

Package ‘gogarch’

January 24, 2026

Version 0.7-6

Date 2026-01-24

Type Package

Title Generalized Orthogonal GARCH (GO-GARCH) Models

Description Provision of classes and methods for estimating generalized orthogonal GARCH models. This is an alternative approach to CC-GARCH models in the context of multivariate volatility modeling.

Depends R (>= 2.10.0), methods, stats, graphics, fGarch, fastICA

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Author Bernhard Pfaff [aut, cre]

Maintainer Bernhard Pfaff <bernhard@pfaffikus.de>

Repository CRAN

Date/Publication 2026-01-24 16:30:02 UTC

Contents

BVDW	2
BVDWAIR	3
BVDWSTOXX	4
cora	5
goest-methods	6
Goestica-class	6
Goestml-class	8
Goestmm-class	9
Goestnls-class	11
gogarch	12
GoGARCH-class	14
goinit	16
Goinit-class	17
gollh	18

gonls	19
Gopredict-class	20
Gosum-class	21
gotheta	21
Orthom-class	23
Rd2	24
Umatch	24
unvech	25
UprodR	26
validGoinitObject	27
validOrthomObject	28
VDW	29
Index	30

BVDW*Dow Jones Industrial Average and Nasdaq stock indices*

Description

Levels of the Dow Jones Industrial Average and NASDAQ stock indices for the period 03/23/1990 until 03/23/2000.

Usage

```
data(BVDW)
```

Format

A data frame with 2610 observations on the following 3 variables.

Date Date in the format YYYYMMDD.

DJIA Level of the DJIA.

NASDAQ Level of the NASDAQ.

Details

This data set has been utilized in the source below and was kindly provided by Roy van der Weide.

Source

Boswijk, H. Peter and van der Weide, Roy (2006), Wake me up before you GO-GARCH, *Tinbergen Institute Discussion Paper, TI 2006-079/4*, University of Amsterdam and Tinbergen Institute.

See Also

[VDW](#)

Examples

```
data(BVDW)
str(BVDW)
```

BVDWAIR

Stock prices transportation sector, oil and kerosene prices

Description

This data frame contains the stock prices from American Airlines, South-West Airlines, Boeing and FedEx. In addition the spot prices for crude oil and kerosene are included. This data set was used in the article by Boswijk and van der Weide (2009). The data range is from July, 19 1993 until August, 12 2008.

Usage

```
data(BVDWAIR)
```

Format

A data frame with 3791 observations on the following 7 variables.

Date `POSIXt`: The dates of observations.
`CrudeOil` Crude oil price.
`Kerosene` Kerosene price.
`AmericanAir` Stock prices of American Airlines.
`SouthWest` Stock prices of South-West Airlines.
`Boeing` Stock prices of Boeing.
`FedEx` Stock prices of FedEx.

Details

The stock price data was downloaded from Yahoo Finance and the price series for crude oil and kerosene were obtained from the U.S. Energy Information Administration (EIA).

Source

<https://www.econstats.com>

References

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

Examples

```
data(BVDWAIR)
str(BVDWAIR)
```

BVDWSTOXX

*Sector indices of the EURO STOXX 600***Description**

The data frame contains the following sector indices of the EURO STOXX 600 index: Automobiles & Parts, Banks, Basic Resources, Chemicals, Construction and Materials, Financial Services, Food & Beverages, Health Care, Industrial Goods & Services, Insurance, Media, Oil & Gas, Technology, Telecommunications and Utilities. The data range is from 31th December 1986 until 21st November 2008.

Usage

```
data(BVDWSTOXX)
```

Format

A data frame with 5652 observations on the following 16 variables.

Date `POSIXt`: The dates of observations.

`AutoParts` Sector index Automobiles & Parts

`Banks` Sector index Banks

`BasicRes` Sector index Basic Resources

`Chemicals` Sector index Chemicals

`ConstrMat` Sector index Construction and Materials

`FoodBeverage` Sector index Food & Beverages

`FinService` Sector index Financial Services

`HealthCare` Sector index Health Care

`IndustrialGoods` Sector index Industrial Goods & Services

`Insurance` Sector index Insurance

`Media` Sector index Media

`OilGas` Sector index Oil & Gas

`Technology` Sector index Technology

`Telecom` Sector index Telecommunications

`Utilities` Sector index Utilities

Source

<https://stoxx.com>

References

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

Examples

```
data(BVDWSTOXX)
str(BVDWSTOXX)
```

cora

Autocorrelations of a Matrix Process

Description

This function computes the autocorrelation matrix for a given lag. For instance, it is used for estimating GO-GARCH models whence the method of moments is utilized.

Usage

```
cora(SI, lag = 1, standardize = TRUE)
```

Arguments

SSI	Array with dimension <code>dim = c(m, m, n)</code>
lag	Integer, the lag for which the autocorrelation is computed.
standardize	Logical, if <code>TRUE</code> (the default), the autocorrelation matrix is computed, otherwise the autocovariance matrix.

