file (or URL) containing gene information

csv file (or URL) containing cell information

Matrix market file of new counts

Matrix market file of total counts

the detection rate of T-to-C mismatch reads (see details)

verbose output

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq, TimeLapse-
seq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. We advice
against counting read with and without T-to-C mismatches for quantification, and encourage using

a statistical method such as GRAND-SLAM that properly deals with incomplete labeling.

To correct for some bias, a detection rate (as suggested by Cao et al., Nature Biotech 2020) should
be provided. This detection rate defines, how much new RNA is detected on average using the
T-to-C mismatch reads.

Value

a grandR object

Renamer

Create a renamer function

Description

A renamer function can be used in the ReadGrand functions

Usage

Renamer(...)

126 SaveNtrSlot

Arguments

a named list of replacements

Details

if you want to replace all occurrences of X by Y, then call via Renamer(X="Y")

Value

a renamer function

RotatateAxislLabels Rotate x axis labels

Description

Add this to a ggplot object to rotate the x axis labels

Usage
RotatateAxisLabels(angle = 90)

Arguments

angle the angle by which to rotate

Value

a ggplot theme object

SaveNtrSlot Copy the NTR slot and save under new name

Description

Copy the NTR slot and save under new name

Usage

SaveNtrSlot(data, name)

Arguments

data the grandR object

name the name of the new slot
Value

a grandR object

Scale 127

Scale Scale data

Description

Compute values for all genes standardized (i.e. z scores) across samples.

Usage

Scale(
data,
name = "scaled",
slot = DefaultSlot(data),
set.to.default = FALSE,
group = NULL,
center = TRUE,
scale = TRUE

Arguments

data a grandR object
name the new slot name
slot the slot from where to take values

set.to.default setthe new slot as default slot

group Perform standardization per group of columns (see details)
center Perform centering (forwarded to scale)
scale Perform scaling (forwarded to scale)

Details

Standardization can be done per group. For this, the group parameter has to be a name of the
Coldata table, to define groups of columns (i.e. samples or cells).

Value

a new grandR object with a new slot

See Also

scale

128 Semantics.time

Semantics.concentration
Semantics for concentration columns

Description

Defines additional semantics for columns representing concentrations

Usage

Semantics.concentration(s, name)

Arguments
s original column
name the column name
Value

a data frame with a single numeric column, where <x>uM from s is replaced by x, <x>mM is
replaced by x*1000, and no4sU is replaced by 0

Semantics.time Semantics for time columns

Description

Defines additional semantics for columns representing temporal dimensions

Usage

Semantics.time(s, name)

Arguments
s original column
name the column name
Value

a data frame with a single numeric column, where <x>h from s is replaced by x, <x>min is replaced
by x/60, and no4sU is replaced by 0

ServeGrandR

129

ServeGrandR

Serve a shiny web interface

Description

Fire up a shiny web server for exploratory analysis of grandR data.

Usage

ServeGrandR(
data,
table = NULL,
sizes = NA,
height = 400,
floating.size = c(350, 350),
plot.gene = NULL,

plot.global = NULL,

plot.window

NULL,

highlight = NULL,

df.identifier = "Symbol”,

title = Title(data),

show.sessionInfo = FALSE,

help = list(".Q: multiple testing corrected p values”, ".LFC: log2 fold changes")

)

Arguments

data
table

sizes

height

floating.size

plot.gene
plot.global

plot.window

highlight

df.identifier

title

the grandR object (or a file name to an rds file containing a grandR object)
the table to display (can be NULL or a named list; see details)

the widths for the gene plots to show (12 is full screen with); must be a vector
as long as there are gene plots

the height for the gene plots in pixel

either a vector (width,height) for all plots in floating windows or a named list of
such vectors for each floating window

a list of gene plots; can be NULL, then the stored gene plots are used (see Plots)

a list of global plots; can be NULL, then the stored global plots are used (see
Plots)

a list of static plots to show in a floating window; see details

a vector of gene names that are highlighted in the beginning; can also be a
column name in the (first) table (see details)

the main identifier (column name) from the table; this is used when calling the
gene plot functions;

the title to show in the header of the website

130 SetParallel

show. sessionInfo
whether to show session info

help a list of characters that is shown as help text at the beginning (when no gene plot
is shown); should describe the contents of your table

Details

If the table parameter is NULL, either an analysis table named "ServeGrandR" is used (if it exists),
otherwise the columns "Q", "LFC", "Synthesis" and "Half-life" of all analysis tables are used. If it
is a list, a menu is created in the navbar. If the table has a column equal to the highlight parameter,
the currently highlighted genes are updated in the table (to allow filtering for highlighted genes).

plot.window must be a list of plotting functions that receive the grandR object and return a plot. It
can also be a list of list, in which case more than one plotting windows are generated. Each plot
will be rendered with a size of 350x350.

