Package ‘ggformula’
January 17, 2026

Title Formula Interface to the Grammar of Graphics

Description Provides a formula interface to 'ggplot2' graphics.
Type Package

Version 1.0.1

License MIT + file LICENSE

LazyData TRUE

LazyLoad TRUE

Depends R (>=4.1), ggplot2 (>= 4.0), scales, ggiraph, ggridges
Imports mosaicCore (>= 0.7.0), rlang, tibble, stringr, grid, labelled

Suggests tidyr, patchwork, glue, mosaicData, dplyr, lattice, mosaic,
palmerpenguins, testthat, vdiffr, knitr, rmarkdown, lubridate,
survival, broom, hexbin, maps, sf, purrr, ggthemes, covr,
ggplot2movies, interp, quantreg, ggforce, quarto

VignetteBuilder quarto
RoxygenNote 7.3.3
Encoding UTF-8

URL https://github.com/ProjectMOSAIC/ggformula

BugReports https://github.com/ProjectMOSAIC/ggformula/issues

Collate 'MIpop-doc.R' 'formula2aes.R' 'gf aux.R''gf_dist.R'
"layer_factory.R' 'gf_function2d.R' 'gf_functions.R’
'ef plot.R' 'ggridges.R' 'ggstrings.R' newplots.R' 'ggiraph.R’
'ggiraph-themes.R' 'ggiraph-documentation-with-examples.R'
'reexports.R' 'scales.R' 'utils.R' 'relabel.R' 'vdiffr.R’
'ggstance-deprecated.R' 'ggformula-package.R' 'zzz.R'

NeedsCompilation no

Author Daniel Kaplan [aut],
Randall Pruim [aut, cre]

Maintainer Randall Pruim <rpruim@calvin.edu>
Repository CRAN
Date/Publication 2026-01-17 06:10:38 UTC

https://github.com/ProjectMOSAIC/ggformula
https://github.com/ProjectMOSAIC/ggformula/issues

2 Contents

Contents
discrete_breaks L e e 4
get_variable_labels 5
gf abline 6
gf_abline_interactive 10
gf_annotate e e e e e e 11
gfoarea e e e 13
gf_area_interactive e e 16
gf ash . . . L e 17
gf bar . . . e 20
gf barh 26
gf bar_interactive 27
ef bin2d L 28
gf_bin2d_interactive e e 31
gf_bin_2d_interactive L e e e 32
gf blank L e 33
gf boxplot. 35
gf_boxplot_interactive 39
gf col . . 40
gf_colinteractive e 43
gf contour e e 44
gf_contour_filled_interactive L 47
gf count L e 48
gf_count_interactive oL e e e 51
gf_crossbar 52
gf_crossbar_interactive 56
gfcurve 57
gf_curve_interactive e e e e 60
gf density e 62
gf density_2d 66
gf_density_2d_filled_interactive Lo 71
gf_density_interactive e 72
gf dist . . . o 73
gf dotplot 75
gf_dotplot_interactive e e 78
gf ecdf . . . e 79
gf ellipse e e 82
gf empty 84
gf errorbar 85
gf_errorbar_interactive Lo 88
gf facet_wrap 89
gf fitdistr e e e 90
gf freqpoly e e 93
gf_freqpoly_interactive L 96
gf function 97
gf function_2d 98

gf girafe 100

Contents

3
gf_guides e e 101
gf hex . . . o L e 103
gf_hex_interactive 106
gf histogram L 107
gf_histogram_interactive e 110
gf_hline_interactive L 112
gf Jitter e 113
gf_jitter_interactive e e e e 115
gf_labeller_interactive 116
gf label_interactive 117
gf labs. . . . o 118
gf line e e 119
gf linerange L 122
gf_linerange_interactiveo e 128
gf_line_interactive e e e e 130
gf_path_interactive 131
gf plot. . . o e 132
gf point e e e 133
gf_pointrange_interactive Lo e e 135
gf_point_interactive e 137
gf_polygon 138
gf_polygon_interactive e 140
gl qq . . e e 141
gf_quantile 145
gf_quantile_interactive e e 148
gforaster L e e e 149
gf_raster_interactive 151
gfrecto 152
gf_rect_interactive L. e e e e 154
gf relabel e 156
gf ribbon 157
gf_ribbon_interactive L. e e 160
ef ridgeline L 161
gf rug ..o 168
gf segment e 173
2) P 176
gf sf_interactive 178
gfosina. . . . oL 179
gf_smooth e e 182
gf_smooth_interactive Lo e 187
gf spline 188
gf spoke 190
gf_spoke_interactive e e 193
gf Step e 194
gf_step_interactive e 197
gl teXt . . e e 199
gf text_interactive e e e e e e 203

gf theme e 204

4 discrete_breaks

gf tile e e 205
gf_tile_interactive L. e e e 207
gf violin. L e e 208
gf_violin_interactive e 211
gf vline_interactiveo e 213
interactive_facets e e 214
interactive_layer_factory 215
layer_factory e 216
MIpop . . . o e e 217
PEICS_DY_Sroup e e e e e 218
StatAsh e e 218
stat_fitdiStr L e e e e e 219
stat_Im e e e e e 220
stat_qqline L e 223
stat_spline L 224
theme_facets_interactive e e 226

Index 228

discrete_breaks Discrete Breaks
Description

Creates a function that can be passed to scales for creating discrete breaks at multilples of resolution.

Usage

discrete_breaks(resolution = 1)

Arguments

resolution Resolution of the breaks

Value

A function that can be passed to scales functions as the breaks argument.

Examples

X <- rbinom(100, 100, 0.4)

p <- gf_bar(~ x)

p |> gf_refine(scale_x_continuous(breaks = discrete_breaks()))
p |> gf_refine(scale_x_continuous(breaks = discrete_breaks(5)))
p |> gf_refine(scale_x_continuous(breaks = discrete_breaks(2)))

get_variable_labels 5

get_variable_labels Set and extract labels from a labeled object

Description

Some packages like expss provide mechanisms for providing longer labels to R objects. These
labels can be used when labeling plots and tables, for example, without requiring long or awkward
variable names. This is an experimental feature and currently only supports expss or any other
system that stores a label in the 1abel attribute of a vector.

Usage

get_variable_labels(...)

Arguments

passed to labelled: :var_label()

Details

get_variable_labels() is a synonym of labelled: :var_label().

See Also

labelled: :var_label (), labelled: :set_variable_labels()

Examples

KF <-
mosaicData: :KidsFeet |>
set_variable_labels(

length = 'foot length (cm)',
width = 'foot width (cm)',
birthmonth = 'birth month',
birthyear = 'birth year',
biggerfoot = 'bigger foot',
domhand = 'dominant hand'

)

KF >
gf_point(length ~ width, color = ~ domhand)

get_variable_labels(KF)

6 gf_abline

gf_abline Reference lines — horizontal, vertical, and diagonal.

Description

These functions create layers that display lines described i various ways. Unlike most of the plotting
functions in ggformula, these functions do not take a formula as input for describing positional
attributes of the plot.

Usage

gf_abline(
object = NULL,
gformula = NULL,
data = NULL,
slope,
intercept,
color,
linetype,
linewidth,
alpha,
xlab,
ylab,
title,
subtitle,
caption,
stat = "identity",
show.legend = NA,
show.help = NULL,
inherit = FALSE,
environment = parent.frame()

)

gf_hline(
object = NULL,
gformula = NULL,

data = NULL,
yintercept,
color,
linetype,
linewidth,
alpha,

xlab,

ylab,

title,

gf_abline 7

subtitle,

caption,

stat = "identity”,
position = "identity"”,

show.legend = NA,
show.help = NULL,
inherit = FALSE,
environment = parent.frame()

)

gf_vline(
object = NULL,
gformula = NULL,
data = NULL,
xintercept,
color,
linetype,
linewidth,
alpha,
xlab,
ylab,
title,
subtitle,
caption,
stat = "identity"”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = FALSE,
environment = parent.frame()

)
gf_coefline(object = NULL, coef = NULL, model = NULL, ...)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.
gformula Must be NULL.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function

color

linetype

linewidth
alpha
xlab

ylab

gf_abline

can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

A color or a formula used for mapping color.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Opacity (0 = invisible, 1 = opaque).

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

stat

show. legend

show. help
inherit
environment

position

Title, sub-title, and caption for the plot. See also gf _labs().

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

 For more information and other ways to specify the stat, see the layer stat
documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.
An environment in which to look for variables not found in data.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

gf_abline 9

xintercept, yintercept, slope, intercept
Parameters that control the position of the line. If these are set, data, mapping
and show. legend are overridden.

coef A numeric vector of coefficients.
model A model from which to extract coefficients.
See Also

ggplot2::geom_abline(), ggplot2::geom_vline(), ggplot2::geom_hline()

Examples

mtcars2 <- df_stats(wt ~ cyl, data = mtcars, median_wt = median)

gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) |>
gf_abline(slope = ~0, intercept = ~median_wt, color = ~cyl, data = mtcars2)

gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) |>
gf_abline(slope = @, intercept = 3, color = "green")

avoid warnings by using formulas:

gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) |>
gf_abline(slope = ~0, intercept = ~3, color = "green")

gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) |>
gf_hline(yintercept = ~median_wt, color = ~cyl, data = mtcars2)

gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars) |>
gf_abline(color = "red”, slope = ~ - 0.10, intercept = ~ 35)

gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars) |>

gf_abline(
color = "red", slope = ~slope, intercept = ~intercept,
data = data.frame(slope = -0.10, intercept = 33:35)
)
We can set the color of the guidelines while mapping color in other layers
gf_point(mpg ~ hp, color = ~cyl, size = ~ wt, data = mtcars) |>
gf_hline(color = "navy", yintercept = ~ c(20, 25), data = NA) |>

gf_vline(color = "brown", xintercept = ~ c(200, 300), data = NA)

If we want to map the color of the guidelines, it must work with the

scale of the other colors in the plot.

gf_point(mpg ~ hp, size = ~wt, data = mtcars, alpha = 0.3) |>
gf_hline(color = ~"horizontal”, yintercept = ~ c(20, 25), data = NA) |>
gf_vline(color = ~"vertical”, xintercept = ~ c(100, 200, 300), data = NA)

gf_point(mpg ~ hp, size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3) |>
gf_hline(color = "orange”, yintercept = ~ 20) |>
gf_vline(color = ~ c("4", "6", "8"), xintercept = ~ c(80, 120, 250), data = NA)

gf_point(mpg ~ hp, size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3) |>

10 gt _abline_interactive

gf_hline(color = "orange”, yintercept = ~ 20) |>
gf_vline(color = c("green”, "red", "blue"), xintercept = ~ c(80, 120, 250),
data = NA)

reversing the layers requires using inherit = FALSE

gf_hline(color = "orange"”, yintercept = ~ 20) |>
gf_vline(color = ~ c("4", "6", "8"), xintercept = ~ c(80, 120, 250), data = NA) |>
gf_point(mpg ~ hp,
size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3,
inherit = FALSE
)

gf_abline_interactive Interactive reference lines

Description

Creates an interactive plot using ggiraph. This function extends gf_abline() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

gf_annotate 11

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_abline(), gf_girafe()

Examples

mtcars |>
gf_point(mpg ~ wt) |>
gf_abline_interactive(

slope = ~ -2,

intercept = ~ 35,

tooltip = ~ "slope: -2; intercept: 35",
E

gf_girafe()

gf_annotate Add an annotation layer to a graphic

Description

This function adds geoms to a plot, but unlike a typical geom function, the properties of the geoms
are not mapped from variables of a data frame, but are instead passed in as vectors. This is useful
for adding small annotations (such as text labels) or if you have your data in vectors, and for some
reason don’t want to put them in a data frame.

Usage
gf_annotate(

object,
geom = "text",
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,

D

na.rm = FALSE

12 gf_annotate

Arguments
object a gg object
geom name of geom to use for annotation

X, ¥, Xmin, ymin, xmax, ymax, xend, yend
positioning aesthetics - you must specify at least one of these.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Details

Note that all position aesthetics are scaled (i.e. they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

Unsupported geoms
Due to their special nature, reference line geoms geom_abline(), geom_hline(), and geom_vline()
can’t be used with annotate(). You can use these geoms directly for annotations.

See Also

The custom annotations section of the online ggplot2 book.

https://ggplot2-book.org/annotations#sec-custom-annotations

gf_area 13

Examples

p <- gf_point(mpg ~wt, data = mtcars)

p |> gf_annotate("text”, x = 4, y = 25, label = "Some text")

p |> gf_annotate("text”, x = 2:5, y = 25, label = "Some text")

p |> gf_annotate("rect”, xmin = 3, xmax = 4.2, ymin = 12, ymax = 21,
alpha = .2)

p |> gf_annotate("segment”, x = 2.5, xend = 4, y = 15, yend = 25,
colour = "blue")

p |> gf_annotate("pointrange”, x = 3.5, y = 20, ymin = 12, ymax = 28,
colour = "red", size = 2.5, linewidth = 1.5)

p |> gf_annotate("text”, x = 2:3, y = 20:21, label = c("my label”, "label 2"))

25, label = "italic(R) * 2 == 0.75",

p |> gf_annotate("text"”, x
parse = TRUE)
p |> gf_annotate("text”, x = 4, y = 25,
label = "paste(italic(R) * 2, \" = .75\")", parse = TRUE)

4! y

gf_area Formula interface to geom_area()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is
a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

gf_area(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "area”,
stat = "identity"”,
position = "identity"”,

14 gf_area

show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom The geometric object to use to display the data for this layer. When using a
stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

gf_area

stat

position

show. legend

show.help
inherit

environment

See Also

15

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

» A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

ggplot2: :geom_area()

Examples

if (require(dplyr) && require(mosaicData)) {
Temps <- Weather |>
filter(city == "Chicago"”, year == 2016, month <= 4)
gf_linerange(low_temp + high_temp ~ date, color = ~high_temp, data = Temps)
gf_ribbon(low_temp + high_temp ~ date, data = Temps, color = "navy"”, alpha = 0.3)
gf_area(high_temp ~ date, data = Temps, color = "navy"”, alpha = 0.3)

gf_ribbon(low_temp + high_temp ~ date, data = Weather, alpha = 0.3) |>
gf_facet_grid(city ~ .)

16 gf_area_interactive

gf_linerange(low_temp + high_temp ~ date, color = ~high_temp, data = Weather) |>
gf_facet_grid(city ~ .) |>
gf_refine(scale_colour_gradientn(colors = rev(rainbow(5))))

gf_area_interactive Interactive area plots

Description

Creates an interactive plot using ggiraph. This function extends gf_area() with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_area(), gf_girafe()

gf_ash 17

Examples

Huron <-
data. frame(
year = 1875:1972,
level = as.vector(LakeHuron)

)

Huron |>
gf_area_interactive(
level ~ year,

tooltip = ~ "This is the area.”,
data_id = "id:area”,
fill = "skyblue”
e
gf_line_interactive(
tooltip = ~ "This is the line."”,
data_id = "id:1line"”
) 1>
gf_girafe(
list(
options = list(opts_tooltip(css = "fill: steelblue;"))
)
)
gf_ash Average Shifted Histograms
Description

An ASH plot is the average over all histograms of a fixed bin width. geom_ash() and gf_ash()
provide ways to create ASH plots using ggplot2 or ggformula.

Usage

gf_ash(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
xlab,
ylab,
title,

18 gf_ash

subtitle,

caption,

geom = "line”,

stat = "ash”,

position = "identity"”,
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

)

stat_ash(
mapping = NULL,
data = NULL,
geom = "line",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
binwidth = NULL,

adjust =1,
)
geom_ash(
mapping = NULL,
data = NULL,
stat = "ash”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
binwidth = NULL,

adjust = 1,
)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ~x or y ~ x. y may be stat(density) or stat(count)
or stat(ndensity) or stat(ncount). Faceting can be achieved by including
| in the formula.

data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

gf_ash

alpha
color
group
linetype

linewidth
x1lab
ylab

19

~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show.help
inherit
environment
mapping
na.rm

inherit.aes
binwidth

adjust

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.

A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

set of aesthetic mappings created by ggplot2::aes()] or ggplot2::aes_().

If FALSE (the default), removes missing values with a warning. If TRUE
silently removes missing values.

A logical indicating whether default aesthetics are inherited.

the width of the histogram bins. If NULL (the default) the binwidth will be chosen
so that approximately 10 bins cover the data. adjust can be used to to increase
or decrease binwidth.

a numeric adjustment to binwidth. Primarily useful when binwidth is not
specified. Increasing adjust makes the plot smoother.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

20 gt _bar

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_histogram(), gf_histogram().

Examples
data(penguins, package = "palmerpenguins”)
gf_ash(~bill_length_mm, color = ~species, data = penguins)
gf_ash(~bill_length_mm, color = ~species, data = penguins, adjust = 2)
gf_ash(~bill_length_mm, color = ~species, data = penguins, binwidth = 1)
gf_ash(~bill_length_mm, color = ~species, data = penguins, binwidth = 1, adjust = 2)

ggplot(faithful, aes(x = eruptions)) +
geom_histogram(aes(y = stat(density)),
fill = "lightskyblue”, colour = "gray50"”, alpha = 0.2

) +

geom_ash(colour = "red"”) +

geom_ash(colour = "forestgreen”, adjust = 2) +
geom_ash(colour = "navy”, adjust =1/ 2) +

theme_minimal ()

gf_bar Formula interface to geom_bar()

Description

There are two types of bar charts: geom_bar () and geom_col(). geom_bar () makes the height of
the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied,
the sum of the weights). If you want the heights of the bars to represent values in the data, use
geom_col () instead. geom_bar () uses stat_count() by default: it counts the number of cases at
each x position. geom_col () uses stat_identity(): it leaves the data as is.

Usage

gf_bar(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,

group,
linetype,

gf_bar

linewidth,

width = NULL,

xlab,

ylab,

title,

subtitle,

caption,

geom = "bar”,

stat = "count”,
position = "stack",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent

)

gf_counts(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
width = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "bar”,
stat = "count”,
position = "stack",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent

)

gf_props(
object = NULL,
gformula = NULL,
data = NULL,

alpha,

.frame()

.frame()

21

22

color,
fill,
group,
linetype,
linewidth,
xlab,
ylab = "proportion”,
title,
subtitle,
caption,
geom = "bar”,
stat = "count”,
position = "stack",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent
denom = ~PANEL

)

gf_percents(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab = "percent”,
title,
subtitle,
caption,
geom = "bar”,
stat = "count”,
position = "stack”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent
denom = ~PANEL

.frame(),

.frame(),

gt _bar

gf_bar

Arguments

object

gformula

data

alpha
color
fill

group

linetype

linewidth
width
xlab

ylab

23

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula, typically with shape ~ x. (y ~ x is also possible, but typically using
one of gf_col(), gf_props(), or gf_percents() is preferable to using this
formula shape.) Faceting can be achieved by including | in the formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Width of the bars.

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

geom, stat

position

Title, sub-title, and caption for the plot. See also gf_labs().

Override the default connection between geom_bar () and stat_count(). For
more information about overriding these connections, see how the stat and geom
arguments work.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

24

show. legend

show.help
inherit
environment

denom

Value

a gg object

gt _bar

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.
An environment in which to look for variables not found in data.

A formula, the right hand side of which describes the denominators used for
computing proportions and percents. These are computed after the stat has been
applied to the data and should refer to variables available at that point. See the
examples.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_bar()

Examples

gf_bar(~substance, data = mosaicData::HELPrct)
gf_bar(~substance, data = mosaicData::HELPrct, fill = ~sex)
gf_bar(~substance,

data = mosaicData::HELPrct, fill = ~sex,

position = position_dodge()

)

gf_counts() is another name for gf_bar()

gf_bar

gf_counts(~substance,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge()
)
gf_props() and gf_percents() use proportions or percentages instead of counts
use denom to control which denominators are used.
gf_props(~substance,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge()
)
gf_props(substance ~ .,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge(),
orientation = 'y'
)
gf_props(substance ~ .,
data = mosaicData::HELPrct, fill = ~sex,
position = "dodge"

)

gf_percents(~substance,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge()
)
gf_percents(~substance,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge(),
denom = ~x
)
gf_percents(~substance,
data = mosaicData::HELPrct, fill = ~sex,
position = position_dodge(),
denom = ~fill
)
gf_percents(~substance | sex,
data = mosaicData::HELPrct, fill = ~homeless,
position = position_dodge()
)
gf_percents(~substance | sex,
data = mosaicData: :HELPrct,
fill = ~homeless,
denom = ~fill,
position = position_dodge()
)
gf_percents(~substance | sex,
data = mosaicData::HELPrct,
fill = ~homeless,
denom = ~interaction(fill, PANEL),
position = position_dodge()
)
if (require(scales)) {
gf_percents(~substance,
data = mosaicData::HELPrct, fill = ~sex,

26 gt _barh

position = position_dodge(),

denom = ~ x,
) 1>
gf_refine(scale_y_continuous(labels = scales::percent))
3
gf_barh Deprecated horizontal plotting functions
Description

These functions were wrappers around functions from ggstance from an era before ggplot2 sup-
ported horizonally oriented geoms. ggstance has not been updated to comply with the current
version of ggplot2, and since the functionalilty is now available by other means, these functions
have been deprecated.

Usage

gf_barh(...)
gf_countsh(...)
gf_colh(...)
gf_propsh(...)
gf_percentsh(...)
gf_boxploth(...)
gf_linerangeh(...)
gf_pointrangeh(...)
gf_crossbarh(...)
gf_violinh(...)

gf_errorbarh(...)

Arguments

additional arguments

gf_bar_interactive

Examples

27

gf_violin(carat ~ color, data = diamonds)

gf_violin(carat ~ color, data = diamonds) |>
gf_refine(coord_flip())

gf_violin(color ~ carat, data = diamonds)

gf_density(~ carat, data = diamonds)

gf_density(carat ~ ., data = diamonds)
gf_bar_interactive Interactive bar charts
Description

Creates an interactive plot using ggiraph. This function extends gf_bar () with interactive features
like tooltips and clickable elements.