Details

This function computes the autocorrelation matrix according to:

$$\hat{\Gamma}_k(s) = \frac{1}{n} \sum_{t=k+1}^n S_t S_{t-k}$$

$$\hat{\Phi}_k(s) = \hat{\Gamma}_0(s)^{-1/2} \hat{\Gamma}_k(s) \hat{\Gamma}_0(s)^{-1/2}$$

It is computationally assured that $\hat{\Phi}_k(s)$ is symmetric by setting it equal to: $\hat{\Phi}_k(s) = \frac{1}{2}(\hat{\Phi}_k(s) + \hat{\Phi}_k(s)')$. The standardization matrix $\hat{\Gamma}_0(s)^{-1/2}$ is derived from the singular value decomposition of the co-variance matrix at lag zero.

Value

cora Matrix with dimension `dim = c(m, m)`.

Author(s)

Bernhard Pfaff

References

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

See Also[gogarch](#)

goest-methods	<i>Methods for Function goest</i>
---------------	-----------------------------------

Description

These are methods for estimating GO-GARCH models. Currently only a method for estimating GO-GARCH models by Maximum-Likelihood is implemented.

Details

The declared estimation methods are called from function `gogarch`.

Methods

```
goest signature(object = "Goestica")
goest signature(object = "Goestmm")
goest signature(object = "Goestml")
goest signature(object = "Goestnl")
```

Author(s)

Bernhard Pfaff

See Also[garchFit](#), [Goestica](#), [Goestml](#), [Goestnl](#), [Goestmm](#), [gogarch](#)

Goestica-class	<i>Class "Goestica": GO-GARCH models estimated by fast ICA</i>
----------------	--

Description

This class contains the GoGARCH class and has the mixing matrix A as additional slot.

Objects from the Class

Objects can be created by calls of the form `new("Goestmm", ...)`, or with the function `gogarch` whereby `method = "ica"` has been set.

Slots

ica: Object of class "list": List object returned by fastICA.
Z: Object of class "matrix": Transformation matrix.
U: Object of class "matrix": Orthogonal matrix.
Y: Object of class "matrix": Extracted component matrix.
H: Object of class "list": List of conditional variance/covariance matrices.
models: Object of class "list": List of univariate GARCH model fits.
estby: Object of class "character": Estimation method.
X: Object of class "matrix": The data matrix.
V: Object of class "matrix": Covariance matrix of X.
P: Object of class "matrix": Left singular values of Var/Cov matrix of X.
Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.
garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.
name: Object of class "character": The name of the original data object.

Extends

Class "[GoGARCH](#)", directly. Class "[Goinit](#)", by class "GoGARCH", distance 2.

Methods

cvar Returns the conditional variances as object with class attribute "mts" "ts".
ccov Returns the conditional co-variances as object with class attribute "mts" "ts".
ccor Returns the conditional correlations as object with class attribute "mts" "ts".
coef Returns the coefficients of the component GARCH models.
converged Returns the convergence codes of the component GARCH models.
formula Returns the formula for the component GARCH models.
goest Fast ICA estimation of Go-GARCH models.
plot Plotting of the conditional correlations.
predict Returns the conditional covariances and mean forecasts and the forecasts of the component GARCH models, object is of class Gopredict.
residuals Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
resid Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
show show-method for objects of class Goestmm.
summary summary-method for objects of class Goestml, object is of class Gosum.
update Updates an object of class Goestml.

Author(s)

Bernhard Pfaff

References

Broda, S.A. and Paoletta, M.S. (2008): CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation, *Swiss Finance Institute*, Research Paper Series No. 08-08, Zuerich.

See Also

[GoGARCH](#), [Goinit](#), [Gosum](#), [Gopredict](#), [goest-methods](#) and [gogarch](#)

Goestml-class	<i>Class "Goestml": GO-GARCH models estimated by Maximum-Likelihood</i>
---------------	---

Description

This class contains the GoGARCH class and has the outcome of `nlminb` as an additional slot.

Objects from the Class

Objects can be created by calls of the form `new("Goestml", ...)`, or with the function `gogarch` whereby `method = "ml"` has been set.

Slots

opt: Object of class "list": List returned by `nlminb`.
Z: Object of class "matrix": Transformation matrix.
U: Object of class "matrix": Orthogonal matrix.
Y: Object of class "matrix": Extracted component matrix.
H: Object of class "list": List of conditional variance/covariance matrices.
models: Object of class "list": List of univariate GARCH model fits.
estby: Object of class "character": Estimation method.
X: Object of class "matrix": The data matrix.
V: Object of class "matrix": Covariance matrix of X.
P: Object of class "matrix": Left singular values of Var/Cov matrix of X.
Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.
garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.
name: Object of class "character": The name of the original data object.

Extends

Class "[GoGARCH](#)", directly. Class "[Goinit](#)", by class "GoGARCH", distance 2.

Methods

angles Returns the Eulerian angles.

cvar Returns the conditional variances as object with class attribute "mts" "ts".

ccov Returns the conditional co-variances as object with class attribute "mts" "ts".

ccor Returns the conditional correlations as object with class attribute "mts" "ts".

coef Returns the coefficients of the component GARCH models.

converged Returns the convergence codes of the component GARCH models.

formula Returns the formula for the component GARCH models.

goest ML-Estimation of Go-GARCH models.

logLik Returns the value of the log-Likelihood function.

plot Plotting of the conditional correlations.

predict Returns the conditional covariances and mean forecasts and the forecasts of the component GARCH models, object is of class Gopredict.

residuals Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".

resid Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".

show show-method for objects of class Goestml.

summary summary-method for objects of class Goestml, object is of class Gosum.

update Updates an object of class Goestml.

