Package ‘gert’

January 12, 2026
Type Package
Title Simple Git Client for R
Version 2.3.1

Description Simple git client for R based on 'libgit2' <https://libgit2.org> with
support for SSH and HTTPS remotes. All functions in 'gert' use basic R data
types (such as vectors and data-frames) for their arguments and return values.
User credentials are shared with command line 'git' through the git-credential
store and ssh keys stored on disk or ssh-agent.

License MIT + file LICENSE

URL https://docs.ropensci.org/gert/,

https://ropensci.r-universe.dev/gert

BugReports https://github.com/r-1lib/gert/issues

Imports askpass, credentials (>= 1.2.1), openssl (>= 2.0.3),
rstudioapi (>= 0.11), sys, zip (>=2.1.0)

Suggests spelling, knitr, rmarkdown, testthat
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements libgit2 (>= 1.0): libgit2-devel (rpm) or
libgit2-dev (deb)

Language en-US
NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Jennifer Bryan [ctb] (ORCID: <https://orcid.org/0000-0002-6983-2759>)

Maintainer Jeroen Ooms <jeroenooms@gmail.com>
Repository CRAN
Date/Publication 2026-01-11 23:50:02 UTC

https://libgit2.org
https://docs.ropensci.org/gert/
https://ropensci.r-universe.dev/gert
https://github.com/r-lib/gert/issues
https://orcid.org/0000-0002-4035-0289
https://orcid.org/0000-0002-6983-2759

2 git_archive
Contents
git_archive e 2
git_branch 3
git_checkout_pull_request 4
gIt_COMMIt e 5
git_config e 7
git_diff . . . 9
git fetch Lo 9
It AZNOTE e e e e e 12
GILMEIZe o e e e e e e 13
GILOPEN e e e e e e e 14
it Tebase e e e e e 15
GILIEMOLE o o e e e 16
GILICPO . o o o e e 17
GILIESCL . . . o o o e e e 18
I_SIGNATUIE o e e e 19
git_stash Lo 20
git_submodule_list 21
Gt tAZ . . o o e e e e 22
git_worktree L e 22
libgit2_config 25
user_is_configured L. 26
Index 27
git_archive Git Archive
Description
Exports the files in your repository to a zip file that is returned by the function.
Usage
git_archive_zip(file = NULL, repo = ".")
Arguments
file name of the output zip file. Default is returned by the function
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
Value

path

to the zip file that was created

git_branch 3

See Also

Other git: git_branch(),git_commit(), git_config(),git_diff(),git_fetch(),git_ignore,
git_merge(),git_rebase(),git_remote, git_repo,git_reset(),git_signature(), git_stash,
git_tag, git_worktree

git_branch Git Branch

Description

Create, list, and checkout branches.

Usage
git_branch(repo = ".")
git_branch_list(local = NULL, repo = ".")
git_branch_checkout(branch, force = FALSE, orphan = FALSE, repo = ".")

git_branch_create(
branch,
ref = "HEAD",
checkout = TRUE,
force = FALSE,

repo = "."
)
git_branch_delete(branch, repo = ".")
git_branch_move(branch, new_branch, force = FALSE, repo = ".")
git_branch_fast_forward(ref, repo = ".")
git_branch_set_upstream(upstream, branch = git_branch(repo), repo = ".")
git_branch_exists(branch, local = TRUE, repo = ".")
Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-

tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

local set TRUE to only check for local branches, FALSE to check for remote branches.
Use NULL to return all branches.

4 git_checkout_pull_request

branch name of branch to check out
force overwrite existing branch
orphan if branch does not exist, checkout unborn branch
ref string with a branch/tag/commit
checkout move HEAD to the newly created branch
new_branch target name of the branch once the move is performed; this name is validated for
consistency.
upstream remote branch from git_branch_list, for example "origin/master”
See Also

Other git: git_archive, git_commit(), git_config(),git_diff(),git_fetch(),git_ignore,
git_merge(),git_rebase(),git_remote, git_repo,git_reset(),git_signature(), git_stash,
git_tag, git_worktree

git_checkout_pull_request
GitHub Wrappers

Description

Fetch and checkout pull requests.