The gene plots must be functions that accept two parameters: the grandR object and a gene identi-

fier. You can either use functions directly (e.g. plot.gene=1ist(PlotGene0ldVsNew)), or use De-

fer in cases you need to specify additional parameters, e.g. plot.gene=1ist(Defer (PlotGeneOldVsNew, log=FALSE)).
The global plots are functions accepting a single parameter (the grandR object). Here the use of

Defer is encouraged due to its caching mechanism.

Value

a shiny web server

Examples

Not run:
sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("”Condition”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)

sars <- Pairwise(sars,contrasts = GetContrasts(sars,contrast = c("Condition”,"SARS", "Mock")))

sars <- AddGenePlot(sars,"timecourse”,
Defer(PlotGeneProgressiveTimecourse,steady.state=c(Mock=TRUE, SARS=FALSE)))

sars <- AddGlobalPlot(sars, "Vulcano",VulcanoPlot)

ServeGrandR(sars)

End(Not run)

SetParallel Set up parallel execution

Description

Set the number of cores for parallel execution.

SimulateKinetics 131

Usage

SetParallel(cores = max(1, parallel::detectCores() - 2))

Arguments

cores number of cores

Details

Whenever psapply or plapply are used, they are executed in parallel.

Value

No return value, called for side effects

SimulateKinetics Simulate the kinetics of old and new RNA for given parameters.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df /dt = s — df (t), with s being the constant synthesis rate, d the constant degradation rate and
f0 = f(0) (the abundance at time 0). The RNA half-life is directly related to d via HL = log(2)/d.
This model dictates the time evolution of old and new RNA abundance after metabolic labeling
starting at time t=0. This function simulates data according to this model.

Usage
SimulateKinetics(
s =100 * d,
d = log(2)/hl,
hl = 2,
fo = NULL,
dropout = 0,
min.time = -1,
max.time = 10,
N = 1000,
name = NULL,
out = c(”01d”, "New”, "Total”, "NTR")
)
Arguments
s the synthesis rate (see details)
d the degradation rate (see details)

hl the RNA half-life

132 SimulateReadsForSample

fo the abundance at time t=0
dropout the 4sU dropout factor
min.time the start time to simulate
max.time the end time to simulate
N how many time points from min.time to max.time to simuate
name add a Name column to the resulting data frame
out which values to put into the data frame
Details

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "off-
set", "factor" and "exponent" (for linear functions, see ComputeNonConstantParam) or (iii) a unary
function time->rate. Functions

Value

a data frame containing the simulated values

See Also

PlotSimulation for plotting the simulation

Examples

head(SimulateKinetics(hl=2)) # simulate steady state kinetics for an RNA with half-1life 2h

SimulateReadsForSample
Simulate metabolic labeling - nucleotide conversion RNA-seq data.

Description

This function takes a vector of true relative abundances and NTRs, and then simulates (i) read
counts per gene and (ii) 4sU incorporation and conversion events. Subsequently, it uses the same
approach as implemented in the GRAND-SLAM 2.0 software (Juerges et al., Bioinformatics 2018)
to estimate the NTR from these simulated data.

Usage

SimulateReadsForSample(
num.reads = 2e+07,
rel.abundance = setNames(rlnorm(10000, meanlog = 4.5, sdlog = 1), paste@("Gene",
1:10000)),
ntr = setNames(rbeta(10000, 1.5, 3), paste@("Gene"”, 1:10000)),
dispersion = 0.05,

SimulateReadsForSample 133

beta.approx =

FALSE,

conversion.reads = FALSE,
u.content = 0.25,
u.content.sd = 0.05,

read.length =

75,

p.old = 1e-04,

p.new = 0.04,

p.new.fit = p.new,
enforce.parallelized = NA,

seed = NULL

Arguments

num. reads

rel.abundance

ntr
dispersion

beta.approx

the total amount of reads for simulation

named (according to genes) vector of the true relative abundances. Is divided by
its sum.

vector of true NTRs
vector of dispersion parameters (should best be estimated by DESeq?2)
should the beta approximation of the NTR posterior be computed?

conversion.reads

u.content
u.content.sd
read. length
p.old

p.new

p.new.fit

also output the number of reads with conversion

the relative frequency of uridines in the reads

the standard deviation of the u content

the read length for simulation

the probability for a conversion in reads originating from old RNA
the probability for a conversion in reads originating from new RNA

the probability for a conversion in reads originating from new RNA that is used
for fitting (to simulate bias in the estimation of p.new)

enforce.parallelized

seed

Details

should parallelization be used (NA: use state of IsParallel())

seed value for the random number generator (set to make it deterministic!)

