Package ‘ggmuller’

January 15, 2026

Title Create Muller Plots of Evolutionary Dynamics
Version 0.7.0

Description Create plots that combine a phylogeny and frequency dynamics.
Phylogenetic input can be a generic adjacency matrix or a tree of class * phylo".
Inspired by similar plots in publications of the labs of RE Lenski and JE
Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose
code this package exploits).

Depends R (>=3.2.0)

Imports dplyr (>=0.7.0), ggplot2, ape, rlang
Suggests RColorBrewer, knitr, rmarkdown
VignetteBuilder knitr

License MIT + file LICENSE

URL https://github.com/robjohnnoble/ggmuller
Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Robert Noble [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8057-4252>)

Maintainer Robert Noble <robjohnnoble@gmail.com>
Repository CRAN
Date/Publication 2026-01-15 10:40:02 UTC

Contents

add_empty_pop e e e e
add_root_TOW e e e s
add_start_points e e
adj_matriX_to_tree e e
branch_singles

https://github.com/robjohnnoble/ggmuller
https://orcid.org/0000-0002-8057-4252

2 add_empty_pop
example_df e e 6
example_edges e e e 6
example_pop_df e 7
find_start node 7
Cet_Ad) . . . e e e 8
get_edges e e e e 8
get Muller_df 9
get_population_df 11
move_dOWN e e e e 12
move_right L e 13
MOVE_UP .« ¢ o v o v v e e e et e e e e e e e e e e 14
Muller_plot L e 14
Muller_pop_plot e e 16
path_vector e e e 17
path_vector_new 18
reorder_by_VECIOT e e e e e 19

Index 20

add_empty_pop Modify a dataframe to enable plotting of populations instead of fre-
quencies

Description

The function adds rows at each time point recording the difference between the total population
and its maximum value. Generally there is no need to use this function as Muller_pop_plot calls it
automatically.

Usage

add_empty_pop(Muller_df)

Arguments

Muller_df Dataframe created by get_Muller_df

Value

A dataframe that can be used as input in Muller_plot.

Author(s)

Rob Noble, <robjohnnoble@gmail .com>

See Also

get_Muller_df Muller_pop_plot

add_root_row 3

Examples

Muller_df <- get_Muller_df(example_edges, example_pop_df)
Muller_df2 <- add_empty_pop(Muller_df)

add_root_row Add a row to the edges list to represent the root node (if not already
present).

Description

Add a row to the edges list to represent the root node (if not already present).

Usage

add_root_row(tree)

Arguments
tree Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
Value

The same dataframe including a row representing the root node.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

Examples

treel <- data.frame(Parent = ¢(1,1,1,2,3,4),
Identity = 2:7)
add_root_row(treel)

4 add_start_points

add_start_points Add rows to a population dataframe to ensure genotype starting points
are plotted correctly

Description

The function 1) identifies when genotypes first have non-zero populations; 2) copies all the rows
of data for these time points; 3) modifies the copied rows by decreasing Generation and setting
Population of the emerging genotypes to be close to zero; and then 4) adds the modified rows to the
dataframe. This ensures that ggplot plots genotypes arising at the correct time points.

Usage

add_start_points(pop_df, start_positions = 0.5)

Arguments

"non

pop_df Dataframe with column names "Identity", "Population", and either "Generation"
or "Time"

start_positions
Numeric value between 0 and 1 that determines the times at which genotypes
are assumed to have arisen (see examples)

Details

By default, the function assumes that each genotype arose half way between the latest time at
which its population is zero and the earliest time at which its population is greater than zero. You
can override this assumption using the start_positions parameter. If start_positions = 0 (respetively
1) then each genotype is assumed to have arisen at the earliest (respectively latest) time compatible
with the data. Intermediate values are also permitted.

Value

The input Dataframe with additional rows.

Author(s)

Rob Noble, <robjohnnoble@gmail .com>

Examples

pop1 <- data.frame(Generation = rep(1:5, each =
Population = ¢(1,90,0,0,1,1,0,
add_start_points(pop1)

4), Identity = rep(1:4, 5),
0,1,1,1,0,1,1,1,1,1,1,1,1))

to see the effect of changing start_positions, compare the Generation columns:
add_start_points(popl1, 0)
add_start_points(popl, 1)

adj_matrix_to_tree 5

adj_matrix_to_tree Create a tree object of class "phylo" from an adjacency matrix

Description

Create a tree object of class "phylo" from an adjacency matrix

Usage

adj_matrix_to_tree(edges)

Arguments
edges Dataframe comprising an adjacency matrix, in which the first column is the
parent and the second is the daughter.
Value
A phylo object.
Author(s)

Rob Noble, <robjohnnoble@gmail .com>

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
tree <- adj_matrix_to_tree(edges1)

class(tree)
branch_singles Add branches of length zero to get rid of single nodes in an adjacency
matrix
Description

Single nodes are those with exactly one daughter. This function is required by adj_matrix_to_tree,
since valid "phylo" objects cannot contain single nodes. If pre-existing branches lack lengths then
these are set to 1.