Usage
git_checkout_pull_request(pr = 1, remote = NULL, repo = ".")
git_fetch_pull_requests(pr = "x", remote = NULL, repo = ".")
Arguments
pr number with PR to fetch or check out. Use "*" to fetch all pull requests.
remote Optional. Name of a remote listed in git_remote_list(). If unspecified and
the current branch is already tracking branch a remote branch, that remote is
honored. Otherwise, defaults to origin.
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
Details

By default git_fetch_pull_requests will download all PR branches. To remove these again
simply use git_fetch(prune = TRUE).

git_commit 5

git_commit Stage and commit changes

Description

To commit changes, start by staging the files to be included in the commit using git_add() or
git_rm(). Use git_status() to see an overview of staged and unstaged changes, and finally
git_commit() creates a new commit with currently staged files.

git_commit_all() is a convenience function that automatically stages and commits all modified
files. Note that git_commit_all() does not add new, untracked files to the repository. You need
to make an explicit call to git_add() to start tracking new files.

git_log() shows the most recent commits and git_ls() lists all the files that are being tracked in
the repository. git_stat_files()

Usage
git_commit(message, author = NULL, committer = NULL, repo = ".")
git_commit_all(message, author = NULL, committer = NULL, repo = ".")
git_commit_info(ref = "HEAD", repo = ".")
git_commit_id(ref = "HEAD", repo = ".")
git_commit_stats(ref = "HEAD", repo = ".")
git_commit_descendant_of (ancestor, ref = "HEAD", repo = ".")
git_add(files, force = FALSE, repo = ".")
git_rm(files, repo = ".")
git_status(staged = NULL, pathspec = NULL, repo = ".")
git_conflicts(repo = ".")
git_ls(repo = ".", ref = NULL)
git_log(ref = "HEAD", max = 100, after = NULL, repo = ".")
git_stat_files(files, ref = "HEAD"”, max = NULL, repo = ".")
Arguments
message a commit message

author A git_signature value, default is git_signature_default().

6 git_commit

committer A git_signature value, default is same as author

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

ref revision string with a branch/tag/commit value

ancestor a reference to a potential ancestor commit

files vector of paths relative to the git root directory. Use "." to stage all changed
files.

force add files even if in gitignore

staged return only staged (TRUE) or unstaged files (FALSE). Use NULL or NA to show
both (default).

pathspec character vector with paths to match

max lookup at most latest n parent commits

after date or timestamp: only include commits starting this date

Value

e git_status(), git_1s(): A data frame with one row per file
e git_log(): A data frame with one row per commit

e git_commit(), git_commit_all(): A SHA

See Also

Other git: git_archive, git_branch(),git_config(), git_diff(),git_fetch(),git_ignore,
git_merge(),git_rebase(),git_remote, git_repo, git_reset(),git_signature(), git_stash,
git_tag, git_worktree

Examples

oldwd <- getwd()

repo <- file.path(tempdir(), "myrepo")
git_init(repo)

setwd(repo)

Set a user if no default

if(luser_is_configured()){
git_config_set("user.name”, "Jerry")
git_config_set("user.email”, "jerry@gmail.com")

}

writeLines(letters[1:6], "alphabet.txt")
git_status()

git_add("alphabet.txt")
git_status()

git_config 7

git_commit("Start alphabet file")
git_status()

git_1s()
git_log()

cat(letters[7:9], file = "alphabet.txt”, sep = "\n", append = TRUE)
git_status()

git_commit_all("Add more letters”)
cleanup

setwd(oldwd)
unlink(repo, recursive = TRUE)

git_config Get or set Git configuration

Description

Get or set Git options, as git config does on the command line. Global settings affect all of
a user’s Git operations (git config --global), whereas local settings are scoped to a specific
repository (git config --local). When both exist, local options always win. Four functions
address the four possible combinations of getting vs setting and global vs. local.

local global
get git_config() git_config_global()
set git_config_set() git_config_global_set()

Usage

git_config(repo = ".")
git_config_global()
git_config_set(name, value, repo = ".")

git_config_global_set(name, value)

Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
name Name of the option to set

value Value to set. Must be a string, logical, number or NULL (to unset).

8 git_config

Value

e git_config(): a data.frame of the Git options "in force" in the context of repo, one row
per option. The level column reveals whether the option is determined from global or local
config.

e git_config_global(): a data.frame, as for git_config(), except only for global Git
options.

e git_config_set(), git_config_global_set(): The previous value of name in local or
global config, respectively. If this option was previously unset, returns NULL. Returns invisibly.

Note

All entries in the name column are automatically normalised to lowercase (see https://libgit2.
org/libgit2/#HEAD/type/git_config_entry for details).