The simulation proceeds as follows:

1. Draw for each gene the number of reads from a negative binomial distribution parametrized
with the relative abundances x read number and the dispersion parameter

2. For each gene: Draw for each read the number of uridines according to a beta binomial dis-
tribution for the given read length (the beta prior is parametrized to match the u.content and
u.content.sd parameters)

3. For each read: Draw the number of conversions according to the binomial mixture model of
GRAND-SLAM (parametrized with p_old, p_new, the gene specific NTR and the read specific
number of uridines)

4. Estimate the NTR by using the GRAND-SLAM approach

134 SimulateTimeCourse

Value

a matrix containing, per column, the simulated counts, the simulated NTRs, (potentially the shape

parameters of the beta distribution approximation,) and the true relative frequencies and ntrs

See Also

SimulateTimeCourse

Examples

SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9)

SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)

the second and third matrix should be equal, the first should be distinct

SimulateTimeCourse Simulate a complete time course of metabolic labeling - nucleotide

conversion RNA-seq data.

Description

This function takes a vector of true synthesis rates and RNA half-lives, and then simulates data
for multiple time points and replicates. Both synthesis rate and RNA half-lives are assumed to be

constant, but the system might not be in steady-state.

Usage

SimulateTimeCourse(
condition,
gene.info,
S,
d,
fo = s/d,
s.variation = 1,
d.variation = 1,
dispersion,
num.reads = 1e+07,
timepoints = c(@, @, @, 1, 1, 1, 2, 2, 2, 4, 4, 4),
beta.approx = FALSE,
conversion.reads = FALSE,
verbose = TRUE,
seed = NULL,

SimulateTimeCourseNonConstant 135

Arguments

condition A user-defined condition name (which is placed into the Coldata of the final
grandR object)

gene.info either a data frame containing gene annotation or a vector of gene names

s a vector of synthesis rates

d a vector of degradation rates (to get a specific half-life HL, use d=log(2)/HL)

fo the abundance at time t=0

s.variation biological variability of s among all samples (see details)

d.variation biological variability of d among all samples (see details)

dispersion a vector of dispersion parameters (estimate from data using DESeq2, e.g. by the
estimate.dispersion utility function)

num.reads a vector representing the number of reads for each sample

timepoints a vector representing the labeling duration (in h) for each sample

beta.approx should the beta approximation of the NTR posterior be computed?

conversion.reads
also output the number of reads with conversion

verbose Print status updates
seed seed value for the random number generator (set to make it deterministic!)

provided to SimulateReadsForSample

Details
If s.variation or d.variation are > 1, then for each gene a random gaussian is added to s (or d) such
that 90 of the gaussian is log2(s.variation).

Value

a grandR object containing the simulated data in its data slots and the true parameters in the gene
annotation table

SimulateTimeCourseNonConstant

Simulate a complete time course of metabolic labeling - nucleotide
conversion RNA-seq data.

Description

This function takes a vector of true synthesis rates and RNA half-lives, and then simulates data
for multiple time points and replicates. Both synthesis rate and RNA half-lives are assumed to be
constant, but the system might not be in steady-state.

136

Usage

SimulateTimeCourseNonConstant(

condition,
gene.info,

S,

d,

dispersion,
num.reads = 1e+@7,

t =2,

replicates = 3,
beta.approx = FALSE,
conversion.reads = FALSE,
verbose = TRUE,

seed = NULL,

SimulateTimeCourseNonConstant

Arguments

condition

gene.info
s
d

dispersion

num.reads
t
replicates

beta.approx

A user-defined condition name (which is placed into the Coldata of the final
grandR object)

either a data frame containing gene annotation or a vector of gene names
a vector of synthesis rates (see details)
a vector of degradation rates (see details)

a vector of dispersion parameters (estimate from data using DESeq?2, e.g. by the
estimate.dispersion utility function)

a vector representing the number of reads for each sample
a single number denoting the time
a single number denoting the number of replicates

should the beta approximation of the NTR posterior be computed?

conversion.reads

verbose

seed

Details

also output the number of reads with conversion
Print status updates
seed value for the random number generator (set to make it deterministic!)

provided to SimulateReadsForSample

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "offset",
"factor" and "exponent" (for linear functions, see ComputeNonConstantParam; only one row al-
lowed) or (iii) a unary function time->rate. Functions

Value

a grandR object containing the simulated data in its data slots and the true parameters in the gene

annotation table

Slots

See Also

SimulateTimeCourse

137

Slots Slot functions

Description

Get slot names and add or remove slots
Usage

Slots(data)

DropSlot(data, pattern = NULL)

AddSlot(data, name, matrix, set.to.default = FALSE, warn = TRUE)

Arguments
data A grandR object
pattern a regular expression matched against slot names
name the slot name
matrix the data matrix for the new slot

set.to.default setthe new slot as the default slot?

warn issue a warning if the slot name already exists and is overwritten

Value

Either the slot names or a grandR data with added/removed slots

Functions

¢ Slots(): Obtain the slot names
* DropSlot(): Remove one or several slots from this grandR object

* AddSlot(): Add an additional slot to this grandR object

See Also

DefaultSlot

138 structure2vector

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars) # default behavior is to update the default slot
sars
sars <- DropSlot(sars, "norm")
sars # note that the defauls slot reverted to count
structure2vector Convert a structure into a vector
Description

The structure is supposed to be a list. Flattening is done by extracting the given fields (return. fields)
and applying the additional function (return.extra). This is mainly to be used within sapply and
similar.