Author(s)

Bernhard Pfaff

See Also

[GoGARCH](#), [Goinit](#), [Gosum](#), [Gopredict](#), [goest-methods](#)

Goestmm-class

Class "Goestmm": Go-GARCH models estimated by Methods of Moments

Description

This class contains the GoGARCH class and has the weights vector and the matched orthogonal matrices U as additional slots.

Objects from the Class

Objects can be created by calls of the form `new("Goestmm", ...)`, or with the function `gogarch` whereby `method = "mm"` has been set.

Slots

weights: Object of class "numeric": Weights for aggregating the matched orthogonal matrices U .
Unmatched: Object of class "list": List of matched orthogonal matrices U .
Z: Object of class "matrix": Transformation matrix.
U: Object of class "matrix": Orthogonal matrix.
Y: Object of class "matrix": Extracted component matrix.
H: Object of class "list": List of conditional variance/covariance matrices.
models: Object of class "list": List of univariate GARCH model fits.
estby: Object of class "character": Estimation method.
X: Object of class "matrix": The data matrix.
V: Object of class "matrix": Covariance matrix of X.
P: Object of class "matrix": Left singular values of Var/Cov matrix of X.
Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.
garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.
name: Object of class "character": The name of the original data object.

Extends

Class "[GoGARCH](#)", directly. Class "[Goinit](#)", by class "GoGARCH", distance 2.

Methods

cvar Returns the conditional variances as object with class attribute "mts" "ts".
ccov Returns the conditional co-variances as object with class attribute "mts" "ts".
ccor Returns the conditional correlations as object with class attribute "mts" "ts".
coef Returns the coefficients of the component GARCH models.
converged Returns the convergence codes of the component GARCH models.
formula Returns the formula for the component GARCH models.
goest Methods of moments estimation of Go-GARCH models.
plot Plotting of the conditional correlations.
predict Returns the conditional covariances and mean forecasts and the forecasts of the component GARCH models, object is of class Gopredict.
residuals Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
resid Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
show show-method for objects of class Goestmm.
summary summary-method for objects of class Goestml, object is of class Gosum.
update Updates an object of class Goestml.

Author(s)

Bernhard Pfaff

References

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

See Also

[GoGARCH](#), [Goinit](#), [Gosum](#), [Gopredict](#), [goest-methods](#), [gogarch](#), [Umatch](#)

Goestnls-class	<i>Class "Goestnls": GO-GARCH models estimated by Non-linear Least-Squares</i>
----------------	--

Description

This class contains the GoGARCH class and has the outcome of `optim` as an additional slot.

Objects from the Class

Objects can be created by calls of the form `new("Goestnls", ...)`, or with the function `gogarch` whereby `method = "nls"` has been set.

Slots

nls: Object of class "list": List returned by `optim`.
Z: Object of class "matrix": Transformation matrix.
U: Object of class "matrix": Orthogonal matrix.
Y: Object of class "matrix": Extracted component matrix.
H: Object of class "list": List of conditional variance/covariance matrices.
models: Object of class "list": List of univariate GARCH model fits.
estby: Object of class "character": Estimation method.
X: Object of class "matrix": The data matrix.
V: Object of class "matrix": Covariance matrix of X.
P: Object of class "matrix": Left singular values of Var/Cov matrix of X.
Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.
garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.
name: Object of class "character": The name of the original data object.

Extends

Class "[GoGARCH](#)", directly. Class "[Goinit](#)", by class "GoGARCH", distance 2.

Methods

cvar Returns the conditional variances as object with class attribute "mts" "ts".
ccov Returns the conditional co-variances as object with class attribute "mts" "ts".
ccor Returns the conditional correlationsas object with class attribute "mts" "ts".
coef Returns the coeffiecents of the component GARCH models.
converged Returns the convergence codes of the component GARCH models.
formula Returns the formula for the component GARCH models.
goest NLS-Estimation of Go-GARCH models.
plot Plotting of the conditional correlations.
predict Returns the conditional covariances and mean forecasts and the forecasts of the component GARCH models, object is of class Gopredict.
residuals Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
resid Returns the residuals of the Go-GARCH model as object with class attribute "mts" "ts".
show show-method for objects of class Goestnls.
summary summary-method for objects of class GoGARCH, object is of class Gosum.
update Updates an object of class GoGARCH.

Author(s)

Bernhard Pfaff

See Also

[GoGARCH](#), [Goinit](#), [Gosum](#), [Gopredict](#), [goest-methods](#), [gogarch](#)

gogarch

Specification and estimation of GO-GARCH models

Description

This function steers the specification and estimation of GO-GARCH models.

Usage

```
gogarch(data, formula, scale = FALSE, estby = c("ica", "mm", "ml", "nls"),
lag.max = 1, initial = NULL, garchlist = list(init.rec = "mci", delta
= 2, skew = 1, shape = 4, cond.dist = "norm", include.mean = FALSE,
include.delta = NULL, include.skew = NULL, include.shape = NULL,
leverage = NULL, trace = FALSE, algorithm = "nlminb", hessian =
"ropt", control = list(), title = NULL, description = NULL), ...)
```

Arguments

data	Matrix: the original data set.
formula	Formula: valid formula for univariate GARCH models.
scale	Logical, if TRUE the data is scaled. The default is scale = FALSE.
estby	Character: by fast ICA estby = "ica" (the default), by Estbys of Moments estby = "mm" or by Maximum-Likelihood estby = "ml" or by non-linear Least-Squares estby = "nls".
initial	Numeric: starting values for optimization (used if estby = "ml" or estby = "nls" has been chosen (see Details).
lag.max	Integer: The number of used lags for computing the matched orthogonal matrices U (used if estby = "mm" has been chosen).
garchlist	List: Elements are passed to garchFit.
...	Ellipsis argument: is passed to the goest method (see details).