Arguments

object

gformula

data
tooltip
data_id

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.
A formula specifying a variable for tooltips, or a character vector.
A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

show. legend
show. help
inherit

environment

Value

Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.

Logical. If TRUE, inherit aesthetics from previous layers.

An environment in which to evaluate the formula.

A gg object that can be displayed with gf _girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

28 of bin2d

See Also
gf_bar(), gf_girafe()

Examples

diamonds |>
gf_bar_interactive(
~color,
fill = ~cut,
tooltip = ~ stage(
start = glue::glue("color: {color}; cut: {cut}"),
after_stat = glue::glue("{tooltip}; count = {count}")
),
data_id = ~ glue::glue("{cut} -- {color}"),
size = 3
) 1>
gf_girafe()

gf_bin2d Formula interface to geom_bin2d()

Description

geom_bin2d() uses ggplot2::stat_bin2d() to bin the data before using gf _tile() to display
the results. gf_bin_2d() is an alias.

Usage

gf_bin2d(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "tile",
stat = "bin2d",
position = "identity"”,

gf bin2d 29

show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

)

gf_bin_2d(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "tile”,
stat = "bin2d",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data A data frame with the variables to be plotted.
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

30 of bin2d

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.
stat A character string naming the stat used to make the layer.
position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

gf_bin2d_interactive 31

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_bin2d(), gf_tile()

Examples

gf_bin2d(eruptions ~ waiting, data = faithful, bins = 15) |>
gf_refine(scale_fill_viridis_c(begin = 0.1, end = 0.9))

gf_bin2d_interactive Interactive bin2d plots

Description

Creates an interactive plot using ggiraph. This function extends gf_bin2d() with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

32

gf_bin_2d_interactive

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_bin2d(), gf_girafe()

Examples

gf_bin2d_interactive(mpg ~ wt, data = mtcars,

gf_girafe()

tooltip = ~ paste("MPG:", mpg)) |>

gf_bin_2d_interactive Interactive bin_2d plots

Description

Creates an interactive plot using ggiraph. This function extends gf_bin_2d() with interactive
features like tooltips and clickable elements.

Arguments

object
gformula

data
tooltip
data_id

alpha, color, siz

xlab, ylab, title,

show. legend
show. help
inherit

environment

Value

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.
A formula specifying a variable for tooltips, or a character vector.
A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

e, shape, fill, group, stroke

Aesthetics passed to the geom.
subtitle, caption
Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.
Logical. If TRUE, inherit aesthetics from previous layers.

An environment in which to evaluate the formula.

A gg object that can be displayed with gf _girafe().

gf blank 33

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_bin_2d(), gf_girafe()

Examples
gf_bin_2d_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:", mpg)) |>
gf_girafe()
gf_blank Formula interface to geom_blank()

Description

The blank geom draws nothing, but can be a useful way of ensuring common scales between differ-
ent plots. See expand_limits() for more details.

Usage

gf_blank(
object = NULL,
gformula = NULL,
data = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "blank”,
stat = "identity"”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_frame(
object = NULL,
gformula = NULL,

34

data = NULL,
xlab,

ylab,

title,
subtitle,
caption,

gf blank

geom = "blank”,
stat = "identity"”,
position = "identity"”,

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment

Arguments

object

gformula

data

x1lab
ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf _labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

gf_boxplot 35

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_blank()

Examples

gf_point((c(@, 1)) ~ (c(0, 5)))

gf_frame((c(@, 1)) ~ (c(@, 5)))

gf_blank((c(@, 1)) ~ (c(0, 5)))

gf_blank() can be used to expand the view

gf_point((c(@, 1)) ~ (c(0, 5))) |>
gf_blank((c(@, 3)) ~ (c(-2, 7)))

gf_boxplot Formula interface to geom_boxplot()

Description

The boxplot compactly displays the distribution of a continuous variable. It visualises five summary
statistics (the median, two hinges and two whiskers), and all "outlying" points individually.

Usage

gf_boxplot(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,

36 gt _boxplot
linetype,
linewidth,
coef,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,

varwidth = FALSE,

xlab,
ylab,
title,
subtitle,
caption,

geom = "boxplot”,
stat = "boxplot”,
position = "dodge",

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment

Arguments

object
gformula

data

alpha

color

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

gf_boxplot 37

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

coef Length of the whiskers as multiple of IQR. Defaults to 1.5.

outlier.color, outlier.fill, outlier.shape, outlier.size,

outlier.stroke, outlier.alpha

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used
for the box. In the unlikely event you specify both US and UK spellings of
colour, the US spelling will take precedence. Sometimes it can be useful to
hide the outliers, for example when overlaying the raw data points on top of
the boxplot. Hiding the outliers can be achieved by setting outlier.shape = NA.
Importantly, this does not remove the outliers, it only hides them, so the range
calculated for the y-axis will be the same with outliers shown and outliers hid-
den.

notch If FALSE (default) make a standard box plot. If TRUE, make a notched box plot.
Notches are used to compare groups; if the notches of two boxes do not overlap,
this suggests that the medians are significantly different.

notchwidth For a notched box plot, width of the notch relative to the body (defaults to
notchwidth =0.5).
varwidth If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with

widths proportional to the square-roots of the number of observations in the
groups (possibly weighted, using the weight aesthetic).

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().
title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom, stat Use to override the default connection between geom_boxplot () and stat_boxplot().
For more information about overriding these connections, see how the stat and
geom arguments work.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To

38 gt _boxplot

include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

References
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12-16.

See Also

ggplot2: :geom_boxplot(), mosaic: :fivenum(), df _stats()

Examples

gf_boxplot(age ~ substance, data = mosaicData::HELPrct)
gf_boxplot(age ~ substance, data = mosaicData::HELPrct, varwidth = TRUE)

gf_boxplot(age ~ substance, data = mosaicData::HELPrct, color = ~sex)
gf_boxplot(age ~ substance,

data = mosaicData::HELPrct,

color = ~sex, outlier.color = "gray50”

)

longer whiskers

gf_boxplot(age ~ substance,
data = mosaicData::HELPrct,
color = ~sex, coef = 2

)

gf_boxplot_interactive

39

Note: width for boxplots is full width of box.
For jittering, it is the half-width.
gf_boxplot(age ~ substance | sex,

data = mosaicData::HELPrct,

coef = 5, width

) 1>

gf_jitter(width

= 0.4

= 0.2, alpha = 0.3)

move boxplots away a bit by adjusting dodge
gf_boxplot(age ~ substance,

data = mosaicData::HELPrct,

color = ~sex, position = position_dodge(width = 0.9)

)

gf_boxplot_interactive

Interactive box plots

Description

Creates an interactive plot using ggiraph. This function extends gf_boxplot() with interactive
features like tooltips and clickable elements.

Arguments

object

gformula

data
tooltip
data_id

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.
A formula specifying a variable for tooltips, or a character vector.
A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

show. legend
show. help
inherit

environment

Value

Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.

Logical. If TRUE, inherit aesthetics from previous layers.

An environment in which to evaluate the formula.

A gg object that can be displayed with gf _girafe().

40 gt _col

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_boxplot(), gf_girafe()

Examples

mtcars |>
gf_boxplot_interactive(
mpg ~ factor(cyl),
tooltip = ~ paste(”"Cylinders:"”, cyl)
) 1>
gf_girafe()

gf_col Formula interface to geom_col()

Description

There are two types of bar charts: geom_bar () and geom_col(). geom_bar () makes the height of
the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied,
the sum of the weights). If you want the heights of the bars to represent values in the data, use
geom_col () instead. geom_bar () uses stat_count() by default: it counts the number of cases at
each x position. geom_col () uses stat_identity(): it leaves the data as is.

Usage

gf_col(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,

gf_col

geom = "col”,

41

stat = "identity”,

position = "stack”,
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object

gformula

data

alpha
color
fill

group

linetype

linewidth
x1lab
ylab

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help

inherit

environment

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

42 gt _col

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_col()

Examples

SomeData <- data.frame(
group = LETTERS[1:3],
count = c(20, 25, 18)
)
gf_col(count ~ group, data = SomeData)

A Pareto chart

if (require(dplyr) && require(mosaicData)) {
HELPrct |>
group_by(substance) |>
summarise(count = n()) |>
ungroup() |>
dplyr::arrange(-count) |>
mutate(
cumcount = cumsum(count),
substance = reorder(substance, -count)
) 1>
gf_col(count ~ substance, fill = "skyblue") |>
gf_point(cumcount ~ substance) |>
gf_line(cumcount ~ substance, group = 1) |>
gf_refine(
scale_y_continuous(sec.axis = sec_axis(~ . / nrow(HELPrct)))

)

gf_col_interactive 43

gf_col_interactive Interactive column charts

Description

Creates an interactive plot using ggiraph. This function extends gf_col () with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption
Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_col(), gf_girafe()

44 gt_contour

Examples

if (require(dplyr)) {
library(dplyr)
diamonds |>
group_by(color, cut) |>
summarise(count = n()) |>
gf_col_interactive(
count ~ color,

fill = ~cut,
tooltip = ~ glue::glue("color: {color}, cut: {cut}, count: {count}"),
data_id = ~ glue::glue("{cut} - {color}")
) 1>
gf_girafe()
3
gf_contour Formula interface to geom_contour() and geom_contour_filled()
Description

ggplot2 can not draw true 3D surfaces, but you can use geom_contour (), geom_contour_filled(),
and geom_tile() to visualise 3D surfaces in 2D.

These functions require regular data, where the x and y coordinates form an equally spaced grid, and
each combination of x and y appears once. Missing values of z are allowed, but contouring will only
work for grid points where all four corners are non-missing. If you have irregular data, you’ll need
to first interpolate on to a grid before visualising, using interp: :interp(), akima: :bilinear(),
or similar.

Usage

gf_contour(
object = NULL,
gformula = NULL,
data = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "contour”,
stat = "contour”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,

gf_contour

environment = parent.frame()

)

gf_contour_filled(
object = NULL,
gformula = NULL,
data = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "contour_filled”,
stat = "contour_filled",
position = "identity",
show.legend = NA,
show.help = NULL,

45

inherit = TRUE,

environment =

Arguments

object

gformula

data

xlab
ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

Title, sub-title, and caption for the plot. See also gf_labs().

46

geom

stat

position

show. legend

show. help
inherit

environment

Value

a gg object

gt_contour

The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

gf_contour_filled_interactive 47

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_contour(), gf_density_2d()

Examples

gf_density_2d(eruptions ~ waiting, data = faithful, alpha = 0.5, color = "navy") |>
gf_contour(density ~ waiting + eruptions, data = faithfuld, bins = 10, color = "red")
gf_contour_filled(density ~ waiting + eruptions, data = faithfuld, bins = 10,
show.legend = FALSE) |>
gf_jitter(eruptions ~ waiting, data = faithful, color = "white", alpha = 0.5,
inherit = FALSE)

gf_contour_filled_interactive
Interactive 2-demensional contour plots

Description

Creates an interactive plot using ggiraph. These functions extend gf_contour () and gf_contour_filled()
with interactive features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data The data to be displayed in this layer.
tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

48 gf_count

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Examples

faithfuld |>
gf_contour_interactive(
density ~ waiting + eruptions,

color = ~ after_stat(level),

tooltip = ~ after_stat(paste@("density: ", level)),
data_id = ~ after_stat(level),

hover_css = "stroke: red;",

hover_nearest = TRUE,
bins = 10, show.legend = FALSE) |>
gf_girafe()

faithfuld [>
gf_contour_filled_interactive(
density ~ waiting + eruptions,

fill = ~ after_stat(level),

tooltip = ~ after_stat(paste@("density: ", level)),
data_id = ~ after_stat(level),

hover_css = "fill: red; opacity: 0.5",

hover_nearest = TRUE,
bins = 10, show.legend = FALSE) |>
gf_girafe()

gf_count Formula interface to geom_count()

Description

This is a variant of geom_point() that counts the number of observations at each location, then
maps the count to point area. It useful when you have discrete data and overplotting.

gf _count

Usage

gf_count(
object = NULL

’

gformula = NULL,

data = NULL,
alpha,
color,

fill,

group,
shape,

size,
stroke,
xlab,

ylab,

title,
subtitle,
caption,
geom = "point

stat = "sum”,

n
’

position = "identity”,

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment =

Arguments

object

gformula

data

alpha
color
fill
group
shape
size

stroke

parent.frame()

49

When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

Opacity (0 = invisible, 1 = opaque).
A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.

Used for grouping.

An integer or letter shape or a formula used for mapping shape.
A numeric size or a formula used for mapping size.

A numeric size of the border or a formula used to map stroke.

50

xlab
ylab

gf_count

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help

inherit

environment
Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_count()

Examples

Best used in conjunction with scale_size_area which ensures that
counts of zero would be given size 0. This doesn't make much difference
here because the smallest count is already close to 0.

gf_count(hwy ~ cty, data = mpg, alpha = 0.3) |>
gf_refine(scale_size_area())

gf _count_interactive 51

gf_count_interactive Interactive count plots

Description

Creates an interactive plot using ggiraph. This function extends gf_count () with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_count(), gf_density2d_interactive(), gf_girafe()

52 gf_crossbar

Examples

diamonds |>

gf_count_interactive(
clarity ~ cut,
size = ~ after_stat(n),
tooltip = ~ after_stat(paste@("count: ", n)),
show.legend = FALSE

) 1>

gf_girafe()

gf_crossbar Formula interface to geom_crossbar()

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a
single graphical object.

Usage

gf_crossbar(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
middle.linetype,
middle.colour = NULL,
middle.color = NULL,
middle.linewidth = NULL,
box.colour = NULL,
box.color = NULL,
box.linetype = NULL,
box.linewidth = NULL,
na.rm = FALSE,
inherit.aes = TRUE,
xlab,
ylab,
title,
subtitle,
caption,
geom = "crossbar”,
stat = "identity"”,
position = "identity"”,

gf_crossbar 53

show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y + ymin + ymax ~ x. Faceting can be achieved by includ-
ing | in the formula.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

middle.linetype, middle.colour, middle.color, middle.linewidth
Arguments to control the middle line.

box.colour, box.color, box.linetype, box.linewidth

Arguments to control the box.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

x1lab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf _labs().
title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

54

stat

position

show. legend

show. help
inherit

environment

Value

a gg object

gf_crossbar

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

gf_crossbar 55

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_crossbar()

Examples

if (require(mosaicData) && require(dplyr)) {
HELP2 <- HELPrct |>
summarise(.by = c(substance, sex),

mean.age = mean(age),
median.age = median(age),
max.age = max(age),

min.age = min(age),

sd.age = sd(age),

lo = mean.age - sd.age,
hi = mean.age + sd.age

)

gf_jitter(age ~ substance, data = HELPrct,
alpha = 0.7, width = 0.2, height = @, color = "skyblue") |>
gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2) |>
gf_facet_grid(~sex)

gf_jitter(age ~ substance, data = HELPrct,
alpha = 0.7, width = 0.2, height = @, color = "skyblue") |[>
gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) |>
gf_facet_grid(~sex)

gf_jitter(age ~ substance, data = HELPrct,
alpha = 0.7, width = 0.2, height = @, color = "skyblue"”) |>
gf_crossbar(mean.age + lo + hi ~ substance, data = HELP2,
fill = "transparent”, middle.linewidth = 1, middle.color = "red"”) |>
gf_facet_grid(~sex)

gf_jitter(substance ~ age, data = HELPrct,
alpha = 0.7, height = 0.2, width = @, color = "skyblue"”) |>
gf_crossbar(substance ~ mean.age + lo + hi, data = HELP2,
fill = "transparent”, color = "red") |>
gf_facet_grid(~sex)

56 gf_crossbar_interactive

gf_crossbar_interactive
Interactive crossbar plots

Description

Creates an interactive plot using ggiraph. This function extends gf_crossbar () with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_crossbar(), gf_girafe()

gf _curve

Examples

diamonds |>

dplyr::filter(carat < 1.1, carat > 0.9) |>
dplyr::group_by(color, cut) |>
dplyr::summarise(
median_price = median(price) |> round(),
lower = quantile(price, 0.25) |> round(),
upper = quantile(price, 0.75) |> round(),
igr = upper - lower
) 1>
gf_crossbhar_interactive(
cut ~ median_price + lower + upper | color,
color = ~ cut,

tooltip = ~ pasted(
"75th percentile: ", upper,
"\nmedian: ", median_price,
"\n25th percentile: ", lower
)
) 1>

gf_girafe()

57

gf_curve

Formula interface to geom_curve()

Description

geom_segment () draws a straight line between points (x, y) and (xend, yend). geom_curve()
draws a curved line. See the underlying drawing function grid: : curveGrob() for the parameters
that control the curve.

Usage

gf_curve(

object = NULL,

gformula = NULL,

data = NULL,
alpha,
color,
group,
linetype,
linewidth,
curvature =
angle = 90,
ncp = 5,

arrow = NULL,
= "butt”,

lineend

0.5,

58 gt _curve
xlab,
ylab,
title,
subtitle,
caption,
geom = "curve",
stat = "identity",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y + yend ~ x + xend.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.
alpha Opacity (0 = invisible, 1 = opaque).
color A color or a formula used for mapping color.
group Used for grouping.
linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.
linewidth A numerical line width or a formula used for mapping linewidth.
curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.
angle A numeric value between 0 and 180, giving an amount to skew the control points

of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

gf _curve

ncp

arrow
lineend
x1lab
ylab

59

The number of control points used to draw the curve. More control points creates
a smoother curve.

specification for arrow heads, as created by grid: :arrow().
Line end style (round, butt, square).

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf _labs().

title, subtitle, caption

geom

stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.

The statistical transformation to use on the data for this layer. When using a
geom_x* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

60 gf_curve_interactive

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_curve()

Examples

D <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
gf_point(mpg ~ wt, data = mtcars) |>
gf_curve(yl + y2 ~ x1 + x2, data = D, color = "navy") |>
gf_segment(yl + y2 ~ x1 + x2, data = D, color = "red")

gf_curve_interactive Interactive curve plots

Description

Creates an interactive plot using ggiraph. These functions extend gf_segment () and gf_curve()
with interactive features like tooltips and clickable elements.

Creates an interactive plot using ggiraph. This function extends gf_segment() with interactive
features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data The data to be displayed in this layer.
tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

gf_curve_interactive

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption
Labels for the plot.
show. legend Logical. Should this layer be included in the legends?

show.help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().
A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

» onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_curve(), gf_girafe()
gf_segment(), gf_girafe()

Examples

gf_curve_interactive(

1+2~0+ 4, color = "red”, curvature = - 0.2,
tooltip = ~ "curvature: -0.2",
data_id = 0.2

) 1>

gf_curve_interactive(
1+ 2~0+ 4, color = "blue"”, curvature = 0.4,
tooltip = ~ "curvature: 0.4",

data_id = 0.4) |>
gf_segment_interactive(

1+2~0+ 4, color = "green”,
tooltip = ~ "curvature: 0",
data_id = @
) 1>
gf_girafe(
options = list(
opts_hover(css = "stroke: black; stroke-width: 3;", nearest_distance =
)

)

10)

61

62 gt _density

gf_density Formula interface to stat_density()

Description

Computes and draws a kernel density estimate, which is a smoothed version of the histogram and
is a useful alternative when the data come from an underlying smooth distribution. The only differ-
ence between gf_dens() and gf_density() is the default geom used to show the density curve:
gf_density() uses an area geom (which can be filled). gf_dens() using a line geom (which
cannot be filled).

Usage

gf_density(
object = NULL,
gformula = NULL,
data = NULL,

alpha = 0.5,

color,

fill,

group,

linetype,

linewidth,

kernel = "gaussian”,
n =512,

trim = FALSE,

xlab,

ylab,

title,

subtitle,

caption,

geom = "area”,

stat = "density”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_dens(
object = NULL,
gformula = NULL,
data = NULL,

alpha = 0.5,

gf_density

color,

fill = NA,

group,

linetype,

linewidth,

kernel = "gaussian”,

n =512,

trim = FALSE,

xlab,

ylab,

title,

subtitle,

caption,

geom = "line",

stat = "density”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_dens2(
object = NULL,
gformula = NULL,
data = NULL,
alpha = 0.5,
color,
fill = NA,
group,
linetype,
linewidth,
kernel = "gaussian”,
n =512,
trim = FALSE,
xlab,
ylab,
title,
subtitle,
caption,
geom = "density_line",
stat = "density”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

63

64 gt _density

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ~ x. Faceting can be achieved by including | in the for-
mula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().
geom, stat Use to override the default connection between geom_density() and stat_density().

For more information about overriding these connections, see how the stat and
geom arguments work.

gf_density 65

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
gf_ash(), ggplot2::geom_density()

Examples

gf_dens()
data(penguins, package = "palmerpenguins”)
gf_density(~bill_length_mm, fill = ~species, data = penguins)

66

gf_density_2d

gf_dens(~bill_length_mm, color = ~species, data = penguins)
gf_dens2(~bill_length_mm, color = ~species, fill = ~species, data = penguins)
gf_freqpoly(~bill_length_mm, color = ~species, data = penguins, bins = 15)

Chaining in the data

data(penguins, package = "palmerpenguins”)
penguins |> gf_dens(~bill_length_mm, color = ~species)
horizontal orientation
penguins |> gf_dens(bill_length_mm ~ ., color = ~species)
gf_density_2d Formula interface to geom_density_2d() and

geom_density_2d_filled()

Description

Perform a 2D kernel density estimation using MASS: :kde2d() and display the results with con-
tours. This can be useful for dealing with overplotting. This is a 2D version of geom_density().
geom_density_2d() draws contour lines, and geom_density_2d_filled() draws filled contour
bands.

