
Post-model-fitting procedures with glmmTMB

models: diagnostics, inference, and model
output

January 14, 2026

The purpose of this vignette is to describe (and test) the functions in
various downstream packages that are available for summarizing and other-
wise interpreting glmmTMB fits. Some of the packages/functions discussed
below may not be suitable for inference on parameters of the zero-inflation
or dispersion models, but will be restricted to the conditional-mean model.

library(glmmTMB)

library(car)

library(emmeans)

library(effects)

library(multcomp)

library(MuMIn)

require(DHARMa, quietly = TRUE) ## may be missing ...

library(broom)

library(broom.mixed)

require(dotwhisker, quietly = TRUE)

library(ggplot2); theme_set(theme_bw())

library(texreg)

library(xtable)

if (huxtable_OK) library(huxtable)

retrieve slow stuff

L <- gt_load("vignette_data/model_evaluation.rda")

A couple of example models:

1

owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +

(1|Nest)+offset(log(BroodSize)),

contrasts=list(FoodTreatment="contr.sum",

SexParent="contr.sum"),

family = nbinom1,

zi = ~1, data=Owls)

data("cbpp",package="lme4")

cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd),

weights=size,family=binomial,

data=cbpp)

simulated three-term Beta example

set.seed(1001)

dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3),

a=rnorm(1000),b=rnorm(1000),c=rnorm(1000))

simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd)

1 model checking and diagnostics

1.1 DHARMa

The DHARMa package provides diagnostics for hierarchical models. After
running

owls_nb1_simres <- simulateResiduals(owls_nb1)

you can plot the results:

plot(owls_nb1_simres)

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.34893
Deviation n.s.

Outlier test: p= 0.64138
Deviation n.s.

Dispersion test: p= 0.056
Deviation n.s.

Model predictions (rank transformed)

D
H

A
R

M
a

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
50

1.
00

DHARMa residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual

DHARMa provides lots of other methods based on the simulated residuals:
see vignette("DHARMa", package="DHARMa")

1.1.1 issues

� DHARMa will only work for models using families for which a simulate
method has been implemented (in TMB , and appropriately reflected in
glmmTMB)

2 Inference

2.1 car::Anova

We can use car::Anova() to get traditional ANOVA-style tables from
glmmTMB fits. A few limitations/reminders:

� these tables use Wald χ2 statistics for comparisons (neither likelihood
ratio tests nor F tests)

� they apply to the fixed effects of the conditional component of the
model only (other components might work, but haven’t been tested at
all)

� as always, if you want to do type 3 tests, you should probably set
sum-to-zero contrasts on factors and center numerical covariates (see
contrasts argument above)

3

if (requireNamespace("car") && getRversion() >= "3.6.0") {
Anova(owls_nb1) ## default type II

Anova(owls_nb1,type="III")

}

Chisq Df Pr(>Chisq)

21.4 1 3.66e-06

46.1 1 1.1e-11

0.512 1 0.474

2.29 1 0.13

2.2 effects

effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0")

if (effects_ok) {
(ae <- allEffects(owls_nb1))

plot(ae)

}

Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...):

overriding variance function for effects/dev.resids: computed variances

may be incorrect

4

FoodTreatment*SexParent effect plot

FoodTreatment

S
ib

lin
gN

eg
ot

ia
tio

n

 4

 6

 8

10

12

Deprived Satiated

 = SexParent Female

Deprived Satiated

 = SexParent Male

(the error can probably be ignored)

if (effects_ok) {
plot(allEffects(simex_b1))

