Package ‘gqlr’

January 9, 2026
Title 'GraphQL' Server in R
Version 0.1.0

Description Server implementation of 'GraphQL'
<http://spec.graphqgl.org/>, a query language originally created by
Facebook for describing data requirements on complex application data
models. Visit <https://graphqgl.org> to learn more about 'GraphQL'.

License MIT + file LICENSE

URL http://schloerke.com/gqlr/, https://github.com/schloerke/gqlr,
http://spec.graphqgl.org/, https://graphql.org

BugReports https://github.com/schloerke/gqlr/issues
Depends R (>=3.2.2)

Imports graphql (>= 1.3), jsonlite, magrittr, R6

Suggests plumber, roxygen2 (>= 7.0.0), testthat (>=3.1.5)
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

Collate 'AAA-utils.R' 'R6--aaa-utils.R' 'S3--aaa-setup.R'
'R6--definition.R' 'R6-3.1.1-types-scalars.R’
'R6-6.1-executing-requests.R' 'R6-Schema.R' 'R6z-from-json.R'
'graphql_json.R' 'R6-3.2-directives.R' 'gqlr_schema.R'
'R6-4-introspection.R' 'R6-6.2-executing-operations.R'
'R6-6.3-executing-selection-sets.R' 'R6-6.4-executing-fields.R'
'R6-7-response.R' 'R6-ErrorList.R' '/R6-ObjectHelpers.R'
'R6-Result.R' 'R6-Variable ValdationHelper.R'
'S3-3.1.2.3-validation-object-type.R' 'S3-str.R’

'gqlr-package.R' 'pryr.R' 'server.R'
'upgrade_query_remove_fragments.R' 'validation-arguments.R'
'validation-input-coercion.R'
'validation-selection-set-can-merge.R' 'validation-query.R'
'zzz.R'

http://spec.graphql.org/
https://graphql.org
http://schloerke.com/gqlr/
https://github.com/schloerke/gqlr
http://spec.graphql.org/
https://graphql.org
https://github.com/schloerke/gqlr/issues

2 as_R6

NeedsCompilation no

Author Barret Schloerke [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9986-114X>),
Ryan Hafen [ths] (ORCID: <https://orcid.org/0000-0002-5516-8367>),
GraphQL [cph] (http://spec.graphql.org/)

Maintainer Barret Schloerke <schloerke@gmail.com>
Repository CRAN
Date/Publication 2026-01-09 21:30:02 UTC

Contents
as_ RO . . e 2
ErrorList e 3
EXECULE_TEQUESE . . . v v v v e v v e e e e e e e e e e e e e e e e e e 4
gqlr_schema L 6
PATSE_ASt L e e e e e e e e 11
Schema e 12
SEIVET . . v v v e e e e e e e e e e e e e e 13

Index 16

as_R6 As R6
Description

Debug method that strips all gglr classes and assigns the class as 'R6'

Usage

as_R6(x)

Arguments

X any object. If it inherits 'R6"', then the class of x is setto 'R6'

Examples

Int <- getFromNamespace("Int", "gqlr")$clone()
print(Int)
print(as_R6(Int))

https://orcid.org/0000-0001-9986-114X
https://orcid.org/0000-0002-5516-8367

ErrorList 3

ErrorList ErrorList

Description

Handles all errors that occur during query validation. This object is returned from execute request
function (ans <- [execute_request](query, schema))under the field ’error_list’ (ans$error_list).

Usage

answer <- execute_request(my_request, my_schema)
answer$error_list

Initialize

verbose boolean that determines if errors will be printed on occurrence. Defaults to TRUE

Details

$n count of errors received

$errors list of error information

$verbose boolean that determines of errors are printed when received

$has_no_errors() helper method to determine if there are no errors

$has_any_errors() helper method to determine if there are any errors

$get_sub_source(loc) helper method to display a subsection of source text given Location infor-

mation
$add(rule_code, ...) add a new error according to the rule_code provided. Remaining argu-
ments are passed directly to paste(..., sep="") with extra error rule information

$.format(...) formats the error list into user friendly text. Remaining arguments are ignored
$print(...) prints the error list by calling self$format(...)