Usage

gf_density_2d(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
contour = TRUE,
n = 100,
h = NULL,
lineend = "butt”,
linejoin = "round”,
linemitre = 1,
xlab,
ylab,
title,
subtitle,
caption,
geom = "density_2d",
stat = "density_2d",
position = "identity",
show.legend = NA,
show.help = NULL,

gf_density_2d

)

gf_density_2d_filled(

)

inherit = TRUE,

environment = parent

object = NULL,
gformula = NULL,
data = NULL,
alpha,

color,

group,

linetype,
linewidth,
contour = TRUE,
n =100,

h = NULL,
lineend = "butt”,

linejoin = "round”,

linemitre = 1,
xlab,

ylab,

title,
subtitle,
caption,

.frame()

geom = "density_2d_filled”,
stat = "density_2d_filled",
position = "identity",

show.legend = NA,
show.help = NULL,
inherit = TRUE,

environment = parent.frame()

gf_density2d(

object = NULL,
gformula = NULL,
data = NULL,
alpha,

color,

group,

linetype,
linewidth,
contour = TRUE,
n = 100,

h NULL,
lineend = "butt”,

67

68

linejoin = "round”,
linemitre = 1,

xlab,

ylab,

title,

subtitle,

caption,

geom = "density2d”,
stat = "density2d"”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_density2d_filled(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
contour = TRUE,
n = 100,
h = NULL,
lineend = "butt”,
linejoin = "round”,
linemitre = 1,
xlab,
ylab,
title,
subtitle,
caption,
geom = "density2d_filled”,
stat = "density_2d_filled”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

gf_density_2d

gf_density_2d 69

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

contour If TRUE, contour the results of the 2d density estimation.

n Number of grid points in each direction.

h Bandwidth (vector of length two). If NULL, estimated using MASS: :bandwidth.nrd().

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf _labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf _labs().

geom, stat Use to override the default connection between geom_density_2d() and stat_density_2d().
For more information at overriding these connections, see how the stat and geom
arguments work.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

70 gf_density_2d

¢ A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_density_2d()

Examples

gf_jitter(avg_drinks ~ age,
alpha = 0.2, data = mosaicData::HELPrct,
width = 0.4, height = 0.4
E
gf_density_2d(avg_drinks ~ age, data = mosaicData::HELPrct)
gf_density_2d_filled(avg_drinks ~ age, data = mosaicData::HELPrct, show.legend = FALSE) |>
gf_jitter(avg_drinks ~ age,
alpha = 0.3, data = mosaicData::HELPrct,
width = 0.4, height = 0.4,

gf_density_2d_filled_interactive 71

color = "white"
)
gf_jitter(avg_drinks ~ age,
alpha = 0.2, data = mosaicData::HELPrct,
width = 0.4, height = 0.4
) 1>
gf_density2d(avg_drinks ~ age, data = mosaicData::HELPrct)
gf_density2d_filled(avg_drinks ~ age, data = mosaicData::HELPrct, show.legend = FALSE) |>
gf_jitter(avg_drinks ~ age,
alpha = 0.4, data = mosaicData: :HELPrct,
width = 0.4, height = 0.4,
color = "white"

gf_density_2d_filled_interactive
Interactive 2-demensional density plots

Description

Creates an interactive plot using ggiraph. These functions extend gf_density2d(), gf_density_2d(),
gf_density2d_filled(), and gf_density_2d_filled() with interactive features like tooltips
and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

72 gf_density_interactive

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_density_2d_filled(), gf_density_2d(), gf_contour_interactive(), gf_girafe()

Examples

faithful |>
gf_density2d_filled_interactive(
eruptions ~ waiting,

tooltip = ~ after_stat(level),
data_id = ~ after_stat(level),
show.legend = FALSE

) 1>

gf_girafe()

faithful |>
gf_density2d_interactive(
eruptions ~ waiting,

tooltip = ~ after_stat(level),
data_id = ~ after_stat(level),
show.legend = FALSE

) 1>

gf_girafe()

gf_density_interactive
Interactive density plots

Description

Creates an interactive plot using ggiraph. This function extends gf_density() with interactive
features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data The data to be displayed in this layer.
tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

gf dist 73

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_density(), gf_girafe()

Examples

diamonds |>
gf_density_interactive(

~ carat,

fill = ~ cut,

color = ~ cut,
data_id = ~ cut,
tooltip = ~ cut) |>

gf_girafe()

gf_dist Plot distributions

Description

Create a layer displaying a probability distribution.

74

Usage
gf_dist(

gt _dist

object = ggplot(),

dist,

xlim = NULL,

kind = c("density"”, "cdf"”, "qq", "qqstep”, "histogram"),
resolution = 5000L,

eps = le-06,

params = NULL

Arguments

object
dist

x1lim

kind

resolution

eps
params

Examples

gf_dhistogram(~

gf_dist("norm”

shading tails
gf_dist("norm”,
gf_dist("norm”,
gf_dist("norm”,
gf_dist("norm”,

gf_dist("norm”

a gg object.

A character string providing the name of a distribution. Any distribution for
which the functions with names formed by prepending "d", "p", or "q" to dist
exist can be used.

additional arguments passed both to the distribution functions and to the layer.
Note: Possible ambiguities using params or by preceding plot argument with
plot_.

A numeric vector of length 2 providing lower and upper bounds for the portion
of the distribution that will be displayed. The default is to attempt to determine
reasonable bounds using quantiles of the distribution.

One of "density”, "cdf”, "qq", "qqstep”, or "histogram” describing what
kind of plot to create.

An integer specifying the number of points to use for creating the plot.

a (small) numeric value. When other defaults are not available, the distribution
is processed from the eps to 1 - eps quantiles.

a list of parameters for the distribution.

rnorm(100), bins = 20) |>
, color = "red")

-- but see pdist() for this

fill = ~ (abs(x) <= 2), geom = "area")

color = "red", kind = "cdf")

fill = "red", kind = "histogram")

color = "red”, kind = "qgstep"”, resolution = 25) |>

, color = "black”, kind = "qq", resolution = 25, linewidth = 2, alpha = 0.5)

size is used as parameter for binomial distribution

gf_dist("binom”,

If we want to

gf_dist("binom”,

size = 20, prob = 0.25)
adjust size argument for plots, we have two choices:
size = 20, prob = 0.25, plot_size = 2)

gf_dist("binom”, params = list(size = 20, prob = 0.25), size = 2)

gf_dotplot 75

gf_dotplot Formula interface to geom_dotplot()

Description

Scatterplots in ggformula.

Usage

gf_dotplot(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
binwidth = NULL,
binaxis = "x",
method = "dotdensity”,
binpositions = "bygroup”,
stackdir = "up”,
stackratio = 1,
dotsize =1,
stackgroups = FALSE,
origin = NULL,
right = TRUE,
width = 0.9,
drop = FALSE,
xlab,
ylab,
title,
subtitle,
caption,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

76

gformula

data

alpha
color
fill
group
binwidth

binaxis
method

binpositions

stackdir

stackratio

dotsize
stackgroups

origin
right

width
drop
xlab
ylab

gf_dotplot

A formula with shape ~ x. Faceting can be achieved by including | in the for-
mula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.

Used for grouping.

When method is "dotdensity", this specifies maximum bin width. When method
is "histodot", this specifies bin width. Defaults to 1/30 of the range of the data
The axis to bin along, "x" (default) or "y"

"dotdensity" (default) for dot-density binning, or "histodot" for fixed bin widths
(like stat_bin)

When method is "dotdensity", "bygroup" (default) determines positions of the
bins for each group separately. "all" determines positions of the bins with all the
data taken together; this is used for aligning dot stacks across multiple groups.

which direction to stack the dots. "up" (default), "down", "center",
hole" (centered, but with dots aligned)

centerw-

how close to stack the dots. Default is 1, where dots just touch. Use smaller
values for closer, overlapping dots.

The diameter of the dots relative to binwidth, default 1.

should dots be stacked across groups? This has the effect that position =
"stack” should have, but can’t (because this geom has some odd properties).

When method is "histodot", origin of first bin

When method is "histodot", should intervals be closed on the right (a, b], or not
[a, b)

When binaxis is "y", the spacing of the dot stacks for dodging.
If TRUE, remove all bins with zero counts

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

position

show. legend

show.help

inherit

environment

Title, sub-title, and caption for the plot. See also gf_labs().

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

gf_dotplot 77

Details

There are two basic approaches: dot-density and histodot. With dot-density binning, the bin po-
sitions are determined by the data and binwidth, which is the maximum width of each bin. See
Wilkinson (1999) for details on the dot-density binning algorithm. With histodot binning, the bins
have fixed positions and fixed widths, much like a histogram.

When binning along the x axis and stacking along the y axis, the numbers on y axis are not mean-
ingful, due to technical limitations of ggplot2. You can hide the y axis, as in one of the examples,
or manually scale it to match the number of dots.

Value

a gg object

Warning

Dotplots in ggplot2 (and hence in ggformula) often require some fiddling because the default
y-axis is meaningless and the ideal size of the dots depends on the aspect ratio of the plot.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

References

Wilkinson, L. (1999) Dot plots. The American Statistician, 53(3), 276-281.

See Also

ggplot2: :geom_dotplot()

Examples

data(penguins, package = "palmerpenguins”)
gf_dotplot(~bill_length_mm, fill = ~species, data = penguins)

78 gf_dotplot_interactive

gf_dotplot_interactive
Interactive dotplot plots

Description

Creates an interactive plot using ggiraph. This function extends gf_dotplot() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_dotplot(), gf_girafe()

gf_ecdf 79

gf_ecdf Formula interace to empirical cumulative distribution

Description

The empirical cumulative distribution function (ECDF) provides an alternative visualization of dis-
tribution. Compared to other visualizations that rely on density (like histograms or density plots)
the ECDF doesn’t require any tuning parameters and handles both continuous and categorical vari-
ables. The downside is that it requires more training to accurately interpret, and the underlying
visual tasks are somewhat more challenging.

Usage

gf_ecdf(
object = NULL,
gformula = NULL,
data = NULL,
group,
pad,
n = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "step”,
stat = "ecdf”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

80

group

pad

x1lab
ylab

gf_ecdf

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Used for grouping.
If TRUE, pad the ecdf with additional points (-Inf, 0) and (Inf, 1)

if NULL, do not interpolate. If not NULL, this is the number of points to inter-
polate with.

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

Title, sub-title, and caption for the plot. See also gf_labs().

The geometric object to use to display the data for this layer. When using a
stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

gf_ecdf 81

stat The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Examples

Data <- data.frame(
x = c(rnorm(100, @, 1), rnorm(100, @, 3), rt(100, df = 3)),
g = gl(3, 100, labels = c(”"N(0, 1)", "N(0, 3)", "T(df = 3)"))
)
gf_ecdf(~ x, data = Data)
Don't go to positive/negative infinity
gf_ecdf(~ x, data = Data, pad = FALSE)

Multiple ECDFs
gf_ecdf(~ x, data = Data, color = ~ g)

82 gf_ellipse

gf_ellipse Formula interface to stat_ellipse()

Description

Formula interface to ggplot2: :stat_ellipse().

Usage

gf_ellipse(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
type = "t",
level = 0.95,
segments = 51,
xlab,
ylab,
title,
subtitle,
caption,
geom = "path”,
stat = "ellipse”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

gf_ellipse

color
group

type

level

segments
xlab
ylab

83

A color or a formula used for mapping color.
Used for grouping.

The type of ellipse. The default "t" assumes a multivariate t-distribution, and
"norm” assumes a multivariate normal distribution. "euclid” draws a circle
with the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won’t appear circular unless coord_fixed() is
applied.

The level at which to draw an ellipse, or, if type="euclid”, the radius of the
circle to be drawn.

The number of segments to be used in drawing the ellipse.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

stat

position

show. legend

show.help

inherit

environment

See Also

Title, sub-title, and caption for the plot. See also gf_labs().

Geom for drawing ellipse. Note: "polygon” allows fill; "path” does not; on the
other hand, "path” allows alpha to be applied to the border, while "polygon”
applies alpha only to the interior.

A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

ggplot2::stat_ellipse()

Examples

gf_ellipse()

gf_point(eruptions ~ waiting, data = faithful) |>
gf_ellipse(alpha = 0.5)

gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) |>
gf_ellipse(alpha = 0.5)

gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) |>
gf_ellipse(type = "norm”, linetype = ~ "norm") |>
gf_ellipse(type = "t", linetype = ~ "t")

gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) |>
gf_ellipse(type = "norm"”, linetype = ~ "norm") |>

84 gt _empty

gf_ellipse(type = "euclid”, linetype = ~ "euclid”, level = 3) |>
gf_refine(coord_fixed())

Use geom = "polygon” to enable fill
gf_point(eruptions ~ waiting, data = faithful, fill = ~ (eruptions > 3)) |>
gf_ellipse(geom = "polygon"”, alpha = 0.3, color = "black")

gf_point(eruptions ~ waiting, data = faithful, fill = ~ (eruptions > 3)) |>
gf_ellipse(geom = "polygon”, alpha = 0.3) |>
gf_ellipse(alpha = 0.3, color = "black")

gf_ellipse(eruptions ~ waiting, data = faithful, show.legend = FALSE,
alpha = 0.3, fill = ~ (eruptions > 3), geom = "polygon”) |>
gf_ellipse(level = 0.68, geom = "polygon”, alpha = 0.3) |>
gf_point(data = faithful, color = ~ (eruptions > 3), show.legend = FALSE)

gf_empty Create an "empty" plot

Description

This is primarily useful as a way to start a sequence of piped plot layers.

Usage

gf_empty(environment = parent.frame())

Arguments

environment An environment passed to ggplot2::ggplot()

Value

A plot with now layers.

Examples

gf_empty O
data(penguins, package = "palmerpenguins”)
gf_empty () |>
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins, color = ~species)

gf_errorbar 85

gf_errorbar Formula interface to geom_errorbar()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is
a special case of geom_ribbon (), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

gf_errorbar(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "errorbar”,
stat = "identity”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ymin + ymax ~ x. Faceting can be achieved by including
| in the formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

86

alpha
color
group

linetype

linewidth
xlab
ylab

gf_errorbar

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).
A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf _labs().

title, subtitle, caption

geom

stat

position

Title, sub-title, and caption for the plot. See also gf_labs().

The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_x* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

gf_errorbar

show. legend

show. help
inherit

environment

See Also

87

¢ A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

ggplot2::geom_errorbar()

Examples

if (require(mosaicData) && require(dplyr)) {
HELP2 <- HELPrct [>
group_by(substance, sex) |>

summarise(

mean.age = mean(age),
median.age = median(age),

max.age
min.age

sd.age

max(age),
min(age),
sd(age),

lo = mean.age - sd.age,
hi = mean.age + sd.age

)

gf_jitter(age ~ substance, data = HELPrct,

alpha =

0.5, width = 0.2, height = @, color = "skyblue") |>

gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2,
inherit = FALSE) [>
gf_facet_grid(~sex)

gf_jitter(age ~ substance, data = HELPrct,

alpha =

0.5, width = 0.2, height = @, color = "skyblue") |>

gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) |>
gf_facet_grid(~sex)
gf_jitter(age ~ substance, data = HELPrct,

alpha =

0.5, width = 0.2, height = @, color = "skyblue") |>

gf_boxplot(age ~ substance, data = HELPrct, color = "red") [>
gf_crossbar(mean.age + lo + hi ~ substance, data = HELP2) |>
gf_facet_grid(~sex)

88 gt _errorbar_interactive

gf_errorbar_interactive
Interactive errorbar plots

Description

Creates an interactive plot using ggiraph. This function extends gf_errorbar () with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom, plus any ggiraph::interactive_parameters(interactive
parameters).

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_errorbar(), gf_girafe()

gf facet_wrap 89

Examples

diamonds |>

dplyr::filter(carat < 1.1, carat > 0.9) |>

dplyr::group_by(color, cut) |>

dplyr: :summarise(
median_price = median(price) |> round(),
lower = quantile(price, 0.25) |> round(),
upper = quantile(price, 0.75) |> round(),
igr = upper - lower

e

gf_errorbar_interactive(
cut ~ lower + upper | color,

color = ~ cut,
tooltip = ~ paste@(
"75th percentile: ", upper,
"\nmedian: ", median_price,
"\n25th percentile: ", lower
)
) 1>
gf_girafe()
gf_facet_wrap Add facets to a plot

Description

These functions provide more control over faceting than is possible using the formula interface.

Usage
gf_facet_wrap(object, ...)
gf_facet_grid(object, ...)
Arguments
object A ggplot object
Additional arguments passed to ggplot2: : facet_wrap() or ggplot2::facet_grid().
This typically includes an unnamed formula argument describing the facets.
scales and space are additional useful arguments. See the examples.
See Also

ggplot2::facet_grid(), ggplot2::facet_wrap().

90 gf_fitdistr
Examples
gf_histogram(~avg_drinks, data = mosaicData::HELPrct, bins =25) |>
gf_facet_grid(~substance)
gf_histogram(~avg_drinks, data = mosaicData::HELPrct, bins =25) |>
gf_facet_grid(~substance, scales = "free")
gf_histogram(~avg_drinks, data = mosaicData::HELPrct, bins =25) |>
gf_facet_grid(~substance, scales = "free", space = "free")
gf_line(births ~ date, data = mosaicData::Births, color = ~wday) |>
gf_facet_wrap(~year, scales = "free_x", nrow = 5) |>
gf_theme(

axis.title.x =

axis.text.x =

axis.ticks.x =
e
gf_labs(color = "Day")

element_blank(),
element_blank(),
element_blank()

gf_fitdistr Plot density function based on fit to data

Description

MASS: :fitdistr() is used to fit coefficients of a specified family of distributions and the resulting

density curve is displayed.

Usage

gf_fitdistr(
object = NULL,
gformula = NULL,
data = NULL,
dist = "dnorm"”,
start = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
size,
xlab,
ylab,
title,
subtitle,
caption,
geom = "path”,
stat = "fitdistr”,
position = "identity"”,

gf_ fitdistr

91

show.legend = NA,
show.help = NULL,
inherit = FALSE,

environment

Arguments

object
gformula

data

dist

start
alpha
color
fill

group

linetype

linewidth
size
xlab
ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See examples.

A formula with shape ~ x used to specify the data to be fit to a family of distri-
butions.

A data frame containing the variable to be fitted.
Additional arguments

A quoted name of a distribution function. See mosaicCore: :fit_distr_fun()
for more details about allowable distributions.

Starting value(s) for the search for MLE. (See MASS::fitdistr.)
Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.

Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
size aesthetic for dots in pmf plots.

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

92 gf_fitdistr

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

mosaicCore: :fit_distr_fun()

Examples

gf_fitdistr(~length, data = mosaicData::KidsFeet, inherit = FALSE) |>
gf_dhistogram(~length, data = mosaicData::KidsFeet, binwidth = 0.5, alpha = 0.25)

gf_dhistogram(~length, data = mosaicData::KidsFeet, binwidth = .5, alpha = 0.25) |>
gf_fitdistr()

set.seed(12345)
Dat <- data.frame(
f = rf(500, df1 = 3, df2 = 47),
g = rgamma(500, 3, 10)
)
gf_dhistogram(~g, data = Dat) |>
gf_fitdistr(dist = "dgamma”, linewidth = 1.4)
fitted_density <- mosaicCore::fit_distr_fun(~g, data = Dat, dist = "dgamma")
gf_dhistogram(~g, data = Dat) |>
gf_fun(fitted_density(x) ~ x, inherit = FALSE)

gf_dhistogram(~f, data = Dat) |>

gf_fitdistr(dist = "df", start = list(df1 = 2, df2 = 50))

fitted parameters are default argument values
args(
mosaicCore::fit_distr_fun(~f,
data = Dat, dist = "df",
start = list(df1 = 2, df2 = 50)
)
)

args(mosaicCore::fit_distr_fun(~g, data = Dat, dist = "dgamma"))

gt freqpoly 93

gf_fregpoly Formula interface to geom_fregpoly()

Description

Visualise the distribution of a single continuous variable by dividing the x axis into bins and count-
ing the number of observations in each bin. Histograms (geom_histogram()) display the counts
with bars; frequency polygons (geom_freqpoly()) display the counts with lines. Frequency poly-
gons are more suitable when you want to compare the distribution across the levels of a categorical
variable.

Usage

gf_freqgpoly(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
binwidth,
bins,
center,
boundary,
xlab,
ylab,
title,
subtitle,
caption,
geom = "path”,
stat = "bin",
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape ~ x or y ~ x. Faceting can be achieved by including | in

the formula.

94 gf_fregpoly

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

binwidth The width of the bins. Can be specified as a numeric value or as a function that

takes x after scale transformation as input and returns a single numeric value.
When specifying a function along with a grouping structure, the function will
be called once per group. The default is to use the number of bins in bins,
covering the range of the data. You should always override this value, exploring
multiple widths to find the best to illustrate the stories in your data.

The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

center, boundary
bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = @, even if @ is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the

data.
xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf _labs().
geom, stat Use to override the default connection between geom_histogram()/geom_freqpoly()

and stat_bin(). For more information at overriding these connections, see how
the stat and geom arguments work.

gt freqpoly 95

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_freqpoly()

Examples

data(penguins, package = "palmerpenguins”)
gf_histogram(~ bill_length_mm | species, alpha = 0.2, data = penguins, bins = 20) |>
gf_freqpoly(~bill_length_mm, data = penguins, color = ~species, bins = 20)

96 gf_freqpoly_interactive

gf_freqpoly(~bill_length_mm, color = ~species, data = penguins, bins = 20)
gf_dens(~bill_length_mm, data = penguins, color = "navy") |>
gf_freqpoly(after_stat(density) ~ bill_length_mm,
data = penguins,
color = "red"”, bins = 20

)

gf_fregpoly_interactive
Interactive freqpoly plots

Description

Creates an interactive plot using ggiraph. This function extends gf_freqpoly() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

gf_function 97

See Also

gf_freqpoly(), gf_girafe()

Examples
gf_freqpoly_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:", mpg)) |>
gf_girafe()
gf_function Layers displaying graphs of functions

Description

These functions provide two different interfaces for creating a layer that contains the graph of a

function.
Usage
gf_function(object = NULL, fun, data = NULL, ..., inherit = FALSE)
gf_fun(object = NULL, formula, ..., inherit = FALSE)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
fun A function.
data A data frame with the variables to be plotted.
Additional arguments passed as params to layer (). This includes x1im, a nu-
meric vector providing the extent of the x-axis values used to evaluate fun for
plotting. By default, x1im is not used for other layers.
inherit A logical indicating whether default attributes are inherited.
formula A formula describing a function. See examples and mosaicCore: :makeFun().
Examples

gf_function(fun = sqrt, xlim = c(@, 10))
gf_dhistogram(~age, data = mosaicData::HELPrct, binwidth = 3, alpha = 0.6) |>
gf_function(
fun = stats::dnorm,
args = list(mean = mean(mosaicData::HELPrct$age), sd = sd(mosaicData::HELPrct$age)),
color = "red”
)
gf_fun(5 + 3 * cos(10 * x) ~ x, xlim = c(0, 2))
Utility bill is quadratic in month?