Details

The ellipsis argument is passed to the function `fastICA` if `estby = "ica"` has been set, or to `optim` if `estby = "nls"` is employed or to `nlminb` if the GO-GARCH model is estimated by maximum likelihood, *i.e.*, `estby = "ml"`. It is not employed if the methods of moments estimator is chosen.

If the argument `initial` is left `NULL`, the starting values are computed according `seq(3.0, 0.1, length.out = 1)`, whereby 1 is the length of `initial` for `estby = "ml"` and are set to `rep(0.1, d)`, whereby for `method = "nls"`. This length must be equal to $m * (m - 1)/2$ for estimation by Maximum-Likelihood and $m * (m + 1)/2$ for estimation by non-linear least-Squares, whereby m is the number of columns of `data`.

Value

Dependent on the chosen estimation method either an object of class `Goestica` or, `Goestmm` or `Goestml` or `Goestnls` is returned. All of these classes extend the `GoGARCH` class.

Author(s)

Bernhard Pfaff

References

Van der Weide, Roy (2002), GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model, *Journal of Applied Econometrics*, **17(5)**, 549 – 564.

Boswijk, H. Peter and van der Weide, Roy (2006), Wake me up before you GO-GARCH, *Tinbergen Institute Discussion Paper*, **TI 2006-079/4**, University of Amsterdam and Tinbergen Institute.

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

Broda, S.A. and Paoletta, M.S. (2008): CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation, *Swiss Finance Institute*, Research Paper Series No. 08-08, Zuerich.

See Also

[GoGARCH](#), [Goestica](#), [Goestmm](#), [Goestnls](#), [Goestml](#), [goest-methods](#)

Examples

```
## Not run:
library(vars)
## Boswijk / van der Weide (2009)
data(BVDWSTOXX)
BVDWSTOXX <- zoo(x = BVDWSTOXX[, -1], order.by = BVDWSTOXX[, 1])
BVDWSTOXX <- window(BVDWSTOXX, end = as.POSIXct("2007-12-31"))
BVDWSTOXX <- diff(log(BVDWSTOXX))
sectors <- BVDWSTOXX[, c("AutoParts", "Banks", "OilGas")]
sectors <- apply(sectors, 2, scale, scale = FALSE)
gogmm <- gogarch(sectors, formula = ~garch(1,1), estby = "mm",
                  lag.max = 100)
gogmm
## Boswijk / van der Weide (2006)
data(BVDW)
BVDW <- zoo(x = BVDW[, -1], order.by = BVDW[, 1])
BVDW <- diff(log(BVDW)) * 100
gognls <- gogarch(BVDW, formula = ~garch(1,1), scale = TRUE,
                   estby = "nls")
gognls
## van der Weide (2002)
data(VDW)
var1 <- VAR(scale(VDW), p = 1, type = "const")
resid <- residuals(var1)
gogml <- gogarch(resid, ~garch(1, 1), scale = TRUE,
                  estby = "ml", control = list(iter.max = 1000))
gogml
solve(gogml@Z)

## End(Not run)
```

Description

This class defines the slots for estimated GO-GARCH models. It contains the class `Goinit`.

Objects from the Class

Objects can be created by calls of the form `new("GoGARCH", ...)`.

Slots

Z: Object of class "matrix": Transformation matrix.
U: Object of class "Orthonom": Orthonormal matrix.
Y: Object of class "matrix": Extracted component matrix.
H: Object of class "list": List of conditional variance/covariance matrices.
models: Object of class "list": List of univariate GARCH model fits.
estby: Object of class "character": Estimation method.
CALL: Object of class "call": Result of match.call in generating function.
X: Object of class "matrix": The data matrix.
V: Object of class "matrix": Covariance matrix of X.
P: Object of class "matrix": Left singular values of Var/Cov matrix of X.
Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.
garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.
name: Object of class "character": The name of the original data object.

Extends

Class "[Goinit](#)", directly.

Methods

cvar Returns the conditional variances as object with class attribute "mts" "ts".
ccov Returns the conditional co-variances as object with class attribute "mts" "ts".
ccor Returns the conditional correlationsas object with class attribute "mts" "ts".
coef Returns the coeffiecents of the component GARCH models.
converged Returns the convergence codes of the component GARCH models.
formula Returns the formula for the component GARCH models.
plot Plotting of the conditional correlations.
predict Returns the conditional covariances and mean forecasts and the forecasts of the component GARCH models, object is of class Gopredict.
residuals Returns the residuals of the GO-GARCH model.
show show-method for objects of class GoGARCH.
summary summary-method for objects of class GoGARCH, object is of class Gosum.
update Updates an object of class GoGARCH.

Author(s)

Bernhard Pfaff

See Also

[Goinit](#), [Gosum](#), [Gopredict](#)

goinit*Constructor function for objects of class "Goinit"*

Description

This function can be utilized to create objects of class `Goinit`. These objects are the starting point for estimating GO-GARCH models.