Examples

error_list <- ErrorList$new()
error_list
error_list$has_any_errors() # FALSE
error_list$has_no_errors() # TRUE

error_list$add(”3.1.1", "Multiple part”, " error about Scalars")
error_list

error_list$has_any_errors() # TRUE

error_list$has_no_errors() # FALSE

execute_request

execute_request

Execute GraphQL server response

Description

Executes a GraphQL server request with the provided request.

Usage

execute_request(

request,
schema,

L

operation_name =
list(Q),
initial_value
verbose_errors =

variables =

Arguments

request

schema

operation_name

variables

initial_value

verbose_errors

References

NULL,

= NULL,
is_interactive()

a valid GraphQL string

a character string (to be used along side initial_value) or a schema object
created from gglr_schema()

ignored for paramter expansion

name of request operation to execute. If not value is provided it will use the oper-
ation in the request string. If more than one operations exist, an error will be pro-
duced. See https://spec.graphql.org/0October2016/#GetOperation()

anamed list containing variable values. https://spec.graphql.org/October2016/
#tsec-Language.Variables

default value for executing requests. This value can either be provided and/or
combined with the resolve method of the query root type or mutation root type.
The value provided should be a named list of the field name (key) and a value
matching that field name type. The value may be a function that returns a value
of the field name type.

logical to determine if error-like messages should be displayed when processing
a request that finds unknown structures. Be default, this is only enabled when
verbose_errors =rlang: :is_interactive() is TRUE.

https://spec.graphql.org/October2016/#sec-Execution

https://spec.graphql.org/October2016/#GetOperation()
https://spec.graphql.org/October2016/#sec-Language.Variables
https://spec.graphql.org/October2016/#sec-Language.Variables
https://spec.graphql.org/October2016/#sec-Execution

execute_request

Examples

bare bones
schema <- gglr_schema("
type Person {
name: String
friends: [Person]
}
schema {
query: Person
}
)

data <- list(
name = "Barret”,
friends = list(
list(name = "Ryan", friends = list(list(name = "Bill"”), list(name = "Barret"))),
list(name = "Bill"”, friends = list(list(name = "Ryan")))

)
)

ans <- execute_request(”"{ name }", schema, initial_value = data)
ans$as_json()

execute_request ("
{
name
friends {
name
friends {
name
friends {
name
}
}
3

n
’

schema,
initial_value = data
Y$as_json()

Using resolve method to help with recursion

people <- list(
"id_Barret” = list(name = "Barret"”, friends = list("id_Ryan”, "id_Bill")),
"id_Ryan" = list(name = "Ryan"”, friends = list("id_Barret”, "id_Bill")),
"id_Bill" = list(name = "Bill"”, friends = list("id_Ryan"))

)

schema <- gqlr_schema(”

6 gqlr_schema

type Person {
name: String
friends: [Person]
3
schema {
query: Person

}

n
’

Person = list(
resolve = function(name, schema, ...) {
if (name %in% names(people)) {
people[[name]]
} else {
NULL
}
}
)
)

ans <- execute_request(”"{ name }", schema, initial_value = "id_Barret")
ans$as_json()

execute_request ("
{
name
friends {
name
friends {
name
friends {
name
}
}
3
1,
schema,
initial_value = "id_Barret"
Y$as_json()

gqlr_schema Create Schema definitions

Description
Creates a Schema object from the defined GraphQL string and inserts the provided descriptions,
resolve methods, resolve_type methods into the appropriate place.

Usage

gqlr_schema(schema, ...)

gqlr_schema 7

Arguments
schema GraphQL schema string or Schema object
named lists of information to help produce the schema definition. See Details
Details

The ... should be named arguments whose values are lists of information. What information is
needed for each type is described below.

ScalarTypeDefinition:

resolve function with two parameters: x (the raw to be parsed, such as 5.0) and schema (the full
Schema definition). Should return a parsed value

description (optional) single character value that describes the Scalar definition

parse_ast (optional) function with two parameters: obj (a GraphQL wrapped raw value, such as an
object of class IntValue with value 5) and schema (the full Schema definition). If the function
returns NULL then the AST could not be parsed.

