Package ‘geosapi’

January 12, 2026
Type Package
Title GeoServer REST API R Interface
Version 0.8
Date 2026-01-11
Maintainer Emmanuel Blondel <emmanuel.blondel1@gmail.com>

Description Provides an R interface to the GeoServer REST API, allowing to upload
and publish data in a GeoServer web-application and expose data to OGC Web-Services.
The package currently supports all CRUD (Create,Read,Update,Delete) operations
on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes,
layers, styles, as well as vector data upload operations. For more information about
the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.

Depends R (>=3.1.0)
Imports RO, cli, openssl, httr, xml2, magrittr, keyring, readr
Suggests testthat, waldo, roxygen2, shiny, knitr, markdown

License MIT + file LICENSE

URL https://github.com/eblondel/geosapi,
https://eblondel.github.io/geosapi/, https://geoserver.org/

BugReports https://github.com/eblondel/geosapi/issues
LazyLoad yes

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author Emmanuel Blondel [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5870-5762>)

Repository CRAN
Date/Publication 2026-01-12 06:10:38 UTC

https://docs.geoserver.org/stable/en/user/rest/
https://github.com/eblondel/geosapi
https://eblondel.github.io/geosapi/
https://geoserver.org/
https://github.com/eblondel/geosapi/issues
https://orcid.org/0000-0002-5870-5762

2 Contents

Contents
GEOSAPL e e e e 3
GSAbstractCoverageStoreot e e e e e e 3
GSAbstractDataStore 5
GSAbstractDBDataStore 7
GSADStractStore e e e 12
GSAccessControlListManager vt 14
GSArcGridCoverageStoreo e e 18
GSCoverage e 19
GSCoverageBand L 21
GSCoverageStoreManager e 24
GSCoverageVIew ot e 31
GSDataStoreManagero e e e 33
GSDImension e e e 42
GSFeatureDimension L 44
GSFeatureType e 46
GSGeoPackageDataStore 48
GSGeoTIFFCoverageStore o o v i ittt e e 49
GSImageMosaicCoverageStore o v i e e 50
GSInputCoverageBand L 52
GSLayer e e 53
GSLayerGroup o o e e e e e 58
GSLayerManager e 62
GSLayerRule 65
GSManager e 66
GSMetadataliink 70
GSMonitorManager e e e e 72
GSNamMESPACE v v v v e e e e e e e e e e e e e e e e e e e 73
GSNamespaceManager v vt i e e e e e e 75
GSOracleNGDataStore o e 77
GSPostGISDataStore e 78
GSPublishable 79
GSResource e e e e 81
GSRESTEntrySet e 86
GSRESTResource o i e 88
GSRestRule 90
GSRule e 91
GSServiceManager 93
GSServiceRule 97
GSServiceSettings e e e 98
GSShapefileDataStore 102
GSShapefileDirectoryDataStore 104
GSShinyMonitor e e e e e 106
GSStyleManager e e e e e e 107
GSULIS e 110
GSVersion oL e e 112

GSVirtualTable e 114

geosapi 3

GSVirtualTableGeometry v i i e e 116
GSVirtualTableParameter 118
GSWorkspace 119
GSWorkspaceManager i e e e 120
GSWorkspaceSettings e e e e 124
GSWorldImageCoverageStore o it 126

Index 128

geosapi GeoServer REST API R Interface
Description

Provides an R interface to the GeoServer REST API, allowing to upload and publish data in a
GeoServer web-application and expose data to OGC Web-Services. The package currently supports
all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datas-
tores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations.
For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>

Author(s)

Emmanuel Blondel <emmanuel.blondel1@gmail.com>

See Also
Useful links:
* https://github.com/eblondel/geosapi
* https://eblondel.github.io/geosapi/

* https://geoserver.org/
* Report bugs at https://github.com/eblondel/geosapi/issues

GSAbstractCoverageStore
Geoserver REST API CoverageStore

Description

Geoserver REST API CoverageStore
Geoserver REST API CoverageStore

Format

R6Class object.

https://github.com/eblondel/geosapi
https://eblondel.github.io/geosapi/
https://geoserver.org/
https://github.com/eblondel/geosapi/issues

4 GSAbstractCoverageStore

Value

Object of R6Class for modelling a GeoServer CoverageStore

Super classes

geosapi: :GSRESTResource -> geosapi: :GSAbstractStore -> GSAbstractCoverageStore

Public fields

url URL of the abstract coverage store

Methods

Public methods:

e GSAbstractCoverageStore$new()

* GSAbstractCoverageStore$decode()
* GSAbstractCoverageStore$setUrl()
* GSAbstractCoverageStore$clone()

Method new(): initializes an abstract coverage store

Usage:
GSAbstractCoverageStore$new(
xml = NULL,
type = NULL,
name = NULL,
description = "",
enabled = TRUE,
url = NULL
)
Arguments:

xml an object of class xml_node-class to create object from XML
type the type of coverage store

name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE
url URL of the store

Method decode(): Decodes a coverage store from XML

Usage:
GSAbstractCoverageStore$decode (xml)

Arguments:

xml an object of class xml_node-class

Returns: an object of class GSAbstractCoverageStore

Method setUrl(): set coverage store URL

GSAbstractDataStore

Usage:
GSAbstractCoverageStore$setUrl(url)

Arguments:

url the store URL to set

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSAbstractCoverageStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

GSAbstractDataStore Geoserver REST API DataStore

Description

Geoserver REST API DataStore
Geoserver REST API DataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: :GSAbstractStore -> GSAbstractDataStore

Public fields

connectionParameters the list of connection parameters

6 GSAbstractDataStore

Methods

Public methods:

e GSAbstractDataStore$new()

e GSAbstractDataStore$decode ()

e GSAbstractDataStore$setConnectionParameters()
* GSAbstractDataStore$addConnectionParameter ()
e GSAbstractDataStore$setConnectionParameter ()
e GSAbstractDataStore$delConnectionParameter ()
e GSAbstractDataStore$clone()

Method new(): initializes an abstract data store

Usage:
GSAbstractDataStore$new(
xml = NULL,
type = NULL,
name = NULL,
description = "",

enabled = TRUE,
connectionParameters
)
Arguments:
xml an object of class xml_node-class to create object from XML
type the type of coverage store
name coverage store name
description coverage store description
enabled whether the store should be enabled or not. Default is TRUE
connectionParameters the list of connection parameters

Method decode(): Decodes a data store from XML

Usage:
GSAbstractDataStore$decode(xml)

Arguments:

xml an object of class xml_node-class

Returns: an object of class GSAbstractDataStore
Method setConnectionParameters(): Set list connection parameters. The argument should
be an object of class GSRESTEntrySet giving a list of key/value parameter entries.