Usage

structure2vector(d, return.fields = NULL, return.extra = NULL)

kinetics2vector(
d,
condition = NULL,
return.fields = c("Synthesis”, "Half-life"),
return.extra = NULL

Arguments

d the data structure
return.fields which fields should be extracted directly (may be NULL)
return.extra apply a function returning a flat list or vector (may be NULL)

condition if the original grandR object had Condition set, which condition to extract
(NULL otherwise)

Value

the data flattened into a vector

Functions

* kinetics2vector(): Convert the output of the FitKinetics methods into a vector

Summarize 139

Examples

sars <- ReadGRAND(system.file("extdata"”, "sars.tsv.gz", package = "grandR"),
design=c("Condition”,Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)

fit <- FitKineticsGenelLeastSquares(sars, "SRSF6")$Mock

print(fit)

kinetics2vector(fit)

Summarize Summarize a data matrix

Description

Helper function to work in conjunction with GetMatrix or similar to obtain a summarized matrix.

Usage

Summarize(mat, summarize.mat)

Arguments

mat the matrix to summarize

summarize.mat the matrix defining how to summarize (see details)

Details
The summarize.mat can be obtained via GetSummarizeMatrix. If there are missing (NA) values in
the matrix, they are imputed from the rest (average)

Value

the summarized matrix

ToIndex Obtain the indices of the given genes

Description

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows. This function accepts all these possibilities and returns the row
number in the gene table for the given genes,

Usage

ToIndex(data, gene, regex = FALSE, remove.missing = TRUE, warn = TRUE)

140 Transform.no

Arguments
data The grandR object
gene A vector of genes. Can be either numeric indices, gene names, gene symbols or
a logical vector
regex Treat gene as a regex and return all that match

remove.missing if TRUE, do not return missing genes (return NA otherwise)

warn if TRUE emit a warning if not all genes are found

Value

Numeric indices corresponding to the given genes

See Also

Genelnfo

Examples

sars <- ReadGRAND(system.file("extdata”, "sars.tsv.gz", package = "grandR"),
design=c("Cell”,Design$dur.4sU,Design$Replicate))

ToIndex(sars,c("MYC"))

ToIndex(sars,GeneInfo(sars)$Symbol=="MYC")

Transform.no Transformations for PlotHeatmap

Description

Functions to perform transformations on the matrix used for PlotHeatmap.

Usage

Transform.no(label = " ")
Transform.Z(label = "z score”, center = TRUE, scale = TRUE)
Transform.VST(label = "VST")

Transform.logFC(label = "log2 FC", LFC.fun = NULL, columns = NULL, ...)

TransformSnapshot 141

Arguments
label label that is used for the heatmap legend
center perform centering when computing Z scores (see scale)
scale perform scaling when computing Z scores (see scale)
LFC.fun function to compute log fold changes (default: PsiLFC, other viable option:
NormLFC)
columns which columns (i.e. samples or cells) to use as reference when computing log
fold changes (see details)
further parameters passed down to LFC.fun
Details

These functions should be used as transform parameter to PlotHeatmap. Available data transforma-
tions are

¢ transform=Transform.Z(): compute z scores for each row; you can omit the usual centering or
scaling by setting the respective parameters to false; see scale
* transform=Transform.VST(): do a variance stabilizing transformation using vst

* transform=Transform.logFC(): compute log2 fold changes to one or several reference columns;
see below how to define them; fold changes are computed using the 1fc package)

e transform=Transform.no(): do not transform

The label to be used in the heatmap legend can be changed by specifying the label parameter.

For Transform.logFC, columns can be given as a logical, integer or character vector representing a
selection of the columns (samples or cells).

Value

A function that transforms a matrix.

TransformSnapshot Estimate parameters for a one-shot experiment.

Description
Under steady state conditions it is straight-forward to estimate s and d. Otherwise, the total levels
at some other time point are needed.

Usage

TransformSnapshot(ntr, total, t, t@ = NULL, f@ = NULL, full.return = FALSE)

142 UpdateSymbols

Arguments
ntr the new to total RNA ratio (measured)
total the total level of RNA (measured)
t the labeling duration
t0 time before measurement at which f0 is total level (only necessary under non-
steady-state conditions)
fo total level at tO (only necessary under non-steady-state conditions)
full.return also return the provided parameters
Details
t0 must be given as the total time in between the measurement of fO and the given ntr and total
values!
Value

a named vector for s and d

UpdateSymbols Update symbols using biomaRt

Description

If your input files only contained ENSEMBL ids, use this to add gene symbols!