}
a*b*c effect plot

a

z

0.2
0.4
0.6
0.8

−3 −2 −1 0 1 2 3

 = b −3
 = c −4

 = b −2
 = c −4

−3 −2 −1 0 1 2 3

 = b −0.2
 = c −4

 = b 1
 = c −4

−3 −2 −1 0 1 2 3

 = b 3
 = c −4

 = b −3
 = c −2

 = b −2
 = c −2

 = b −0.2
 = c −2

 = b 1
 = c −2

0.2
0.4
0.6
0.8

 = b 3
 = c −2

0.2
0.4
0.6
0.8

 = b −3
 = c −0.4

 = b −2
 = c −0.4

 = b −0.2
 = c −0.4

 = b 1
 = c −0.4

 = b 3
 = c −0.4

 = b −3
 = c 1

 = b −2
 = c 1

 = b −0.2
 = c 1

 = b 1
 = c 1

0.2
0.4
0.6
0.8

 = b 3
 = c 1

0.2
0.4
0.6
0.8

 = b −3
 = c 3

−3 −2 −1 0 1 2 3

 = b −2
 = c 3

 = b −0.2
 = c 3

−3 −2 −1 0 1 2 3

 = b 1
 = c 3

 = b 3
 = c 3

5

2.3 emmeans

emmeans(owls_nb1, poly ~ FoodTreatment | SexParent)

$emmeans

SexParent = Female:

FoodTreatment emmean SE df asymp.LCL asymp.UCL

Deprived 2.30 0.1100 Inf 2.09 2.52

Satiated 1.44 0.1490 Inf 1.15 1.74

##

SexParent = Male:

FoodTreatment emmean SE df asymp.LCL asymp.UCL

Deprived 2.23 0.0964 Inf 2.04 2.42

Satiated 1.65 0.1360 Inf 1.38 1.91

##

Results are given on the log (not the response) scale.

Confidence level used: 0.95

##

$contrasts

SexParent = Female:

contrast estimate SE df z.ratio p.value

linear -0.859 0.149 Inf -5.776 <.0001

##

SexParent = Male:

contrast estimate SE df z.ratio p.value

linear -0.586 0.129 Inf -4.531 <.0001

##

Results are given on the log (not the response) scale.

Let us also consider a corresponding hurdle model:

owls_hnb1 <- update(owls_nb1, family = truncated_nbinom1, ziformula = ~.)

On the response scale, this model estimates the means of the component
distribution as follows:

6

emmeans(owls_hnb1, ~ FoodTreatment * SexParent, component = "cond", type = "response")

FoodTreatment SexParent response SE df asymp.LCL asymp.UCL

Deprived Female 10.04 0.932 Inf 8.37 12.05

Satiated Female 7.08 0.830 Inf 5.63 8.91

Deprived Male 9.31 0.716 Inf 8.01 10.83

Satiated Male 7.37 0.726 Inf 6.08 8.94

##

Confidence level used: 0.95

Intervals are back-transformed from the log scale

--- or ---

emmeans(owls_hnb1, ~ FoodTreatment * SexParent, component = "cmean")

FoodTreatment SexParent emmean SE df asymp.LCL asymp.UCL

Deprived Female 10.19 0.888 Inf 8.45 11.93

Satiated Female 7.46 0.738 Inf 6.02 8.91

Deprived Male 9.50 0.677 Inf 8.17 10.83

Satiated Male 7.72 0.653 Inf 6.44 9.00

##

Confidence level used: 0.95

These estimates differ because the first ones are back-transformed from
the linear predictor, which is based on the un-truncated component distri-
bution, while the second ones are estimates of the means of the truncated
distribution (with zero omitted). This discrepancy occurs only with hurdle
models.

The response means combine both the conditional and the zero-inflation
model:

emmeans(owls_hnb1, ~ FoodTreatment * SexParent, component = "response")

FoodTreatment SexParent emmean SE df asymp.LCL asymp.UCL

Deprived Female 8.86 0.874 Inf 7.14 10.57

Satiated Female 3.99 0.692 Inf 2.63 5.35

Deprived Male 8.72 0.668 Inf 7.41 10.03

Satiated Male 4.74 0.662 Inf 3.44 6.03

##

Confidence level used: 0.95

7

2.4 drop1

stats::drop1 is a built-in R function that refits the model with various
terms dropped. In its default mode it respects marginality (i.e., it will only
drop the top-level interactions, not the main effects):

system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq"))

user system elapsed

0.225 0.001 0.226

print(owls_nb1_d1)