Usage:
GSAbstractDataStore$setConnectionParameters(parameters)

Arguments:

parameters an object of class GSRESTEntrySet

Method addConnectionParameter(): Adds a connection parameter

GSAbstractDBDataStore

Usage:
GSAbstractDataStore$addConnectionParameter(key, value)

Arguments:
key connection parameter key
value connection parameter value

Returns: TRUE if added, FALSE otherwise

Method setConnectionParameter(): Sets a connection parameter

Usage:
GSAbstractDataStore$setConnectionParameter(key, value)

Arguments:
key connection parameter key
value connection parameter value
Method delConnectionParameter(): Removes a connection parameter

Usage:
GSAbstractDataStore$delConnectionParameter(key)

Arguments:
key connection parameter key
value connection parameter value

Returns: TRUE if removed, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSAbstractDataStore$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

GSAbstractDBDataStore Geoserver REST API AbstractDBDataStore

Description

Geoserver REST API AbstractDBDataStore
Geoserver REST API AbstractDBDataStore

Format

R6Class object.

8 GSAbstractDBDataStore

Value

Object of R6Class for modelling a GeoServer abstract DB dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi: :GSAbstractDataStore
-> GSAbstractDBDataStore

Methods

Public methods:

* GSAbstractDBDataStore$new()

* GSAbstractDBDataStore$setDatabaseType()

* GSAbstractDBDataStore$setNamespace()

e GSAbstractDBDataStore$setHost ()

e GSAbstractDBDataStore$setPort()

e GSAbstractDBDataStore$setDatabase()

¢ GSAbstractDBDataStore$setSchema()

* GSAbstractDBDataStore$setUser ()

* GSAbstractDBDataStore$setPassword()

* GSAbstractDBDataStore$setIndiReferenceName()

* GSAbstractDBDataStore$setExposePrimaryKeys()

* GSAbstractDBDataStore$setMinConnections()

* GSAbstractDBDataStore$setMaxConnections()

e GSAbstractDBDataStore$setFetchSize()

* GSAbstractDBDataStore$setConnectionTimeout()

* GSAbstractDBDataStore$setValidateConnections()

* GSAbstractDBDataStore$setPrimaryKeyMetadataTable()
¢ GSAbstractDBDataStore$setLooseBBox ()

* GSAbstractDBDataStore$setPreparedStatements()

e GSAbstractDBDataStore$setMaxOpenPreparedStatements()
* GSAbstractDBDataStore$setEstimatedExtends()

* GSAbstractDBDataStore$setDefautConnectionParameters()
e GSAbstractDBDataStore$clone()

Method new(): initializes an abstract DB data store

Usage:
GSAbstractDBDataStore$new(
xml = NULL,
type = NULL,
dbType = NULL,
name = NULL,
description = "",

enabled = TRUE

GSAbstractDBDataStore

Arguments:

xml an object of class xml_node-class to create object from XML
type the type of DB data store

dbType DB type

name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE

Method setDatabaseType(): Set database type

Usage:
GSAbstractDBDataStore$setDatabaseType (dbtype)

Arguments:
dbtype DB type

Method setNamespace(): Set namespace

Usage:
GSAbstractDBDataStore$setNamespace (namespace)

Arguments:

namespace namespace

Method setHost(): Set host

Usage:
GSAbstractDBDataStore$setHost (host)

Arguments:
host host

Method setPort(): Set port

Usage:
GSAbstractDBDataStore$setPort(port)

Arguments:

port port

Method setDatabase(): Set database

Usage:
GSAbstractDBDataStore$setDatabase(database)

Arguments:

database database

Method setSchema(): Set schema
Usage:
GSAbstractDBDataStore$setSchema(schema)

Arguments:

10

GSAbstractDBDataStore

schema schema

Method setUser(): Set user

Usage:
GSAbstractDBDataStore$setUser(user)

Arguments:

user user

Method setPassword(): Set password

Usage:
GSAbstractDBDataStore$setPassword(password)

Arguments:

password password

Method setIndiReferenceName(): Set JNDI reference name

Usage:
GSAbstractDBDataStore$setIndiReferenceName (jndiReferenceName)

Arguments:
jndiReferenceName JNDI reference name

Method setExposePrimaryKeys(): Set expose primary keyws

Usage:
GSAbstractDBDataStore$setExposePrimaryKeys(exposePrimaryKeys)

Arguments:

exposePrimaryKeys expose primary keys

Method setMinConnections(): Set min connections

Usage:
GSAbstractDBDataStore$setMinConnections(minConnections = 1)
Arguments:
minConnections min connections. Default is 11

Method setMaxConnections(): Set max connections
Usage:
GSAbstractDBDataStore$setMaxConnections(maxConnections = 10)

Arguments:

maxConnections max connections. Default is 10

Method setFetchSize(): Set fetch size

Usage:
GSAbstractDBDataStore$setFetchSize(fetchSize = 1000)

Arguments:

GSAbstractDBDataStore 11

fetchSize fetch size. Default is 1000

Method setConnectionTimeout(): Set connection timeout

Usage:
GSAbstractDBDataStore$setConnectionTimeout (seconds = 20)

Arguments:
seconds timeout (in seconds). Default is 20

Method setValidateConnections(): Set validate connection

Usage:
GSAbstractDBDataStore$setValidateConnections(validateConnections)

Arguments:
validateConnections Validate connections

Method setPrimaryKeyMetadataTable(): Set primary key metadata table

Usage:
GSAbstractDBDataStore$setPrimaryKeyMetadataTable(primaryKeyMetadataTable)

Arguments:
primaryKeyMetadataTable primary key metadata table

Method setlLooseBBox(): Setloose bbox

Usage:
GSAbstractDBDataStore$setlLooseBBox(looseBBox = TRUE)

Arguments:
looseBBox loose bbox. Default is TRUE

Method setPreparedStatements(): Set prepared statemnts
Usage:
GSAbstractDBDataStore$setPreparedStatements(preparedStatements = FALSE)