Usage

UpdateSymbols(data, species = NULL, current.value = "ensembl_gene_id")
Arguments

data a grandR object

species the species the genes belong to (eg "Homo sapiens"); can be NULL, then the

species is inferred from gene ids (see details)
current.value What it the current value in the symbols field?

Details

If no species is given, a very simple automatic inference is done, which will only work when having
human or mouse ENSEMBL identifiers as gene ids. If you need to specify species, it must be one
of biomaRt::1listDatasets(biomaRt: :useMart("ensembl”))$dataset!

Current.value must be one of biomaRt: : listAttributes(biomaRt: :useMart("ensembl”))$name!

Value

a grandR object with updated symbol names

UseNtrSlot

143

UseNtrSlot Use the given slot as NTR (is overwritten!)

Description

Use the given slot as NTR (is overwritten!)

Usage

UseNtrSlot(data, name)

Arguments

data the grandR object
name the name of the new slot

Value

a grandR object

VulcanoPlot Make a Vulcano plot

Description

Plot log2 fold changes against -log10 multiple testing adjusted P values

Usage

VulcanoPlot(
data,
analysis = Analyses(data)[1],
p.cutoff = 0.05,
1fc.cutoff =1,
annotate.numbers = TRUE,

Arguments
data the grandR object that contains the data to be plotted
analysis the analysis to plot (default: first analysis)
p.cutoff p-value cutoff (default: 0.05)
1fc.cutoff log fold change cutoff (default: 1)

annotate.numbers
if TRUE, label the number of genes

further parameters passed to PlotScatter

144 Wilcoxon

Value

a ggplot object

Wilcoxon Perform Wilcoxon tests for differential expression

Description

Apply the wilcoxon test for comparisons defined in a contrast matrix, requires the presto package
for fast computation.

Usage
Wilcoxon(
data,
name.prefix = get.mode.slot(data, mode.slot)$mode,
contrasts,
mode.slot = DefaultSlot(data),
genes = NULL,
verbose = FALSE
)
Arguments
data the grandR object
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)
contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts
mode.slot compute mode.slot to use (should be normalized values)
genes restrict analysis to these genes; NULL means all genes
verbose print status messages?
Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"p" the Wilcoxon test P value

"Q" same as P but Benjamini-Hochberg multiple testing corrected

"LFC" the log2 fold change (only with the logFC parameter set to TRUE)
See Also

LFC,GetContrasts

Index

* datasets GetContrasts, 64
Design, 31 GetPairContrasts, 69

* data GetSignificantGenes, 70
ComputeColumnStatistics, 15 LFC, 78
ComputeExpressionPercentage, 16 LikelihoodRatioTest, 80
ComputePseudoNtr, 19 Pairwise, 87
ComputeTotalExpression, 21 PairwiseDESeq2, 88
CreateConvolutionTable, 24 Wilcoxon, 144
CreatePseudobulkTable, 26 * dropout
GetAnalysisTable, 63 ComputeSummaryStatistics, 20
GetData, 66 correctdropout, 23
GetMatrix, 68 dropout, 32
GetSummarizeMatrix, 71 dropoutpercent, 34
GetTable, 73 Findno4sUPairs, 43
PoolColumns, 117 * geneplot
Renamer, 125 PlotGeneGroupsBars, 91
SaveNtrSlot, 126 PlotGeneGroupsPoints, 93
Summarize, 139 PlotGeneOldVsNew, 94
UseNtrSlot, 143 PlotGeneProgressiveTimecourse, 95

* diagnostics PlotGeneSnapshotTimecourse, 96
CreatePdfs, 25 PlotGeneTotalVsNtr, 98
GetDiagnosticParameters, 68 * genesets
PlotConversionFreq, 91 AnalyzeGeneSets, 6
PlotMismatchPositionForSample, 101 ListGeneSets, 81
PlotMismatchPositionForType, 102 * globalplot
PlotModelCompareConv, 103 FormatCorrelation, 59
PlotModelCompareErr, 103 MAPlot, 83
PlotModelCompareErrPrior, 104 PlotAnalyses, 90
PlotModelComparelLL, 105 PlotHeatmap, 99
PlotModelCompareNtr, 105 PlotPCA, 109
PlotModelConv, 106 PlotScatter, 112
PlotModelErr, 106 PlotTypeDistribution, 116
PlotModellLabelTimeCourse, 107 Transform.no, 140
PlotModelNtr, 108 VulcanoPlot, 143
PlotModelShape, 108 * grandr
PlotProfilelLikelihood, 110 Analyses, 4

x diffexp Coldata, 14
DESeq2BIC, 30 Condition, 22
EstimateRegulation, 36 DefaultSlot, 27