EnumTypeDefinition:

resolve (optional) function with two parameters: x and schema (the full Schema definition). Should
return the value x represents, such as the Star Wars Episode enum value "4" could represent
Episode "NEWHOPE". By default, EnumTypeDefinitions will return the current value.

description (optional) single character value that describes the Enum definition

values (optional) named list of enum value descriptions. Such as values = 1ist (ENUMA = "description
for ENUMA" , ENUMZ = "description for ENUMZ")

ObjectTypeDefinition:

resolve function with two parameters: x (place holder value to be expanded into a named list) and
schema (the full Schema definition). By using the resolve method, recursive relationships,
such as friends, can easily be handled. The resolve function should return a fully named list
of all the fields the definition defines. Missing fields are automatically interpreted as NULL.

Values in the returned list may be a function of the form function(obj, args, schema)
{...}. This allows for fields to be determined dynamically and lazily. See how add_human
makes a field for totalCredits, while the add_droid pre computes the information.

description (optional) single character value that describes the object

fields (optional) named list of field descriptions. Such as fields = list(fieldA = "description
for field A", fieldB = "description for field B")

InterfaceTypeDefinition and UnionTypeDefinition:

resolve_type function with two parameters: x (a pre-resolved object value) and schema (the full
Schema definition). This function is required to determine which object type is being used.
resolve_type is called before any ObjectTypeDefinition resolve methods are called.

description (optional) single character value that describes the object

8 gqlr_schema

Examples

library(magrittr)

Set up data
add_human <- function(human_data, id, name, appear, home, friend) {
human <- list(id = id, name = name, appearsIn = appear, friends = friend, homePlanet = home)
set up a function to be calculated if the field totalCredits is required
human$totalCredits <- function(obj, args, schema) {
length(human$appearsIn)
}
human_data[[id]] <- human
human_data
3
add_droid <- function(droid_data, id, name, appear, pf, friend) {
droid <- list(id = id, name = name, appearsln = appear, friends = friend, primaryFunction = pf)
set extra fields manually
droid$totalCredits <- length(droid$appearsIn)
droid_data[[id]] <- droid
droid_data
3

human_data <- list() %>%
add_human("”1000", "Luke Skywalker"”, c(4, 5, 6), "Tatooine"”, c("1002", "1003", "2000", "2001")) %>%
add_human("1002", "Han Solo", c(4, 5, 6), "Corellia”, c("1000", "1003", "2001")) %>%
add_human("”1003", "Leia Organa”, «c(4, 5, 6), "Alderaan”, c("1000", "1002", "2000", "2001"))

droid_data <- list() %>%
add_droid(”2000", "C-3P0", c(4, 5, 6), "Protocol”, c(”1000", "1002", "1003", "2001")) %%
add_droid(”2001", "R2-D2", c(4, 5, 6), "Astromech”, c("1000", "1002", "1003"))

all_characters <- list() %>% append(human_data) %>% append(droid_data) %>% print()
End data set up

Define the schema using GraphQL code
star_wars_schema <- Schema$new()

n

enum Episode { NEWHOPE, EMPIRE, JEDI }
" %>%
gqlr_schema(
Episode = list(
resolve = function(episode_id, schema) {
switch(as.character(episode_id),

"4" = "NEWHOPE",
ngn = ”EMPIRE",
"gr = "JEDI’I,

"UNKNOWN_EPISODE”

gqlr_schema 9

) >
episode_schema
display the schema
episode_schema$get_schema()
add the episode definitions to the Star Wars schema
star_wars_schema$add (episode_schema)

n

interface Character {
id: String!
name: String
friends: [Character]
appearsIn: [Episode]

" %>%
gqlr_schema(
Character = list(
resolve_type = function(id, schema) {
if (id %in% names(droid_data)) {

"Droid”
} else {
"Human"
}
3
)
) >

character_schema

print the Character schema with no extra formatting
character_schemas$get_schema() %>% format() %>% cat("\n")
star_wars_schema$add(character_schema)

n

type Droid implements Character {
id: String!
name: String
friends: [Character]
appearsIn: [Episode]
primaryFunction: String

3

type Human implements Character {
id: String!
name: String
friends: [Character]
appearsIn: [Episode]
homePlanet: String

%>%
gqlr_schema(
Human = list(
Add a resolve method for type Human that takes in an id and returns the human data
resolve = function(id, args, schema) {