Arguments:
preparedStatements prepared Statements. Default is FALSE

Method setMaxOpenPreparedStatements(): Set max open prepared statements

Usage:
GSAbstractDBDataStore$setMaxOpenPreparedStatements(
maxOpenPreparedStatements = 50

)

Arguments:
maxOpenPreparedStatements max open preepared statements. Default is 50

Method setEstimatedExtends(): Set estimatedExtends

Usage:
GSAbstractDBDataStore$setEstimatedExtends(estimatedExtends = FALSE)

GSAbstractStore

12
Arguments:
estimatedExtends estimated extends. Default is FALSE
Method setDefautConnectionParameters(): Set default connection parameters
Usage:
GSAbstractDBDataStore$setDefautConnectionParameters()
Method clone(): The objects of this class are cloneable with this method.
Usage:
GSAbstractDBDataStore$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Note
Internal abstract class used for setting DB stores
Author(s)
Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>
GSAbstractStore Geoserver REST API Store
Description
Geoserver REST API Store
Geoserver REST API Store
Format
R6Class object.
Value

Object of R6Class for modelling a GeoServer store

Super class

geosapi: :GSRESTResource -> GSAbstractStore

GSAbstractStore

Public fields

full whether store object is fully described
name store name

enabled if the store is enabled or not
description store description

type store type

workspace workspace name

Methods

Public methods:

e GSAbstractStore$new()

e GSAbstractStore$decode()

* GSAbstractStore$setType()

* GSAbstractStore$setEnabled()

* GSAbstractStore$setDescription()
* GSAbstractStore$clone()

Method new(): initializes an abstract store

Usage:
GSAbstractStore$new(
xml = NULL,
storeType,
type = NULL,
name = NULL,
description = "",
enabled = TRUE
)
Arguments:
xml an object of class xml_node-class to create object from XML
storeType store type
type the type of coverage store
name coverage store name
description coverage store description
enabled whether the store should be enabled or not. Default is TRUE

Method decode(): Decodes store from XML

Usage:
GSAbstractStore$decode(xml)

Arguments:

xml object of class xml_node-class

Method setType(): Set type

14 GSAccessControlListManager

Usage:
GSAbstractStore$setType(type)
Arguments:
type type
Method setEnabled(): Set enabled
Usage:
GSAbstractStore$setEnabled(enabled)
Arguments:
enabled enabled
Method setDescription(): Set description
Usage:
GSAbstractStore$setDescription(description)
Arguments:
description description
Method clone(): The objects of this class are cloneable with this method.
Usage:
GSAbstractStore$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Author(s)
Emmanuel Blondel <emmanuel.blondell @ gmail.com>
GSAccessControlListManager
Geoserver REST API Access Control List Manager
Description
Geoserver REST API Access Control List Manager
Geoserver REST API Access Control List Manager
Format
R6Class object.
Value

Object of R6Class with methods for managing GeoServer Access Control List (ACL) operations.

GSAccessControlListManager 15

Super class

geosapi: :GSManager -> GSAccessControlListManager

Methods

Public methods:
* GSAccessControllListManager$setCatalogMode()
e GSAccessControllListManager$getCatalogMode()
* GSAccessControllListManager$getRules()
* GSAccessControllListManager$addRule()
* GSAccessControllListManager$addLayerRule()
* GSAccessControllListManager$addServiceRule()
¢ GSAccessControllListManager$addRestRule()
¢ GSAccessControllListManager$modifyRule()
* GSAccessControllListManager$deleteRule()
¢ GSAccessControllListManager$clone()

Method setCatalogMode(): Set the catalog mode

Usage:
GSAccessControllListManager$setCatalogMode (
mode = c("HIDE", "MIXED", "CHALLENGE")

)

Arguments:

mode mode

Returns: TRUE if set, FALSE otherwise

Method getCatalogMode(): Get the catalog mode

Usage:
GSAccessControllListManager$getCatalogMode ()

Returns: the mode either HIDE, MIXED or CHALLENGE

Method getRules(): Get rules

Usage:
GSAccessControllListManager$getRules(domain = c("layers”, "services"”, "rest"))

Arguments:

domain the access control domain

Returns: the list of rules for a given domain

Method addRule(): Generic method to add an access control rule

Usage:
GSAccessControllListManager$addRule(rule)

Arguments:

GSAccessControlListManager

rule object of class GSRule
Returns: TRUE if added, FALSE otherwise

Method addLayerRule(): Adds an access control layer rule

Usage:
GSAccessControllistManager$addLayerRule(
ws = NULL,
lyr,
permission = c("r"”, "w", "a"),
roles
)
Arguments:
ws the resource workspace. Default is NULL
lyr the target layer to which the access control should be added
permission the rule permission, either r (read), w (write) or a (administer)
roles one or more roles to add for the rule

Returns: TRUE if added, FALSE otherwise

Method addServiceRule(): Adds an access control service rule
Usage:
GSAccessControllListManager$addServiceRule(
service,
method,
permission = c("r", "w", "a"),
roles
)
Arguments:
service service subject to the access control rule, eg. *wfs’
method service method subject to the access control rule, eg. *GetFeature’
permission the rule permission, either r (read), w (write) or a (administer)
roles one or more roles to add for the rule

Returns: TRUE if added, FALSE otherwise

Method addRestRule(): Adds an access control rest rule

Usage:
GSAccessControllListManager$addRestRule(
pattern,
methods,
permission = c("r", "w", "a"),
roles

)

Arguments:

pattern a URL Ant pattern, only applicable for domain rest. Default is /**
methods HTTP method(s)

GSAccessControlListManager 17

permission the rule permission, either r (read), w (write) or a (administer)

roles one or more roles to add for the rule

Returns: TRUE if added, FALSE otherwise

Method modifyRule(): Generic method to modify an access control rule

Usage:
GSAccessControllListManager$modifyRule(rule)

Arguments:
rule object of class GSRule

Returns: TRUE if modified, FALSE otherwise

Method deleteRule(): Generic method to delete an access control rule

Usage:
GSAccessControllListManager$deleteRule(rule)

Arguments:

rule object of class GSRule

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSAccessControllListManager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:
GSAccessControlListManager$new("http://localhost:8080/geoserver”, "admin”, "geoserver™)