98 gf_function_2d

f <- makeFun(lm(totalbill ~ poly(month, 2), data = mosaicData::Utilities))
gf_point(totalbill ~ month, data = mosaicData::Utilities, alpha = 0.6) |>
gf_fun(f(m) ~ m, color = "red")

gf_function_2d Plot functions of two variables

Description

Plot functions of two variables as tile and/or contour plots.

Usage

gf_function_2d(
object = NULL,
fun = identity,

xlim = NULL,
ylim = NULL,
tile = TRUE,

contour = TRUE,
resolution = 50

)

gf_function2d(
object = NULL,
fun = identity,

xlim = NULL,
ylim = NULL,
tile = TRUE,

contour = TRUE,
resolution = 50

)

gf_function_contour(
object = NULL,
fun = identity,
xlim = NULL,
ylim = NULL,
resolution = 50

)

gf_function_tile(
object = NULL,
fun = identity,

gf_function_2d

x1im
ylim

NULL,
NULL,

c

resolution = 50

)

gf_fun_2d(
object = NULL,
formula = NULL,

xlim = NULL,
ylim = NULL,
tile = TRUE,

contour = TRUE,
resolution = 50

)

gf_fun2d(
object = NULL,
formula = NULL,

xlim = NULL,
ylim = NULL,
tile = TRUE,

contour = TRUE,
resolution = 50

)

gf_fun_tile(
object = NULL,
formula = NULL,
xlim = NULL,
ylim = NULL,
resolution = 50

)

gf_fun_contour(
object = NULL,
formula = NULL,
xlim = NULL,
ylim = NULL,

resolution = 50

Arguments

object An R object, typically of class "gg".

100 gt _girafe

fun A function of two variables to be plotted.
x1lim x limits for generating points to be plotted.
ylim y limits for generating points to be plotted.
additional arguments passed to gf_tile() or gf_contour().
tile A logical indicating whether the tile layer should be drawn.
contour A logical indicating whether the contour layer should be drawn.
resolution A numeric vector of length 1 or 2 specifying the number of grid points at which

the function is evaluated (in each dimension).

formula A formula describing a function of two variables to be plotted. See mosaic: :makeFun()
for details regarding the conversion from a formula to a function.

Value

A gg plot.

Examples

theme_set (theme_bw())

gf_function_2d(fun = function(x, y) sin(2 * x *x y), xlim = c(-pi, pi), ylim = c(-pi, pi)) |>
gf_refine(scale_fill_viridis_c())

gf_function_2d(fun = function(x, y) x + y, contour = FALSE)

gf_function_tile(fun = function(x, y) x * y) [|>
gf_function_contour(fun = function(x, y) x * y, color = "white") |>
gf_refine(scale_fill_viridis_c())

gf_fun_tile(x x y ~ x + vy, xlim = c(-3, 3), ylim = c(-2, 2)) |>
gf_fun_contour(x * y ~ x + y, color = "white") |>
gf_refine(scale_fill_viridis_c()) |>
gf_labs(fill = "product"”)

gf_girafe Render interactive ggformula plots

Description
Converts a ggplot object with interactive elements into an interactive HTML widget using ggiraph.
This function is a wrapper around ggiraph: :girafe() tailored for ggformula interactive plots.
Usage
gf_girafe(ggobj, code, ...)

Arguments
ggobj A ggplot object, typically created with a gf_*_interactive() function.
code R code to execute. This parameter is optional and rarely used in typical work-

flows.

Additional arguments passed to ggiraph: :girafe(), suchaswidth_svg, height_svg,
options, etc.

gf _guides 101

Details

This function takes a ggplot object containing interactive elements (created with gf _*_interactive()
functions) and renders it as an interactive plot. The resulting widget supports features like tooltips,
hover effects, and clickable elements.

Value
An interactive HTML widget that can be displayed in RStudio Viewer, R Markdown documents, or
Shiny applications.

See Also

ggiraph::girafe(), gf_point_interactive(), and other gf_*_interactive() functions

Examples

library(ggformula)

Basic interactive plot
gf_point_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste(”Car:", rownames(mtcars))) |>
gf_girafe()

With custom sizing
gf_histogram_interactive(~ mpg, data = mtcars,
tooltip = ~ paste("Count:”, after_stat(count))) |>
gf_girafe(width_svg = 8, height_svg = 6)

gf_guides Guides for ggformula

Description

Guides for each scale can be set scale-by-scale with the guide argument, or en masse with gf_guides().

Usage
gf_guides(object, ...)
Arguments
object a gg object
arguments passed to ggplot2: :guides().
Value

a modified gg object

102 gf _guides

See Also

ggplot2::guides()

Examples
dat <-
data.frame(
x = 1:5, y = 1:5;
p = 1:5, q = factor(1:5), r = factor(1:5)
)
p <-
dat |>
gf_point(y ~ x, colour = ~ p, size = ~ q, shape = ~r)

without guide specification

Show colorbar guide for colour.
All these examples below have a same effect.

p |> gf_guides(colour = "colorbar”, size = "legend”, shape = "legend")
p |> gf_guides(colour = guide_colorbar(), size = guide_legend(),
shape = guide_legend())

p+
scale_colour_continuous(guide = "colorbar”) +
scale_size_discrete(guide = "legend") +

scale_shape(guide = "legend")

Remove some guides
|> gf_guides(colour = "none")
p |> gf_guides(colour = "colorbar”,size = "none")

©

Guides are integrated where possible

p 1>
gf_guides(
colour = guide_legend("title"),
size = guide_legend("title"),
shape = guide_legend("title")
)
g <- guide_legend("title")
p |> gf_guides(colour = g, size = g, shape = g)

p |> gf_theme(legend.position = "bottom")
position of guides

Set order for multiple guides

mpg |>

gf_point(cty ~ displ, size = ~hwy, shape = ~ drv) |>
gf_guides(

gf_hex

colour = guide_colourbar(order

shape = guide_legend(order = 2),

D,

103

size = guide_legend(order = 3)
)
gf_hex Formula interface to geom_hex()
Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the

order in which they appear in data.

Usage
gf

_hex(

object = NULL,
gformula = NULL,
data = NULL,
bins,

binwidth,

alpha,

color,

fill,

group,

linetype,
linewidth,

xlab,

ylab,

title,

subtitle,
caption,

geom = "hex",
stat = "binhex",

position = "identity"”,

show.legend = NA,
show.help = NULL,
inherit = TRUE,

environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

104

data

bins
binwidth

alpha
color
fill

group

linetype

linewidth
x1lab
ylab

gf_hex

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Number of bins. Overridden by binwidth. Defaults to 30.

The width of the bins. Can be specified as a numeric value or as a function that
takes x after scale transformation as input and returns a single numeric value.
When specifying a function along with a grouping structure, the function will
be called once per group. The default is to use the number of bins in bins,
covering the range of the data. You should always override this value, exploring
multiple widths to find the best to illustrate the stories in your data.

The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.

Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

geom, stat

position

Title, sub-title, and caption for the plot. See also gf_labs().

Override the default connection between geom_hex () and stat_bin_hex().
For more information about overriding these connections, see how the stat and
geom arguments work.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:
* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.
* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

gf_hex 105

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_hex()

Examples

gf_hex(avg_drinks ~ age, data = mosaicData::HELPrct, bins = 15) |>
gf_density2d(avg_drinks ~ age, data = mosaicData::HELPrct, color = "red”, alpha = 0.5)

106

gf_hex_interactive

gf_hex_interactive Interactive hex plots

Description

Creates an interactive plot using ggiraph. This function extends gf_hex () with interactive features
like tooltips and clickable elements.

Arguments

object
gformula

data
tooltip
data_id

alpha, color, siz

xlab, ylab, title,

show. legend
show. help
inherit

environment

Value

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.
A formula specifying a variable for tooltips, or a character vector.
A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

e, shape, fill, group, stroke

Aesthetics passed to the geom.
subtitle, caption
Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.

Logical. If TRUE, inherit aesthetics from previous layers.
An environment in which to evaluate the formula.

A gg object that can be displayed with gf _girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_hex(), gf_girafe()

Examples

gf_hex_interactive(mpg ~ wt, data = mtcars,

gf_girafe()

tooltip = ~ paste("MPG:", mpg)) |>

gf_histogram 107

gf_histogram Formula interface to geom_histogram()

Description

Count and density histograms in ggformula.

Usage

gf_histogram(
object = NULL,
gformula = NULL,
data = NULL,
bins,
binwidth,
alpha = 0.5,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "bar”,
stat = "bin",
position = "stack",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_dhistogram(
object = NULL,
gformula = NULL,
data = NULL,
bins,
binwidth,
alpha = 0.5,
color,
fill,
group,

108 gf_histogram
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "bar”,
stat = "bin",
position = "stack",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape ~ x (or y ~ x, but this shape is not generally needed).
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.
bins Number of bins. Overridden by binwidth. Defaults to 30.
binwidth The width of the bins. Can be specified as a numeric value or as a function that
takes x after scale transformation as input and returns a single numeric value.
When specifying a function along with a grouping structure, the function will
be called once per group. The default is to use the number of bins in bins,
covering the range of the data. You should always override this value, exploring
multiple widths to find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.
alpha Opacity (0 = invisible, 1 = opaque).
color A color or a formula used for mapping color.
fill A color for filling, or a formula used for mapping fill.

gf_histogram

group

linetype

linewidth
xlab
ylab

109

Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom, stat

position

show. legend

show.help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().

Use to override the default connection between geom_histogram()/geom_freqpoly()
and stat_bin(). For more information at overriding these connections, see how
the stat and geom arguments work.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

¢ A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

110 gf_histogram_interactive

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_histogram()

Examples

X <= rnorm(1000)
gf_histogram(~x, bins = 30)
gf_dhistogram(~x, bins = 30)
gf_dhistogram(~x, binwidth = 0.5, center = @, color = "black”, bins = 30)
gf_dhistogram(~x, binwidth = 0.5, boundary = @, color = "black”, bins = 30)
gf_dhistogram(x ~ ., binwidth = @.5, boundary = @, color = "black”, bins = 30)
gf_dhistogram(~x, bins = 30) |>

gf_fitdistr(dist = "dnorm”) # see help for gf_fitdistr() for more info.

gf_histogram(~x, fill = ~ (abs(x) <= 2), boundary = 2, binwidth = 0.25)

data(penguins, package = "palmerpenguins”)
gf_histogram(~ bill_length_mm | species, data = penguins, binwidth = 0.25)
gf_histogram(~age,
data = mosaicData::HELPrct, binwidth = 5,
fill = "skyblue"”, color = "black”
)
bins can be adjusted left/right using center or boundary
gf_histogram(~age,
data = mosaicData::HELPrct,
binwidth = 5, fill = "skyblue"”, color = "black"”, center = 42.5
)
gf_histogram(~age,
data = mosaicData::HELPrct,
binwidth = 5, fill = "skyblue", color = "black”, boundary = 40
)
gf_histogram(age ~ .,
data = mosaicData::HELPrct,
binwidth = 5, fill = "skyblue", color
)

"black”, boundary = 40

gf_histogram_interactive
Interactive histograms

Description

Creates an interactive plot using ggiraph. This function extends gf_histogram() with interactive
features like tooltips and clickable elements.

gf_histogram_interactive 111

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_histogram(), gf_girafe()

Examples

Interactive histogram with bin information

mtcars |>
gf_histogram_interactive(
~ mpg,
tooltip = ~ paste@('Min: ', round(after_stat(xmin), 1),
'; Max: ', round(after_stat(xmax),1),
'; Count: ', after_stat(count)),
bins = 15) |>

gf_girafe()

112 gf_hline_interactive

gf_hline_interactive Interactive horizontal lines

Description

Creates an interactive plot using ggiraph. This function extends gf_hline() with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption
Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_hline(), gf_girafe()

gf_jitter 113

Examples

Interactive horizontal reference line
gf_point_interactive(mpg ~ wt, data = mtcars, alpha = 0.7) |>
gf_hline_interactive(yintercept = ~ mean(mpg),
tooltip = ~ paste(”Mean MPG:"”, round(mean(mpg), 1)),

color = "red”, linetype = "dashed") |>
gf_girafe()

gf_jitter Formula interface to geom_jitter()

Description

Jittered scatter plots in ggformula.

Usage

gf_jitter(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
size,
shape,
fill,
width,
height,
group,
stroke,
xlab,
ylab,
title,
subtitle,
caption,
geom = "point”,
stat = "identity"”,
position = "jitter",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

114

Arguments

object

gformula

data

alpha
color
size
shape
fill
width
height
group
stroke
xlab
ylab

gf_jitter

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A numeric size or a formula used for mapping size.

An integer or letter shape or a formula used for mapping shape.
A color for filling, or a formula used for mapping fill.
Amount of horizontal jitter.

Amount of vertical jitter.

Used for grouping.

A numeric size of the border or a formula used to map stroke.
Label for x-axis. See also gf_labs().

Label for y-axis. See also gf _labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help

inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf _labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

gf_jitter_interactive 115

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_jitter(), gf_point()

Examples

gf_jitter()
without jitter
gf_point(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct)
jitter only horizontally
gf_jitter(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct, width = 0.2, height = 0)
alternative way to get jitter
gf_point(age ~ sex,
alpha = 0.25, data = mosaicData::HELPrct,
position = "jitter"”, width = 0.2, height = 0
)

gf_jitter_interactive Interactive jitter plots

Description

Creates an interactive plot using ggiraph. This function extends gf_jitter() with interactive
features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer.

116 gt _labeller_interactive

tooltip A formula specifying a variable for tooltips, or a character vector.
data_id A formula or character vector specifying data identifiers for interactive selection.
e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_jitter(), gf_girafe()

Examples

Interactive jittered points

gf_jitter_interactive(mpg ~ factor(cyl), data = mtcars,
tooltip = ~ paste@(rownames(mtcars), ":
width = 0.2) |>

n

, mpg, "mpg"),

gf_girafe()

gf_labeller_interactive
Create interactive labeller

Description

Create interactive labeller

Usage

gf_labeller_interactive(..., .mapping)

gf_label_interactive 117

Arguments
Arguments of the form name = ~ expr are used to create . mapping (if .mapping
is missing). Other arguments (or all arguments if .mapping is not missing) are
passed through to ggplot2: :1labeller().
.mapping An aesthetic mapping as could be created with ggplot2: :aes() orggplot2::aes_().
If missing (the typical use case), .mapping is created from the arguments in . . .
that have the form name = ~ expr.
Value
a labeller

gf_label_interactive Interactive text labels

Description

Creates an interactive plot using ggiraph. This function extends gf_label () with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

118 gt _labs

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_label (), gf_girafe()

Examples
mtcars |>
gf_label_interactive(
mpg ~ wt,
label = rownames(mtcars),
size = 3,
tooltip = ~ paste("MPG:", mpg)) |>

gf_girafe()

gf_labs Non-layer functions for gf plots

Description

These functions modify things like labels, limits, scales, etc. for plots ggplot2 plots. They are
wrappers around functions in ggplot2 that allow for chaining syntax.

Usage
gf_labs(object, ...)

gf_lims(object, ...)

gf_refine(object, ...)
Arguments

object a gg object

additional arguments passed through to the similarly named function in ggplot2.

Details

gf_refine() provides a mechanism to replace + with the chaining/pipe operator |>. Each of its
\dots arguments is added in turn to the base plot in object. The other functions are thin wrap-
pers around specific ggplot2 refinement functions and pass their \dots arguments through to the
similarly named ggplot2 functions.

gf line 119

Value

a modified gg object

Examples

gf_dens(~cesd, color = ~substance, linewidth = 1.5, data = mosaicData::HELPrct) |>

gf_labs(
title = "Center for Epidemiologic Studies Depression measure”,
subtitle = "(at baseline)”,
color = "Abused substance: ",
x = "CESD score”,
y="",
caption = "Source: HELPrct”
) 1>
gf_theme(theme_classic()) |>
gf_theme(

axis.text.y = element_blank(),

legend.position = "top”,

plot.title = element_text(hjust = 0.5, color = "navy"),
plot.subtitle = element_text(hjust = 0.5, color = "navy", size = 12)

)

gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5)
gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5) |>
gf_lims(x = c(65, NA), y = c(3, NA))

modify scales using gf_refine()

data(penguins, package = "palmerpenguins”)

gf_jitter(bill_length_mm ~ bill_depth_mm, color = ~species, data = penguins) |>
gf_refine(scale_color_brewer(type = "qual”, palette = 3)) |>
gf_theme(theme_bw())

gf_jitter(bill_length_mm ~ bill_depth_mm, color = ~species, data = penguins) |>
gf_refine(scale_color_manual(values = c("red”, "navy”, "limegreen"))) |>
gf_theme (theme_bw())

gf_line Formula interface to geom_line() and geom_path()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the
order in which they appear in data.

Usage

gf_line(
object = NULL,
gformula = NULL,

120 gf line

data = NULL,
alpha,

color,

fill,

group,

linetype,
linewidth,
lineend,

linejoin,
linemitre,

arrow,

xlab,

ylab,

title,

subtitle,

caption,

geom = "line",
stat = "identity”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_path(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
lineend = "butt”,
linejoin = "round”,
linemitre = 1,
arrow = NULL,
xlab,
ylab,
title,
subtitle,
caption,
geom = "path”,
stat = "identity"”,
position = "identity",

gf line

121

show.legend = NA,
show.help = NULL,
inherit = TRUE,

environment

Arguments

object

gformula

data

alpha
color
fill

group

linetype

linewidth
lineend
linejoin
linemitre
arrow
xlab

ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Line end style (round, butt, square).

Line join style (round, mitre, bevel).

Line mitre limit (number greater than 1).

Arrow specification, as created by grid: :arrow().

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf _labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help

inherit

environment

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

122 gf_linerange

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_line(), gf_point()

Examples

gf_line()
gf_point(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct)
gf_point(births ~ date, color = ~wday, data = mosaicData::Births78)
lines make the exceptions stand out more prominently
gf_line(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_path()
if (require(dplyr)) {
data.frame(t = seq(1, 10 * pi, length.out = 400)) |>
mutate(x = t * cos(t), y =t * sin(t)) |>
gf_path(y ~ x, color = ~t)

gf_linerange Formula interface to geom_linerange() and geom_pointrange()

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a
single graphical object.

gf_linerange 123

Usage

gf_linerange(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "linerange"”,
stat = "identity"”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_pointrange(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
size,
xlab,
ylab,
title,
subtitle,
caption,
geom = "pointrange”,
stat = "identity"”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

124

)

gf_summary (
object = NULL
gformula
data = NULL,

alpha,

color,

group,
linetype,
linewidth =1
size,

fun.y = NULL,
fun.ymax
fun.ymin
fun.args
xlab,
ylab,
title,
subtitle,
caption,

gf_linerange

’

NULL,

’

NULL,
NULL,
list(),

geom = "pointrange”,
stat = "summary”,

ition = "i i
osition = "identity",

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment

Arguments

object

gformula

data

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape ymin + ymax ~ x. Faceting can be achieved by including
| in the formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

gf_linerange

alpha
color

group

125

~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).
Set or map color.

Use to set or map group.

linetype, linewidth

xlab
ylab

Set or map style of the line.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

stat

position

show. legend

Title, sub-title, and caption for the plot. See also gf_labs().

The geometric object to use to display the data for this layer. When using a
stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It

126 gf_linerange

can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
size size aesthetic for points (gf_pointrange()).

fun.ymin, fun.y, fun.ymax
[Deprecated] Use the versions specified above instead.

fun.args Optional additional arguments passed on to the functions.