10 gqlr_schema

human_datal[id]]
}
),
Droid = list(
description for Droid
description = "A mechanical creature in the Star Wars universe.",
Add a resolve method for type Droid that takes in an id and returns the droid data
resolve = function(id, schema) {
droid_data[[id]]
}
)
) >
human_and_droid_schema
human_and_droid_schema$get_schema()
star_wars_schema$add(human_and_droid_schema)

n

type Query {
hero(episode: Episode): Character
human(id: String!): Human
droid(id: String!): Droid
3
the schema type must be provided if a query or mutation is to be executed
schema {
query: Query
3
" %>%
gqlr_schema(
Query = function(null, schema) {
list(
return a function for key 'hero'
the id will be resolved by the appropriate resolve() method of Droid or Human
hero = function(obj, args, schema) {
episode <- args$episode
if (identical(episode, 5) || identical(episode, "EMPIRE")) {
"1000" # Luke Skywalker
} else {
"2001" # R2-D2
}

}Y
the id will be resolved by the Human resolve() method

human = function(obj, args, schema) {
args$id
3,
the id will be resolved by the Droid resolve() method
droid = function(obj, args, schema) {
args$id
}
)
}
) ->
schema_def

parse_ast 11

print Schema with no extra formatting
schema_def$get_schema() %>% format() %>% cat(”"\n")
star_wars_schema$add(schema_def’)

view the final schema definitiion
star_wars_schema$get_schema()

parse_ast Parse AST

Description
This is a helper function for Scalars. Given a particular kind and a resolve function, it produces a
function that will only parse values of a particular kind.

Usage

parse_ast(kind, resolve)

Arguments
kind single character name of a class to parse
resolve function to parse the value if the kind is correct
Details

Typically, kind is the same as the class of the Scalar. When making a new Scalar, parse_ast defaults
to use the name of the scalar and the scalar’s parse value function.

This function should only need to be used when defining a schema in gqlr_schema()

Value

function that takes obj and schema that will only parse the value if the kind is inherited in the obj

Examples

parse_date_value <- function(obj, schema) {
as.Date(obj)
3

parse_ast("Date", parse_date_value)

Example from Int scalar
parse_int <- function(value, ...) {
MAX_INT <- 2147483647
MIN_INT <- -2147483648
num <- suppressWarnings(as.integer(value))
if (!is.na(num)) {

12 Schema

if (num <= MAX_INT && num >= MIN_INT) {
return(num)
}
}
return(NULL)
3

parse_ast("IntValue”, parse_int)

Schema GraphQL Schema object

Description

Manages a GraphQL schema definition. A Schema can add more GraphQL type definitions, assist
in determining definition types, retrieve particular definitions, and can combine with other schema
definitions.

Typically, Schema class objects are created using gqlr_schema(). Creating a Schema$new() object
should be reserved for when multiple Schema objects are combined.

Usage

using star_wars_schema from

example(gglr_schema)

star_wars_schema$get_schema()
star_wars_schema$is_enum("Episode”) # TRUE
star_wars_schema$is_object("Episode”) # FALSE
execute_request(”{ hero { name } }", star_wars_schema)

Initialize
schema FEither a character GraphQL definition of a schema or another Schema object. Extending
methods and descriptions should be added with gqlr_schema.

The initialize function will automatically add

* Scalars: Int, Float, String, Boolean
* Directives: @skip and @include

* Introspection Capabilities

Details

$add(obj): function to add either another Schema’s definitions or Document of definitions. obj

must inherit class of either 'Schema' or 'Document’

$is_scalar(name), $is_enum(name), $is_object(name), $is_interface(name), $is_union(name),
$is_input_object(name), $is_directive(name), $is_value(name): methods to determine if

there is a definition of the corresponding definition type for the provided name.

$get_scalar(name), $get_enum(name), $get_object(name), $get_interface(name), $get_union(name),
$get_input_object(name), $get_directive(name), $get_value(name): methods to retrieve a

server 13

definition of the corresponding definition type for the provided name. If the object can’t be found,
NULL is returned. When printed, it quickly conveys all known information of the definition. Due to
the nature of R6 objects, definitions may be retrieved and altered after retrieval. This is helpful for
adding descriptions or resolve after the initialization.

$get_scalars(name), $get_enums(name), $get_objects(name), $get_interfaces(name), $get_unions(name),
$get_input_objects(name), $get_directives(name), $get_values(name): methods to re-
trieve all definitions of the corresponding definition type.

$get_type(name): method to retrieve an object of unknown type. If the object can’t be found,
NULL is returned. When printed, it quickly conveys all known information of the definition.
$get_type(name): method to retrieve an object of unknown type. If the object can’t be found,
NULL is returned.