Usage

```
goinit(X, garchf = ~garch(1, 1), scale = FALSE)
```

Arguments

<code>X</code>	Matrix: the data matrix.
<code>garchf</code>	Formula: A formula object that will be used in the GARCH models of the uncorrelated components.
<code>scale</code>	Logical, if TRUE the data <code>X</code> will be scaled, the default value is FALSE for no scaling of the data.

Details

This function computes the variance/covariance matrix of `X`. Next the singular value decomposition is applied and the projection matrix as well as the diagonal matrix with the square roots of the eigen values are computed.

Value

An object of class `Goinit`.

Author(s)

Bernhard Pfaff

See Also

[Goinit](#)

Examples

```
## Not run:
library(vars)
data(VDW)
var1 <- VAR(VDW, p = 1, type = "const")
resid <- resid(var1)
goinit(resid, scale = TRUE)

## End(Not run)
```

Description

This class defines the required slots for estimating GO-GARCH models.

Objects from the Class

Objects can be created by calls of the form `new("Goinit", ...)`, or more conveniently by `goinit()`.

Slots

X: Object of class "matrix": The data matrix.

V: Object of class "matrix": Covariance matrix of X.

P: Object of class "matrix": Left singular values of Var/Cov matrix of X.

Dsqr: Object of class "matrix": Square roots of eigenvalues on diagonal, else zero.

garchf: Object of class "formula": Garch formula used for uncorrelated component GARCH models.

name: Object of class "character": The name of the original data object.

Methods

show Prints the slots, whereby for X only the head is displayed.

Author(s)

Bernhard Pfaff

See Also

[garchFit](#), [goinit](#)

Examples

```
showClass("Goinit")
```

gollh*Log-Likelihood function of GO-GARCH models*

Description

This function returns the negative of the log-Likelihood function for GO-GARCH models.

Usage

```
gollh(params, object, garchlist)
```

Arguments

params	Vector of initial values for theta.
object	An object of class Goinit or an extension thereof.
garchlist	List, elements are passed to garchFit.

Details

The log-Likelihood function of GO-GARCH models is given as:

$$L_{\theta, \alpha, \beta} = -\frac{1}{2} \sum_{t=1}^T m \log(2\pi) + \log |Z_\theta Z'_\theta| + \log |H_t| + y' H_t^{-1} y_t$$

whereby $Z = P \Delta^{\frac{1}{2}} U_0$, $y_t = Z^{-1} x_t$ and H_t is the conditional variance matrix of the independent components.

Value

negll	Scalar, the negative value of the log-Likelihood function.
-------	--

Author(s)

Bernhard Pfaff

References

Van der Weide, Roy (2002), GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model, *Journal of Applied Econometrics*, **17(5)**, 549 – 564.

See Also

[garchFit](#)

gonls*Non-linear least-squares estimation of matrix B*

Description

This is the target function for estimating the matrix B by non-linear least-squares. It is used in the estimation method goest if `method = "nls"` is chosen.

Usage

```
gonls(params, SSI)
```

Arguments

`params` The initial values of the $vech(B)$.
`SSI` A list with two elements, each a list itself, containing $S_t = s_t s_t' - I_m$ and $S_{t-1} = s_{t-1} s_{t-1}' - I_m$, respectively.

Details

Boswijk and van der Weiden (2006) proposed the following criterion function:

$$S(A) = \frac{1}{n} \sum_{t=1}^n \text{tr}([s_t s_t' - I_m - B(s_{t-1} s_{t-1}' - I_m)B]^2) = S^*(B)$$

for retrieving the matrix U . This matrix is the eigen vector matrix of B . The linear map $Z = P\Delta^{1/2}U$ and its inverse can then be computed for calculating the component matrix $Y = XZ^{-1}$.

Value

`f` numeric: The value of the target function.

Author(s)

Bernhard Pfaff

References

Boswijk, H. Peter and van der Weide, Roy (2006), Wake me up before you GO-GARCH, *Tinbergen Institute Discussion Paper, TI 2006-079/4*, University of Amsterdam and Tinbergen Institute.

See Also

[gogarch](#)

Gopredict-classClass "Gopredict": Prediction of GO-GARCH Models

Description

This class defines the slots for forecasts from a GO-GARCH model.

Objects from the Class

Objects can be created by calls of the form `new("Gopredict", ...)`, or with the method `predict` of formal class objects `GoGARCH` and `Goestm1`.

Slots

Hf: Object of class "list": The forecasted conditional covariances.

Xf: Object of class "matrix": The transformed forecasts of the component GARCH mean models.

CGARCHF: Object of class "list": The original forecasts of the component GARCH models.

Methods

ccor Returns the forecasted conditional correlations.

ccov Returns the forecasted conditional co-variances.

cvar Returns the forecasted conditional variances.

show show-method for objects of class Gopredict.

Note

In case more than 10 forecasts steps are computed, the show-method displays only the head of the returned objects. Furthermore, the show-method displays the forecasted conditional variances only. The forecasted conditional co-variances and/or the forecasted conditional correlations can be retrieved with the methods `ccov` or `ccor`, respectively.

Author(s)

Bernhard Pfaff

See Also

[GoGARCH](#), [Goestm1](#)

Gosum-class

*Class "Gosum": Summary object of GO-GARCH model***Description**

The formal summary class of GoGARCH objects or objects that extend this class.

