
Package ‘ggrain’
January 23, 2026

Title A Rainclouds Geom for 'ggplot2'

Version 0.1.2

Description
The 'geom_rain()' function adds different geoms together using 'ggplot2' to create raincloud plots.

License MIT + file LICENSE

Encoding UTF-8

Depends ggplot2 (>= 4.0.0), R (>= 3.4.0)

Imports grid, ggpp (>= 0.5.6), rlang, vctrs (>= 0.5.0), cli

RoxygenNote 7.3.3

URL https://github.com/njudd/ggrain

BugReports https://github.com/njudd/ggrain/issues

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Nicholas Judd [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0196-9871>),

Jordy van Langen [aut] (ORCID: <https://orcid.org/0000-0003-2504-2381>),
Micah Allen [ctb] (ORCID: <https://orcid.org/0000-0001-9399-4179>),
Rogier Kievit [aut] (ORCID: <https://orcid.org/0000-0003-0700-4568>)

Maintainer Nicholas Judd <nickkjudd@gmail.com>

Repository CRAN

Date/Publication 2026-01-23 10:30:02 UTC

Contents
geom_paired_raincloud . 2
geom_rain . 4
stat_half_ydensity . 7

Index 10

1

https://github.com/njudd/ggrain
https://github.com/njudd/ggrain/issues
https://orcid.org/0000-0002-0196-9871
https://orcid.org/0000-0003-2504-2381
https://orcid.org/0000-0001-9399-4179
https://orcid.org/0000-0003-0700-4568

2 geom_paired_raincloud

geom_paired_raincloud Paired raincloud plot

Description

Taking from https://raw.githubusercontent.com/yjunechoe/geom_paired_raincloud/master/geom_paired_raincloud.R
on 30-10-22 attribution to https://yjunechoe.github.io/

Usage

geom_paired_raincloud(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
trim = TRUE,
scale = "area",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

geom_paired_raincloud 3

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

4 geom_rain

Details

Create a paired raincloud plot (useful for visualizing difference between experimental conditions
tested on the same subjects or items).

Adopted from the see::geom_violinhalf() source code from the see package

See Also

https://github.com/easystats/see/blob/master/R/geom_violinhalf.R

Examples

library(ggplot2)

geom_rain Raincloud Plots

Description

This function displays individual data points, a boxplot and half a violin plot. It also has the option
to connect data points with lines across groups by specifying an id to connect by. Lastly, if desired
one can color the dots based of another variable.

Usage

geom_rain(
mapping = NULL,
data = NULL,
inherit.aes = TRUE,
id.long.var = NULL,
cov = NULL,
rain.side = NULL,
likert = FALSE,
seed = 42,
...,
point.args = rlang::list2(...),
point.args.pos = rlang::list2(position = position_jitter(width = 0.04, height = 0, seed

= seed)),
line.args = rlang::list2(alpha = 0.2, ...),
line.args.pos = rlang::list2(position = position_jitter(width = 0.04, height = 0, seed

= seed),),
boxplot.args = rlang::list2(outlier.shape = NA, ...),
boxplot.args.pos = rlang::list2(width = 0.05, position = position_nudge(x = 0.1),),
violin.args = rlang::list2(...),
violin.args.pos = rlang::list2(side = "r", width = 0.7, quantiles = NULL, position =

position_nudge(x = 0.15),)
)

geom_rain 5

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

id.long.var A group to connect the lines by - must be a string (e.g., "id").

cov A covariate to color the dots by - must be as a string (e.g., "cov")

rain.side How you want the rainclouds displayed, right ("r"), left ("l") or flanking ("f"),
for a 1-by-1 flanking raincloud use ("f1x1") and for a 2-by-2 use ("f2x2").

likert Currently developing, right now just addes y-jitter.

seed For the jittering in point & line to match.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

6 geom_rain

point.args A list of args for the dots

point.args.pos A list of positional args for the points

line.args A list of args for the lines, you need to specify a group to connect them with
id.long.var

line.args.pos A list of positional args for the lines

boxplot.args A list of args for the boxplot
boxplot.args.pos

A list of positional args for the boxplot

violin.args A list of args for the violin
violin.args.pos

A list of positional args for the violin

Value

Returns a list of three environments to be used with the ’ggplot()’ function in the ’ggplot2’ package.

If the id.long.var argument is used the output will be a list of 4 environments.

These 4 environments have a similar structure to ’ggplot2::geom_boxplot()’, ’ggplot2::geom_violin()’,
’ggplot2::geom_point()’ and ’ggplot2::geom_line()’ from ’ggplot2’. need library(rlang) need li-
brary(ggplot2) depends = ggplot2

References

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., van Langen, J., & Kievit, R. A. Raincloud
plots: a multi-platform tool for robust data visualization Wellcome Open Research 2021, 4:63.
https://doi.org/10.12688/wellcomeopenres.15191.2

Examples

e1 <- ggplot(iris, aes(Species, Sepal.Width, fill = Species))
e1 + geom_rain()

x must be the discrete variable
orinetation can be changed with coord_flip()
e1 + geom_rain(alpha = .5) + coord_flip()

we can color the dots by a covariate
e1 + geom_rain(cov = "Sepal.Length")

we can edit elements individually
e1 + geom_rain(violin.args = list(alpha = .3, color = NA))

we can flip them
e1 + geom_rain(rain.side = 'l')
and move them
e1 +
geom_rain(boxplot.args.pos = list(width = .1, position = position_nudge(x = -.2)))

they also work longitudinally

stat_half_ydensity 7

e2 <- ggplot(sleep, aes(group, extra, fill = group))
e2 + geom_rain(id.long.var = "ID")

we can add groups
sleep_dat <- cbind(sleep, data.frame(sex = c(rep("male", 5),
rep("female", 5), rep("male", 5), rep("female", 5))))
e3 <- ggplot(sleep_dat, aes(group, extra, fill = sex))
e3 + geom_rain(alpha = .6)

add likert example
e4 <- ggplot(mpg, aes(1, hwy, fill = manufacturer))
e4 + geom_rain(likert= TRUE)

lets make it look nicer
e4 + geom_rain(likert= TRUE,
boxplot.args.pos = list(position = ggpp::position_dodgenudge(x = .095), width = .1),
violin.args = list(color = NA, alpha = .5))

stat_half_ydensity This is taken from gghalves great R package I am trying to remove the
dependency

Description

This is taken from gghalves great R package I am trying to remove the dependency

Usage

stat_half_ydensity(
mapping = NULL,
data = NULL,
geom = "half_violin",
position = "dodge",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
trim = TRUE,
scale = "area",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

8 stat_half_ydensity

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom This is only half_voilin

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

stat_half_ydensity 9

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

Index

aes(), 2, 5, 7
annotation_borders(), 3, 5, 9

density(), 9

fortify(), 2, 5, 8

geom_paired_raincloud, 2
geom_rain, 4
ggplot(), 2, 5, 8

key glyphs, 3, 5, 8

layer position, 3, 8
layer stat, 2
layer(), 3, 5, 8

stat_half_ydensity, 7
stats::bw.nrd(), 8

10

	geom_paired_raincloud
	geom_rain
	stat_half_ydensity
	Index