See Also

Other git: git_archive, git_branch(),git_commit(), git_diff(),git_fetch(),git_ignore,
git_merge(), git_rebase(), git_remote, git_repo,git_reset(), git_signature(), git_stash,
git_tag, git_worktree

Examples

Set and inspect a local, custom Git option
r <- file.path(tempdir(), "gert-demo")
git_init(r)

previous <- git_config_set("aaa.bbb", "ccc"”
previous

cfg <- git_config(repo = r)

subset(cfg, level == "local"”)
cfg$value[cfg$name == "aaa.bbb"]

, repo =r)

previous <- git_config_set("aaa.bbb", NULL, repo = r)

previous

cfg <- git_config(repo = r)
subset(cfg, level == "local")
cfg$value[cfg$name == "aaa.bbb"]

unlink(r, recursive = TRUE)

Not run:

Set global Git options
git_config_global_set("user.name”, "Your Name")
git_config_global_set("user.email”, "your@email.com")

git_config_global()

End(Not run)

https://libgit2.org/libgit2/#HEAD/type/git_config_entry
https://libgit2.org/libgit2/#HEAD/type/git_config_entry

git_diff 9

git_diff Git Diff

Description

View changes in a commit or in the current working directory.

Usage
git_diff(ref = NULL, repo = ".")
git_diff_patch(ref = NULL, repo = ".")
Arguments
ref a reference such as "HEAD”, or a commit id, or NULL to the diff the working
directory against the repository index.
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
See Also

Other git: git_archive, git_branch(), git_commit(), git_config(),git_fetch(),git_ignore,
git_merge(),git_rebase(), git_remote,git_repo,git_reset(), git_signature(), git_stash,
git_tag, git_worktree

git_fetch Push and pull

Description

Functions to connect with a git server (remote) to fetch or push changes. The ’credentials’ package
is used to handle authentication, the credentials vignette explains the various authentication methods
for SSH and HTTPS remotes.

Usage

git_fetch(
remote = NULL,
refspec = NULL,
password = askpass,
ssh_key = NULL,
prune = FALSE,

https://docs.ropensci.org/credentials/articles/intro.html

git_fetch

verbose = interactive(),

verbose = interactive(),

verbose = interactive(),

= NULL, rebase = FALSE, ..., repo = ".")

Optional. Name of a remote listed in git_remote_list(). If unspecified and
the current branch is already tracking branch a remote branch, that remote is
honored. Otherwise, defaults to origin.

string with mapping between remote and local refs. Default uses the default
refspec from the remote, which usually fetches all branches.

a string or a callback function to get passwords for authentication or password
protected ssh keys. Defaults to askpass which checks getOption('askpass').

10

repo = n . n

)

git_remote_ls(
remote = NULL,
password = askpass,
ssh_key = NULL,
repo = n . n

)

git_push(
remote = NULL,
refspec = NULL,
set_upstream = NULL,
password = askpass,
ssh_key = NULL,
mirror = FALSE,
force = FALSE,
repo = "."

)

git_clone(
url,
path = NULL,
branch = NULL,
password = askpass,
ssh_key = NULL,
bare = FALSE,
mirror = FALSE,
verbose = interactive()

)

git_pull(remote

Arguments

remote

refspec

password

ssh_key

path or object containing your ssh private key. By default we look for keys in
ssh-agent and credentials::ssh_key_info.

git_fetch 11

prune delete tracking branches that no longer exist on the remote, or are not in the
refspec (such as pull requests).

verbose display some progress info while downloading

repo The path to the git repository. If the directory is not a repository, parent direc-

tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

set_upstream change the branch default upstream to remote. If NULL, this will set the branch
upstream only if the push was successful and if the branch does not have an
upstream set yet.

mirror use the --mirror flag
force use the --force flag
url remote url. Typically starts with https://github.com/ for public repositories,

and https://yourname@github.com/ or git@github.com/ for private repos.
You will be prompted for a password or pat when needed.

path Directory of the Git repository to create.

branch name of branch to check out locally

bare use the --bare flag

rebase if TRUE we try to rebase instead of merge local changes. This is not possible in

case of conflicts (you will get an error).

arguments passed to git_fetch

Details

Use git_fetch() and git_push() to sync a local branch with a remote branch. Here git_pull()
is a wrapper for git_fetch() which then tries to fast-forward the local branch after fetching.