Single term deletions

##

Model:

SiblingNegotiation ~ FoodTreatment * SexParent + (1 | Nest) +

offset(log(BroodSize))

Df AIC LRT Pr(>Chi)

<none> 3383.6

FoodTreatment:SexParent 1 3383.9 2.2766 0.1313

In principle, using scope = . ~ . - (1|Nest) should work to execute
a “type-3-like” series of tests, dropping the main effects one at a time while
leaving the interaction in (we have to use - (1|Nest) to exclude the random
effects because drop1 can’t handle them). However, due to the way that
R handles formulas, dropping main effects from an interaction of *factors*
has no effect on the overall model. (It would work if we were testing the
interaction of continuous variables.)

2.4.1 issues

The mixed package implements a true “type-3-like” parameter-dropping
mechanism for [g]lmer models. Something like that could in principle be
applied here.

8

2.5 Model selection and averaging with MuMIn

We can run MuMIn::dredge(owls_nb1) on the model to fit all possible
submodels. Since this takes a little while (45 seconds or so), we’ve instead
loaded some previously computed results:

print(owls_nb1_dredge)

Global model call: glmmTMB(formula = SiblingNegotiation ~ FoodTreatment * SexParent +

(1 | Nest) + offset(log(BroodSize)), data = Owls, family = nbinom1,

ziformula = ~1, contrasts = list(FoodTreatment = "contr.sum",

SexParent = "contr.sum"), na.action = na.fail, dispformula = ~1)

Model selection table

cnd((Int)) zi((Int)) dsp((Int)) cnd(FdT) cnd(SxP) cnd(FdT:SxP)

10 0.4284 -2.094 + +

16 0.4275 -2.055 + + + +

12 0.4257 -2.100 + + +

2 1.8290 -1.990 + +

8 1.8280 -1.955 + + + +

4 1.8260 -1.996 + + +

9 0.6295 -1.373 +

1 2.0980 -1.232 +

11 0.6220 -1.381 + +

3 2.0920 -1.236 + +

cnd(off(log(BrS))) df logLik AICc delta weight

10 + 5 -1685.978 3382.1 0.00 0.525

16 + 7 -1684.819 3383.8 1.77 0.217

12 + 6 -1685.957 3384.1 2.00 0.193

2 5 -1688.628 3387.4 5.30 0.037

8 7 -1687.556 3389.3 7.24 0.014

4 6 -1688.610 3389.4 7.30 0.014

9 + 4 -1708.573 3425.2 43.15 0.000

1 4 -1708.672 3425.4 43.35 0.000

11 + 5 -1708.420 3426.9 44.88 0.000

3 5 -1708.509 3427.1 45.06 0.000

Models ranked by AICc(x)

Random terms (all models):

cond(1 | Nest)

9

op <- par(mar=c(2,5,14,3))

plot(owls_nb1_dredge)

co
nd

((
In

t))

zi
((

In
t))

di
sp

((
In

t))

co
nd

(F
oo

dT
re

at
m

en
t)

co
nd

(S
ex

P
ar

en
t)

co
nd

(F
oo

dT
re

at
m

en
t×

S
ex

P
ar

en
t)

co
nd

(o
ffs

et
(lo

g(
B

ro
od

S
iz

e)
))

4
2

12

16

10

Model selection table

C
um

ul
at

iv
e

m
od

el
 w

ei
gh

t
(ω

)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

par(op) ## restore graphics parameters

Model averaging:

model.avg(owls_nb1_dredge)

##

Call:

model.avg(object = owls_nb1_dredge)

##

Component models:

’14’ ’1234’ ’124’ ’1’ ’123’ ’12’ ’4’ ’(Null)’

10

’24’ ’2’

##

Coefficients:

cond((Int)) cond(FoodTreatment1) zi((Int)) cond(SexParent1)

full 0.5183099 0.353877 -2.079432 -0.009556203

subset 0.5183099 0.353877 -2.079432 -0.021827791

cond(FoodTreatment1:SexParent1)

full 0.01569108

subset 0.06797533

2.5.1 issues

� may not work for Beta models because the family component (“beta”)
is not identical to the name of the family function (beta_family())?
(Kamil Bartoń, pers. comm.)