End(Not run)

18 GSArcGridCoverageStore

GSArcGridCoverageStore
Geoserver REST API ArcGridCoverageStore

Description

Geoserver REST API ArcGridCoverageStore
Geoserver REST API ArcGridCoverageStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer ArcGrid CoverageStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi
-> GSArcGridCoverageStore

Public fields

url url

Methods

Public methods:

e GSArcGridCoverageStore$new()
* GSArcGridCoverageStore$clone()

Method new(): initializes an abstract ArcGrid coverage store

Usage:
GSArcGridCoverageStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url = NULL

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

: :GSAbstractCoverageStore

GSCoverage 19

enabled whether the store should be enabled or not. Default is TRUE
url url

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSArcGridCoverageStore$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Emmanuel Blondel <emmanuel.blondel 1 @ gmail.com>

GSCoverage A GeoServer coverage

Description
This class models a GeoServer coverage. This class is to be used for manipulating representations

of vector data with GeoServer.

Format

R6Class object.

Details
Geoserver REST API Resource

Value
Object of R6Class for modelling a GeoServer coverage

Super classes
geosapi: :GSRESTResource -> geosapi: : GSResource -> GSCoverage

Public fields
cqlFilter CQL filter

20

Methods

Public methods:

* GSCoverage$new()

* GSCoverage$decode()
* GSCoverage$setView()
e GSCoverage$delView()
* GSCoverage$clone()

Method new(): Initializes a GSCoverage from XML
Usage:
GSCoverage$new(xml = NULL)

Arguments:
xml object of class xml_node-class

Method decode(): Decodes coverage from XML
Usage:
GSCoverage$decode (xml)

Arguments:
xml object of class xml_node-class

Method setView(): Set view
Usage:
GSCoverage$setView(cv)

Arguments:
cv cv, object of class GSCoverageView

Returns: TRUE if set, FALSE otherwise

Method delView(): Deletes view
Usage:
GSCoverage$delView()
Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:

GSCoverage$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

gt <- GSCoverage$new()

GSCoverage

GSCoverageBand 21

GSCoverageBand Geoserver REST API GSCoverageBand

Description

Geoserver REST API GSCoverageBand
Geoserver REST API GSCoverageBand

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer coverage band

Methods

new(xml) This method is used to instantiate a GSCoverageBand
decode(xml) This method is used to decode a GSCoverageBand from XML
encode() This method is used to encode a GSCoverageBand to XML
setDefinition(definition) Sets the coverage band definition
setIndex(index) Sets the coverage band index

setCompositionType Sets the composition type. Only ’'BAND_SELECT’ is supported by GeoServer
for now.

addInputBand(band) Adds a input coverage band, object of class GSInputCoverageBand

delInputBand(band) Removes a input coverage band, object of class GSInputCoverageBand

Super class

geosapi: :GSRESTResource -> GSCoverageBand

Public fields

inputCoverageBands list of input coverage bands
definition coverage band definition
index coverage band index

compositionType coverage band composition type

22 GSCoverageBand

Methods

Public methods:
* GSCoverageBand$new()
¢ GSCoverageBand$decode()
¢ GSCoverageBand$setName ()
e GSCoverageBand$setDefinition()
* GSCoverageBand$setIndex()
* GSCoverageBand$setCompositionType()
* GSCoverageBand$addInputBand()
* GSCoverageBand$delInputBand()
* GSCoverageBand$clone()

Method new(): Initalizes a GSCoverageBand

Usage:
GSCoverageBand$new(xml = NULL)

Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSCoverageBand$decode (xml)

Arguments:

xml object of class xml_node-class

Method setName(): Set name

Usage:
GSCoverageBand$setName (name)

Arguments:

name name

Method setDefinition(): Set definition

Usage:
GSCoverageBand$setDefinition(definition)

Arguments:

definition definition

Method setIndex(): Setindex
Usage:
GSCoverageBand$setIndex(index)
Arguments:

index index

GSCoverageBand 23

Method setCompositionType(): Setcomposition type

Usage:
GSCoverageBand$setCompositionType(compositionType)

Arguments:
compositionType composition type
Method addInputBand(): Adds an input band

Usage:
GSCoverageBand$addInputBand(band)

Arguments:
band object of class GSInputCoverageBand

Returns: TRUE if added, FALSE otherwise

Method delInputBand(): Deletes an input band

Usage:
GSCoverageBand$delInputBand(band)

Arguments:
band object of class GSInputCoverageBand

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSCoverageBand$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSCoverageBand$new()

24 GSCoverageStoreManager

GSCoverageStoreManager
Geoserver REST API CoverageStore Manager

Description

Geoserver REST API CoverageStore Manager
Geoserver REST API CoverageStore Manager

Format

R6Class object.

Value

Object of R6Class with methods for managing GeoServer CoverageStores (i.e. stores of coverage
data)

Super class

geosapi: :GSManager -> GSCoverageStoreManager

Methods
Public methods:

e GSCoverageStoreManager$getCoverageStores()

e GSCoverageStoreManager$getCoverageStoreNames ()
* GSCoverageStoreManager$getCoverageStore()

* GSCoverageStoreManager$createCoverageStore()
* GSCoverageStoreManagers$updateCoverageStore()
* GSCoverageStoreManager$deleteCoverageStore()
* GSCoverageStoreManagers$getCoverages()

* GSCoverageStoreManager$getCoverageNames()

* GSCoverageStoreManager$getCoverage()

* GSCoverageStoreManager$createCoverage()

¢ GSCoverageStoreManager$updateCoverage()

e GSCoverageStoreManager$deleteCoverage()

e GSCoverageStoreManagers$uploadCoverage()

e GSCoverageStoreManager$uploadGeoTIFF ()

* GSCoverageStoreManager$uploadWorldImage ()

* GSCoverageStoreManager$uploadArcGrid()

* GSCoverageStoreManager$uploadImageMosaic()

* GSCoverageStoreManager$clone()

GSCoverageStoreManager 25

Method getCoverageStores(): Get the list of available coverage stores. Returns an object of
class 1ist giving items of class GSAbstractCoverageStore

Usage:
GSCoverageStoreManager$getCoverageStores(ws)
Arguments:

ws workspace name

Returns: the list of coverage stores

Method getCoverageStoreNames(): Get the list of available coverage store names. Returns an
vector of class character

Usage:
GSCoverageStoreManager$getCoverageStoreNames (ws)
Arguments:

ws workspace name

Returns: the list of coverage store names, as character

Method getCoverageStore(): Getan object of class GSAbstractDataStore given a workspace
and coverage store names.