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff(),git_ignore,
git_merge(),git_rebase(),git_remote, git_repo,git_reset(),git_signature(), git_stash,
git_tag, git_worktree

Examples

{# Clone a small repository
git_dir <- file.path(tempdir(), 'antiword')
git_clone('https://github.com/ropensci/antiword', git_dir)

Change into the repo directory
olddir <- getwd()
setwd(git_dir)

Show some stuff
git_log()

git_branch_list()
git_remote_list()

12 git_ignore

Add a file
write.csv(iris, 'iris.csv')
git_add('iris.csv')

Commit the change
jerry <- git_signature("Jerry”, "jerry@hotmail.com")
git_commit('added the iris file', author = jerry)

Now in the log:
git_log()

Cleanup
setwd(olddir)
unlink(git_dir, recursive = TRUE)

}

git_ignore Git Ignore

Description

Test if files would be ignored by .gitignore rules

Usage
git_ignore_path_is_ignored(path, repo = ".")
Arguments
path A character vector of paths to test within the repo
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
Value

A logical vector the same length as path, indicating if the paths would be ignored.

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_merge(),git_rebase(),git_remote, git_repo,git_reset(),git_signature(), git_stash,
git_tag, git_worktree

git_merge 13

git_merge Merging tools

Description

Use git_merge to merge a branch into the current head. Based on how the branches have diverged,
the function will select a fast-forward or merge-commit strategy.

Usage
git_merge(ref, commit = TRUE, squash = FALSE, repo = ".")
git_merge_stage_only(ref, squash = FALSE, repo = ".")
git_merge_find_base(ref, target = "HEAD", repo = ".")
git_merge_analysis(ref, repo = ".")
git_merge_abort(repo = ".")
Arguments
ref branch or commit that you want to merge
commit automatically create a merge commit if the merge succeeds without conflicts.
Set this to FALSE if you want to customize your commit message/author.
squash omits the second parent from the commit, which make the merge a regular
single-parent commit.
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
target the branch where you want to merge into. Defaults to current HEAD.
Details

By default git_merge automatically commits the merge commit upon success. However if the
merge fails with merge-conflicts, or if commit is set to FALSE, the changes are staged and the repos-
itory is put in merging state, and you have to manually run git_commit or git_merge_abort to
proceed.

Other functions are more low-level tools that are used by git_merge. git_merge_find_base
looks up the commit where two branches have diverged (i.e. the youngest common ancestor). The
git_merge_analysis is used to test if a merge can simply be fast forwarded or not.

The git_merge_stage_only function applies and stages changes, without committing or fast-
forwarding.

14 git_open

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_ignore, git_rebase(),git_remote, git_repo,git_reset(),git_signature(),git_stash,
git_tag, git_worktree

git_open Open local repository

Description

Returns a pointer to a libgit2 repository object.This function is mainly for internal use; users should
simply reference a repository in gert by by the path to the directory.

Usage
git_open(repo = ".")
Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
Value

an pointer to the libgit2 repository

Examples

r <- tempfile(pattern = "gert")
git_init(r)

r_ptr <- git_open(r)

r_ptr

git_open(r_ptr)

git_info(r)

cleanup
unlink(r, recursive = TRUE)

git_rebase 15

git_rebase Cherry-Pick and Rebase

Description

A cherry-pick applies the changes from a given commit (from another branch) onto the current
branch. A rebase resets the branch to the state of another branch (upstream) and then re-applies
your local changes by cherry-picking each of your local commits onto the upstream commit history.

Usage
git_rebase_list(upstream = NULL, repo = ".")
git_rebase_commit(upstream = NULL, repo = ".")
git_cherry_pick(commit, repo = ".")
git_ahead_behind(upstream = NULL, ref = "HEAD", repo = ".")
Arguments
upstream branch to which you want to rewind and re-apply your local commits. The
default uses the remote upstream branch with the current state on the git server,
simulating git_pull.
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
commit id of the commit to cherry pick
ref string with a branch/tag/commit
Details

git_rebase_list shows your local commits that are missing from the upstream history, and if
they conflict with upstream changes. It does so by performing a rebase dry-run, without committing
anything. If there are no conflicts, you can use git_rebase_commit to rewind and rebase your
branch onto upstream. Gert only support a clean rebase; it never leaves the repository in unfinished
"rebasing" state. If conflicts arise, git_rebase_commit will raise an error without making changes.

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_ignore,git_merge(), git_remote, git_repo,git_reset(),git_signature(),git_stash,
git_tag, git_worktree

16 git_remote

git_remote Git Remotes

Description

List, add, configure, or remove remotes.