2.6 multcomp for multiple comparisons and post hoc
tests

g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey"))

summary(g1)

##

Simultaneous Tests for General Linear Hypotheses

##

Multiple Comparisons of Means: Tukey Contrasts

##

##

Fit: glmmTMB(formula = incidence/size ~ period + (1 | herd), data = cbpp,

family = binomial, weights = size, ziformula = ~0, dispformula = ~1)

##

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

2 - 1 == 0 -0.9923 0.3066 -3.236 0.00638 **

3 - 1 == 0 -1.1287 0.3266 -3.455 0.00283 **

4 - 1 == 0 -1.5803 0.4274 -3.697 0.00111 **

11

3 - 2 == 0 -0.1363 0.3807 -0.358 0.98368

4 - 2 == 0 -0.5880 0.4703 -1.250 0.58569

4 - 3 == 0 -0.4516 0.4843 -0.933 0.78117

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjusted p values reported -- single-step method)

3 Extracting coefficients, coefficient plots and

tables

3.1 broom and friends

The broom and broom.mixed packages are designed to extract information
from a broad range of models in a convenient (tidy) format; the dotwhisker
package builds on this platform to draw elegant coefficient plots.

if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) {
t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)

t1 <- transform(t1,

term=sprintf("%s.%s", component, term))

if (packageVersion("dotwhisker")>"0.4.1") {
dw <- dwplot(t1)

} else {
owls_nb1$coefficients <- TRUE ## hack!

dw <- dwplot(owls_nb1,by_2sd=FALSE)

}
print(dw+geom_vline(xintercept=0,lty=2))

}

Warning: Using the ‘size‘ aesthetic with geom segment was deprecated

in ggplot2 3.4.0.

i Please use the ‘linewidth‘ aesthetic instead.

i The deprecated feature was likely used in the dotwhisker package.

Please report the issue at <https://github.com/fsolt/dotwhisker/issues>.

12

This warning is displayed once every 8 hours.

Call ‘lifecycle::last lifecycle warnings()‘ to see where this

warning was

generated.

cond.sd__(Intercept)

zi.(Intercept)

cond.FoodTreatment1:SexParent1

cond.SexParent1

cond.FoodTreatment1

cond.(Intercept)

−2.5 0.0 2.5 5.0

3.1.1 issues

(these are more general dwplot issues)

� use black rather than color(1) when there’s only a single model, i.e. only
add aes(colour=model) conditionally? - draw points even if std err /
confint are NA (draw geom_point() as well as geom_pointrange() ?
need to apply all aesthetics, dodging, etc. to both ...)

� for glmmTMB models, allow labeling by component? or should this be
done by manipulating the tidied frame first? (i.e.: tidy(.) \%>\% tidyr::unite(term,c(component,term)))

3.2 coefficient tables with xtable

The xtable package can output data frames as LATEX tables; this isn’t quite
as elegant as stargazer etc., but is not a bad start. I’ve sprinkled lots of
hard line-breaks, spaces, and newlines in below: someone who was better
at TEX could certainly do a better job. (xtable can also produce HTML
output.)

13

ss <- summary(owls_nb1)

print table; add space,

pxt <- function(x,title) {
cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title))
print(xtable(x), floating=FALSE); cat("\n\n")
cat("\\ \\\\\\vspace{5pt}\\ \\\\\n")