Objects from the Class

Objects can be created by calls of the form `new("Gosum", ...)` or are set by the summary-method.

Slots

name: character: the name of the original data object.

method: character: the estimation method.

model: formula: The GARCH model formula for the component GARCH models.

garchc: list: The elements are `matcoef` matrices generated by `garchFit` for the components.

Zinv: matrix: The inverse of the linear map $X = YZ$.

Methods

show show-method for objects of class `Gosum`.

Author(s)

Bernhard Pfaff

See Also

[GoGARCH](#), [Goestm1](#)

gotheta

*Creates an object of class GoGARCH based on Euler angles***Description**

This function returns an object of class `GoGARCH` based on an input vector of Euler angles.

Usage

```
gotheta(theta, object, garchlist = list(init.rec = "mci", delta = 2,
skew = 1, shape = 4, cond.dist = "norm", include.mean = FALSE,
include.delta = NULL, include.skew = NULL, include.shape = NULL,
leverage = NULL, trace = FALSE, algorithm = "nlminb", hessian = "ropt",
control = list(), title = NULL, description = NULL))
```

Arguments

theta	Vector of Euler angles.
object	An object of formal class <code>Goinit</code> or an extension thereof.
garchlist	List with optional elements passed to <code>garchFit</code> .

Details

In a first step the orthogonal matrix U is computed as the product of rotation matrices given the vector `theta` of Euler angles with the function `UprodR`. The linear map Z is computed next as $Z = PD^{\frac{1}{2}}U'$. The unobserved components Y are calculated as $Y = XZ^{-1}$. These are then utilized in the estimation of the univariate GARCH models according to `object@garchf`. The conditional variance/covariance matrices are calculated according to $V_t = ZH_tZ'$ whereby H_t signifies a matrix with the conditional variances of the univariate GARCH models on its diagonal.

Value

Returns an object of class `GoGARCH`.

Author(s)

Bernhard Pfaff

References

Van der Weide, Roy (2002), GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model, *Journal of Applied Econometrics*, **17**(5), 549 – 564.

See Also

`Goinit`, `GoGARCH`, `Goestml`, `garchFit`

Examples

```
## Not run:
library(vars)
data(VDW)
var1 <- VAR(VDW, p = 1, type = "const")
resid <- resid(var1)
gin <- goinit(resid, scale = TRUE)
gotheta(0.5, gin)

## End(Not run)
```

Orthom-class	<i>Class "Orthom": Orthogonal matrices</i>
--------------	--

Description

This class defines an orthogonal matrix, which is characterized by $\det(M) = 1$ and $MM' = I$.

Objects from the Class

Objects can be created by calls of the form `new("Orthom", ...)`. In addition the function `UprodR` returns an object of formal class `Orthom`.

Slots

M: Object of class "matrix".

Methods

M Returns the slot `M` of class `Orthom`.

print print-method for objects of class `Orthom`.

show show-method for objects of class `Orthom`.

t Transpose of object@`M`.

Note

Objects are validated by `validOrthomObject()`. This function is utilised by `validObject()`.

Author(s)

Bernhard Pfaff

See Also

[UprodR](#), [validOrthomObject](#)

Examples

```
showClass("Orthom")
```

Rd2	<i>Rotation matrix, 2-dimensional</i>
-----	---------------------------------------

Description

Given an angle θ whereby $\theta \in [0, \pi/2)$ the function Rd2 returns a 2-dimensional rotation matrix of Euler angles.

Usage

`Rd2(theta)`

Arguments

`theta` Numeric, angle in the interval $[0, \pi/2)$.

Value

`R` A 2-dimensional rotation matrix.

Author(s)

Bernhard Pfaff

See Also

[UprodR](#)

Examples

`Rd2(pi/3)`

Umatch	<i>Matching of Orthogonal Matrices for Cayley transforms</i>
--------	--

Description

This function matches an orthogonal matrix to the importance of the columns of the matrix to which it should be matched.

Usage

`Umatch(from, to)`

Arguments

from	Matrix: orthogonal
to	Matrix: orthogonal

Value

mat	Matched matrix.
-----	-----------------

Author(s)

Bernhard Pfaff

References

Boswijk, H. Peter and van der Weide, Roy (2009), Method of Moments Estimation of GO-GARCH Models, *Working Paper*, University of Amsterdam, Tinbergen Institute and World Bank.

Liebeck, H. and Osborne, A. (1991), The Generation of All Rational Orthogonal Matrices, *The American Mathematical Monthly*, **98** (2) (Feb. 1991), 131 – 133.

See Also

[gogarch](#)

unvech	Returns a symmetric matrix from a vector
--------	--

Description

This function returns the symmetric matrix X from a vector that resulted from $v = vech(X)$.

Usage

`unvech(v)`

Arguments

v	Vector, numeric.
---	------------------

Details

The vector v must have length equal to $m * (m + 1) / 2$, whereby m is a dimension of the symmetric matrix $X_{m \times m}$.

Value

X	Matrix, symmetric of order $m \times m$.
---	---

Author(s)

Bernhard Pfaff

See Also

[vec](#)

Examples

```
v <- c(1, 2, 3, 4, 5, 6)
unvech(v)
```

UprodR

Creation of an orthogonal matrix

Description

This function returns an orthogonal matrix which results of the matrix products of rotation matrices.