Usage:

GSCoverageStoreManager$getCoverageStore(ws, cs)

Arguments:
ws workspace name
cs coverage store name

Returns: the coverage store

Method createCoverageStore(): Creates a new coverage store given a workspace, coverage
store name. Abstract method used in below format-specific methods to create coverage stores.

Usage:
GSCoverageStoreManager$createCoverageStore(ws, coverageStore)
Arguments:

ws workspace name

coverageStore coverage store object

Returns: TRUE if created, FALSE otherwise

Method updateCoverageStore(): Updates a coverage store given a workspace, coverage store
name. Abstract method used in below format-specific methods to create coverage stores.

Usage:
GSCoverageStoreManager$updateCoverageStore(ws, coverageStore)
Arguments:

ws workspace name

coverageStore coverage store object

Returns: TRUE if updated, FALSE otherwise

26

GSCoverageStoreManager

Method deleteCoverageStore(): Deletes a coverage store given a workspace and an object of
class GSAbstractCoverageStore. By defaut, the option recurse is set to FALSE, ie datastore
layers are not removed. To remove all coverage store layers, set this option to TRUE. The purge
parameter is used to customize the delete of files on disk (in case the underlying reader implements
a delete method). It can take one of the three values: none, metadata, all. For more details see
https://docs.geoserver.org/stable/en/user/rest/api/coveragestores.html#purge
Usage:
GSCoverageStoreManager$deleteCoverageStore(
ws,
cs,
recurse = FALSE,
purge = NULL
)
Arguments:
ws workspace name
cs coverage store name
recurse recurse
purge purge
Returns: TRUE if deleted, FALSE otherwise
Method getCoverages(): Get the list of available coverages for given workspace and coverage
store. Returns an object of class 1ist giving items of class GSCoverage

Usage:
GSCoverageStoreManager$getCoverages(ws, cs)

Arguments:
ws workspace name
cs coverage store name

Returns: the list of GSCoverage
Method getCoverageNames(): Get the list of available coverage names for given workspace
and coverage store. Returns an object of class 1ist giving items of class GSCoverage

Usage:
GSCoverageStoreManager$getCoverageNames(ws, cs)

Arguments:
ws workspace name
cs coverage store name

Returns: the list of coverage names

Method getCoverage(): Get coverage
Usage:
GSCoverageStoreManager$getCoverage(ws, cs, cv)

Arguments:

WS Workspace name

https://docs.geoserver.org/stable/en/user/rest/api/coveragestores.html#purge

GSCoverageStoreManager 27

CS coverage store name
CV coverage name

Method createCoverage(): Creates a new coverage given a workspace, coverage store names
and an object of class GSCoverage

Usage:

GSCoverageStoreManager$createCoverage(ws, cs, coverage)

Arguments:

ws workspace name

cs coverage store name

coverage object of class GSCoverage

Returns: TRUE if created, FALSE otherwise

Method updateCoverage(): Updates a coverage given a workspace, coverage store names and
an object of class GSCoverage

Usage:

GSCoverageStoreManager$updateCoverage(ws, cs, coverage)

Arguments:

ws workspace name

cs coverage store name

coverage object of class GSCoverage

Returns: TRUE if updated, FALSE otherwise

Method deleteCoverage(): Deletes a coverage given a workspace, coverage store names, and
an object of class GSCoverage. By defaut, the option recurse is set to FALSE, ie coverage layers
are not removed.

Usage:

GSCoverageStoreManager$deleteCoverage(ws, cs, cv, recurse = FALSE)

Arguments:

ws workspace name

cs coverage store name

Cv coverage name
recurse recurse

Method uploadCoverage(): Abstract method to upload a coverage file targeting a workspace
(ws) and datastore (cs). The extension corresponds to the format/type of coverage to be uploaded
(among values ’geotiff’, *worldimage’, ’arcgrid’, or ’imagemosaic’). The endpoint takes a value
among "file"” (default), "url” or "external”. The filename is the name of the coverage file to
upload and set for the newly created datastore. The configure parameter can take a value among
values "none” (indicates to configure only the datastore but no layer configuration) or "first”
(configure both datastore and layer). The update defines the strategy for the upload: "append”
(default value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

28 GSCoverageStoreManager

GSCoverageStoreManager$uploadCoverage(
ws,
cs,
endpoint = "file",
extension,
filename,
configure = "first”,
update = "append”,
contentType
)
Arguments:
ws workspace name
cs coverage store name
endpoint endpoint. Default is "file"
extension extension
filename filename
configure configure. Default is "first"
update update. Default is "append”
contentType content type

Returns: TRUE if uploaded, FALSE otherwise

Method uploadGeoTIFF(): Uploads a GeoTIFF file targeting a workspace (ws) and datastore
(cs). The endpoint takes a value among "file" (default), "url” or "external”. The filename
is the name of the GeoTIFF file to upload and set for the newly created datastore. The configure
parameter can take a value among values "none” (indicates to configure only the datastore but
no layer configuration) or "first” (configure both datastore and layer). The update defines the
strategy for the upload: "append” (default value) for the first upload, "overwrite” in case the
file should be overwriten.
Usage:
GSCoverageStoreManager$uploadGeoTIFF(
ws,
cs,
endpoint = "file",
filename,
configure = "first"”,
update = "append”
)
Arguments:
ws workspace name
Ccs coverage store name
endpoint endpoint. Default is "file"
filename filename
configure configure. Default is "first"
update update. Default is "append"

Returns: TRUE if uploaded, FALSE otherwise

GSCoverageStoreManager 29

Method uploadWorldImage(): Uploads a WorldImage file targeting a workspace (ws) and
datastore (cs). The endpoint takes a value among "file"” (default), "url” or "external”. The
filename is the name of the zipped file to upload and set for the newly created datastore. It is
assumed the zip archive contains the .prj file to set the SRS. The configure parameter can take a
value among values "none” (indicates to configure only the datastore but no layer configuration)
or "first” (configure both datastore and layer). The update defines the strategy for the upload:
"append” (default value) for the first upload, "overwrite"” in case the file should be overwriten.
Usage:
GSCoverageStoreManager$uploadWorldImage(
ws,
cs,
endpoint = "file",
filename,
configure = "first"”,
update = "append”
)
Arguments:
ws workspace name
cs coverage store name
endpoint endpoint. Default is "file"
filename filename
configure configure. Default is "first"
update update. Default is "append”