See Also

ggplot2::geom_linerange()
ggplot2: :geom_pointrange()
ggplot2: :geom_pointrange(), ggplot2: :stat_summary()

Examples

gf_linerange()

gf_ribbon(low_temp + high_temp ~ date,
data = mosaicData: :Weather,
fill = ~city, alpha = 0.4
) 1>
gf_theme(theme = theme_minimal())
gf_linerange(
low_temp + high_temp ~ date | city ~ .,
data = mosaicData: :Weather,
color = ~ ((low_temp + high_temp) / 2)
) 1>
gf_refine(scale_colour_gradientn(colors = rev(rainbow(5)))) |>
gf_labs(color = "mid-temp")

gf_ribbon(low_temp + high_temp ~ date | city ~ ., data = mosaicData::Weather)

Chaining in the data
mosaicData: :Weather |>
gf_ribbon(low_temp + high_temp ~ date, alpha = 0.4) |>
gf_facet_grid(city ~ .)
if (require(mosaicData) && require(dplyr)) {
HELP2 <- HELPrct |>
group_by(substance, sex) |>
summarise(
mean.age = mean(age),
median.age = median(age),
max.age = max(age),
min.age = min(age),
sd.age = sd(age),

gf_linerange 127

lo = mean.age - sd.age,
hi = mean.age + sd.age

)

gf_jitter(age ~ substance, data = HELPrct,
alpha = 0.5, width = 0.2, height = @, color = "skyblue"”) |>
gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2) |>
gf_facet_grid(~sex)

gf_jitter(age ~ substance, data = HELPrct,
alpha = 0.5, width = 0.2, height = @, color = "skyblue") |>
gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) |>
gf_facet_grid(~sex)

width is defined differently for gf_boxplot() and gf_jitter()
% for gf_boxplot() it is the full width of the box.
% for gf_jitter() it is half that -- the maximum amount added or subtracted.
gf_boxplot(age ~ substance, data = HELPrct, width = 0.4) |>
gf_jitter(width = 0.4, height = 0, color = "skyblue”, alpha = 0.5)

gf_boxplot(age ~ substance, data = HELPrct, width = 0.4) |>
gf_jitter(width = 0.2, height = 0, color = "skyblue”, alpha = 0.5)

3
p <- gf_jitter(mpg ~ cyl, data = mtcars, height = @, width = 0.15); p
p |> gf_summary(fun.data = "mean_cl_boot"”, color = "red”, size = 2, linewidth = 1.3)
You can supply individual functions to summarise the value at
each x:
p |> gf_summary(fun.y = "median”, color = "red"”, size = 3, geom = "point")
p I>
gf_summary(fun.y = "mean”, color = "red”, size = 3, geom = "point") |>
gf_summary(fun.y = mean, geom = "line")
p I>
gf_summary(fun.y = mean, fun.ymin = min, fun.ymax = max, color = "red")
Not run:
pI>
gf_summary(fun.ymin = min, fun.ymax = max, color = "red”, geom = "linerange")
End(Not run)
gf_bar(~ cut, data = diamonds)
gf_col(price ~ cut, data = diamonds, stat = "summary_bin"”, fun.y = "mean")
Don't use gf_lims() to zoom into a summary plot - this throws the
data away
p <- gf_summary(mpg ~ cyl, data = mtcars, fun.y = "mean”, geom = "point")
p
p |> gf_lims(y = c(15, 30))
Instead use coord_cartesian()
p |> gf_refine(coord_cartesian(ylim = c(15, 30)))
A set of useful summary functions is provided from the Hmisc package.

Not run:
p <- gf_jitter(mpg ~ cyl, data = mtcars, width = 0.15, height = @); p
p |> gf_summary(fun.data = mean_cl_boot, color = "red")

128 gf_linerange_interactive

p |> gf_summary(fun.data = mean_cl_boot, color = "red", geom = "crossbar")
p |> gf_summary(fun.data = mean_sdl, group = ~ cyl, color = "red",
geom = "crossbhar”, width = 9.3)
p |> gf_summary(group = ~ cyl, color = "red”, geom = "crossbar"”, width = 0.3,
fun.data = mean_sdl, fun.args = list(mult = 1))
p |> gf_summary(fun.data = median_hilow, group = ~ cyl, color = "red"”,
geom = "crossbar”, width = 0.3)

End(Not run)

An example with highly skewed distributions:
if (require("ggplot2movies”)) {
set.seed(596)
Mov <- movies[sample(nrow(movies), 1000),]
m2 <- gf_jitter(votes ~ factor(round(rating)), data = Mov, width = @.15, height = @, alpha =0.3)
m2 <- m2 |>
gf_summary(fun.data = "mean_cl_boot”, geom = "crossbar”,
colour = "red”, width = 0.3) |>
gf_labs(x = "rating")
m2
Notice how the overplotting skews off visual perception of the mean
supplementing the raw data with summary statistics is _very_ important

Next, we'll look at votes on a log scale.

Transforming the scale means the data are transformed

first, after which statistics are computed:

m2 |> gf_refine(scale_y_log10())

Transforming the coordinate system occurs after the

statistic has been computed. This means we're calculating the summary on the raw data
and stretching the geoms onto the log scale. Compare the widths of the

standard errors.

m2 |> gf_refine(coord_trans(y="log10"))

gf_linerange_interactive
Interactive linerange plots

Description

Creates an interactive plot using ggiraph. This function extends gf_linerange() with interactive
features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

gf_linerange_interactive 129

data The data to be displayed in this layer.
tooltip A formula specifying a variable for tooltips, or a character vector.
data_id A formula or character vector specifying data identifiers for interactive selection.

. Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_linerange(), gf_girafe()

Examples

diamonds |>

dplyr::filter(carat < 1.1, carat > 0.9) |>

dplyr::group_by(color, cut) |>

dplyr: :summarise(
median_price = median(price) |> round(),
lower = quantile(price, 0.25) |> round(),
upper = quantile(price, 0.75) |> round(),
igr = upper - lower

E

gf_linerange_interactive(
cut ~ lower + upper | color,

color = ~ cut,
tooltip = ~ paste@(
"75th percentile: ", upper,
"\nmedian: ", median_price,
"\n25th percentile: ", lower
)
) 1>

gf_girafe()

130 gf_line_interactive

gf_line_interactive Interactive line plots

Description

Creates an interactive plot using ggiraph. This function extends gf_line() with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_line(), gf_girafe()

gf_path_interactive 131

Examples

if (require(mosaicData)) {

Weather |>

gf_line_interactive(
high_temp ~ date,
color = ~city,
show.legend = FALSE,
tooltip = ~city,
data_id = ~city

) 1>

gf_girafe(
width = 8, height = 3,
options = list(

opts_hover_inv(css = "opacity:0.4;"),
opts_hover(css = "stroke-width:2;", nearest_distance = 40),
opts_tooltip(use_cursor_pos = FALSE, offx = @, offy = -10)

)
)
}

gf_path_interactive Interactive path plots

Description

Creates an interactive plot using ggiraph. This function extends gf_path () with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.

show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.

132 gf_plot

Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_path(), gf_girafe()

Examples

gf_path_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:", mpg)) |>
gf_girafe()

gf_plot Formula interface to ggplot()

Description

Create a new ggplot and (optionally) set default dataset aesthetics mapping.

Usage
gf_plot(...)
Arguments
arguments that can include data (a data frame or something that can be ggplot2: : fortify()ed
to become one) and aesthetics specified using the following formula notation:
aesthetic = ~ expression. See examples.
Value
a gg object
Examples
gf_plot(mtcars, x = ~ wt, y = ~ mpg, color = ~ factor(cyl)) |>

gf_density_2d() |>
gf_point()

gf_point 133

gf_point Formula interface to geom_point()

Description

Scatterplots in ggformula.

Usage

gf_point(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
size,
shape,
fill,
group,
stroke,
xlab,
ylab,
title,
subtitle,
caption,
geom = "point”,
stat = "identity"”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =~
expression, (c) attributes of the layer as a whole, which are set with attribute
= value, or (d) arguments for the geom, stat, or position function.

134 gf_point

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

size A numeric size or a formula used for mapping size.

shape An integer or letter shape or a formula used for mapping shape.
fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

stroke A numeric size of the border or a formula used to map stroke.
xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.
stat A character string naming the stat used to make the layer.
position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
Value
a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_point(), gf_line(), gf_jitter()

gf_pointrange_interactive 135

Examples
gf_point()
gf_point((1@ * ((1:25) %/% 10)) ~ ((1:25) %% 10),
shape = 1:25,
fill = "skyblue"”, color = "navy"”, size = 4, stroke = 1, data = NA
)
gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars)
faceting -- two ways

gf_point(mpg ~ hp, data = mtcars) |>

gf_facet_wrap(~am)
gf_point(mpg ~ hp | am, group = ~cyl, data = mtcars)
gf_point(mpg ~ hp | ~am, group = ~cyl, data = mtcars)
gf_point(mpg ~ hp | am ~ ., group = ~cyl, data = mtcars)
Chaining in the data
mtcars |> gf_point(mpg ~ wt)

short cuts for main labels in the plot
gf_point(births ~ date,

color = ~wday, data = mosaicData::Births78,

xlab = "Date”, ylab = "Number of Live Births"”,

title = "Interesting Patterns in the Number of Births”,
subtitle = "(United States, 1978)",

caption = "Source: mosaicData::Births78"

gf_pointrange_interactive
Interactive pointrange plots

Description

Creates an interactive plot using ggiraph. This function extends gf _pointrange () with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

136 gf_pointrange_interactive

xlab, ylab, title, subtitle, caption
Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_pointrange(), gf_girafe()

Examples

diamonds |>

dplyr::filter(carat < 1.1, carat > 0.9) |>

dplyr::group_by(color, cut) [>

dplyr::summarise(
median_price = median(price) |> round(),
lower = quantile(price, 0.25) |> round(),
upper = quantile(price, ©0.75) |> round(),
igr = upper - lower

) 1>

gf_pointrange_interactive(
cut ~ median_price + lower + upper | color,

color = ~ cut,
tooltip = ~ paste@(
"75th percentile: ", upper,
"\nmedian: ", median_price,
"\n25th percentile: ", lower
)
) 1>

gf_girafe()

gf_point_interactive 137

gf_point_interactive Interactive scatter plots

Description

Creates an interactive plot using ggiraph. This function extends gf_point () with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_point(), gf_girafe()

138 gf_polygon

Examples

gf_point_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("Model:"”, rownames(mtcars))) |>
gf_girafe()

With color mapping and data_id for selection
gf_point_interactive(mpg ~ wt, data = mtcars,

color = ~ factor(cyl),
tooltip = ~ paste(rownames(mtcars), ":", mpg, "mpg"),
data_id = ~ rownames(mtcars)) |>
gf_girafe()
gf_polygon Formula interface to geom_polygon()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the
order in which they appear in data.

Usage

gf_polygon(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
linewidth,
shape,
fill,
group,
stroke,
xlab,
ylab,
title,
subtitle,
caption,
geom = "polygon”,
stat = "identity"”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

gf_polygon

Arguments

object
gformula

data

alpha

color
linewidth
shape, stroke
fill

group

xlab

ylab

139

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A numerical line width or a formula used for mapping linewidth.
Aesthetics for polygons.

A color for filling, or a formula used for mapping fill.

Used for grouping.

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position
show. legend
show. help
inherit
environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

140 gf_polygon_interactive

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_line(), gf_point()

Examples

gf_polygon()
if (require(maps) && require(ggthemes) && require(dplyr)) {
US <- map_data("state") |>
dplyr::mutate(name_length = nchar(region))
States <- US |>
dplyr::group_by(region) |>
dplyr::summarise(lat = mean(range(lat)), long = mean(range(long))) |>
dplyr::mutate(name = abbreviate(region, 3))

gf_polygon(lat ~ long,
data = US, group = ~group,

fill = ~name_length, color = "white"
E
gf_text(lat ~ long,
label = ~name, data = States,
color = "gray70", inherit = FALSE
) 1>

gf_refine(ggthemes: : theme_map())

gf_polygon_interactive
Interactive polygon plots

Description

Creates an interactive plot using ggiraph. This function extends gf_polygon() with interactive
features like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer.

gf qq 141

tooltip A formula specifying a variable for tooltips, or a character vector.
data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_polygon(), gf_girafe()

Examples

gf_polygon_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:", mpg)) |>
gf_girafe()

gf_qq Formula interface to geom_qq()

Description

gf_gq() an gf_qgstep() both create quantile-quantile plots. They differ in how they display the
qq-plot. gf_qq() uses points and gf_qqgstep() plots a step function through these points.

142

Usage

gf_aq(

)

object = NULL,
gformula = NULL,
data = NULL,

group,

distribution = stats
dparams = list(),
xlab,

ylab,

title,

subtitle,

caption,

geom = "point”,

stat = "qq",
position = "identity
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent

gf_qqline(

)

object = NULL,
gformula = NULL,
data = NULL,

group,

distribution = stats
dparams = list(),
linetype = "dashed”,
alpha = 0.7,

xlab,

ylab,

title,

subtitle,

caption,

geom = "path”,

stat = "qq_line",
position = "identity
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent

gf_qagstep(

::gnorm,

n
’

.frame()

::gnorm,

n
’

.frame()

gf qq

gf qq

143

object = NULL,
gformula = NULL,

data = NULL,

L

group,

distribution = stats::gnorm,
dparams = list(),

xlab,
ylab,
title,
subtitle,
caption,

geom = "step”,

stat = "qq",

position = "identity"”,
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object

gformula
data

group
distribution
dparams

xlab

ylab

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape ~ sample. Facets can be added using |.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Used for grouping.

Distribution function to use, if x not specified

Additional parameters passed on to distribution function.
Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

title, subtitle, caption

Title, sub-title, and caption for the plot. See also gf_labs().

144

geom, stat

position

show. legend

show. help
inherit
environment

linetype

alpha

Value

a gg object

gf qq

Use to override the default connection between geom_histogram()/geom_freqpoly()

and stat_bin(). For more information at overriding these connections, see how
the stat and geom arguments work.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.
An environment in which to look for variables not found in data.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

Opacity (0 = invisible, 1 = opaque).

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

gf_quantile 145

See Also

ggplot2::geom_qq()

Examples

gf_qq(~ rnorm(100))

data(penguins, package = "palmerpenguins”)

gf_gq(~ bill_length_mm | species, data = penguins) |> gf_qqgline()

gf_gq(~ bill_length_mm | species, data = penguins) |> gf_qgline(tail = 0.10)

gf_qq(~bill_length_mm, color = ~species, data = penguins) |>
gf_qgqgstep(~bill_length_mm, color = ~species, data = penguins)

gf_quantile Formula interface to geom_quantile()

Description

This fits a quantile regression to the data and draws the fitted quantiles with lines. This is as a
continuous analogue to geom_boxplot().

Usage

gf_quantile(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
lineend = "butt”,
linejoin = "round”,
linemitre = 1,
quantiles,
formula,
method,
method. args,
xlab,
ylab,
title,
subtitle,
caption,
geom = "quantile”,
stat = "quantile”,
position = "identity"”,

146 gf_quantile

show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data. frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

quantiles conditional quantiles of y to calculate and display

formula formula relating y variables to x variables

method Quantile regression method to use. Available options are "rq” (for quantreg: :rq())
and "rqgss” (for quantreg: :rgss()).

method.args List of additional arguments passed on to the modelling function defined by
method.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf _labs().

gf_quantile 147

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom, stat Use to override the default connection between geom_quantile() and stat_quantile().
For more information about overriding these connections, see how the stat and
geom arguments work.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show. help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_quantile()

148 gf_quantile_interactive

Examples

gf_point((1 / hwy) ~ displ, data = mpg) |>
gf_quantile((1 / hwy) ~ displ)

gf_quantile_interactive
Interactive quantile plots

Description

Creates an interactive plot using ggiraph. This function extends gf_quantile() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_quantile(), gf_girafe()

gf_raster 149

Examples

gf_quantile_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:"”, mpg)) |>
gf_girafe()

gf_raster Formula interface to geom_raster()

Description

Formula interface to geom_raster()

Usage

gf_raster(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
hjust = 0.5,
vjust = 0.5,
interpolate = FALSE,
xlab,
ylab,
title,
subtitle,
caption,
geom = "raster”,
stat = "identity”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

150 gf_raster

gformula A formula with shape y ~ x or fill ~x +y

data A data frame with the variables to be plotted.
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

hjust, vjust horizontal and vertical justification of the grob. Each justification value should

be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over
its data location.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.
x1lab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().
title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.
stat A character string naming the stat used to make the layer.
position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show. help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
Value
a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

gf_raster_interactive 151

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_raster()

Examples

Justification controls where the cells are anchored
D <- expand.grid(x = 0:5, y = 0:5)

D$z <- runif(nrow(D))

centered squares

gf_raster(z ~ x + y, data = D)

gf_raster(y ~ x, fill = ~z, data = D)

zero padding

gf_raster(z ~ x + y, data = D, hjust = @, vjust = @)

gf_raster_interactive Interactive raster plots

Description

Creates an interactive plot using ggiraph. This function extends gf_raster() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.

152 gf rect

Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_raster(), gf_girafe()

Examples
gf_raster_interactive(mpg ~ wt, data = mtcars,
tooltip = ~ paste("MPG:", mpg)) |>
gf_girafe()
gf_rect Formula interface to geom_rect()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the
order in which they appear in data.

Usage

gf_rect(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "rect”,
stat = "identity"”,

gf rect

153

position = "identity",
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object

gformula

data

alpha
color
fill

group

linetype

linewidth
xlab
ylab

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape ymin + ymax ~ xmin + xmax. Faceting can be achieved by
including | in the formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf _labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

154 gf_rect_interactive

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_rect()

Examples

gf_rect(1 + 2 ~ 3 + 4, alpha = 0.3, color = "red")
use data = data.frame() so we get 1 rectangle and not 1 per row of faithful
use inherit = FALSE because we are not reusing eruptions and waiting
gf_point(eruptions ~ waiting, data = faithful) |>
gf_rect(1.5 + 3 ~ 45 + 68,
fill = "red”, alpha = 0.2,

data = data.frame(), inherit = FALSE) |>
gf_rect(3 + 5.5 ~ 68 + 100,

fill = "green”, alpha = 0.2,

data = data.frame(), inherit = FALSE)

gf_rect_interactive Interactive rect plots

Description

Creates an interactive plot using ggiraph. This function extends gf_rect () with interactive features
like tooltips and clickable elements.

Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer.

gf_rect_interactive 155

tooltip A formula specifying a variable for tooltips, or a character vector.
data_id A formula or character vector specifying data identifiers for interactive selection.
e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption
Labels for the plot.
show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_rect(), gf_girafe()

Examples

rect_data <-
data.frame(

x1 =c(1, 3, 1, 5, 4),
x2 = c(2, 4, 3, 6, 6),
yl =c(1, 1, 4, 1, 3),
y2 = 2,5, 3,5),

C(2’ ’ ’
t=cCa', 'a’, 'a’, 'b', 'b"),
r=c, 2, 3, 4, 5),
tooltip = c¢(”ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),
uid = c("ID 17, "ID 2", "ID 3", "ID 4", "ID 5"),
oc = rep("alert(this.getAttribute(\"data-id\"))", 5)
)

p <- rect_data |>
gf_rect_interactive(
y1 + y2 ~ x1 + x2,

fill = t,

tooltip = ~ tooltip,
onclick = ~ oc,
data_id = ~ uid,
color = "black”,

alpha = 0.5,

156 gt _relabel

linejoin = "bevel”,
lineend = "round”
E
gf _text(
(yl + (y2 -yl) /7 2) ~ (x1 + (x2 -x1) / 2),
label = ~ r,
size = 4

)

if (interactive()) {
p |> gf_girafe()
3

gf_relabel Modify plot labeling

Description

Some packages like expss provide mechanisms for providing longer labels to R objects. These
labels can be used when labeling plots and tables, for example, without requiring long or awkward
variable names. This is an experimental feature and currently only supports expss or any other
system that stores a label in the label attribute of a vector.

Usage

gf_relabel(plot, labels = get_variable_labels(plot$data), ...)

S3 method for class 'gf_ggplot'

print(x, labels = get_variable_labels(x$data), ...)
Arguments

plot A ggplot.

labels A named list of labels.

Additional named labels. See examples.

X A ggplot.

Value

A plot with potentially modified labels.

gf_ribbon 157

Examples

labeling using a list

labels <- list(width = "width of foot (cm)"”, length = "length of foot (cm)",
domhand = "dominant hand")

gf_point(length ~ width, color = ~domhand, data = mosaicData::KidsFeet) |>
gf_relabel(labels)

labeling using ...
gf_point(length ~ width, color = ~domhand, data = mosaicData::KidsFeet) |>
gf_relabel(
width = "width of foot (cm)”,
length = "length of foot (cm)”,
domhand = "dominant hand")

Alternatively, we can store labels with data.
KF <- mosaicData::KidsFeet |>
set_variable_labels(
length = 'foot length (cm)',
width = 'foot width (cm)'
)
gf_point(length ~ width, data = KF)
gf_density2d(length ~ width, data = KF)
get_variable_labels(KF)

gf_ribbon Formula interface to geom_ribbon()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is
a special case of geom_ribbon (), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

gf_ribbon(
object = NULL,
gformula = NULL,
data = NULL,
alpha = 0.3,
xlab,
ylab,
title,
subtitle,
caption,
geom = "ribbon",

158

gf_ribbon

stat = "identity"”,
position = "identity"”,

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment =

Arguments

object
gformula

data

alpha
xlab
ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape ymin + ymax ~ x. Faceting can be achieved by including
| in the formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

stat

Title, sub-title, and caption for the plot. See also gf_labs().

The geometric object to use to display the data for this layer. When using a
stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

gf_ribbon 159

e A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
See Also

ggplot2: :geom_ribbon()

Examples

gf_ribbon()

gf_ribbon(low_temp + high_temp ~ date, data = mosaicData: :Weather, fill = ~city, alpha =0.4) |>
gf_theme(theme = theme_minimal())
gf_linerange(
low_temp + high_temp ~ date | city ~ .,
color = ~high_temp,
data = mosaicData::Weather

) 1>

gf_refine(scale_colour_gradientn(colors = rev(rainbow(5))))
gf_ribbon(low_temp + high_temp ~ date | city ~ ., data = mosaicData::Weather)
Chaining in the data
Not run:

mosaicData: :Weather |>
gf_ribbon(low_temp + high_temp ~ date, alpha = 0.4) |>
gf_facet_grid(city ~ .)