Usage

```
UprodR(theta)
```

Arguments

theta Vector, of angles of the rotation matrices.

Details

The length of theta must be equal to $m * (m - 1)/2$, where m is the dimension of the orthogonal matrix. The elements of theta must lie in the interval $[0, \pi/2)$.

Value

result Object of class Orthom.

Author(s)

Bernhard Pfaff

References

Vilenkin, N. Ja. (1968), Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, 22, American Math. Soc., Providence, Rhode Island, USA.

See Also

[Rd2](#), [Orthom](#)

Examples

```
theta <- c(pi/3, pi/5, pi/7)
U <- UprodR(theta)
U
```

validGoinitObject *Validation function for objects of class Goinit*

Description

This function validates objects of class Goinit.

Usage

```
validGoinitObject(object)
```

Arguments

object Object of class Goinit.

Details

This function is utilized by validObject(). It is tested whether object@V, object@P, object@Dsqr are square matrices; object@V coincides with the singular value decomposition.

Value

TRUE Logical, TRUE if the object passes the validation, otherwise an informative error message is returned.

Author(s)

Bernhard Pfaff

See Also

[Goinit](#), [goinit](#)

Examples

```
data(VDW)
go <- goinit(VDW)
validObject(go)
```

validOrthomObject *Validation function for objects of class Orthom*

Description

This function validates objects of class Orthom.

Usage

```
validOrthomObject(object)
```

Arguments

object Object of class Orthom.

Details

This function is utilized by `validObject()`. It is tested whether `object@M` is a square matrix, has $\det(M) = 1$ and $MM' = I$.

Value

TRUE Logical, TRUE if the object passes the validation, otherwise an informative error message is returned.

Author(s)

Bernhard Pfaff

See Also

[Orthom](#)

Examples

```
theta <- c(pi/3, pi/5, pi/7)
U <- UprodR(theta)
validObject(U)
```

VDW

Dow Jones Industrial Average and Nasdaq stock indices

Description

The daily (log) returns of the Dow Jones Industrial Average and the NASDAQ composite, respectively. The daily observations start at the first of January, 1990, and end in October 2001.

Usage

```
data(VDW)
```

Format

A data frame with 3082 observations on the following 2 variables.

DJIA Log-return of Dow Jones Industrial Average.

NASDAQ Log-return of NASDAQ.

Details

This data set has been utilized in the source below and can be downloaded from the web-site of the *Journal of Applied Econometrics* (see link below).

Source

Van der Weide, Roy (2002), GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model, *Journal of Applied Econometrics*, **17(5)**, 549 – 564.

References

http://qed.econ.queensu.ca/jae/2002-v17.5/van_der_weide/

See Also

[BVDW](#)

Examples

```
data(VDW)  
str(VDW)
```

Index

- * **Euler Angles**
 - gogarch, 12
- * **Euler angles**
 - gotheta, 21
 - Rd2, 24
- * **Euler angle**
 - Rd2, 24
- * **GARCH**
 - gogarch, 12
 - gonls, 19
- * **GO-GARCH**
 - gogarch, 12
 - goinit, 16
 - gollh, 18
 - gonls, 19
 - gotheta, 21
- * **Likelihood**
 - gollh, 18
- * **Orthogonal Matrix**
 - Orthom-class, 23
 - UprodR, 26
- * **Rotation Matrix**
 - Rd2, 24
- * **SVD**
 - goinit, 16
- * **Singular Value Decomposition**
 - goinit, 16
- * **algebra**
 - Orthom-class, 23
 - Rd2, 24
 - unvech, 25
 - UprodR, 26
- * **classes**
 - Goestica-class, 6
 - Goestml-class, 8
 - Goestmm-class, 9
 - Goestnls-class, 11
 - GoGARCH-class, 14
 - Goinit-class, 17
- Gopredict-class, 20
- Gosum-class, 21
- Orthom-class, 23
- * **datasets**
 - BVDW, 2
 - BVDWAIR, 3
 - BVDWSTOXX, 4
 - VDW, 29
- * **methods**
 - goest-methods, 6
- * **models**
 - cora, 5
 - gogarch, 12
 - goinit, 16
 - gollh, 18
 - gonls, 19
 - gotheta, 21
 - Umatch, 24
- * **utilities**
 - validGoinitObject, 27
 - validOrthomObject, 28
- * **vech invert**
 - unvech, 25
- * **vech**
 - unvech, 25
- angles (Goestml-class), 8
- angles, Goestml-method (Goestml-class), 8
- BVDW, 2, 29
- BVDWAIR, 3
- BVDWSTOXX, 4
- ccor (Goestml-class), 8
- ccor, Goestica-method (Goestica-class), 6
- ccor, Goestml-method (Goestml-class), 8
- ccor, Goestmm-method (Goestmm-class), 9
- ccor, Goestnls-method (Goestnls-class), 11
- ccor, GoGARCH-method (GoGARCH-class), 14