Usage
git_remote_list(repo = ".")
git_remote_add(url, name = "origin", refspec = NULL, repo = ".")
git_remote_remove(remote, repo = ".")
git_remote_info(remote = NULL, repo = ".")
git_remote_set_url(url, remote = NULL, repo = ".")
git_remote_set_pushurl(url, remote = NULL, repo = ".")
git_remote_refspecs(remote = NULL, repo = ".")
Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
url server url (https or ssh)
name unique name for the new remote
refspec optional string with the remote fetch value
remote name of an existing remote. Default NULL means the remote from the upstream
of the current branch.
See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_ignore, git_merge(), git_rebase(),git_repo,git_reset(),git_signature(), git_stash,
git_tag, git_worktree

git_repo 17

git_repo Create or discover a local Git repository

Description

Use git_init() to create a new repository or git_find() to discover an existing local repository.
git_info() shows basic information about a repository, such as the SHA and branch of the current
HEAD.

Usage
git_init(path = ".", bare = FALSE)
git_find(path = ".")
git_info(repo = ".")
Arguments
path the location of the git repository, see details.
bare if true, a Git repository without a working directory is created
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
Details

For git_init() the path parameter sets the directory of the git repository to create. If this directory
already exists, it must be empty. If it does not exist, it is created, along with any intermediate
directories that don’t yet exist. For git_find() the path arguments specifies the directory at which
to start the search for a git repository. If it is not a git repository itself, then its parent directory is
consulted, then the parent’s parent, and so on.

Value

The path to the Git repository.

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_ignore, git_merge(), git_rebase(),git_remote, git_reset(), git_signature(), git_stash,
git_tag, git_worktree

18 git_reset

Examples

directory does not yet exist
r <- tempfile(pattern = "gert")
git_init(r)
git_find(r)

create a child directory, then a grandchild, then search
r_grandchild_dir <- file.path(r, "aaa", "bbb")
dir.create(r_grandchild_dir, recursive = TRUE)
git_find(r_grandchild_dir)

cleanup
unlink(r, recursive = TRUE)

directory exists but is empty
r <- tempfile(pattern = "gert")
dir.create(r)

git_init(r)

git_find(r)

cleanup
unlink(r, recursive = TRUE)

git_reset Reset your repo to a previous state

Description
* git_reset_hard() resets the index and working tree
* git_reset_soft() does not touch the index file or the working tree

* git_reset_mixed() resets the index but not the working tree.

Usage
git_reset_hard(ref = "HEAD", repo = ".")
git_reset_soft(ref = "HEAD", repo = ".")
git_reset_mixed(ref = "HEAD", repo = ".")
Arguments
ref string with a branch/tag/commit
repo The path to the git repository. If the directory is not a repository, parent direc-

tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

git_signature 19

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(),git_diff(),git_fetch(),
git_ignore,git_merge(),git_rebase(),git_remote, git_repo, git_signature(),git_stash,
git_tag, git_worktree

git_signature Author Signature

Description

A signature contains the author and timestamp of a commit. Each commit includes a signature of
the author and committer (which can be identical).

Usage
git_signature_default(repo = ".")
git_signature(name, email, time = NULL)

git_signature_parse(sig)

Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
name Real name of the committer
email Email address of the committer
time timestamp of class POSIXt or NULL
sig string in proper "First Last <your@email.com>" format, see details.
Details

A signature string has format "Real Name <email> timestamp tzoffset”. The timestamp tzoffset
piece can be omitted in which case the current local time is used. If not omitted, timestamp must
contain the number of seconds since the Unix epoch and tzoffset is the timezone offset in hhmm
format (note the lack of a colon separator)

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff (), git_fetch(),
git_ignore, git_merge(), git_rebase(), git_remote, git_repo, git_reset(), git_stash,
git_tag, git_worktree

20 git_stash

Examples

Your default user
try(git_signature_default())

Specify explicit name and email
git_signature(”Some committer”, "sarah@gmail.com")

Create signature for an hour ago
(sig <- git_signature("Han"”, "han@company.com”, Sys.time() - 3600))

Parse a signature
git_signature_parse(sig)
git_signature_parse("Emma <emma@mu.edu>")

git_stash Stashing changes

Description

Temporary stash away changed from the working directory.