End(Not run)

160 gt _ribbon_interactive

gf_ribbon_interactive Interactive ribbon plots

Description

Creates an interactive plot using ggiraph. This function extends gf_ribbon() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_ribbon(), gf_girafe()

gf_ridgeline 161

Examples

Huron <-
data.frame(
year = 1875:1972,
level = as.vector(LakeHuron)

)

Huron |>
gf_ribbon_interactive(
(level - 1) + (level + 1) ~ year,
tooltip = ~ "This is the ribbon."”,
fill = "skyblue”,
data_id = "id:ribbon”

) 1>
gf_line_interactive(
level ~ year,

tooltip = ~ "This is the line.",
data_id = "id:1line"

) 1>

gf_girafe()

gf_ridgeline Formula interface to ggridges plots

Description

Formula interface to ggridges plots

Usage

gf_ridgeline(
object = NULL,
gformula = NULL,

data = NULL,
height,
scale = 1,
min_height = 0,
color,

fill,

alpha,
group,
linetype,
linewidth,
point_size,

point_shape,

162 gf_ridgeline

point_colour,
point_fill,
point_alpha,
point_stroke,

xlab,

ylab,

title,

subtitle,

caption,

geom = "ridgeline”,
stat = "identity",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_density_ridges(
object = NULL,
gformula = NULL,
data = NULL,
height,
scale = 1,
rel_min_height = 0,
color,
fill,
alpha,
group,
linetype,
linewidth,
point_size,
point_shape,
point_colour,
point_fill,
point_alpha,
point_stroke,
panel_scaling = TRUE,
xlab,
ylab,
title,
subtitle,
caption,
geom = "density_ridges”,
stat = "density_ridges”,
position = "points_sina",
show.legend = NA,

gf_ridgeline

)

show.help = NULL,
inherit = TRUE,
environment = parent.frame()

gf_density_ridges2(

)

object = NULL,
gformula = NULL,

data = NULL,
height,
scale = 1,
rel_min_height = 0,
color,

fill,

alpha,
group,
linetype,
linewidth,
point_size,

point_shape,
point_colour,

point_fill,

point_alpha,
point_stroke,
panel_scaling = TRUE,
xlab,

ylab,

title,

subtitle,

caption,

geom = "density_ridges2"”,
stat = "density_ridges”,
position = "points_sina”,
show.legend = NA,
show.help = NULL,

inherit = TRUE,
environment = parent.frame()

gf_density_ridgeline_gradient(

object = NULL,
gformula = NULL,
data = NULL,
height,

color,

fill,

163

164

)

alpha,

group,

linetype,

linewidth,

gradient_lwd = 0.5,

xlab,

ylab,

title,

subtitle,

caption,

geom = "ridgeline_gradient”,
stat = "identity"”,

position = "identity"”,
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

gf_density_ridges_gradient(

object = NULL,

gformula = NULL,

data = NULL,

height,

panel_scaling = TRUE,
color,

fill = ~stat(x),

alpha,

group,

linetype,

linewidth,

gradient_lwd = 0.5,

xlab,

ylab,

title,

subtitle,

caption,

geom = "density_ridges_gradient”,
stat = "density_ridges”,
position = "points_sina",
show.legend = NA,
show.help = NULL,

inherit = TRUE,
environment = parent.frame()

gf_ridgeline

gf_ridgeline

Arguments

object
gformula

data

height

scale

min_height

color
fill

alpha
group

linetype

linewidth

point_shape,
point_stroke

xlab
ylab

165

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape ~ x. Faceting can be achieved by including | in the for-
mula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

The height of each ridgeline at the respective x value. Automatically calculated
and provided by ggridges: :stat_density_ridges() if the default stat is not
changed.

A scaling factor to scale the height of the ridgelines relative to the spacing be-
tween them. A value of 1 indicates that the maximum point of any ridgeline
touches the baseline right above, assuming even spacing between baselines.

A height cutoff on the drawn ridgelines. All values that fall below this cutoff
will be removed. The main purpose of this cutoff is to remove long tails right at
the baseline level, but other uses are possible. The cutoff is applied before any
height scaling is applied via the scale aesthetic. Default is 0, so negative values
are removed.

A color or a formula used for mapping color.

A color for filling, or a formula used for mapping fill.
Opacity (0 = invisible, 1 = opaque).

Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.

point_colour, point_size, point_fill, point_alpha,

Asin ggridges: :geom_ridgeline().
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf _labs().

title, subtitle, caption

Title, sub-title, and caption for the plot. See also gf_labs().

166

geom, stat

position

show. legend

show.help
inherit
environment
rel_min_height

panel_scaling

gradient_1lwd

Details

gf_ridgeline

Use to override the default connection between geom_density() and stat_density().
For more information about overriding these connections, see how the stat and
geom arguments work.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.
An environment in which to look for variables not found in data.

Lines with heights below this cutoff will be removed. The cutoff is measured
relative to the overall maximum, so rel_min_height = .01 would remove ev-
erything. Default is 0, so nothing is removed.

If TRUE, the default, relative scaling is calculated separately for each panel. If
FALSE, relative scaling is calculated globally.

A parameter to needed to remove rendering artifacts inside the rendered gradi-
ents. Should ideally be 0, but often needs to be around 0.5 or higher.

Note that the ggridges: :stat_density_ridges() makes joint density estimation across all datasets.
This may not generate the desired result when using faceted plots. As an alternative, you can set

stat = "density”

to use ggplot2::stat_density(). In this case, it is required to add the aes-

thetic mapping height = after_stat(density) (see examples).

See Also

ggridges: :geom_density_ridges()

ggridges: :geom_ridgeline()

ggridges: :geom_density_ridges_gradient()

gf_ridgeline 167

Examples

data. frame(

x = rep(1:5, 3), y = c(rep(@, 5), rep(1, 5), rep(3, 5)),

height = c(o, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 4, 1)
) 1>

gf_ridgeline(y ~ x, height = ~ height, group = ~y, fill = "lightblue”, alpha = 0.7)
diamonds |>

gf_density_ridges(cut ~ price,

scale = 2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(

scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))
)
diamonds |>
gf_density_ridges(clarity ~ price | cut,

scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(

scale_y_discrete(expand = c(0.01, 9)),
scale_x_continuous(expand = c(0.01, 0))
)
Not run:
diamonds |>
gf_density_ridges(clarity ~ price | cut, height = ~after_stat(density), stat = "density”,

scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(

scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))

)

End(Not run)
Not run:
diamonds |>
gf_density_ridges2(cut ~ price, scale =2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(
scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))

)

End(Not run)
diamonds |>
gf_density_ridges(cut ~ price,
scale = 2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(
scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))
)

diamonds |>

168 gf rug

gf_density_ridges(clarity ~ price | cut,

scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) |>
gf_refine(

scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))

)
Not run:

diamonds |>
gf_density_ridges(clarity ~ price | cut, height = ~ after_stat(density), stat = "density”,

scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) |>
gf_theme(theme_ridges()) [>
gf_refine(

scale_y_discrete(expand = c(0.01, 0)),
scale_x_continuous(expand = c(0.01, 0))

)

End(Not run)
Not run:
mosaicData: :Weather |>
gf_density_ridges_gradient(month ~ high_temp | city ~ ., fill = ~stat(x),
group = ~ month, show.legend = FALSE, rel_min_height = 0.02) |>
gf_refine(scale_fill_viridis_c(option = "B"), theme_bw())

End(Not run)

gf_rug Formula interface to geom_rug()

Description

gf_rugx() and gf_rugy() are versions that only add a rug to x- or y- axis. By default, these
functions do not inherit from the formula in the original layer (because doing so would often result
in rugs on both axes), so the formula is required.

Usage

gf_rug(
object = NULL,
gformula = NULL,
data = NULL,
sides = "bl",
alpha,
color,
group,
linetype,
linewidth,
xlab,

gf rug 169

ylab,

title,

subtitle,

caption,

geom = "rug”,

stat = "identity"”,
position = "identity”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_rugx(
object = NULL,
gformula = NULL,
data = NULL,
sides = "b",
alpha,
color,
group,
linetype,
linewidth,
height = 0,
xlab,
ylab,
title,
subtitle,
caption,
geom = "rug”,
stat = "identity"”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = FALSE,
environment = parent.frame()

)

gf_rugy(
object = NULL,
gformula = NULL,

data = NULL,
sides = "1",
alpha,
color,

group,

170

linetype,
linewidth,
width = 0,
xlab,

ylab,

title,
subtitle,
caption,

geom = "rug”,

gf rug

stat = "identity"”,
position = "identity",

show.legend =

NA,

show.help = NULL,
inherit = FALSE,

environment

Arguments

object

gformula
data

sides

alpha
color
group

linetype

linewidth
xlab
ylab

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x (gf_rug()) or ~ x (gf_rugx()) or ~ y (gf_rugy()).

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of "trbl", for top, right, bottom, and left.

Opacity (0 = invisible, 1 = opaque).
A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf _labs().

gf rug 171

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().
geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer. When using a
geom_x* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
height amount of vertical jittering when position is jittered.
width amount of horizontal jittering when position is jittered.

Value
a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

172 gf rug

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_rug()

Examples

data(penguins, package = "palmerpenguins”)
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) |>
gf_rug(bill_length_mm ~ bill_depth_mm)

There are several ways to control x- and y-rugs separately

gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) |>
gf_rugx(~bill_depth_mm, data = penguins, color = "red") |>
gf_rugy(bill_length_mm ~ ., data = penguins, color = "green")

gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) |>
gf_rug(. ~ bill_depth_mm, data = penguins, color = "red", inherit = FALSE) |>
gf_rug(bill_length_mm ~ ., data = penguins, color = "green", inherit = FALSE)

gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) |>
gf_rug(. ~ bill_depth_mm, data = penguins, color = "red”, sides = "b") |>
gf_rug(bill_length_mm ~ ., data = penguins, color = "green”, sides = "1")

jitter requires both an x and a y, but we can turn off one or the other with sides
gf_jitter(bill_length_mm ~ bill_depth_mm, data = penguins) |>
gf_rug(color = "green"”, sides = "b", position = "jitter")

rugs work with some 1-varialbe plots as well.

gf_histogram(~eruptions, data = faithful, bins = 25) |>
gf_rug(~eruptions, data = faithful, color = "red"”) |>
gf_rug(~eruptions, data = faithful, color = "navy”, sides = "t")

we can take advantage of inheritance to shorten the code
gf_histogram(~eruptions, data = faithful, bins = 25) |>
gf_rug(color = "red") |>
gf_rug(color = "navy"”, sides = "t")

Need to turn off inheritance when using gf_dhistogram:
gf_dhistogram(~eruptions, data = faithful) |>
gf_rug(~eruptions, data = faithful, color = "red”, inherit = FALSE)

using jitter with gf_histogram() requires manually setting the y value.
gf_dhistogram(~bill_depth_mm, data = penguins) |>
gf_rug(@ ~ bill_depth_mm, data = penguins, color = "green”, sides = "b", position = "jitter")

the choice of y value can affect how the plot looks.
gf_dhistogram(~bill_depth_mm, data = penguins) |>

gf _segment 173

gf_rug(0.5 ~ bill_depth_mm, data = penguins, color = "green”, sides = "b", position = "jitter")

gf_segment Formula interface to geom_segment()

Description

geom_segment () draws a straight line between points (x, y) and (xend, yend). geom_curve()
draws a curved line. See the underlying drawing function grid: : curveGrob() for the parameters
that control the curve.

Usage

gf_segment(
object = NULL,
gformula = NULL,

data = NULL,
alpha,
color,
group,
linetype,
linewidth,

arrow = NULL,

lineend = "butt”,
xlab,

ylab,

title,

subtitle,

caption,

geom = "segment”,

stat = "identity"”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y + yend ~ x + xend.

174

data

alpha
color
group
linetype

linewidth
arrow
lineend
xlab

ylab

gf_segment

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).
A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
specification for arrow heads, as created by grid: :arrow().
Line end style (round, butt, square).

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf _labs().

title, subtitle, caption

geom
stat

position

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

gf _segment 175

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_segment ()

Examples

D <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
gf_point(mpg ~ wt, data = mtcars) |>
gf_curve(yl + y2 ~ x1 + x2, data = D, color = "navy") |>
gf_segment(yl + y2 ~ x1 + x2, data = D, color = "red")

176 gf st

gf_sf Mapping with shape files

Description

Mapping with shape files

Usage

gf_sf(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
geometry,
xlab,
ylab,
title,
subtitle,
caption,
stat = "sf",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~
expression, (c) attributes of the layer as a whole, which are set with attribute
= value, or (d) arguments for the geom, stat, or position function.

alpha Opacity (0 = invisible, 1 = opaque).

gf sf 177

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

geometry A column of class sfc containing simple features data. (Another option is that
data may contain a column named geometry.) geometry is never inherited.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

stat A character string naming the stat used to make the layer.

position Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also
ggplot2::geom_line(), gf_point()

178 gf_sf_interactive

Examples

if (requireNamespace('maps', quietly = TRUE)) {
worldl <- sf::st_as_sf(maps::map('world', plot = FALSE, fill = TRUE))
gf_sf(data = world1l)

3

if (requireNamespace('maps', quietly = TRUE)) {
world2 <- sf::st_transform(
world1,
"+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84 +no_defs"”

)
gf_sf(data = world2)
3
gf_sf_interactive Interactive sf plots
Description

Creates an interactive plot using ggiraph. This function extends gf_sf () with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

gf sina 179

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_sf(), gf_girafe()

gf_sina Formula interface to geom_sina()

Description

The sina plot is a data visualization chart suitable for plotting any single variable in a multiclass
dataset. It is an enhanced jitter strip chart, where the width of the jitter is controlled by the density
distribution of the data within each class.

Usage

gf_sina(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
size,
fill,
group,
xlab,
ylab,
title,
subtitle,
caption,
geom = "point”,
stat = "sina",
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

180

Arguments

object

gformula

data

alpha
color
size
fill
group
xlab
ylab

gt _sina

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot ().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom= "area"”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.

A numeric size or a formula used for mapping size.
A color for filling, or a formula used for mapping fill.
Used for grouping.

Label for x-axis. See also gf_labs().

Label for y-axis. See also gf _labs().

gf sina

181

title, subtitle, caption

geom

stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf_labs().

The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

¢ A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

182 gf_smooth

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggforce: :geom_sina()

Examples

Not run:
library(ggforce)
gf_sina(age ~ substance, data = mosaicData::HELPrct)

End(Not run)

gf_smooth Formula interface to geom_smooth()

Description

LOESS and linear model smoothers in ggformula.

Usage

gf_smooth(
object = NULL,
gformula = NULL,
data = NULL,

method = "auto”,
formula = y ~ x,
se = FALSE,
method.args,

n = 80,

gf _smooth 183

span = 0.75,

fullrange = FALSE,
level = 0.95,

xlab,

ylab,

title,

subtitle,

caption,

geom = "smooth”,

stat = "smooth”,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)

gf_1m(
object = NULL,
gformula = NULL,
data = NULL,
alpha = 0.3,
linewidth =
linetype,
Im.args = list(),
interval = "none”,
level = 0.95,
fullrange = TRUE,
xlab,
ylab,
title,
subtitle,
caption,
geom = "1m",
stat = "1m",
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

1,

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

184 gf_smooth

formula.
data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

method Smoothing method (function) to use, accepts either NULL or a character vector,
e.g. "Im", "glm", "gam”, "loess" or a function, e.g. MASS: :rlmor mgcv: : gam,
stats::1m, or stats::loess. "auto” is also accepted for backwards compat-
ibility. It is equivalent to NULL.

For method = NULL the smoothing method is chosen based on the size of the
largest group (across all panels). stats::loess() is used for less than 1,000
observations; otherwise mgcv: : gam() is used with formula=y ~ s(x, bs = "cs")
with method = "REML". Somewhat anecdotally, loess gives a better appearance,
but is O(N?) in memory, so does not work for larger datasets.

If you have fewer than 1,000 observations but want to use the same gam() model
that method = NULL would use, then set method = "gam”, formula =y ~ s(x, bs = "cs").

formula Formula to use in smoothing function, eg. y ~ x, y ~ poly(x, 2), y ~ log(x).
NULL by default, in which case method = NULL implies formula =y ~ x when
there are fewer than 1,000 observations and formula =y ~ s(x, bs = "cs") oth-

erwise.

se Display confidence band around smooth? (TRUE by default, see level to con-
trol.)

method.args List of additional arguments passed on to the modelling function defined by
method.

n Number of points at which to evaluate smoother.

span Controls the amount of smoothing for the default loess smoother. Smaller num-

bers produce wigglier lines, larger numbers produce smoother lines. Only used
with loess, i.e. when method = "loess"”, or when method = NULL (the default)
and there are fewer than 1,000 observations.

fullrange If TRUE, the smoothing line gets expanded to the range of the plot, potentially be-
yond the data. This does not extend the line into any additional padding created
by expansion.

level Level of confidence band to use (0.95 by default).
xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf _labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.
stat A character string naming the stat used to make the layer.
position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

gf _smooth 185

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
alpha Opacity (0 = invisible, 1 = opaque).
linewidth A numerical line width or a formula used for mapping linewidth.
linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.
Im.args A list of arguments to stats: :1m().
interval One of "none”, "confidence” or "prediction”.
Value
a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_smooth(), gf_spline()

Examples

gf_smooth()
gf_1lm(Q)
gf_smooth(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_smooth(births ~ date,
color = ~wday, data = mosaicData::Births78,
fullrange = TRUE
)
gf_smooth(births ~ date,

186

)

color = ~wday, data = mosaicData::Births78,
show.legend = FALSE, se = FALSE

gf_smooth(births ~ date,

)

= ~wday, data = mosaicData::Births78,

show.legend = FALSE, se = TRUE

gf_1lm(length ~ width,

)

= mosaicData: :KidsFeet,

color = ~biggerfoot, alpha = 0.2

gf_point()

gf_1lm(length ~ width,

)

= mosaicData::KidsFeet,
= ~biggerfoot, fullrange = FALSE, alpha = 0.2

gf_point()
gf_lm(length ~ width,

)

color = ~sex, data = mosaicData::KidsFeet,
formula = y ~ poly(x, 2), linetype = "dashed”

gf_point()

gf_1lm(length ~ width,

)

= ~sex, data = mosaicData::KidsFeet,

formula = log(y) ~ x, backtrans = exp

gf_point()

gf_1m(hwy ~ displ,

)

data = mpg,
formula = log(y) ~ poly(x, 3), backtrans = exp,
interval = "prediction”, fill = "skyblue"”

gf_1m(
formula = log(y) ~ poly(x, 3), backtrans = exp,
interval = "confidence”, color = "red”

gf_point()

clotting <- data.frame(

c(5,10,15,20,30,40,60,80,100),
= c(118,58,42,35,27,25,21,19,18),
c(69,35,26,21,18,16,13,12,12))

gf_point(lotl ~ u, data = clotting) |>
gf_smooth(formula = y ~ log(x), method = "glm",

method.args = list(family = Gamma))

gf_point(lot2 ~ u, data = clotting) |>
gf_smooth(formula = y ~ log(x), color = "red”, method = "glm",

method.args = list(family = Gamma))

gf_smooth

gf_smooth_interactive 187

gf_smooth_interactive Interactive smoothed conditional means

Description

Creates an interactive plot using ggiraph. This function extends gf_smooth() with interactive
features like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption
Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_smooth(), gf_girafe()

188 gt _spline

Examples

Interactive smooth line with confidence band

mtcars |>
gf_point_interactive(mpg ~ wt, alpha = 0.5) |>
gf_smooth_interactive(tooltip = ~ "loess line with confidence band”, se = TRUE, alpha =0.5) |>

gf_girafe()

gf_spline Formula interface to geom_spline()

Description

Fitting splines in ggformula

Usage

gf_spline(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
group,
linetype,
linewidth,
weight,
df,
spar,
tol,
xlab,
ylab,
title,
subtitle,
caption,
geom = "line”,
stat = "spline”,
position = "identity"”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

gf_spline

Arguments

object

gformula

data

alpha
color
group

linetype

linewidth
weight

df

spar

tol

xlab
ylab

189

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).
A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.

An optional vector of weights. See smooth.spline().

desired equivalent degrees of freedom. See smooth.spline() for details.

A smoothing parameter, typically in (0,1]. See smooth.spline() for details.

A tolerance for sameness or uniqueness of the x values. The values are binned
into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite). When NULL, IQR(x) * 10e-6 is
used.

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom
stat

position

show. legend

show. help
inherit

environment

Value

a gg object

Title, sub-title, and caption for the plot. See also gf _labs().
A character string naming the geom used to make the layer.
A character string naming the stat used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are
mapped.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

190 gt spoke

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

geom_spline(), gf_smooth(), gf_1Im()

Examples

gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78, df
gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78, df

20)
4)

gf_spoke Formula interface to geom_spoke()

Description

This is a polar parameterisation of geom_segment. It is useful when you have variables that describe
direction and distance.

Usage

gf_spoke(
object = NULL,
gformula = NULL,
data = NULL,
angle,
radius,
alpha,
color,
group,
linetype,
linewidth,

gf_spoke

xlab,
ylab,
title,

subtitle,

caption,

"spoke",
"identity”,

geom =
stat =

191

position = "identity",
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object

gformula

data

angle
radius
alpha
color
group

linetype

linewidth
xlab
ylab

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.
The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~ expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

The angle at which segment leaves the point (x,y).
The length of the segment.

Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.
Label for x-axis. See also gf_labs().
Label for y-axis. See also gf _labs().

title, subtitle, caption

Title, sub-title, and caption for the plot. See also gf_labs().

192 gt spoke

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer. When using a
geom_x* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

 For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

gf_spoke_interactive

Evaluation

193

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2: :geom_spoke()

Examples

SomeData <- expand.grid(x = 1:10, y = 1:10)
SomeData$angle <- runif(100, @, 2 * pi)
SomeData$speed <- runif(100, @, sqrt(0.1 * SomeData$x))

gf_point(y ~ x, data = SomeData) |>

gf_spoke(y ~ x,

angle = ~angle, radius = 0.5)

gf_point(y ~ x, data = SomeData) |>

gf_spoke(y ~ x,

angle = ~angle, radius = ~speed)

gf_spoke_interactive Interactive spoke plots

Description

Creates an interactive plot using ggiraph. This function extends gf_spoke () with interactive fea-
tures like tooltips and clickable elements.

Arguments

object
gformula

data
tooltip
data_id

alpha, color, siz
xlab, ylab, title

show. legend
show. help
inherit

environment

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.

A formula specifying a variable for tooltips, or a character vector.

A formula or character vector specifying data identifiers for interactive selection.
Additional arguments passed to the underlying geom.

e, shape, fill, group, stroke

Aesthetics passed to the geom.

, subtitle, caption

Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.

Logical. If TRUE, inherit aesthetics from previous layers.

An environment in which to evaluate the formula.