145

146

GeneInfo, 60
Genes, 61
grandR, 75

Plots, 111

Slots, 137
UpdateSymbols, 142

* helper

ApplyContrasts, 8
check.analysis, 12
data.apply, 26

Defer, 28

density2d, 29
estimate.dispersion, 36
get.mode.slot, 62
IsParallel, 78
psapply, 118
RotatateAxislLabels, 126
SetParallel, 130
structure2vector, 138
ToIndex, 139

x Kinetics

ComputeNonConstantParam, 17
f.nonconst, 39
f.nonconst.linear, 40
f.old.equi, 41

FitKinetics, 46
FitKineticsGenelLeastSquares, 47
FitKineticsGenelLogSpacelinear, 50
FitKineticsGeneNtr, 52
FitKineticsPulseR, 56
PlotSimulation, 115
SimulateKinetics, 131

* load

as.Seurat.grandR, 9
ClassifyGenes, 13
Design, 31
DesignSemantics, 31
MakeColdata, 82
ReadCounts, 118
ReadFeatureCounts, 120
ReadGRAND, 121
ReadGRAND3, 123
ReadNewTotal, 124
Semantics.concentration, 128
Semantics.time, 128

* preprocess

ComputeNtrPosteriorQuantile, 18
FilterGenes, 42

INDEX

Normalize, 84
NormalizeBaseline, 86
Scale, 127

+ recalibration
CalibrateEffectivelabelingTimeKineticFit,

10
CalibrateEffectivelLabelingTimeMatchHalflives,
11

* shiny
ServeGrandR, 129

+ simulation
SimulateReadsForSample, 132
SimulateTimeCourse, 134
SimulateTimeCourseNonConstant, 135

+ snapshot
ComputeSteadyStateHalfLives, 19
FindReferences, 44
FitKineticsGeneSnapshot, 54
FitKineticsSnapshot, 56
TransformSnapshot, 141

AddAnalysis (Analyses), 4
AddGenePlot (Plots), 111
AddGlobalPlot (Plots), 111
AddSlot (Slots), 137

aes, 93, 95, 97, 98
Analyses, 4, 62, 63,77
AnalyzeGeneSets, 6, 81
ApplyContrasts, 8, 65, 70
as.Seurat.grandR, 9

boxplot, /15
boxplot.stats, 113

CalibrateEffectivelLabelingTimeKineticFit,
10

CalibrateEffectivelabelingTimeMatchHalflives,
11

check.analysis, 12

check.mode.slot (check.analysis), 12

check.slot (check.analysis), 12

ClassifyGenes, 13, 119, 120, 122-124

Coldata, 14, 16, 17, 20, 22, 23, 30-32, 37, 45,
55,60-63, 65, 67,69, 70, 72-74, 77,
80, 83, 92-95, 97, 98, 100, 101, 109,
119,121, 122, 124, 127, 135, 136

Coldata<- (Coldata), 14

Columns, 73, 99

Columns (Genes), 61

INDEX

ComputeColumnStatistics, 15
ComputeExpressionPercentage, 16
ComputeNonConstantParam, 17, 39, 132, 136
ComputeNtrCI
(ComputeNtrPosteriorQuantile),
18
ComputeNtrPosteriorLower
(ComputeNtrPosteriorQuantile),
18
ComputeNtrPosteriorQuantile, 18
ComputeNtrPosteriorUpper
(ComputeNtrPosteriorQuantile),
18
ComputePseudoNtr, 19
ComputeSteadyStateHalfLives, 19
ComputeSummaryStatistics, 20, 24, 35
ComputeTotalExpression, 21
Condition, 5, 15,22, 43, 45-47, 50, 52, 71,
96, 138
Condition<- (Condition), 22
Correct4sUDropoutHLFactor, 35
Correct4sUDropoutHLFactor
(correctdropout), 23
Correct4sUDropoutHLSpline
(correctdropout), 23
correctdropout, 23
CreateConvolutionTable, 24
CreatePdfs, 25
CreatePdfsComparison (CreatePdfs), 25
CreatePdfsParameters (CreatePdfs), 25
CreatePdfsProfiles (CreatePdfs), 25
CreatePseudobulkTable, 26

data.apply, 26
DefaultSlot, 6, 27, 67, 69, 74, 77, 137
DefaultSlot<- (DefaultSlot), 27
Defer, 28, 34, 111, 130
density2d, 29

DESeq2BIC, 30

Design, 31,82, 119, 121, 122, 124
DesignSemantics, 31, 83, 122, 124
dim.grandR (grandR), 75
dimnames.grandR (grandR), 75
DropAnalysis (Analyses), 4
dropout, 32

dropoutpercent, 34

DropPlots (Plots), 111

DropSlot (Slots), 137

147

enricher, 7
estimate.dispersion, 36
Estimate4sUDropoutPercentage, 24
Estimate4sUDropoutPercentage
(dropoutpercent), 34
Estimate4sUDropoutPercentageForSample
(dropoutpercent), 34
EstimateRegulation, 36
estimateSizeFactorsForMatrix, 85
EvaluateNonConstantParam
(ComputeNonConstantParam), 17