Usage

git_stash_save(
message = "",
keep_index = FALSE,
include_untracked = FALSE,

include_ignored = FALSE,

repo = "."
)
git_stash_pop(index = @, repo = ".")
git_stash_drop(index = @, repo = ".")
git_stash_list(repo = ".")
Arguments
message optional message to store the stash
keep_index changes already added to the index are left intact in the working directory

include_untracked

untracked files are also stashed and then cleaned up from the working directory
include_ignored

ignored files are also stashed and then cleaned up from the working directory

git_submodule_list 21

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

index The position within the stash list. O points to the most recent stashed state.

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff(),git_fetch(),
git_ignore,git_merge(),git_rebase(),git_remote,git_repo, git_reset(),git_signature(),
git_tag, git_worktree

git_submodule_list Submodules

Description

Interact with submodules in the repository.

Usage
git_submodule_list(repo = ".")
git_submodule_info(submodule, repo = ".")
git_submodule_init(submodule, overwrite = FALSE, repo = ".")
git_submodule_set_to(submodule, ref, checkout = TRUE, repo = ".")
git_submodule_add(url, path = basename(url), ref = "HEAD", ..., repo = ".")
git_submodule_fetch(submodule, ..., repo = ".")
Arguments
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
submodule name of the submodule
overwrite overwrite existing entries
ref a branch or tag or hash with
checkout actually switch the contents of the directory to this commit
url full git url of the submodule
path relative of the submodule

extra arguments for git_fetch for authentication things

22 git_worktree

git_tag Git Tag

Description

Create and list tags.

Usage
git_tag_list(match = "x", repo = ".")
git_tag_create(name, message, ref = "HEAD", repo = ".")
git_tag_delete(name, repo = ".")
git_tag_push(name, ..., repo = ".")
Arguments
match pattern to filter tags (use * for wildcard)
repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.
name tag name
message tag message
ref target reference to tag
other arguments passed to git_push
See Also

Other git: git_archive, git_branch(), git_commit(), git_config(),git_diff(),git_fetch(),
git_ignore,git_merge(), git_rebase(),git_remote,git_repo,git_reset(),git_signature(),
git_stash, git_worktree

git_worktree Git Worktrees

git_worktree 23

Description

Worktrees represent an alternative location to checkout a branch into. Rather than checking out a
branch in your main working tree (which changes the branch you are currently on and forces you
to stash any existing work), you can instead check that branch out into a separate linked worktree
with its own working tree. Practically, a worktree is just a separate folder that a branch is checked
out into, with some extra git metadata that links it back to the main working tree.

git_worktree_list() returns a data frame of information about the worktrees linked to the main
working tree.

git_worktree_exists() lets you check whether or not a worktree by the name of name exists for
this repo.

git_worktree_path() returns the file path to the worktree.

git_worktree_add() creates a new worktree called name in the folder pointed to by path, and
checks branch out into it.

git_worktree_remove() removes a worktree. It does so by deleting the folder provided as the
path to git_worktree_add(), and then cleaning up some git metadata in the main working tree
that linked the main working tree to the removed worktree. The branch checked out by the worktree
is not deleted. Note that this is just a wrapper around git_worktree_prune() that sets some
desirable defaults for aggressive removal.

git_worktree_prune() is more cautious than git_worktree_remove(). It refuses to prune valid
or locked worktrees by default, and also refuses the delete the working tree of the worktree by
default (i.e. the folder at path). It is automatically run by git itself on periodic intervals to prune
outdated worktrees. For interactive usage, you typically want git_worktree_remove() instead.
git_worktree_is_prunable() lets you check if a worktree is prunable with the given options.

git_worktree_lock(), git_worktree_unlock(),and git_worktree_is_locked() help you man-
age whether or not a worktree is locked. When a worktree is locked, it is not automatically cleaned
up by git_worktree_prune() (and git itself) on periodic intervals, even when it looks invalid. This
is typically only useful when your worktree is on a hard drive that isn’t always connected (which
can make it look invalid when disconnected, typically making it a candidate for automatic pruning).

git_worktree_is_valid() checks whether a worktree is valid or not. A valid worktree requires
both the git data structures inside the main working tree and this worktree to be present.

Usage
git_worktree_list(repo = ".")
git_worktree_exists(name, repo = ".")
git_worktree_path(name, repo = ".")
git_worktree_add(name, path, branch, lock = FALSE, local = TRUE, repo = ".")
git_worktree_remove(name, repo = ".")

git_worktree_prune(
name,
prune_valid = FALSE,

24 git_worktree

prune_locked = FALSE,
prune_working_tree = FALSE,
repo = "."