Returns: TRUE if uploaded, FALSE otherwise

Method uploadArcGrid(): Uploads an ArcGrid file targeting a workspace (ws) and datastore
(cs). The endpoint takes a value among "file” (default), "url” or "external”. The filename
is the name of the ArcGrid file to upload and set for the newly created datastore. The configure
parameter can take a value among values "none” (indicates to configure only the datastore but
no layer configuration) or "first” (configure both datastore and layer). The update defines the
strategy for the upload: "append” (default value) for the first upload, "overwrite"” in case the
file should be overwriten.
Usage:
GSCoverageStoreManager$uploadArcGrid(
ws,
cs,
endpoint = "file”,
filename,
configure = "first”,
update = "append”
)
Arguments:
ws workspace name
Ccs coverage store name
endpoint endpoint. Default is "file"

30 GSCoverageStoreManager

filename filename
configure configure. Default is "first"
update update. Default is "append”

Returns: TRUE if uploaded, FALSE otherwise

Method uploadImageMosaic(): Uploads an ImageMosaic file targeting a workspace (ws) and
datastore (cs). The endpoint takes a value among "file"” (default), "url” or "external”. The
filename is the name of the ImageMosaic file to upload and set for the newly created datastore.
The configure parameter can take a value among values "none” (indicates to configure only the
datastore but no layer configuration) or "first"” (configure both datastore and layer). The update
defines the strategy for the upload: "append” (default value) for the first upload, "overwrite” in
case the file should be overwriten.
Usage:
GSCoverageStoreManager$uploadImageMosaic(
ws,
cs,
endpoint = "file"”,
filename,
configure = "first"”,
update = "append”
)
Arguments:
ws workspace name
cs coverage store name
endpoint endpoint. Default is "file"
filename filename
configure configure. Default is "first"
update update. Default is "append”

Returns: TRUE if uploaded, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSCoverageStoreManager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

Not run:
GSCoverageStoreManager$new("http://localhost:8080/geoserver”, "admin”, "geoserver")

End(Not run)

GSCoverageView

GSCoverageView Geoserver REST API GSCoverageView

Description

Geoserver REST API GSCoverageView
Geoserver REST API GSCoverageView

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer coverage view

Super class

geosapi: : GSRESTResource -> GSCoverageView

Public fields

name name
envelopeCompositionType envelope composition type
selectedResolution selected resolution
selectedResolutionIndex selected resolution index

coverageBands coverage bands

Methods
Public methods:

e GSCoverageView$new()

e GSCoverageView$decode()

* GSCoverageView$setName ()

* GSCoverageView$setEnvelopeCompositionType()
* GSCoverageView$setSelectedResolution()

* GSCoverageView$setSelectedResolutionIndex()
¢ GSCoverageView$addBand()

* GSCoverageView$delBand()

¢ GSCoverageView$clone()

Method new(): Initializes an object of class GSCoverageView

Usage:
GSCoverageView$new(xml = NULL)

32 GSCoverageView

Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSCoverageView$decode (xml)

Arguments:

xml object of class xml_node-class

Method setName(): Set name

Usage:
GSCoverageView$setName (name)

Arguments:

name name

Method setEnvelopeCompositionType(): Sets the envelope composition type. Type of En-
velope Composition, used to expose the bounding box of the CoverageView, either "'UNION’ or
"INTERSECTION’.

Usage:
GSCoverageView$setEnvelopeCompositionType(envelopeCompositionType)

Arguments:
envelopeCompositionType envelope composition type

Method setSelectedResolution(): Set selected resolution

Usage:
GSCoverageView$setSelectedResolution(selectedResolution)

Arguments:

selectedResolution selected resolution

Method setSelectedResolutionIndex(): Set selected resolution index

Usage:
GSCoverageView$setSelectedResolutionIndex(selectedResolutionIndex)

Arguments:
selectedResolutionIndex selected resolution index

Method addBand(): Adds band

Usage:
GSCoverageView$addBand(band)

Arguments:
band object of class GSCoverageBand

Returns: TRUE if added, FALSE otherwise

Method delBand(): Deletes band

GSDataStoreManager 33

Usage:
GSCoverageView$delBand(band)

Arguments:

band object of class GSCoverageBand
Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSCoverageView$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSCoverageView$new()

GSDataStoreManager Geoserver REST API DataStore Manager

Description
Geoserver REST API DataStore Manager
Geoserver REST API DataStore Manager

Format

R6Class object.

Value

Object of R6Class with methods for managing GeoServer DataStores (i.e. stores of vector data)

Super class

geosapi: :GSManager -> GSDataStoreManager

34

GSDataStoreManager

Methods

Public methods:
* GSDataStoreManager$getDataStores()
e GSDataStoreManager$getDataStoreNames()
e GSDataStoreManager$getDataStore()
* GSDataStoreManager$createDataStore()
e GSDataStoreManagers$updateDataStore()
* GSDataStoreManager$deleteDataStore()
* GSDataStoreManagers$getFeatureTypes()
* GSDataStoreManager$getFeatureTypeNames()
* GSDataStoreManager$getFeatureType()
e GSDataStoreManager$createFeatureType()
* GSDataStoreManager$updateFeatureType()
* GSDataStoreManager$deleteFeatureType()
e GSDataStoreManager$publishlLayer()
* GSDataStoreManager$unpublishLayer()
* GSDataStoreManager$uploadData()
¢ GSDataStoreManager$uploadShapefile()
* GSDataStoreManager$uploadProperties()
e GSDataStoreManager$uploadH2()
* GSDataStoreManager$uploadSpatialite()
* GSDataStoreManager$uploadAppschema()
e GSDataStoreManager$uploadGeoPackage ()
e GSDataStoreManager$clone()

Method getDataStores(): Get the list of available dataStores.

Usage:
GSDataStoreManager$getDataStores(ws)

Arguments:

WS workspace name

Returns: an object of class 1ist giving items of class GSAbstractDataStore

Method getDataStoreNames(): Get the list of available dataStore names.