ccor, Gopredict-method
 (Gopredict-class), 20
 ccov (Goestml-class), 8
 ccov, Goestica-method (Goestica-class), 6
 ccov, Goestml-method (Goestml-class), 8
 ccov, Goestmm-method (Goestmm-class), 9
 ccov, Goestnls-method (Goestnls-class),
 11
 ccov, GoGARCH-method (GoGARCH-class), 14
 ccov, Gopredict-method
 (Gopredict-class), 20
 coef, Goestica-method (Goestica-class), 6
 coef, Goestml-method (Goestml-class), 8
 coef, Goestmm-method (Goestmm-class), 9
 coef, Goestnls-method (Goestnls-class),
 11
 coef, GoGARCH-method (GoGARCH-class), 14
 converged (Goestml-class), 8
 converged, Goestica-method
 (Goestica-class), 6
 converged, Goestml-method
 (Goestml-class), 8
 converged, Goestmm-method
 (Goestmm-class), 9
 converged, Goestnls-method
 (Goestnls-class), 11
 converged, GoGARCH-method
 (GoGARCH-class), 14
 cora, 5
 cvar (Goestml-class), 8
 cvar, Goestica-method (Goestica-class), 6
 cvar, Goestml-method (Goestml-class), 8
 cvar, Goestmm-method (Goestmm-class), 9
 cvar, Goestnls-method (Goestnls-class),
 11
 cvar, GoGARCH-method (GoGARCH-class), 14
 cvar, Gopredict-method
 (Gopredict-class), 20
 formula, Goestica-method
 (Goestica-class), 6
 formula, Goestml-method (Goestml-class),
 8
 formula, Goestmm-method (Goestmm-class),
 9
 formula, Goestnls-method
 (Goestnls-class), 11
 formula, GoGARCH-method (GoGARCH-class),
 14

garchFit, 6, 17, 18, 22
 goest (goest-methods), 6
 goest, Goestica-method (Goestica-class),
 6
 goest, Goestml-method (Goestml-class), 8
 goest, Goestmm-method (Goestmm-class), 9
 goest, Goestnls-method (Goestnls-class),
 11
 goest-methods, 6
 Goestica, 6, 14
 Goestica-class, 6
 Goestml, 6, 14, 20–22
 Goestml-class, 8
 Goestmm, 6, 14
 Goestmm-class, 9
 Goestnls, 6, 14
 Goestnls-class, 11
 GoGARCH, 7–12, 14, 20–22
 gogarch, 6, 8, 11, 12, 12, 19, 25
 GoGARCH-class, 14
 Goinit, 7–12, 15, 16, 22, 27
 goinit, 16, 17, 27
 Goinit-class, 17
 gollh, 18
 gonls, 19
 Gopredict, 8, 9, 11, 12, 15
 Gopredict-class, 20
 Gosum, 8, 9, 11, 12, 15
 Gosum-class, 21
 gotheta, 21
 logLik (Goestml-class), 8
 logLik, Goestml-method (Goestml-class), 8
 M (Orthom-class), 23
 M, Orthom-method (Orthom-class), 23
 Orthom, 26, 28
 Orthom-class, 23
 plot, Goestica, missing-method
 (Goestica-class), 6
 plot, Goestml, missing-method
 (Goestml-class), 8
 plot, Goestmm, missing-method
 (Goestmm-class), 9
 plot, Goestnls, missing-method
 (Goestnls-class), 11
 plot, GoGARCH, missing-method
 (GoGARCH-class), 14

predict, Goestica-method
 (Goestica-class), 6
predict, Goestml-method (Goestml-class),
 8
predict, Goestmm-method (Goestmm-class),
 9
predict, Goestnls-method
 (Goestnls-class), 11
predict, GoGARCH-method (GoGARCH-class),
 14
print, Orthom-method (Orthom-class), 23

Rd2, 24, 26
resid, Goestica-method (Goestica-class),
 6
resid, Goestml-method (Goestml-class), 8
resid, Goestmm-method (Goestmm-class), 9
resid, Goestnls-method (Goestnls-class),
 11
resid, GoGARCH-method (GoGARCH-class), 14
residuals, Goestica-method
 (Goestica-class), 6
residuals, Goestml-method
 (Goestml-class), 8
residuals, Goestmm-method
 (Goestmm-class), 9
residuals, Goestnls-method
 (Goestnls-class), 11
residuals, GoGARCH-method
 (GoGARCH-class), 14

show, Goestica-method (Goestica-class), 6
show, Goestml-method (Goestml-class), 8
show, Goestmm-method (Goestmm-class), 9
show, Goestnls-method (Goestnls-class),
 11
show, GoGARCH-method (GoGARCH-class), 14
show, Goinit-method (Goinit-class), 17
show, Gopredict-method
 (Gopredict-class), 20
show, Gosum-method (Gosum-class), 21
show, Orthom-method (Orthom-class), 23
summary, Goestica-method
 (Goestica-class), 6
summary, Goestml-method (Goestml-class),
 8
summary, Goestmm-method (Goestmm-class),
 9

summary, Goestnls-method
 (Goestnls-class), 11
summary, GoGARCH-method (GoGARCH-class),
 14

t, Orthom-method (Orthom-class), 23

Umatch, 11, 24
unvech, 25
update, Goestica-method
 (Goestica-class), 6
update, Goestml-method (Goestml-class), 8
update, Goestmm-method (Goestmm-class), 9
update, Goestnls-method
 (Goestnls-class), 11
update, GoGARCH-method (GoGARCH-class),
 14
UprodR, 23, 24, 26

validGoinitObject, 27
validOrthomObject, 23, 28
VDW, 2, 29
vec, 26