.new, 49, 51
.new (f.old.equi), 41
.nonconst, 39, 40
.nonconst.linear, 39, 40
.old.equi, 41, 49, 50
.old.nonequi, 49, 50
f.old.nonequi (f.old.equi), 41
FilterGenes, 42, 77
Findno4sUPairs, 21, 24, 33-35, 43, 45
FindReferences, 37, 44, 55, 57, 86, 87
FitKinetics, 5, 11, 15, 22,27, 46,49, 51, 53,
96
FitKineticsGenelLeastSquares, 46, 47, 47,
51,53, 96
FitKineticsGenelLogSpacelinear, 46, 47,
49, 50, 53, 96
FitKineticsGeneNtr, 46, 47,49, 51, 52, 96
FitKineticsGeneSnapshot, 12, 38, 54
FitKineticsPulseR, 56
FitKineticsSnapshot, 38, 56
FormatCorrelation, 59, 115

- —h —h —h —h —h

Genelnfo, 13-15, 60, 62, 63, 73,77, 114, 140

GeneInfo<- (GeneInfo), 60

Genes, 60, 61, 64, 67,69, 74, 77

get.mode.slot, 62

GetAnalysisTable, 7, 63, 66, 67, 69, 71, 73,
74,77

GetContrasts, 8, 9, 37, 64, 70, 79, 87-90, 144

GetData, 27, 63, 64, 66, 69, 73, 74, 77, 92-95,
97-99

GetDiagnosticParameters, 25, 68, 91,
101-108, 110

GetMatrix, 68, 139

GetPairContrasts, 69

GetSignificantGenes, 70

GetSummarizeMatrix, 69, 71, 74, 99, 139

148

GetTable, 27, 63, 64, 66, 67,71, 72,73, 77,
100, 101

grandRr, 75

GSEA, 7

Heatmap, 100, 101

is.grandR (grandR), 75
IsParallel, 78
IsSparse (grandR), 75

kde2d, 114
kinetics2vector, 47
kinetics2vector (structure2vector), 138

LFC, 5,8, 9, 15, 22, 65, 70,78, 87, 90, 144
LikelihoodRatioTest, 5, 15, 22, 80
ListGeneSets, 7, 81

MakeColdata, 14, 15, 31, 32,82, 119, 121,
122, 124

MAPlot, 83

merge.grandR (grandR), 75

Metadata (grandR), 75

msigdbr, 7

msigdbr_collections, 8/

Normalize, 84, 87
NormalizeBaseline, 85, 86
NormalizeFPKM (Normalize), 84
NormalizeRPM (Normalize), 84
NormalizeTPM (Normalize), 84
NormLFC, 33, 35, 79, 86-88, 141

Pairwise, 87
PairwiseDESeq2, 5, 9, 65, 70, 79, 87, 88, 88
plapply, 131

plapply (psapply), 118
Plot4sUDropout, 43, 44

Plot4sUDropout (dropout), 32
Plot4sUDropoutAll, 43, 44
Plot4sUDropoutAll (dropout), 32
Plot4sUDropoutDeferAll (dropout), 32
Plot4sUDropoutRank, 43, 44
Plot4sUDropoutRank (dropout), 32
Plot4sUDropoutRankAll, 43, 44
Plot4sUDropoutRankAll (dropout), 32
Plot4sUDropoutRankDeferAll (dropout), 32
PlotAnalyses, 90
PlotConversionFreq, 91

INDEX

PlotGene (Plots), 111
PlotGeneGroupsBars, 91, 92, 94, 95, 97, 99
PlotGeneGroupsPoints, 93, 95, 97, 99
PlotGeneOldVsNew, 92, 94,94, 97,99, 111
PlotGeneProgressiveTimecourse, 95
PlotGeneSnapshotTimecourse, 96
PlotGeneTotalVsNtr, 92, 94, 95, 98
PlotGlobal (Plots), 111
PlotHeatmap, 28, 99, 140, 141
PlotMismatchPositionForSample, 917, 101
PlotMismatchPositionForType, 91, 102
PlotModelCompareConv, 103
PlotModelCompareErr, 103
PlotModelCompareErrPrior, 104
PlotModelComparelLL, 105
PlotModelCompareNtr, 105
PlotModelConv, 106

PlotModelErr, 106
PlotModellLabelTimeCourse, 107
PlotModelNtr, 108
PlotModelShape, 108