$get_schema(): method to retrieve full definition of schema. When printed, it quickly conveys all
types in the schema.

$get_query_object(), $get_mutation_object(): helper method to retrieve the schema defini-
tion query or mutation object.

$implements_interface(): helper method to retrieve all objects who implement a particular in-
terface.

$is_valid: boolean that determines if a Schema object has been validated. All Schema objects are
validated at the time of request execution. The Schema will remain valid until new definitions are
added.

See Also

gqlr_schema()

server Run basic GraphQL server with GraphiQL support

Description

Run a basic GraphQL server using plumber. This server is provided to show basic interaction with
GraphQL. The server will run until the function execution is canceled.

Usage

server(
schema,
port = 8000L,

graphigql = interactive(),
log = TRUE,
initial_value = NULL

14 server

Arguments

schema Schema object to use execute requests

port web port to serve the server from. Set port to NULL to not run the plumber server
and return it.
ignored for paramter expansion

graphigl logical to determine if the GraphiQL interface should be enabled. By default,
this route is only available when running the server interactively.

log boolean that determines if server logging is done. Defaults to TRUE

initial_value default value to use in execute_request()

Details

To view the GraphiQL user interface, navigate to the URL provided when the server is started. The
default location is http://localhost:8000/graphiql/. By default, this route is only available
when running the server interactively (graphiql = rlang::is_interactive()).

server () implements the basic necessities described in http: //graphql.org/learn/serving-over-http/.
There are four routes implemented:

* / (GET) If run interactively, forwards to /graphiqgl for user interaction with the GraphQL
server. This route is diabled if graphiql = rlang::is_interactive() is not TRUE.

* /graphiql/ (GET) Returns a GraphiQL formatted schema definition interface to manually in-
teract with the GraphQL server. By default this route is disabled if graphiql = rlang: :is_interactive()
is not TRUE.

» /graphql (GET) Executes a query. The parameter 'query' (which contains a GraphQL for-
matted query string) must be included. Optional parameters include: 'variables' a JSON
string containing a dictionary of variables (defaults to an empty named list), ' operationName'
name of the particular query operation to execute (defaults to NULL), and 'pretty' boolean
to determine if the response should be compact (FALSE, default) or expanded (TRUE)

» /graphql (POST) Executes a query. Must provide Content-Type of either ’application/json’
or “application/graphql’.

— If ’application/json’ is provided, a named JSON list containing ’query’, ’operationName’
(optional, default = NULL), ’variables’ (optional, default = list()) and ’pretty’ (optional,
default = TRUE). The information will used just the same as the GET-’/graphgl’ route.

— If ’application/graphql’ is provided, the POST body will be interpreted as the query string.
All other possible parameters will take on their default value.

Using bash’s curl, we can ask the server questions:

#R

load Star Wars schema from 'execute_request' example
example(gqlr_schema)

run server

server(star_wars_schema, port = 8000)

#bash
GET Schema definition

http://graphql.org/learn/serving-over-http/
https://github.com/graphql/graphiql/blob/graphiql%402.2.0/packages/graphiql/README.md

server 15

curl '127.0.0.1:8000/"'

POST for R2-D2 and his friends' names
defaults to parse as JSON

n,n

curl --data '{"query”:"{hero{name, friends { name }}}", "pretty": true}' '127.0.0.1:8000/graphqgl’
send json header

curl --data '{"query”:"{hero{name, friends { name }}}"}' '127.0.0.1:8000/graphgl' --header "Content-T
send graphgl header

curl --data '{hero{name, friends { name }}}' '127.0.0.1:8000/graphql' --header "Content-Type:applicat
use variables

curl --data '{"query”:"query Droid($someld: String!) {droid(id: $someld) {name, friends { name }}}", "

GET R2-D2 and his friends' names

curl '127.0.0.1:8000/graphgl?query=

... using a variable

curl '127.0.0.1:8000/graphgl?query=query

Index

as_R6, 2

ErrorList, 3
execute_request, 4
execute_request(), /4

gqlr_schema, 6
gqlr_schema(), 4, 11-13

parse_ast, 11

Schema, 12
server, 13

16

	as_R6
	ErrorList
	execute_request
	gqlr_schema
	parse_ast
	Schema
	server
	Index