194 gf step

Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_spoke(), gf_girafe()

Examples

if (require(dplyr)) {
expand.grid(x = 0:10, y
mutate(
direction = round(x * y / 100 * 2 x pi, 1),
size = (20 + x +y) / 50
E
gf_spoke_interactive(
y ~ x, angle = ~ direction, radius = ~ size,
tooltip = ~ paste(
"angle:", round(direction / 2 / pi * 360, 1),

0:10) |>

"degrees; size =", size),
data_id = ~ paste(x, "-", vy),
hover_nearest = TRUE
) 1>
gf_point() |>
gf_girafe(
options = list(
opts_hover(css = "stroke: red; stroke-width: 2;", nearest_distance = 10)
)
)
3
gf_step Formula interface to geom_step()
Description

geom_path () connects the observations in the order in which they appear in the data. geom_line()
connects them in order of the variable on the x axis. geom_step() creates a stairstep plot, high-
lighting exactly when changes occur. The group aesthetic determines which cases are connected
together.

gf_step

Usage

gf_step(
object = NULL

195

’

gformula = NULL,

data = NULL,
alpha,
color,
group,

linetype,
linewidth,

direction = "hv",

xlab,

ylab,

title,
subtitle,
caption,

geom = "step”

’

stat = "identity”,
position = "identity"”,

show.legend =

NA,

show.help = NULL,
inherit = TRUE,

environment =

Arguments

object

gformula

data

alpha

parent.frame()

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

Opacity (0 = invisible, 1 = opaque).

196

color
group

linetype

linewidth

direction

xlab
ylab

gt _step

A color or a formula used for mapping color.
Used for grouping.

A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

A numerical line width or a formula used for mapping linewidth.

direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or 'mid’ for step half-way between adjacent x-values.

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

stat

position

show. legend

show. help

inherit

environment
Value

a gg object

Title, sub-title, and caption for the plot. See also gf _labs().
A character string naming the geom used to make the layer.

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.
A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

gf_step_interactive 197

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_step()

Examples

gf_step(births ~ date, data = mosaicData::Births78, color = ~wday)
Roll your own Kaplan-Meier plot

if (require(survival) && require(broom)) {
fit a survival model
surv_fit <- survfit(coxph(Surv(time, status) ~ age + sex, 1lung))
surv_fit
use broom::tidy() to create a tidy data frame for plotting
surv_df <- tidy(surv_fit)
head(surv_df)
now create a plot
surv_df |>
gf_step(estimate ~ time) |>
gf_ribbon(conf.low + conf.high ~ time, alpha = 0.2)

gf_step_interactive Interactive step plots

Description

Creates an interactive plot using ggiraph. This function extends gf_step() with interactive features
like tooltips and clickable elements.

198 gf_step_interactive

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.
» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_step(), gf_girafe()

Examples

if (require(dplyr)) {
mtcars |>
group_by(cyl) |>
mutate(ecdf = ecdf(mpg) (mpg)) |>
gf_step_interactive(

ecdf ~ mpg,

group = ~ cyl,

color = ~ factor(cyl),

tooltip = ~ paste(cyl, "cylinders"),
data_id = ~ mpg,

hover_nearest = TRUE) |>
gf_labs(color = "cylinders") |>
gf_girafe()

gf_text

199

gf_text

Formula interface to geom_text() and geom_label()

Description

Text geoms are useful for labeling plots. They can be used by themselves as scatterplots or in
combination with other geoms, for example, for labeling points or for annotating the height of bars.
geom_text () adds only text to the plot. geom_label () draws a rectangle behind the text, making
it easier to read.

Usage

gf_text(

)

object = NULL,

gformula = NULL,

data = NULL,
label,
alpha,
angle,
color,
family,
fontface,
group,
hjust,
lineheight,
size,

vjust,

parse = FALSE,
nudge_x = 0,
nudge_y = 0,

check_overlap = FALSE,

xlab,

ylab,

title,
subtitle,
caption,

geom = "text",

stat = "identity"”,
position = "nudge”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,

environment = parent.frame()

gf_label(

200

object = NULL,

gformula = NULL,

data = NULL,

label,

alpha,

angle,

color,

family,

fontface,

group,

hjust,

vjust,

size,

parse,

nudge_x = 0,

nudge_y = 0,

label.padding = unit(@.25, "lines"”),
label.r = unit(0.15, "lines"),
xlab,

ylab,

title,

subtitle,

caption,

stat = "identity"”,

position = "nudge",
show.legend = NA,

show.help = NULL,

inherit = TRUE,

environment = parent.frame()

Arguments

object

gformula

data

formula.

The data to be displayed in this layer. There are three options:

gf_text

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

A formula with shape y ~ x. Faceting can be achieved by including | in the

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. ~ head(.x, 10)).

gf_text

label
alpha
angle
color
family
fontface
group

hjust, vjust

lineheight
size

parse

nudge_x, nudge_y

check_overlap

xlab
ylab

201

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

The text to be displayed.

Opacity (0 = invisible, 1 = opaque).

An angle for rotating the text.

A color or a formula used for mapping color.

A font family.

One of "plain”, "bold”, "italic"”, or "bold italic".
Used for grouping.

Numbers between 0 and 1 indicating how to justify text relative the the specified
location.

Line height.
A numeric size or a formula used for mapping size.

If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

Passed to ggplot2: :position_nudge() to nudge text or labels horizontally or
vertically.

If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text (). Note
that this argument is not supported by geom_label ().

Label for x-axis. See also gf_labs().
Label for y-axis. See also gf_labs().

title, subtitle, caption

geom

stat

position

Title, sub-title, and caption for the plot. See also gf_labs().
A character string naming the geom used to make the layer.

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

 For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

202

show. legend

show. help
inherit
environment
label.padding
label.r

Value

a gg object

gf_text

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

If TRUE, display some minimal help.

A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.
Amount of padding around label. Defaults to 0.25 lines.

Radius of rounded corners. Defaults to 0.15 lines.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf_facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_text ()

Examples

data(penguins, package = "palmerpenguins”)
gf_text(bill_length_mm ~ bill_depth_mm,
data = penguins,

gf_text_interactive 203

label = ~species, color = ~species, size = 2, angle = 30
)
penguins |>
gf_point(bill_length_mm ~ bill_depth_mm, color = ~species, alpha = 0.5) |>
gf_text(bill_length_mm ~ bill_depth_mm,
label = ~species, color = ~species,
size = 2, angle = 0, hjust = @, nudge_x = 0.1, nudge_y = 0.1
)
if (require(dplyr)) {
data(penguins, package = "palmerpenguins”)
penguins_means <-
penguins |>
group_by(species) |>
summarise(bill_length_mm = mean(bill_length_mm), bill_depth_mm = mean(bill_depth_mm))
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins, color = ~species) |>
gf_label(bill_length_mm ~ bill_depth_mm,
data = penguins_means,
label = ~species, color = ~species, size = 2, alpha = 0.7

)

gf_text_interactive Interactive text annotations

Description

Creates an interactive plot using ggiraph. This function extends gf_text () with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke

Aesthetics passed to the geom.
xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show.help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.

204 gf_theme

Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_text(), gf_girafe()

Examples

gf_point_interactive(
mpg ~ wt, data = mtcars, alpha = 0.4, size = 3,

tooltip = ~ rownames(mtcars),
data_id = 1:nrow(mtcars)
) 1>
gf_text_interactive(mpg ~ wt, data = mtcars[1:5, 1,
label = ~ rownames(mtcars)[1:5],
size = 3,
angle = 20,
data_id = 1:5,
tooltip = ~ paste(rownames(mtcars)[1:5], "\nmpg:", mpg, "wt: ", wt)
) 1>

gf_girafe()

gf_theme Themes for ggformula

Description

Themes for ggformula

Usage
gf_theme(object, theme, ...)
Arguments
object a gg object
theme a ggplot2 theme function like ggplot2: : theme_minimal().

If theme is missing, then these additional arguments are theme elements of the
sort handled by ggplot2: :theme().

gf tile 205

Value

a modified gg object

gf_tile Formula interface to geom_tile()

Description

geom_rect() and geom_tile() do the same thing, but are parameterised differently: geom_tile()
uses the center of the tile and its size (x, y, width, height), while geom_rect() can use those or
the locations of the corners (xmin, xmax, ymin and ymax). geom_raster() is a high performance
special case for when all the tiles are the same size, and no pattern fills are applied.

Usage

gf_tile(
object = NULL,
gformula = NULL,
data = NULL,
alpha,
color,
fill,
group,
linetype,
linewidth,
xlab,
ylab,
title,
subtitle,
caption,
geom = "tile",
stat = "identity"”,
position = "identity”,
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments
object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.
gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

206 gt tile

data A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.
stat A character string naming the stat used to make the layer.
position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show. legend A logical indicating whether this layer should be included in the legends. NA,
the default, includes layer in the legends if any of the attributes of the layer are

mapped.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes

gf_tile_interactive 207

can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

See Also

ggplot2::geom_tile()

Examples

D <- expand.grid(x = 0:5, y = 0:5)
D$z <- runif(nrow(D))

gf_tile(y ~ x, fill = ~z, data = D)
gf_tile(z ~ x +y, data = D)

gf_tile_interactive Interactive tile plots

Description

Creates an interactive plot using ggiraph. This function extends gf_tile() with interactive features
like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

e Additional arguments passed to the underlying geom.
alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

208 gt _violin

xlab, ylab, title, subtitle, caption

Labels for the plot.
show. legend Logical. Should this layer be included in the legends?
show. help Logical. If TRUE, display some minimal help.
inherit Logical. If TRUE, inherit aesthetics from previous layers.
environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf _girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

* Additional ggiraph aesthetics may be available depending on the geom.

See Also
gf_tile(), gf_girafe()

Examples

expand.grid(x = 1:10, y = 1:10) |>
gf_tile_interactive(
(xty) ~ x +y,

tooltip = ~ paste("x +y =", x +y)
) 1>
gf_labs(fill = "sum") |>
gf_girafe()
gf_violin Formula interface to geom_violin()

Description

A violin plot is a compact display of a continuous distribution. It is a blend of geom_boxplot () and
geom_density(): a violin plot is a mirrored density plot displayed in the same way as a boxplot.

Usage

gf_violin(
object = NULL,
gformula = NULL,
data = NULL,

alpha,

gf_violin 209

color,

fill,

group,

linetype,

linewidth,

weight,
draw_quantiles = NULL,
trim = TRUE,

scale = "area”,

bw,

adjust =1,

kernel = "gaussian”,
xlab,

ylab,

title,

subtitle,

caption,

geom = "violin",
stat = "ydensity”,
position = "dodge",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()

)
Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with
attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =
~expression, or (c) attributes of the layer as a whole, which are set with
attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

210 gt _violin

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping
linetype.

linewidth A numerical line width or a formula used for mapping linewidth.

weight Useful for summarized data, weight provides a count of the number of values

with the given combination of x and y values.
draw_quantiles [Deprecated] Previous specification of drawing quantiles.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust =1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().
xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title, subtitle, caption
Title, sub-title, and caption for the plot. See also gf _labs().

geom, stat Use to override the default connection between geom_violin() and stat_ydensity().
For more information about overriding these connections, see how the stat and
geom arguments work.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

gf_violin_interactive 211

show. help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and
mapping of additional attributes can be done through the use of additional arguments. Attributes
can be set can be set using arguments of the form attribute = value or mapped using arguments
of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using ggplot2::facet_wrap() or
ggplot2::facet_grid(). This provides an alternative to gf _facet_wrap() and gf _facet_grid()
that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the
right thing when formulas are created on the fly, but might not be the right thing if formulas created
in one environment are used to create plots in another.

References

Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box Plot-Density Trace Synergism. The Ameri-
can Statistician 52, 181-184.

See Also

ggplot2::geom_violin()

Examples

gf_violin(age ~ substance, data = mosaicData::HELPrct)
gf_violin(age ~ substance, data = mosaicData::HELPrct, fill = ~sex)

gf_violin_interactive Interactive violin plots

Description

Creates an interactive plot using ggiraph. This function extends gf_violin() with interactive
features like tooltips and clickable elements.

212

Arguments

object
gformula

data
tooltip
data_id

alpha, color, siz
xlab, ylab, title

show. legend
show. help
inherit

environment

Value

gf_violin_interactive

When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

The data to be displayed in this layer.

A formula specifying a variable for tooltips, or a character vector.

A formula or character vector specifying data identifiers for interactive selection.
Additional arguments passed to the underlying geom.

e, shape, fill, group, stroke

Aesthetics passed to the geom.

, subtitle, caption

Labels for the plot.

Logical. Should this layer be included in the legends?
Logical. If TRUE, display some minimal help.

Logical. If TRUE, inherit aesthetics from previous layers.

An environment in which to evaluate the formula.

A gg object that can be displayed with gf _girafe().

Additional interactive features

» onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_violin(), gf_girafe()

Examples

p <-
mtcars |>

gf_violin_interactive(
mpg ~ factor(cyl),

alpha = 0.5,

fill = "skyblue”,

tooltip = ~ paste("Cylinders:"”, cyl)
)

if (require(ggforce)) {
p |> gf_sina(color = "red”, alpha = 0.8) |> gf_girafe()

} else {

p |> gf_girafe()

}

gf_vline_interactive 213

gf_vline_interactive Interactive vertical lines

Description

Creates an interactive plot using ggiraph. This function extends gf_vline() with interactive fea-
tures like tooltips and clickable elements.

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the
formula.

data The data to be displayed in this layer.

tooltip A formula specifying a variable for tooltips, or a character vector.

data_id A formula or character vector specifying data identifiers for interactive selection.

Additional arguments passed to the underlying geom.

alpha, color, size, shape, fill, group, stroke
Aesthetics passed to the geom.

xlab, ylab, title, subtitle, caption
Labels for the plot.

show. legend Logical. Should this layer be included in the legends?

show. help Logical. If TRUE, display some minimal help.

inherit Logical. If TRUE, inherit aesthetics from previous layers.

environment An environment in which to evaluate the formula.
Value

A gg object that can be displayed with gf_girafe().

Additional interactive features

* onclick: JavaScript code (as character string) executed when clicking elements.

» Additional ggiraph aesthetics may be available depending on the geom.

See Also

gf_vline(), gf_girafe()

214 interactive_facets

Examples

gf_point(mpg ~ wt, data = mtcars, alpha = 0.7) |>

gf_vline_interactive(xintercept = ~ mean(wt),
tooltip = ~ paste("Mean Weight:", round(mean(wt), 1)),
color = "blue"”, linetype = "dashed”,
data_id = 1,
hover_nearest = TRUE) |>

gf_girafe(

options =
list(
opts_hover(nearest_distance = 10, css = "stroke: red; stroke-width: 3")
D)
interactive_facets Interactive facets
Description

To create interactive facets, use gf_facet_wrap_interactive() orgf_facet_grid_interactive()
and use gf_labeller_interactive() to create the labeller.

Usage
gf_facet_wrap_interactive(
object,
labeller,
interactive_on = c("text"”, "rect”, "both")
)
gf_facet_grid_interactive(
object,
labeller,
interactive_on = c("text", "rect”, "both")
)
Arguments
object a ggplot graphic
additional arguments passed to labeller and to the ggplot2 faceting function
(ggplot2::facet_wrap() or ggplot2::facet_grid()).
labeller a labeller created using gf _labeller_interactive()

interactive_on one of "text" (strip text is made interactive), "rect” (strip rectangles are made
interactive), or "both". Can be abbreviated.

interactive_layer_factory 215

See Also

ggplot2::facet_wrap()
ggplot2::facet_grid()
gf_labeller_interactive()

Examples

mosaicData: :Weather |>

gf_line_interactive(
high_temp ~ date,
color = ~city,
show.legend = FALSE,
tooltip = ~city,
data_id = ~city

) 1>
gf_facet_wrap_interactive(
~year,
ncol =1,
scales = "free_x",

labeller = gf_labeller_interactive(
data_id = ~year,

tooltip = ~ glue::glue("This is the year {year}")
)
) 1>
gf_theme(theme_facets_interactive()) |>
gf_girafe(
options = list(
opts_hover_inv(css = "opacity:0.2;"),
opts_hover(css = "stroke-width:2;", nearest_distance = 40),
opts_tooltip(use_cursor_pos = FALSE, offx = 0@, offy = -30)
)

)

interactive_layer_factory
Create an interactive ggformula layer function

Description
Primarily intended for package developers, this function factory is used to create layer functions in
the ggformula package.

Usage

interactive_layer_factory(geom_fun)

216 layer_factory

Arguments
geom_fun A character string naming an interactive geom (example: "geom_point_interactive")
layer_factory Create a ggformula layer function
Description

Primarily intended for package developers, this function factory is used to create the layer functions
in the ggformula package.

Usage

layer_factory(
geom = "point”,
position = "identity"”,
stat = "identity”,
interactive = FALSE,
layer_func_interactive = "geom_point",
pre = {
3
aes_form = y ~ x,
extras = alist(),
note = NULL,
aesthetics = aes(),
inherit.aes = TRUE,
check.aes = TRUE,
data = NULL,
layer_fun = if (interactive) {
quo(layer_interactive)
} else {

quo(ggplot2::layer)

})
)
Arguments
geom The geom to use for the layer (may be specified as a string).
position The position function to use for the layer (may be specified as a string).
stat The stat function to use for the layer (may be specified as a string).
interactive A logical indicating whether this is being used to create an interactive layer.

layer_func_interactive

The function used to create the layer when ‘interactive is TRUE (or a quosure
that evaluates to such a function).

Mlpop

pre

aes_form

extras
note

aesthetics

inherit.aes

217

code to run as a "pre-process".

A single formula or a list of formulas specifying how attributes are inferred from
the formula. Use NULL if the function may be used without a formula.

An alist of additional arguments (potentially with defaults)
A note to add to the quick help.

Additional aesthetics (typically created using ggplot2: :aes()) set rather than
inferred from formula. gf_dhistogram() uses this to set the y aesthetic to
stat(density), for example.

A logical indicating whether aesthetics should be inherited from prior layers or
a vector of character names of aesthetics to inherit.

check. aes A logical indicating whether a warning should be emited when aesthetics pro-
vided don’t match what is expected.
data A data frame or NULL or NA.
layer_fun function used to create a layer. The default value is anticipated to work in most
(all?) cases.
Additional arguments.
Value
A function.
MIpop Population of Michigan counties
Description

Population of Michigan counties

Usage

data(MIpop)

Format

A data frame with populations of Michigan counties.

rank Population rank.

county County name.

population Population (2010 census).

218 StatAsh

percs_by_group Compute groupwise proportions and percents

Description

Transform a vector of counts and a vector of groups into a vector of proportions or percentages
within groups.

Usage
percs_by_group(x, group)

props_by_group(x, group)

Arguments

X A vector of counts

group A vector to determine groups.
Examples

x <- c(20, 30, 30, 70)
gl <- c("A", "A", "B", "B")
gz <_ C(HA”, ”B”, IIAH’ IVBII)
props_by_group(x, g1)
percs_by_group(x, g1)
props_by_group(x, g2)

StatAsh ggproto classes for ggplot2

Description

These are typically accessed through their associated geom_x*, stat_x or gf_= functions.

These are typically accessed through their associated geom_x*, stat_x or gf_=* functions.

Usage
StatAsh

StatSpline
StatQgline

Statlm

stat_fitdistr 219

GeomLm
StatAsh

StatFitdistr

See Also

stat_ash()
gf_ash()
stat_spline()
gf_spline()
ggplot2::stat_qq()
gf_aa(d
stat_1m()
gf_1mQ)
geom_1m()
gf_1ImQ)
stat_ash()
gf_ash()

stat_fitdistr A stat for fitting distributions

Description
This stat computes points for plotting a distribution function. Fitting is done using MASS: : fitdistr()
when analytic solutions are not available.

Usage

stat_fitdistr(
mapping = NULL,

data = NULL,
geom = "path”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
dist = "dnorm”,
start = NULL,

220

Arguments

mapping
data
geom

position

na.rm

show. legend

inherit.aes

stat_Im

Aesthetics created using aes() or aes_string().
A data frame.
A character string naming the geom used to make the layer.

Either a character string naming the position function used for the layer or a
position object returned from a call to a position function.

If TRUE, do not emit a warning about missing data.

A logical. Should this layer be included in the legends? NA, the default, includes
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.

dist A character string indicating the distribution to fit. Examples include "dnorm”,
"dgamma"”, etc.
start A list of starting values used by MASS: : fitdistr() when numerically approx-
imating the maximum likelihood estimate.
Additional arguments.
Value
A gg object
stat_1m Linear Model Displays
Description

Adds linear model fits to plots. geom_1m() and stat_1m() are essentially equivalent. Use geom_1m()
unless you want a non-standard geom.

Usage
stat_Im(
mapping = NULL,
data = NULL,
geom = "1m",
position = "identity",
interval = c("none”, "prediction”, "confidence"),
level = 0.95,
formula =y ~ x,
Im.args = list(),

backtrans = identity,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_Im

)
geom_1m(
mapping = NULL,
data = NULL,
stat = "1m",
position = "identity”,
interval = c("none”, "prediction”, "confidence"),
level = 0.95,
formula = y ~ x,

Im.args = list(),
backtrans = identity,

221

L

na.rm = FALSE,
show.legend = NA,

inherit.aes = TRUE
)
Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot ().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom, stat Use to override the default connection between geom_1m and stat_1m.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

interval One of "none"”, "confidence" or "prediction”.
level The level used for confidence or prediction intervals
formula a formula describing the model in terms of y (response) and x (predictor).

222 stat_Im

Im.args A list of arguments supplied to 1m() when performing the fit.

backtrans a function that transforms the response back to the original scale when the
formula includes a transformation on y.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

Details

Stat calculation is performed by the (currently undocumented) predictdf. Pointwise confidence
or prediction bands are calculated using the predict () method.