}

pxt(lme4::formatVC(ss$varcor$cond),"random effects variances")

pxt(coef(ss)$cond,"conditional fixed effects")

pxt(coef(ss)$zi,"conditional zero-inflation effects")

random effects variances

Groups Name Std.Dev.
1 Nest (Intercept) 0.35019

conditional fixed effects

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.43 0.09 4.63 0.00

FoodTreatment1 0.36 0.05 6.79 0.00
SexParent1 -0.03 0.05 -0.72 0.47

FoodTreatment1:SexParent1 0.07 0.05 1.51 0.13

conditional zero-inflation effects

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.06 0.29 -7.03 0.00

14

Model 1
(Intercept) 0.43∗∗∗

(0.09)
FoodTreatment1 0.36∗∗∗

(0.05)
SexParent1 −0.03

(0.05)
FoodTreatment1:SexParent1 0.07

(0.05)
zi (Intercept) −2.06∗∗∗

(0.29)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Owls model

3.3 coefficient tables with texreg

For now, to avoid needing to import the texreg package, we are providing
the required extract.glmmTMB in a separate R file that you can import with
source(), as follows:

source(system.file("other_methods","extract.R",package="glmmTMB"))

texreg(owls_nb1,caption="Owls model", label="tab:owls")

See output in Table 1.

3.4 coefficient tables with huxtable

The huxtable package allows output in either LATEX or HTML: this example
is tuned for LATEX.

if (!huxtable_OK) {
cat("Sorry, huxtable+LaTeX is unreliable on this platform; skipping\n")

} else {
cc <- c("intercept (mean)"="(Intercept)",

"food treatment (starvation)"="FoodTreatment1",

"parental sex (M)"="SexParent1",

15

"food $\\times$ sex"="FoodTreatment1:SexParent1")

h0 <- huxreg(" " = owls_nb1, # give model blank name so we don’t get ’(1)’

tidy_args = list(effects="fixed"),

coefs = cc,

error_pos = "right",

statistics = "nobs" # don’t include logLik and AIC

)

names(h0)[2:3] <- c("estimate", "std. err.")

allow use of math notation in name

h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE)

cat(to_latex(h1,tabular_only=TRUE))

}

intercept (mean) 0.427 *** (0.092)

food treatment (starvation) 0.361 *** (0.053)

parental sex (M) -0.033 (0.047)

food × sex 0.068 (0.045)

nobs 599

*** p < 0.001; ** p < 0.01; * p < 0.05.

3.4.1 issues

� huxtable needs quite a few additional LATEX packages: use report_latex_dependencies()
to see what they are.

4 influence measures

Influence measures quantify the effects of particular observations, or groups
of observations, on the results of a statistical model; leverage and Cook’s
distance are the two most common formats for influence measures. If a
projection matrix (or “hat matrix”) is available, influence measures can be
computed efficiently; otherwise, the same quantities can be estimated by

16

https://en.wikipedia.org/wiki/Projection_matrix

brute-force methods, refitting the model with each group or observation suc-
cessively left out.

We’ve adapted the car::influence.merMod function to handle glmmTMB
models; because it uses brute force, it can be slow, especially if evaluating
the influence of individual observations. For now, it is included as a separate
source file rather than exported as a method (see below), although it may be
included in the package (or incorporated in the car package) in the future.

source(system.file("other_methods","influence_mixed.R", package="glmmTMB"))

owls_nb1_influence_time <- system.time(

owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest")

)

Re-fitting the model with each of the 27 nests excluded takes 7 seconds
(on an old Macbook Pro). The car::infIndexPlot() function is one way
of displaying the results:

car::infIndexPlot(owls_nb1_influence)

17

−
0.

04
0.

06
(I

nt
er

ce
pt

) Etrabloz Jeuss

−
0.

04
0.

04
F

oo
dT

re
at

m
en

t1

Oleyes

Etrabloz

−
0.

02
0.

02
S

ex
P

ar
en

t1 Etrabloz Rueyes

−
0.

03
0.

01
F

oo
dT

re
at

m
en

t1
:S

ex
P

ar
en

t1

Rueyes

Seiry

0.
00

0.
20

C
oo

k'
s

D

0 5 10 15 20 25

Etrabloz
Oleyes

Diagnostic Plots

Index(Nest)

Or, you can transform the results and plot them however you like:

inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]])

inf <- transform(inf,

nest=rownames(inf),

cooks=cooks.distance(owls_nb1_influence))

inf$ord <- rank(inf$cooks)

if (require(reshape2)) {
inf_long <- melt(inf, id.vars=c("ord","nest"))

gg_infl <- (ggplot(inf_long,aes(ord,value))

+ geom_point()

+ facet_wrap(~variable, scale="free_y")

n.b. may need expand_scale() in older ggplot versions ?