Usage:
GSDataStoreManager$getDataStoreNames(ws)

Arguments:

WS WOI‘kSp&CC name

Returns: a vector of class character

Method getDataStore(): Get an object of class GSAbstractDataStore given a workspace

and datastore names.

Usage:

GSDataStoreManager 35

GSDataStoreManager$getDataStore(ws, ds)

Arguments:
ws workspace name
ds datastore name

Returns: the datastore

Method createDataStore(): Creates a datastore given a workspace and an object of class
GSAbstractDataStore.

Usage:

GSDataStoreManager$createDataStore(ws, dataStore)

Arguments:

ws workspace name

dataStore datastore object of class GSAbstractDataStore
Returns: TRUE if created, FALSE otherwise

Method updateDataStore(): Updates a datastore given a workspace and an object of class
GSAbstractDataStore.

Usage:

GSDataStoreManager$updateDataStore(ws, dataStore)

Arguments:

ws workspace name

dataStore datastore object of class GSAbstractDataStore
Returns: TRUE if updated, FALSE otherwise

Method deleteDataStore(): Deletes a datastore given workspace and datastore names. By
defaut, the option recurse is set to FALSE, ie datastore layers are not removed. To remove all
datastore layers, set this option to TRUE.

Usage:

GSDataStoreManager$deleteDataStore(ws, ds, recurse = FALSE)

Arguments:

ws workspace name

ds datastore name

recurse recurse

Returns: TRUE if deleted, FALSE otherwise

Method getFeatureTypes(): Get the list of available feature types for given workspace and
datastore.

Usage:

GSDataStoreManager$getFeatureTypes(ws, ds, list = "configured”)

Arguments:

ws workspace name

ds datastore name

36

GSDataStoreManager

list list type value, among "configured", "available", "available_with_geom", "all"

Returns: an object of class 1ist giving items of class GSFeatureType

Method getFeatureTypeNames(): Get the list of available feature type names for given workspace
and datastore.
Usage:
GSDataStoreManager$getFeatureTypeNames(ws, ds)
Arguments:
ws workspace name

ds datastore name

Returns: a vector of classcharacter

Method getFeatureType(): Get an object of class GSFeatureType given a workspace, datas-
tore and feature type names.

Usage:

GSDataStoreManager$getFeatureType(ws, ds, ft)

Arguments:

ws workspace name

ds datastore name

ft feature type name

Returns: an object of class GSFeatureType

Method createFeatureType(): Creates a new featureType given a workspace, datastore names
and an object of class GSFeatureType

Usage:

GSDataStoreManager$createFeatureType(ws, ds, featureType)

Arguments:

ws workspace name

ds datastore name

featureType feature type
Returns: TRUE if created, FALSE otherwise

Method updateFeatureType(): Updates a featureType given a workspace, datastore names
and an object of class GSFeatureType

Usage:

GSDataStoreManager$updateFeatureType(ws, ds, featureType)

Arguments:

ws workspace name

ds datastore name

featureType feature type

Returns: TRUE if updated, FALSE otherwise

GSDataStoreManager 37

Method deleteFeatureType(): Deletes a featureType given a workspace, datastore names, and
an object of class GSFeatureType. By defaut, the option recurse is set to FALSE, ie datastore
layers are not removed.

Usage:

GSDataStoreManager$deleteFeatureType(ws, ds, ft, recurse = FALSE)

Arguments:

ws workspace name
ds datastore name
ft feature type name

recurse recurse

Returns: TRUE if deleted, FALSE otherwise

Method publishLayer(): Publish a feature type/layer pair given a workspace and datastore.
The name ’layer’ here encompasses both GSFeatureType and GSLayer resources.

Usage:

GSDataStoreManager$publishLayer(ws, ds, featureType, layer)

Arguments:

ws workspace name

ds datastore name

featureType object of class GSFeatureType
layer object of class GSLayer

Returns: TRUE if published, FALSE otherwise

Method unpublishLayer(): Unpublish a feature type/layer pair given a workspace and datas-
tore. The name ’layer’ here encompasses both GSFeatureType and GSLayer resources.

Usage:

GSDataStoreManager$unpublishLayer(ws, ds, lyr)

Arguments:
ws workspace name
ds datastore name

lyr layer name

Returns: TRUE if published, FALSE otherwise

Method uploadData(): Uploads features data. The extension corresponds to the format/type
of features to be uploaded among "shp", "spatialite", "h2", "gpkg". The endpoint takes a value
among "file" (default), "url” or "external”. The filename is the name of the coverage file to
upload and set for the newly created datastore. The configure parameter can take a value among
values "none” (indicates to configure only the datastore but no layer configuration) or "first”
(configure both datastore and layer). The update defines the strategy for the upload: "append”
(default value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

38 GSDataStoreManager

GSDataStoreManager$uploadData(
ws,
ds,
endpoint = "file",
extension,
configure = "first”,
update = "append”,
filename,
charset,
contentType

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

extension extension

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

contentType content type

Returns: TRUE if uploaded, FALSE otherwise

Method uploadShapefile(): Uploads zipped shapefile. The endpoint takes a value among
"file" (default), "url” or "external”. The filename is the name of the coverage file to upload
and set for the newly created datastore. The configure parameter can take a value among values
"none” (indicates to configure only the datastore but no layer configuration) or "first" (config-
ure both datastore and layer). The update defines the strategy for the upload: "append” (default
value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

GSDataStoreManager$uploadShapefile(
ws,
ds,
endpoint = "file",
configure = "first"”,
update = "append”,
filename,
charset = "UTF-8"

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"

GSDataStoreManager 39

filename file name of the resource to upload
charset charset

Returns: TRUE if uploaded, FALSE otherwise

Method uploadProperties(): Uploads properties. The endpoint takes a value among "file”
(default), "url” or "external”. The filename is the name of the coverage file to upload and set
for the newly created datastore. The configure parameter can take a value among values "none”
(indicates to configure only the datastore but no layer configuration) or "first” (configure both
datastore and layer). The update defines the strategy for the upload: "append” (default value) for
the first upload, "overwrite"” in case the file should be overwriten.