Usage

branch_singles(edges)

6 example_edges

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
Value

A dataframe comprising the augmented adjacency matrix.

Author(s)

Rob Noble, <robjohnnoble@gmail .com>

Examples

edges1 <- data.frame(Parent = c(1,1,1,3), Identity = 2:5)
branch_singles(edges1)

example_df Example dataframe

Description

Example dataframe containing both phylogenetic information and population dynamics.

Usage
data(example_df)

Format

A dataframe with column names "Generation", "Identity", "Parent"”, "Population" and "RelativeFit-
ness"

example_edges Example adjacency matrix

Description

Example dataframe comprising an adjacency matrix.

Usage

data(example_edges)

Format

A dataframe with column names "Parent” and "Identity"

example_pop_df 7

example_pop_df Example population dataframe

Description

Example dataframe containing population dynamics.

Usage
data(example_pop_df)

Format

A dataframe with column names "Generation", "Identity" and "Population”

find_start_node Move to top of adjacency matrix

Description

Returns the Parent value of the common ancestor.

Usage

find_start_node(edges)

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
Value

The Parent that is the common ancestor.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
find_start_node(edges1)

8 get_edges

get_Adj Get adjacency list of a tree.

Description

Get adjacency list of a tree.

Usage

get_Adj(tree)

Arguments
tree Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
Value

The adjacency list.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

Examples

treel <- data.frame(Parent = ¢(1,1,1,1,2,3,4),
Identity = 1:7,
Population = c(1, rep(5, 6)))
get_Adj(treel)

get_edges Extract an adjacency matrix from a larger data frame

Description

Extract an adjacency matrix from a larger data frame

Usage

get_edges(df, generation = NA)

get_Muller_df 9

Arguments
df Dataframe inclduing column names "Identity", "Parent", and either "Genera-
tion" or "Time"
generation Numeric value of Generation (or Time) at which to determine the adjacency
matrix (defaults to final time point)
Value

A dataframe comprising the adjacency matrix.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also

get_population_df

Examples

Not run:
edges <- get_edges(example_df)

extract the adjacency matrix from the data frame:
pop_df <- get_population_df(example_df)

create data frame for plot:
Muller_df <- get_Muller_df(edges, pop_df)

require(RColorBrewer) # for the palette

draw plot:
num_cols <- length(unique(Muller_df$RelativeFitness)) + 1
Muller_df$RelativeFitness <- as.factor(Muller_df$RelativeFitness)
Muller_plot(Muller_df, colour_by = "RelativeFitness”,
palette = rev(colorRampPalette(brewer.pal(9, "Y1OrRd"))(num_cols)),
add_legend = TRUE)

End(Not run)

get_Muller_df Create a data frame from which to create a Muller plot

Description

Create a data frame from which to create a Muller plot

10 get_Muller_df

Usage
get_Muller_df(
edges,
pop_df,
cutoff = 0,

start_positions = 0.5,
threshold = NA,
add_zeroes = NA,
smooth_start_points = NA

)
Arguments
edges Dataframe comprising an adjacency matrix, or tree of class "phylo"
pop_df Dataframe with column names "Identity", "Population", and either "Generation"
or "Time"
cutoff Numeric cutoff; genotypes that never become more abundant than this value are
omitted

start_positions
Numeric value between 0 and 1 that determines the times at which genotypes
are assumed to have arisen (see examples)

threshold Depcrecated (use cutoff instead, but note that "threshold" omitted genotypes that
never become more abundant than *twice* its value)

add_zeroes Deprecated (now always TRUE)
smooth_start_points
Deprecated (now always TRUE)

Value

A dataframe that can be used as input in Muller_plot and Muller_pop_plot.