+ scale_x_reverse(expand=expansion(mult=0.15))

+ scale_y_continuous(expand=expansion(mult=0.15))

+ geom_text(data=subset(inf_long,ord>24),

18

aes(label=nest),vjust=-1.05)

)

print(gg_infl)

}

Etrabloz

Oleyes
Rueyes

Etrabloz
Oleyes

Rueyes

Etrabloz

Oleyes

Rueyes

Etrabloz

Oleyes

Rueyes

Etrabloz

Oleyes

Rueyes

FoodTreatment1:SexParent1 cooks

(Intercept) FoodTreatment1 SexParent1

0102030 0102030

0102030

−0.06

−0.04

−0.02

0.00

0.325

0.350

0.375

0.400

0.425

0.0

0.1

0.2

0.3

0.36

0.40

0.44

0.48

0.04

0.06

0.08

0.10

ord

va
lu

e

5 Robust sandwich standard errors

Sandwich estimators provide robust standard errors for a wide range of mod-
els. We have added the appropriate methods for glmmTMB models, following
the sandwich package’s functions. The vcovHC() function computes the
sandwich estimator for the variance-covariance matrix of the model coeffi-
cients:

vcovHC(owls_nb1)

(Intercept) FoodTreatment1 SexParent1

(Intercept) 0.0188008549 -0.0124099458 0.0014532977

FoodTreatment1 -0.0124099458 0.0113289905 -0.0007905204

SexParent1 0.0014532977 -0.0007905204 0.0031986595

19

FoodTreatment1:SexParent1 0.0003740714 -0.0002471138 -0.0020873097

FoodTreatment1:SexParent1

(Intercept) 0.0003740714

FoodTreatment1 -0.0002471138

SexParent1 -0.0020873097

FoodTreatment1:SexParent1 0.0027871299

This robust covariance matrix estimate can be used when calculating the
standard errors and corresponding p-values for the model coefficients, too:

summary(owls_nb1, sandwich = TRUE)

Family: nbinom1 (log)

Formula:

SiblingNegotiation ~ FoodTreatment * SexParent + (1 | Nest) +

offset(log(BroodSize))

Zero inflation: ~1

Data: Owls

##

AIC BIC logLik -2*log(L) df.resid

3383.6 3414.4 -1684.8 3369.6 592

##

Random effects:

##

Conditional model:

Groups Name Variance Std.Dev.

Nest (Intercept) 0.1226 0.3502

Number of obs: 599, groups: Nest, 27

##

Dispersion parameter for nbinom1 family (): 5.09

##

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.42748 0.13712 3.118 0.00182 **

FoodTreatment1 0.36120 0.10644 3.393 0.00069 ***

SexParent1 -0.03332 0.05656 -0.589 0.55577

FoodTreatment1:SexParent1 0.06812 0.05279 1.290 0.19694

20

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0554 0.4561 -4.507 6.58e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Finally, also for the least-square means we can use the robust covariance
matrix estimate as follows:

emmeans(owls_nb1, ~ FoodTreatment * SexParent, vcov = vcovHC(owls_nb1))

FoodTreatment SexParent emmean SE df asymp.LCL asymp.UCL

Deprived Female 2.30 0.0933 Inf 2.121 2.49

Satiated Female 1.44 0.2610 Inf 0.932 1.96

Deprived Male 2.23 0.0744 Inf 2.088 2.38

Satiated Male 1.65 0.2490 Inf 1.160 2.14

##

Results are given on the log (not the response) scale.