PlotPCA, 109
PlotProfileLikelihood, 110

Plots, 111, 129
PlotScatter, 59, 83, 112, 143
PlotSimulation, 115, 132
PlotTypeDistribution, 116
PoolColumns, 117

print.grandR (grandR), 75
psapply, 118, 131

PsiLFC, 33, 35, 79, 86-88, 141

ReadCounts, 118
ReadFeatureCounts, 120
ReadGRAND, 13, 14, 60, 75, 83, 121, 124
ReadGRAND3, 122, 123
ReadNewTotal, 124

RenameColumns (grandR), 75
Renamer, 124, 125
RotatateAxislLabels, 126

SaveNtrSlot, 126

Scale, 127

scale, 127, 141
Semantics.concentration, 128
Semantics.time, 128
ServeGrandR, 34, 129
SetParallel, 718, 130
SimulateKinetics, /15, 116, 131

INDEX 149

SimulateReadsForSample, 132, 135, 136
SimulateTimeCourse, 75, 134, 134, 137
SimulateTimeCourseNonConstant, 135
Slots, 6,27,77,137

split.grandR (grandR), 75

sprintf, 59

structure2vector, 138

subset.grandR (grandR), 75
Summarize, 139

SwapColumns (grandR), 75

Title (grandR), 75

ToIndex, 115,139

Transform. logFC, 100
Transform. logFC (Transform.no), 140
Transform.no, 100, 140
Transform.VST, 100

Transform.VST (Transform.no), 140
Transform.Z, 100

Transform.Z (Transform.no), 140
TransformSnapshot, 37, 55, 58, 141

UpdateSymbols, 142
UseNtrSlot, 143

vst, 141
VulcanoPlot, 143

Wilcoxon, 144

	Analyses
	AnalyzeGeneSets
	ApplyContrasts
	as.Seurat.grandR
	CalibrateEffectiveLabelingTimeKineticFit
	CalibrateEffectiveLabelingTimeMatchHalflives
	check.analysis
	ClassifyGenes
	Coldata
	ComputeColumnStatistics
	ComputeExpressionPercentage
	ComputeNonConstantParam
	ComputeNtrPosteriorQuantile
	ComputePseudoNtr
	ComputeSteadyStateHalfLives
	ComputeSummaryStatistics
	ComputeTotalExpression
	Condition
	correctdropout
	CreateConvolutionTable
	CreatePdfs
	CreatePseudobulkTable
	data.apply
	DefaultSlot
	Defer
	density2d
	DESeq2BIC
	Design
	DesignSemantics
	dropout
	dropoutpercent
	estimate.dispersion
	EstimateRegulation
	f.nonconst
	f.nonconst.linear
	f.old.equi
	FilterGenes
	Findno4sUPairs
	FindReferences
	FitKinetics
	FitKineticsGeneLeastSquares
	FitKineticsGeneLogSpaceLinear
	FitKineticsGeneNtr
	FitKineticsGeneSnapshot
	FitKineticsPulseR
	FitKineticsSnapshot
	FormatCorrelation
	GeneInfo
	Genes
	get.mode.slot
	GetAnalysisTable
	GetContrasts
	GetData
	GetDiagnosticParameters
	GetMatrix
	GetPairContrasts
	GetSignificantGenes
	GetSummarizeMatrix
	GetTable
	grandR
	IsParallel
	LFC
	LikelihoodRatioTest
	ListGeneSets
	MakeColdata
	MAPlot
	Normalize
	NormalizeBaseline
	Pairwise
	PairwiseDESeq2
	PlotAnalyses
	PlotConversionFreq
	PlotGeneGroupsBars
	PlotGeneGroupsPoints
	PlotGeneOldVsNew
	PlotGeneProgressiveTimecourse
	PlotGeneSnapshotTimecourse
	PlotGeneTotalVsNtr
	PlotHeatmap
	PlotMismatchPositionForSample
	PlotMismatchPositionForType
	PlotModelCompareConv
	PlotModelCompareErr
	PlotModelCompareErrPrior
	PlotModelCompareLL
	PlotModelCompareNtr
	PlotModelConv
	PlotModelErr
	PlotModelLabelTimeCourse
	PlotModelNtr
	PlotModelShape
	PlotPCA
	PlotProfileLikelihood
	Plots
	PlotScatter
	PlotSimulation
	PlotTypeDistribution
	PoolColumns
	psapply
	ReadCounts
	ReadFeatureCounts
	ReadGRAND
	ReadGRAND3
	ReadNewTotal
	Renamer
	RotatateAxisLabels
	SaveNtrSlot
	Scale
	Semantics.concentration
	Semantics.time
	ServeGrandR
	SetParallel
	SimulateKinetics
	SimulateReadsForSample
	SimulateTimeCourse
	SimulateTimeCourseNonConstant
	Slots
	structure2vector
	Summarize
	ToIndex
	Transform.no
	TransformSnapshot
	UpdateSymbols
	UseNtrSlot
	VulcanoPlot
	Wilcoxon
	Index