)

git_worktree_is_prunable(
name,
prune_valid = FALSE,
prune_locked = FALSE,

repo = "."

)

git_worktree_lock(name, repo = ".")

git_worktree_unlock(name, repo = ".")

git_worktree_is_locked(name, repo = ".")

git_worktree_is_valid(name, repo = ".")

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I (). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

name The name of the worktree.

path The path to checkout branch into. Importantly, the path up to the folder name
must exist, but the folder name itself must not exist yet and will be created.

branch The branch to checkout into path.

lock Whether or not to lock the worktree on creation.

local set TRUE to only check for local branches, FALSE to check for remote branches.
Use NULL to return all branches.

prune_valid Whether or not to forcibly prune a valid worktree.

prune_locked Whether or not to forcibly prune a locked worktree.

prune_working_tree
Whether or not to also remove the folder that the worktree was using, i.e. the
path supplied to git_worktree_add().

See Also

Other git: git_archive, git_branch(),git_commit(), git_config(),git_diff(),git_fetch(),
git_ignore,git_merge(), git_rebase(),git_remote, git_repo,git_reset(),git_signature(),
git_stash, git_tag

libgit2_config 25

Examples

repo <- git_init(tempfile("gert-examples-repo"))

writeLines("hello”, file.path(repo, 'hello.txt'))
git_add('hello.txt', repo = repo)
git_commit("First commit”, author = "jeroen <jeroen@blabla.nl>", repo = repo)

Create a branch that is going to be used for the worktree,
but don't check it out!
git_branch_create(branch = "branch”, checkout = FALSE, repo = repo)

path <- tempfile("gert-examples-worktree")

Add a worktree for this branch
git_worktree_add(

name = "worktree"”,
path = path,
branch = "branch”,
repo = repo

)

Worktree info
git_worktree_list(repo = repo)

Note how the files are checked out here
dir(path, all.files = TRUE)

And the branch that we are on at “path™ is ~"branch"®
git_branch(repo = path)

Cleanup worktree, and the folder at “path”
git_worktree_remove("worktree"”, repo = repo)

Cleanup repo
unlink(repo, recursive = TRUE)

libgit2_config Show libgit2 version and capabilities

Description
libgit2_config() reveals which version of libgit2 gert is using and which features are supported,
such whether you are able to use ssh remotes.

Usage

libgit2_config()

26 user._is_configured

Examples

libgit2_config()

user_is_configured Test if a Git user is configured

Description

This function exists mostly to guard examples that rely on having a user configured, in order to
make commits. user_is_configured() makes no distinction between local or global user config.

Usage

user_is_configured(repo = ".")
Arguments

repo An optional repo, in the sense of git_open().
Value

TRUE if user.name and user.email are set locally or globally, FALSE otherwise.

Examples

user_is_configured()

Index

* git
git_archive, 2
git_branch, 3
git_commit, 5
git_config, 7
git_diff,9
git_fetch, 9
git_ignore, 12
git_merge, 13
git_rebase, 15
git_remote, 16
git_repo, 17
git_reset, 18
git_signature, 19
git_stash, 20
git_tag, 22
git_worktree, 22

askpass, 10
credentials::ssh_key_info, 10
fast-forward, 7/

git_add (git_commit), 5
git_ahead_behind (git_rebase), 15
git_archive,2,4,6,8, 9,11, 12, 14-17, 19,
21, 22,24
git_archive_zip (git_archive), 2
git_branch, 3,3,6,8, 9,11, 12, 14-17, 19,
21, 22,24
git_branch_checkout (git_branch), 3
git_branch_create (git_branch), 3
git_branch_delete (git_branch), 3
git_branch_exists (git_branch), 3
git_branch_fast_forward (git_branch), 3
git_branch_list, 4
git_branch_list (git_branch), 3
git_branch_move (git_branch), 3
git_branch_set_upstream (git_branch), 3