Author(s)

Rob Noble, <robjohnnoble@gmail .com>

See Also

Muller_plot Muller_pop_plot

Examples

by default, all genotypes are included,
but one can choose to omit genotypes with max frequency < cutoff:
Muller_df <- get_Muller_df(example_edges, example_pop_df, cutoff = 0.01)

the genotype names can be arbitrary character strings instead of numbers:
example_edges_char <- example_edges
example_edges_char$Identity <- paste@(”foo”, example_edges_char$Identity, "bar")

get_population_df 11

example_edges_char$Parent <- paste@("foo", example_edges_char$Parent, "bar")
example_pop_df_char <- example_pop_df

example_pop_df_char$Identity <- paste@(”foo”, example_pop_df_char$Ildentity, "bar")
Muller_df <- get_Muller_df(example_edges_char, example_pop_df_char, cutoff = 0.01)

the genotype names can also be factors (which is the default for strings in imported data):
example_edges_char$Ildentity <- as.factor(example_edges_char$Identity)
example_edges_char$Parent <- as.factor(example_edges_char$Parent)
example_pop_df_char$Identity <- as.factor(example_pop_df_char$Identity)

Muller_df <- get_Muller_df(example_edges_char, example_pop_df_char, cutoff = 0.01)

to see the effect of changing start_positions, compare these two plots:

edges1 <- data.frame(Parent = c(1,2,1), Identity = 2:4)

pop1 <- data.frame(Time = rep(1:4, each = 4),
Identity = rep(1:4, times = 4),
Population = c(1, @, 0, 0,

2, 2, 0, 0,

4, 8, 4, 0,

8, 32, 32, 16))
dfo <- get_Muller_df(edges1, popl, start_positions
df1 <- get_Muller_df(edges1, popl, start_positions = 1)
Muller_plot(dfe)

Muller_plot(df1)

1]
S
~

get_population_df Extract population data from a larger data frame

Description

Extract population data from a larger data frame

Usage
get_population_df (df)

Arguments
df Dataframe inclduing column names "Identity", "Parent", and either "Genera-
tion" or "Time"
Value

A dataframe comprising the population dynamics.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

12 move_down

See Also

get_edges

Examples

Not run:
extract the adjacency matrix from the data frame:
edges <- get_edges(example_df)

extract the populations (and any other attributes) from the data frame:
pop_df <- get_population_df(example_df)

create data frame for plot:
Muller_df <- get_Muller_df(edges, pop_df)

require(RColorBrewer) # for the palette

draw plot:
num_cols <- length(unique(Muller_df$RelativeFitness)) + 1
Muller_df$RelativeFitness <- as.factor(Muller_df$RelativeFitness)
Muller_plot(Muller_df, colour_by = "RelativeFitness”,
palette = rev(colorRampPalette(brewer.pal(9, "Y10rRd"))(num_cols)),
add_legend = TRUE)

End(Not run)

move_down Move to daughter in adjacency matrix

Description
Returns the first Identity value in the sorted set of daughters. When parent has no daughters, returns
the input Identity.

Usage

move_down (edges, parent)

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
parent number or character string specifying whose daughter is to be found
Value

The daughter’s Identity.

move_right 13

Author(s)

Rob Noble, <robjohnnoble@gmail .com>

See Also

move_up move_right

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
move_down (edges1, 3)

move_right Move to sibling in adjacency matrix

Description
Returns the next Identity value among the sorted set of siblings. When there is no such sibling,
returns the input Identity.

Usage

move_right(edges, identity)

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
identity number or character string specifying whose sibling is to be found
Value

The sibling’s Identity.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also

move_up move_down

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
move_right (edges1, 3)

14 Muller_plot

move_up Move to parent in adjacency matrix

Description
Returns the corresponding Parent value. When there is no parent (i.e. at the top of the tree), returns
the input Identity.

Usage

move_up(edges, identity)

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
identity number or character string specifying daughter whose parent is to be found
Value

The Parent value.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also

move_down move_right

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
move_up(edges1, 3)

Muller_plot Draw a Muller plot of frequencies using ggplot2

Description

Draw a Muller plot of frequencies using ggplot2

Muller_plot 15
Usage
Muller_plot(
Muller_df,
colour_by = "Identity”,
palette = NA,
add_legend = FALSE,
xlab = NA,
ylab = "Frequency”,
pop_plot = FALSE,
conceal _edges = FALSE
)
Arguments
Muller_df Dataframe created by get_Muller_df
colour_by Character containing name of column by which to colour the plot
palette Either a brewer palette or a vector of colours (if colour_by is categorical)
add_legend Logical whether to show legend
xlab Label of x axis
ylab Label of y axis
pop_plot Logical for whether this function is being called from Muller_pop_plot (other-
wise should be FALSE)
conceal_edges Whether try to conceal the edges between polygons (usually unnecessary or
undesirable)
Value
None
Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also
get_Muller_df Muller_pop_plot

Examples

include all genotypes:

Muller_df1 <- get_Muller_df(example_edges, example_pop_df)
Muller_plot(Muller_df1)

omit genotypes with max frequency < 0.1:

Muller_df2 <- get_Muller_df(example_edges, example_pop_df, cutoff = 0.2)
Muller_plot(Muller_df2)

colour by a continuous variable:

Muller_df1 <- get_Muller_df(example_edges, example_pop_df)
Muller_df1$Val <- as.numeric(Muller_df1$Identity)

16 Muller_pop_plot

Muller_plot(Muller_df1, colour_by = "Val”, add_legend = TRUE)

Muller_pop_plot Draw a Muller plot of population sizes using ggplot2

Description

This variation on the Muller plot, which shows variation in population size as well as frequency, is
also known as a fish plot.

Usage
Muller_pop_plot(
Muller_df,
colour_by = "Identity”,
palette = NA,
add_legend = FALSE,
xlab = NA,

ylab = "Population”,
conceal _edges = FALSE

)
Arguments
Muller_df Dataframe created by get_Muller_df
colour_by Character containing name of column by which to colour the plot
palette Either a brewer palette or a vector of colours (if colour_by is categorical)
add_legend Logical whether to show legend
xlab Label of x axis
ylab Label of y axis
conceal_edges Whether try to conceal the edges between polygons (usually unnecessary or
undesirable)
Value
None
Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also
get_Muller_df Muller_plot

path_vector 17

Examples

Muller_df <- get_Muller_df(example_edges, example_pop_df)
Muller_pop_plot(Muller_df)

path_vector Record a path through all nodes of an adjacency matrix

Description

Nodes are traversed in the order that they should be stacked in a Muller plot. Each node appears
exactly twice.

Usage

path_vector(edges)

Arguments
edges Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
Value

A vector specifying the path.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
path_vector(edges1)

18 path_vector_new

path_vector_new Faster way to record a path through all nodes of an adjacency matrix

Description

Nodes are traversed in the order that they should be stacked in a Muller plot. Each node appears
exactly twice.

Usage
path_vector_new(
tree,
i = NULL,
Adj = NULL,
Col = NULL,
is_leaf = NULL,
path = NULL
)
Arguments
tree Dataframe comprising an adjacency matrix, with column names "Parent" and
"Identity"
i Current node
Adj Adjacency matrix
Col Node label
is_leaf Label whether node is a leaf
path The path vector so far
Value

A list, including a vector specifying the path.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

Examples

edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6)
path_vector_new(edges1)$path

reorder_by_vector 19

reorder_by_vector Reorder a Muller plot dataframe by a vector

Description

Reorder a Muller plot dataframe by a vector

Usage

reorder_by_vector(df, vector)

Arguments
df Dataframe with column names "Identity", "Parent", and either "Generation" or
"Time", in which each Identity appears exactly twice
vector Vector of Identity values
Value

The reordered dataframe.

Author(s)

Rob Noble, <robjohnnoble@gmail.com>

See Also

path_vector_new

Examples

df <- data.frame(Generation = c(rep(@, 6), rep(1, 6)),
Identity = rep(1:6,2), Population = c(1, rep(@, 5), 10, rep(1, 5)))
df <- rbind(df, df) # duplicate rows
require(dplyr)
df <- arrange(df, Generation) # put in chronological order
edges1 <- data.frame(Parent = c(1,1,1,3,3), Identity = 2:6) # adjacency matrix
path <- path_vector_new(edges1)$path # path through the adjacency matrix
reorder_by_vector(df, path)

Index

* datasets
example_df, 6
example_edges, 6
example_pop_df, 7

add_empty_pop, 2
add_root_row, 3
add_start_points, 4
adj_matrix_to_tree, 5

branch_singles, 5

example_df, 6
example_edges, 6
example_pop_df, 7

find_start_node, 7

get_Adj, 8
get_edges, 8§, 12
get_Muller_df, 2,9, 15, 16
get_population_df, 9, 11

move_down, 12, 13, 14
move_right, 13,13, 14
move_up, 13, 14
Muller_plot, 10, 14, 16
Muller_pop_plot, 2, 10, 15, 16

path_vector, 17
path_vector_new, 18, 19

reorder_by_vector, 19

20

	add_empty_pop
	add_root_row
	add_start_points
	adj_matrix_to_tree
	branch_singles
	example_df
	example_edges
	example_pop_df
	find_start_node
	get_Adj
	get_edges
	get_Muller_df
	get_population_df
	move_down
	move_right
	move_up
	Muller_plot
	Muller_pop_plot
	path_vector
	path_vector_new
	reorder_by_vector
	Index