Confidence level used: 0.95

A few notes here regarding the definition and scope of the sandwich esti-
mator: The sandwich estimator implemented here is defined as

Ŝ = B̂−1M̂B̂−1

where B̂ is the “Bread” matrix (the inverse Hessian), and M̂ is the “Meat”
matrix, which is defined as

M̂ =
K∑
k=1

ûkû
T
k

where ûk is the score vector with regards to the log-likelihood for the
k-th cluster (or subject) in the data, k = 1, . . . , K. The clustering is defined
conveniently by the getGroups function, which returns the random effect
grouping:

21

head(getGroups(owls_nb1))

[1] AutavauxTV AutavauxTV AutavauxTV AutavauxTV AutavauxTV AutavauxTV

27 Levels: AutavauxTV Bochet Champmartin ChEsard Chevroux ... Yvonnand

and may be modified (if really needed) by the user via the cluster

argument in vcovHC etc.
Note that the parameter vector includes here both the fixed effects as

well as the variance parameters, so always first calculate the ”full” sandwich
estimator. By default then the variance parameter part is excluded from the
output, but can be included by setting full = TRUE :

vcovHC(owls_nb1, full = TRUE)

(Intercept) FoodTreatment1 SexParent1

(Intercept) 0.0188008549 -0.0124099458 0.0014532977

FoodTreatment1 -0.0124099458 0.0113289905 -0.0007905204

SexParent1 0.0014532977 -0.0007905204 0.0031986595

FoodTreatment1:SexParent1 0.0003740714 -0.0002471138 -0.0020873097

zi~(Intercept) 0.0468842382 -0.0349183351 0.0014605613

disp~(Intercept) -0.0110581568 0.0073351528 -0.0008518149

theta_1|Nest.1 -0.0181555338 0.0133284209 -0.0007010901

FoodTreatment1:SexParent1 zi~(Intercept)

(Intercept) 0.0003740714 0.046884238

FoodTreatment1 -0.0002471138 -0.034918335

SexParent1 -0.0020873097 0.001460561

FoodTreatment1:SexParent1 0.0027871299 0.004699174

zi~(Intercept) 0.0046991736 0.208003931

disp~(Intercept) -0.0008393283 -0.038361729

theta_1|Nest.1 -0.0010917002 -0.060285429

disp~(Intercept) theta_1|Nest.1

(Intercept) -0.0110581568 -0.0181555338

FoodTreatment1 0.0073351528 0.0133284209

SexParent1 -0.0008518149 -0.0007010901

FoodTreatment1:SexParent1 -0.0008393283 -0.0010917002

zi~(Intercept) -0.0383617293 -0.0602854287

disp~(Intercept) 0.0176133006 0.0098128129

theta_1|Nest.1 0.0098128129 0.0546379354

22

Therefore, we need to have the fixed effects included in the parameter vec-
tor. Hence the sandwich estimator only works for models fit with maximum
likelihood (ML), but not for models fit with restricted maximum likelihood
(REML):

try(vcovHC(update(owls_nb1, REML = TRUE)))

Error in estfun.glmmTMB(x, ...) : !isREML(x) is not TRUE

In addition, the code checks whether the sum of the cluster-wise log-
likelihood equals the overall log-likelihood, and a warning is issued otherwise:

tryCatch(

vcovHC(owls_nb1, cluster = Owls$SexParent),

warning = function(w) print(w)

)

<simpleWarning in estfun.glmmTMB(x, ...): The sum of the negative log-likelihoods of the clusters 1688.31 does not match the joint negative log-likelihood of the whole model 1684.82, please check whether the random effects are indeed nested.>

This is in particular the case if non-nested random effects are present in
the model. The sandwich estimator should only be used with a single random
effect term, or with nested random effects.

6 to do

� more plotting methods (sjplot)

� output with memisc

� AUC etc. with ModelMetrics

23

	model checking and diagnostics
	DHARMa
	issues

	Inference
	car::Anova
	effects
	emmeans
	drop1
	issues

	Model selection and averaging with MuMIn
	issues

	multcomp for multiple comparisons and post hoc tests

	Extracting coefficients, coefficient plots and tables
	broom and friends
	issues

	coefficient tables with xtable
	coefficient tables with texreg
	coefficient tables with huxtable
	issues

	influence measures
	Robust sandwich standard errors
	to do