See Also

1Im() for details on linear model fitting.

stat_qqline 223

Examples

width, color = sex)) +

ggplot(data = mosaicData::KidsFeet, aes(y = length, x
geom_Im() +
geom_point()

ggplot(data = mosaicData::KidsFeet, aes(y = length, x
geom_lm(interval = "prediction”, color = "skyblue")
geom_lm(interval = "confidence") +
geom_point() +
ggplot2::facet_wrap(~sex)

non-standard display

ggplot(data = mosaicData::KidsFeet, aes(y = length, x = width, color = sex)) +
stat_lm(aes(fill = sex),

width, color = sex)) +

+

color = NA, interval = "confidence”, geom = "ribbon",
alpha = 0.2
) +

geom_point() +
ggplot2::facet_wrap(~sex)
ggplot(mpg, aes(displ, hwy)) +

geom_1m(
formula = log(y) ~ poly(x, 3), backtrans
interval = "prediction”, fill = "skyblue”

) +

geom_1m(
formula = log(y) ~ poly(x, 3), backtrans = exp, interval = "confidence",
color = "red"

) +

geom_point()

exp,

stat_qqgline A Stat for Adding Reference Lines to QQ-Plots

Description
This stat computes quantiles of the sample and theoretical distribution for the purpose of providing
reference lines for QQ-plots.

Usage

stat_qqline(
mapping = NULL,

data = NULL,
geom = "line",
position = "identity",

distribution = stats::qgnorm,
dparams = list(),

na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE

224 stat_spline

Arguments
mapping An aesthetic mapping produced with ggplot2::aes()] or ggplot2::aes_string()].
data A data frame.
geom A geom.
position A position object.

Additional arguments
distribution A quantile function.
dparams A list of arguments for distribution.

na.rm A logical indicating whether a warning should be issued when missing values
are removed before plotting.

show. legend A logical indicating whether legends should be included for this layer. If NA,
legends will be include for each aesthetic that is mapped.

inherit.aes A logical indicating whether aesthetics should be inherited. When FALSE, the
supplied mapping will be the only aesthetics used.

Examples
data(penguins, package = "palmerpenguins”)
ggplot(data = penguins, aes(sample = bill_length_mm)) +
geom_qq() +

stat_qqline(alpha = 0.7, color = "red"”, linetype = "dashed") +
ggplot2::facet_wrap(~species)

stat_spline Geoms and stats for spline smoothing

Description

Similar to ggplot2::geom_smooth, this adds spline fits to plots.

Usage

stat_spline(
mapping = NULL,

data = NULL,
geom = "line",
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
weight = NULL,

df = NULL,

spar = NULL,

cv = FALSE,

stat_spline

all.knots =

225

FALSE,

nknots = stats::.nknots.smspl,

df.offset =
penalty = 1,
control.spar
tol = NULL,

)

geom_spline(
mapping = NULL,

data = NULL,

0,

= 1ist(),

stat = "spline”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
weight = NULL,

df = NULL,
spar = NULL,
cv = FALSE,

all.knots = FALSE,
nknots = stats::.nknots.smspl,

df.offset =
penalty = 1,
control.spar
tol = NULL,

Arguments

mapping
data

geom

position

na.rm

show. legend

inherit.aes

weight

df

spar

Ccv

0,

= 1ist(),

An aesthetic mapping produced with ggplot2::aes()] or ggplot2::aes_string()].
A data frame.

A geom.

A position object.

A logical indicating whether a warning should be issued when missing values
are removed before plotting.

A logical indicating whether legends should be included for this layer. If NA,
legends will be included for each aesthetic that is mapped.

A logical indicating whether aesthetics should be inherited. When FALSE, the
supplied mapping will be the only aesthetics used.

An optional vector of weights. See smooth.spline().

desired equivalent degrees of freedom. See smooth.spline() for details.

A smoothing parameter, typically in (0,1]. See smooth.spline() for details.
A logical. See smooth.spline() for details.

226

all.knots

nknots

df.offset

penalty

control.spar

tol

stat

Examples

theme_facets_interactive

A logical. See smooth.spline() for details.

An integer or function giving the number of knots to use when all.knots =
FALSE. See smooth.spline() for details.

A numerical value used to increase the degrees of freedom when using GVC.
See smooth.spline() for details.

the coefficient of the penalty for degrees of freedom in the GVC criterion. See
smooth.spline() for details.

An optional list used to control root finding when the parameter spar is com-
puted. See smooth.spline() for details.

A tolerance for sameness or uniqueness of the x values. The values are binned
into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite). When NULL, IQR(x) * 10e-6 is
used.

Additional arguments

A stat.

if (require(mosaicData)) {

ggplot(Births) + geom_spline(aes(x

date, y = births, colour = wday))

ggplot(Births) + geom_spline(aes(x = date, y = births, colour = wday), nknots = 10)

}

theme_facets_interactive

Interactive theme for ggiraph facets

Description

A theme that enables interactive strip text and backgrounds for faceted plots using ggiraph. This
theme ensures that facet labels can receive hover events and tooltips.

Usage

theme_facets_interactive(

base_theme

theme_bw(),

interactive_text = TRUE,
interactive_rects = TRUE,
strip_text_color = NULL,
strip_background_color = NULL,
strip_text_size = NULL

theme_facets_interactive 227

Arguments

base_theme A theme that will will be modified
interactive_text

A logical indicating whether text elements of strips should be interactive.
interactive_rects

A logical indicating whether rect elements of strips should be interactive.
strip_text_color

Color for strip text (or NULL to retain settings from base_theme)
strip_background_color

Color for strip background (or NULL to retain settings from base_theme)
strip_text_size

Size for strip text (or NULL to retain settings from base_theme)

Value

A ggplot2 theme object

Index

x datasets
StatAsh, 218

aes(), 221
annotation_borders(), 53, 222

density(), 64, 210
df_stats(), 38
discrete_breaks, 4

expand_limits(), 33

fortify(), 7, 14,23, 36,45, 53, 58, 64, 69,
79,85, 94, 104, 108, 124, 143, 146,
158, 165, 170, 174, 180, 191, 195,
200, 209, 221

geom, 23, 37, 64, 69, 94, 104, 109, 144, 147,
166, 210
geom_abline(), 12
geom_ash (gf_ash), 17
geom_boxplot(), 145, 208
geom_density(), 66, 208
geom_hline(), 12
geom_1m (stat_1m), 220
geom_1m(), 219
geom_point(), 48
geom_spline (stat_spline), 224
geom_spline(), 190
geom_tile(), 44
geom_vline(), 12
GeomLm (StatAsh), 218
get_variable_labels, 5
gf_abline, 6
gf_abline(), 10, 11
gf_abline_interactive, 10
gf_annotate, 11
gf_area, 13
gf_area(), 16
gf_area_interactive, 16
gf_ash, 17

228

gf_ash(), 65, 219
gf_bar, 20
gf_bar(), 27, 28
gf_bar_interactive, 27
gf_barh, 26
gf_bin2d, 28
gf_bin2d(), 31, 32
gf_bin2d_interactive, 31
gf_bin_2d (gf_bin2d), 28
gf_bin_2d(), 32, 33
gf_bin_2d_interactive, 32
gf_blank, 33
gf_boxplot, 35
gf_boxplot(), 39, 40
gf_boxplot_interactive, 39
gf_boxploth (gf_barh), 26
gf_coefline (gf_abline), 6
gf_col, 40
gf_col(), 23,43
gf_col_interactive, 43
gf_colh (gf_barh), 26
gf_contour, 44
gf_contour(), 47, 100
gf_contour_filled (gf_contour), 44
gf_contour_filled(), 47
gf_contour_filled_interactive, 47
gf_contour_interactive
(gf_contour_filled_interactive),
47
gf_contour_interactive(), 72
gf_count, 48
gf_count(), 51
gf_count_interactive, 51
gf_counts (gf_bar), 20
gf_countsh (gf_barh), 26
gf_crossbar, 52
gf_crossbar(), 56
gf_crossbar_interactive, 56
gf_crossbarh (gf_barh), 26

INDEX

gf_curve, 57

gf_curve(), 60, 61

gf_curve_interactive, 60

gf_dens (gf_density), 62

gf_dens2 (gf_density), 62

gf_density, 62

gf_density(), 72, 73

gf_density2d (gf_density_2d), 66

gf_density2d(), 71

gf_density2d_filled (gf_density_2d), 66

gf_density2d_filled(), 71

gf_density2d_filled_interactive
(gf_density_2d_filled_interactive),
71

gf_density2d_interactive
(gf_density_2d_filled_interactive),
71

gf_density2d_interactive(), 51

gf_density_2d, 66

gf_density_2d(), 47,71, 72

gf_density_2d_filled (gf_density_2d), 66

gf_density_2d_filled(), 71, 72

gf_density_2d_filled_interactive, 71

gf_density_2d_interactive
(gf_density_2d_filled_interactive),
71

gf_density_interactive, 72

gf_density_ridgeline_gradient
(gf_ridgeline), 161

gf_density_ridges (gf_ridgeline), 161

gf_density_ridges2 (gf_ridgeline), 161

gf_density_ridges_gradient
(gf_ridgeline), 161

gf_dhistogram (gf_histogram), 107

gf_dist, 73

gf_dotplot, 75

gf_dotplot(), 78

gf_dotplot_interactive, 78

gf_ecdf, 79

gf_ellipse, 82

gf_empty, 84

gf_errorbar, 85

gf_errorbar(), 88

gf_errorbar_interactive, 88

gf_errorbarh (gf_barh), 26

gf_facet_grid (gf_facet_wrap), 89

gf_facet_grid(), 19, 24, 30, 35, 38, 42,47,
50, 54, 60, 65, 70, 77, 92, 95, 105,

229

109, 115,122,134, 139, 144, 147,
150, 154,171, 175,177, 182, 185,
190, 192, 197, 202, 206, 207, 211
gf_facet_grid_interactive
(interactive_facets), 214
gf_facet_wrap, 89
gf_facet_wrap(), 19, 24, 30, 35, 38, 42,47,
50, 54, 60, 65, 70, 77, 92, 95, 105,
109, 115, 122, 134, 139, 144, 147,
150, 154,171,175, 177, 182, 185,
190, 192, 197, 202, 206, 207, 211
gf_facet_wrap_interactive
(interactive_facets), 214
gf_fitdistr, 90
gf_frame (gf_blank), 33
gf_fregpoly, 93
gf_fregpoly(), 96, 97
gf_fregpoly_interactive, 96
gf_fun (gf_function), 97
gf_fun2d (gf _function_2d), 98
gf_fun_2d (gf_function_2d), 98
gf_fun_contour (gf_function_2d), 98
gf_fun_tile (gf_function_2d), 98
gf_function, 97
gf_function2d (gf_function_2d), 98
gf_function_2d, 98
gf_function_contour (gf_function_2d), 98
gf_function_tile (gf_function_2d), 98
gf_girafe, 100
gf_girafe(), 10, 11, 16, 27, 28, 31-33, 39,
40, 43,48, 51, 56,61, 71-73, 78, 88,
96, 97,106,111, 112, 116118, 129
130, 132,136, 137, 141, 148, 152,
155,160, 178, 179, 187, 194, 198,
204,208,212, 213
gf_guides, 101
gf_hex, 103
gf_hex(), 106
gf_hex_interactive, 106
gf_histogram, 107
gf_histogram(), 20, 110, 111
gf_histogram_interactive, 110
gf_hline (gf_abline), 6
gf_hline(), 112
gf_hline_interactive, 112
gf_jitter, 113
gf_jitter(), 115, 116, 134
gf_jitter_interactive, 115

230

gf_label (gf_text), 199

gf_label (), 117, 118

gf_label_interactive, 117

gf_labeller_interactive, 116

gf_labeller_interactive(), 214, 215

gf_labs, 118

gf_labs(), 8, 14, 19, 23, 30, 34, 37,41, 45,
50, 53, 59, 64, 69, 76, 80, 83, 86, 91,
94,104,109, 114, 121, 125, 134,
139, 143, 146, 147, 150, 153, 158,
165,170, 171, 174, 177, 180, 181,
184, 189, 191, 196, 201, 206, 210

gf_lims (gf_labs), 118

gf_line, 119

gf_line(), 130, 134

gf_line_interactive, 130

gf_linerange, 122

gf_linerange(), 128, 129

gf_linerange_interactive, 128

gf_linerangeh (gf_barh), 26

gf_1m (gf_smooth), 182

gf_1Im(Q), 190, 219

gf_path (gf_line), 119

gf_path(), 131, 132

gf_path_interactive, 131

gf_percents (gf_bar), 20

gf_percents(), 23

gf_percentsh (gf_barh), 26

gf_plot, 132

gf_point, 133

gf_point(), 115, 122, 137, 140, 177

gf_point_interactive, 137

gf_point_interactive(), 101

gf_pointrange (gf_linerange), 122

gf_pointrange(), 135, 136

gf_pointrange_interactive, 135

gf_pointrangeh (gf_barh), 26

gf_polygon, 138

gf_polygon(), 140, 141

gf_polygon_interactive, 140

gf_props (gf_bar), 20

gf_props(), 23

gf_propsh (gf_barh), 26

gf_qq, 141

gf_aaQ), 219

gf_qqline (gf_qq), 141

gf_agstep (gf_qq), 141

gf_quantile, 145

INDEX

gf_quantile(), 148
gf_quantile_interactive, 148
gf_raster, 149
gf_raster(), 151, 152
gf_raster_interactive, 151
gf_rect, 152
gf_rect(), 154, 155
gf_rect_interactive, 154
gf_refine (gf_labs), 118
gf_relabel, 156
gf_ribbon, 157
gf_ribbon(), 160
gf_ribbon_interactive, 160
gf_ridgeline, 161
gf_rug, 168
gf_rugx (gf_rug), 168
gf_rugy (gf_rug), 168
gf_segment, 173
gf_segment (), 60, 61
gf_segment_interactive
(gf_curve_interactive), 60
gf_sf, 176
gf_sf(), 178, 179
gf_sf_interactive, 178
gf_sina, 179
gf_smooth, 182
gf_smooth(), 187, 190
gf_smooth_interactive, 187
gf_spline, 188
gf_spline(), 185,219
gf_spoke, 190
gf_spoke(), 193, 194
gf_spoke_interactive, 193
gf_step, 194
gf_step(), 197, 198
gf_step_interactive, 197
gf_summary (gf_linerange), 122
gf_text, 199
gf_text(), 203, 204
gf_text_interactive, 203
gf_theme, 204
gf_tile, 205
gf_tile(), 28, 31, 100, 207, 208
gf_tile_interactive, 207
gf_violin, 208
gf_violin(), 211, 212
gf_violin_interactive, 211
gf_violinh (gf_barh), 26

INDEX 231

gf_vline (gf_abline), 6 ggplot2: :geom_pointrange(), 126
gf_vline(), 213 ggplot2: :geom_qq(), 145
gf_vline_interactive, 213 ggplot2: :geom_quantile(), 147
ggforce: :geom_sina(), 182 ggplot2::geom_raster(), 151
ggiraph: :girafe(), 100, 101 ggplot2: :geom_rect(), 154
ggiraph: :interactive_parameters, 88 ggplot2: :geom_ribbon(), 159
gegplot(), 7, 14, 23, 36,45, 53, 58, 64, 69, 79, ggplot2::geom_rug(), 172
85,94, 104, 108, 124, 143, 146, 158, ggplot2::geom_segment(), 175
165,170, 174, 180, 191, 195, 200, ggplot2: :geom_smooth, 224
209, 221 ggplot2: :geom_smooth(), 185
ggplot2::aes(), 117,217 ggplot2: :geom_spoke(), /193
ggplot2::aes_(), 19,117 ggplot2: :geom_step(), 197
ggplot2: :facet_grid(), 19, 24, 30, 35, 38, ggplot2: :geom_text(), 202
42,47, 50, 54, 60, 65, 70, 77, 89, 92, ggplot2: :geom_tile(), 207
95,105,109, 115, 122, 134, 139, ggplot2::geom_violin(), 27/
144, 147, 150, 154, 171, 175, 177, ggplot2::geom_vline(), 9
182, 185, 190, 192, 197, 202, 206, ggplot2::ggplot(), 84
207,211,214, 215 ggplot2::guides(), 101, 102
ggplot2: :facet_wrap(), 19, 24, 30, 35, 38, ggplot2::labeller(), 117
42,47, 50, 54, 60, 65, 70, 77, 89, 92, ggplot2: :position_nudge(), 201
95,105,109, 115,122,134, 139, ggplot2::stat_bin2d(), 28
144, 147, 150, 154, 171, 175, 177, ggplot2::stat_density(), /166
182, 185, 190, 192, 197, 202, 206, ggplot2::stat_ellipse(), 82, 83
207,211,214, 215 ggplot2::stat_qq(), 219
ggplot2: :fortify(), 132 ggplot2::stat_summary(), /126
ggplot2: :geom_abline(), 9 ggplot2: :theme(), 204

ggplot2: :theme_minimal(), 204

ggplot2: : geom_bar (), 24 ggridges: :geom_density_ridges(), 166
ggplot2: :geom_bin2d(), 31 ggridges: :geom_density_ridges_gradient(),
ggplot2::geom_blank(), 35 166

geplot2: : geom_boxplot (), 38 ggridges: :geom_ridgeline(), 165, 166
ggplot2: : geom_col (), 42 ggridges: :stat_density_ridges(), 165,
ggplot2: :geom_contour(), 47 166

ggplot2: :geom_count(), 50 gg§tance(gf_barh),26
ggplot2::geom_crossbar(), 55 gr}d::arrow(),59,12],l74

gaplot2: : geom_curve (). 60 grid::curveGrob(), 57,173

ggplot2::geom_density(), 65

ggplot2::geom_area(), 15

interactive_facets, 214

ggplot2: :geom_density_2d(), 70 interactive_layer_factory, 215
ggplot2::geom_dotplot(), 77

ggplot2: :geom_errorbar(), 87 key glyphs, 12, 80, 180, 222

ggplot2: :geom_fregpoly(), 95

ggplot2: :geom_hex(), 105 labelled: :set_variable_labels(), 5
ggplot2::geom_histogram(), 20, 110 labelled::var_label(), 5
ggplot2::geom_hline(), 9 layer geom, 15, 46, 80, 86, 125, 158, 181
ggplot2::geom_jitter(), 115 layer position, 8, 15, 24, 37, 46, 54, 59, 65,
ggplot2::geom_line(), 122, 140, 177 70, 81, 87,95, 105, 109, 125, 144,
ggplot2::geom_linerange(), 126 147,159, 166, 171, 175, 181, 192,

ggplot2:

:geom_point(), 134

196, 202, 210, 221

232

layer stat, 8, 15, 46, 54, 59, 81, 86, 125,
159,171,174, 181, 192, 196, 201

layer(), 12, 80, 180, 222

layer_factory, 216

1Im(), 222

MASS: :bandwidth.nrd(), 69

MASS: :fitdistr, 9/

MASS: :kde2d (), 66

mgev: :gam(), 184

MIpop, 217

mosaic: :fivenum(), 38

mosaic: :makeFun(), 100
mosaicCore::fit_distr_fun(), 91, 92
mosaicCore: :makeFun(), 97

percs_by_group, 218

predict(), 222

print.gf_ggplot (gf_relabel), 156
props_by_group (percs_by_group), 218

quantreg::rq(), 146
quantreg: :rgss(), 146

smooth.spline(), 189, 225, 226
stat, 23, 37, 64, 69, 94, 104, 109, 144, 147,
166, 210
stat_ash (gf_ash), 17
stat_ash(), 219
stat_fitdistr, 219
stat_1m, 220
stat_lm(), 219
stat_qqline, 223
stat_spline, 224
stat_spline(), 219
StatAsh, 218
StatFitdistr (StatAsh), 218
StatLm (StatAsh), 218
StatQgline (StatAsh), 218
stats::bw.nrd(), 210
stats::1m(), 185
stats::loess(), 184
StatSpline (StatAsh), 218

theme_facets_interactive, 226

INDEX

	discrete_breaks
	get_variable_labels
	gf_abline
	gf_abline_interactive
	gf_annotate
	gf_area
	gf_area_interactive
	gf_ash
	gf_bar
	gf_barh
	gf_bar_interactive
	gf_bin2d
	gf_bin2d_interactive
	gf_bin_2d_interactive
	gf_blank
	gf_boxplot
	gf_boxplot_interactive
	gf_col
	gf_col_interactive
	gf_contour
	gf_contour_filled_interactive
	gf_count
	gf_count_interactive
	gf_crossbar
	gf_crossbar_interactive
	gf_curve
	gf_curve_interactive
	gf_density
	gf_density_2d
	gf_density_2d_filled_interactive
	gf_density_interactive
	gf_dist
	gf_dotplot
	gf_dotplot_interactive
	gf_ecdf
	gf_ellipse
	gf_empty
	gf_errorbar
	gf_errorbar_interactive
	gf_facet_wrap
	gf_fitdistr
	gf_freqpoly
	gf_freqpoly_interactive
	gf_function
	gf_function_2d
	gf_girafe
	gf_guides
	gf_hex
	gf_hex_interactive
	gf_histogram
	gf_histogram_interactive
	gf_hline_interactive
	gf_jitter
	gf_jitter_interactive
	gf_labeller_interactive
	gf_label_interactive
	gf_labs
	gf_line
	gf_linerange
	gf_linerange_interactive
	gf_line_interactive
	gf_path_interactive
	gf_plot
	gf_point
	gf_pointrange_interactive
	gf_point_interactive
	gf_polygon
	gf_polygon_interactive
	gf_qq
	gf_quantile
	gf_quantile_interactive
	gf_raster
	gf_raster_interactive
	gf_rect
	gf_rect_interactive
	gf_relabel
	gf_ribbon
	gf_ribbon_interactive
	gf_ridgeline
	gf_rug
	gf_segment
	gf_sf
	gf_sf_interactive
	gf_sina
	gf_smooth
	gf_smooth_interactive
	gf_spline
	gf_spoke
	gf_spoke_interactive
	gf_step
	gf_step_interactive
	gf_text
	gf_text_interactive
	gf_theme
	gf_tile
	gf_tile_interactive
	gf_violin
	gf_violin_interactive
	gf_vline_interactive
	interactive_facets
	interactive_layer_factory
	layer_factory
	MIpop
	percs_by_group
	StatAsh
	stat_fitdistr
	stat_lm
	stat_qqline
	stat_spline
	theme_facets_interactive
	Index