27

git_checkout_pull_request, 4

git_cherry_pick (git_rebase), 15

git_clone (git_fetch), 9

git_commit, 3,4,5,8, 9,11, 12, 14-17, 19,
21,22,24

git_commit_all (git_commit), 5

git_commit_descendant_of (git_commit), 5

git_commit_id (git_commit), 5

git_commit_info (git_commit), 5

git_commit_stats (git_commit), 5

git_config, 3,4,6,7,9,11, 12, 14-17, 19,
21,22,24

git_config_global (git_config), 7

git_config_global_set (git_config), 7

git_config_set (git_config), 7

git_conflicts (git_commit), 5

git_diff, 3,4,6,8,9,11, 12, 14-17, 19, 21,
22,24

git_diff_patch (git_diff),9

git_fetch, 3,4,6,8 9,9, 11, 12, 14-17, 19,
21,22,24

git_fetch(), 11

git_fetch_pull_requests
(git_checkout_pull_request), 4

git_find, 2-4,6,7,9,11-19, 21, 22, 24

git_find (git_repo), 17

git_ignore, 3,4,6,8,9,11,12, 14-17, 19,
21,22,24

git_ignore_path_is_ignored
(git_ignore), 12

git_info (git_repo), 17

git_init (git_repo), 17

git_log(git_commit), 5

git_ls(git_commit), 5

git_merge, 3,4,6,8, 9,11, 12,13, 15-17, 19,
21, 22,24

git_merge_abort (git_merge), 13

git_merge_analysis (git_merge), 13

git_merge_find_base (git_merge), 13

28

git_merge_stage_only (git_merge), 13
git_open, 14
git_open(), 26
git_pull, 15
git_pull (git_fetch),9
git_pullQ), 11
git_push, 22
git_push (git_fetch), 9
git_push(), 11
git_rebase, 3,4,6,8, 9,11, 12, 14, 15, 16,
17,19, 21, 22,24
git_rebase_commit (git_rebase), 15
git_rebase_list (git_rebase), 15
git_remote, 3,4,6,8, 9,11, 12, 14, 15, 16,
17,19, 21, 22,24
git_remote_add (git_remote), 16
git_remote_info (git_remote), 16
git_remote_list (git_remote), 16
git_remote_list(), 4, 10
git_remote_ls (git_fetch), 9
git_remote_refspecs (git_remote), 16
git_remote_remove (git_remote), 16
git_remote_set_pushurl (git_remote), 16
git_remote_set_url (git_remote), 16
git_repo, 3,4,6,8, 9,11, 12, 14-16, 17, 19,
21,22,24
git_reset, 3,4,6,8 9,11, 12, 14-17,18, 19,
21,22,24
git_reset_hard (git_reset), 18
git_reset_mixed (git_reset), 18
git_reset_soft (git_reset), 18
git_rm(git_commit), 5
git_signature, 3-6,8, 9,11, 12, 14-17, 19,
19, 21, 22, 24
git_signature_default (git_signature),
19
git_signature_default(), 5
git_signature_parse (git_signature), 19
git_stash,3,4,6,8, 9,11, 12, 14-17, 19, 20,
22,24
git_stash_drop (git_stash), 20
git_stash_list (git_stash), 20
git_stash_pop (git_stash), 20
git_stash_save (git_stash), 20
git_stat_files (git_commit), 5
git_status (git_commit), 5
git_submodule_add (git_submodule_list),
21

INDEX

git_submodule_fetch
(git_submodule_list), 21
git_submodule_info
(git_submodule_list), 21
git_submodule_init
(git_submodule_list), 21
git_submodule_list, 21
git_submodule_set_to
(git_submodule_list), 21
git_tag,3,4,6,8 9,11, 12, 14-17, 19, 21,
22,24
git_tag_create (git_tag), 22
git_tag_delete (git_tag), 22
git_tag_list(git_tag), 22
git_tag_push (git_tag), 22
git_worktree, 3,4,6,8, 9,11, 12, 14-17, 19,
21,22,22
git_worktree_add (git_worktree), 22
git_worktree_exists (git_worktree), 22
git_worktree_is_locked (git_worktree),
22
git_worktree_is_prunable
(git_worktree), 22
git_worktree_is_valid (git_worktree), 22
git_worktree_list (git_worktree), 22
git_worktree_lock (git_worktree), 22
git_worktree_path (git_worktree), 22
git_worktree_prune (git_worktree), 22
git_worktree_remove (git_worktree), 22
git_worktree_unlock (git_worktree), 22

10),2-4,6,7,9,11-19, 21, 22,24
libgit2_config, 25

user_is_configured, 26

	git_archive
	git_branch
	git_checkout_pull_request
	git_commit
	git_config
	git_diff
	git_fetch
	git_ignore
	git_merge
	git_open
	git_rebase
	git_remote
	git_repo
	git_reset
	git_signature
	git_stash
	git_submodule_list
	git_tag
	git_worktree
	libgit2_config
	user_is_configured
	Index