Usage:

GSDataStoreManager$uploadProperties(
ws,
ds,
endpoint = "file"”,
configure = "first",
update = "append”,
filename,
charset = "UTF-8"

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

Returns: TRUE if uploaded, FALSE otherwise

Method uploadH2(): Uploads H2 database. The endpoint takes a value among "file" (de-
fault), "url” or "external”. The filename is the name of the coverage file to upload and set
for the newly created datastore. The configure parameter can take a value among values "none”
(indicates to configure only the datastore but no layer configuration) or "first"” (configure both
datastore and layer). The update defines the strategy for the upload: "append” (default value) for
the first upload, "overwrite” in case the file should be overwriten.

Usage:
GSDataStoreManager$uploadH2(
ws,
ds,
endpoint = "file",
configure = "first”,
update = "append”,
filename,

charset = "UTF-8"

40

GSDataStoreManager

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

Returns: TRUE if uploaded, FALSE otherwise

Method uploadSpatialite(): Uploads spatialite file. The endpoint takes a value among
"file" (default), "url” or "external”. The filename is the name of the coverage file to upload
and set for the newly created datastore. The configure parameter can take a value among values
"none” (indicates to configure only the datastore but no layer configuration) or "first” (config-
ure both datastore and layer). The update defines the strategy for the upload: "append” (default
value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

GSDataStoreManager$uploadSpatialite(
ws,
ds,
endpoint = "file",
configure = "first"”,
update = "append”,
filename,
charset = "UTF-8"

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

Returns: TRUE if uploaded, FALSE otherwise

Method uploadAppschema(): Uploads App schema. The endpoint takes a value among
"file" (default), "url” or "external”. The filename is the name of the coverage file to upload
and set for the newly created datastore. The configure parameter can take a value among values
"none” (indicates to configure only the datastore but no layer configuration) or "first"” (config-
ure both datastore and layer). The update defines the strategy for the upload: "append” (default
value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

GSDataStoreManager 41

GSDataStoreManager$uploadAppschema(

ws,
ds,
endpoint = "file",
configure = "first",
update = "append”,
filename,
charset = "UTF-8"

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

Returns: TRUE if uploaded, FALSE otherwise

Method uploadGeoPackage(): Uploads GeoPackage. The endpoint takes a value among
"file" (default), "url” or "external”. The filename is the name of the coverage file to upload
and set for the newly created datastore. The configure parameter can take a value among values
"none” (indicates to configure only the datastore but no layer configuration) or "first"” (config-
ure both datastore and layer). The update defines the strategy for the upload: "append” (default
value) for the first upload, "overwrite” in case the file should be overwriten.

Usage:

GSDataStoreManager$uploadGeoPackage(
ws,
ds,
endpoint = "file"”,
configure = "first”,
update = "append”,
filename,
charset = "UTF-8"

)

Arguments:

ws workspace name

ds datastore name

endpoint endpoint

configure configure strategy among values: "first" or "none"
update update strategy, among values: "append", "overwrite"
filename file name of the resource to upload

charset charset

Returns: TRUE if uploaded, FALSE otherwise

42

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSDataStoreManager$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

Not run:

GSDimension

GSDataStoreManager$new("http://localhost:8080/geoserver”, "admin”, "geoserver")

End(Not run)

GSDimension A GeoServer dimension

Description

This class models a GeoServer resource dimension.

Format

R6Class object.

Details

Geoserver REST API Dimension

Value

Object of R6Class for modelling a GeoServer dimension

Super class

geosapi: :GSRESTResource -> GSDimension

Public fields

enabled true/false

presentation dimension presentation
resolution dimension resolution
units dimension units

unitSymbol dimension unitsSymbol

GSDimension 43

Methods
Public methods:

e GSDimension$new()

* GSDimension$decode()

e GSDimension$setEnabled()

* GSDimension$setPresentation()
* GSDimension$setUnit()

* GSDimension$setUnitSymbol()

e GSDimension$clone()

Method new(): Initializes an object of class GSDimension

Usage:
GSDimension$new(xml = NULL)

Arguments:
xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSDimension$decode (xml)

Arguments:
xml object of class xml_node-class

Method setEnabled(): Setenabled

Usage:
GSDimension$setEnabled(enabled)

Arguments:
enabled enabled

Method setPresentation(): Set presentation

Usage:
GSDimension$setPresentation(presentation, interval = NULL)

Arguments:
presentation presentation. Possible values: "LIST", "CONTINUOUS_INTERVAL", "DIS-
CRETE_INTERVAL"

interval interval

Method setUnit(): Set unit
Usage:
GSDimension$setUnit(unit)
Arguments:

unit unit

44 GSFeatureDimension

Method setUnitSymbol(): Set unit symbol

Usage:
GSDimension$setUnitSymbol (unitSymbol)

Arguments:

unitSymbol unit symbol

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSDimension$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

dim <- GSDimension$new()

GSFeatureDimension A GeoServer dimension

Description

This class models a GeoServer feature dimension.

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer feature dimension

Super classes

geosapi: :GSRESTResource -> geosapi: :GSDimension -> GSFeatureDimension

Public fields

attribute attribute

endAttribute end attribute

GSFeatureDimension

Methods

Public methods:

e GSFeatureDimension$new()

e GSFeatureDimension$decode()

* GSFeatureDimension$setAttribute()

* GSFeatureDimension$setEndAttribute()
* GSFeatureDimension$clone()

Method new(): Initializes an object of class GSFeatureDimension
Usage:
GSFeatureDimension$new(xml = NULL)
Arguments:
xml object of class xml_node-class

Method decode(): Decodes from XML
Usage:
GSFeatureDimension$decode (xml)

Arguments:
xml object of class xml_node-class

Method setAttribute(): Set attribute
Usage:
GSFeatureDimension$setAttribute(attribute)

Arguments:
attribute attribute
Method setEndAttribute(): Setend attribute

Usage:
GSFeatureDimension$setEndAttribute(endAttribute)

Arguments:
endAttribute end attribute

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSFeatureDimension$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

dim <- GSFeatureDimension$new()

46 GSFeatureType

GSFeatureType A GeoServer feature type

Description
This class models a GeoServer feature type. This class is to be used for manipulating representations
of vector data with GeoServer.

Format

R6Class object.

Details
Geoserver REST API Resource

Value

Object of R6Class for modelling a GeoServer feature type

Super classes

geosapi: :GSRESTResource -> geosapi: : GSResource -> GSFeatureType

Public fields
cqlFilter CQL filter

Methods

Public methods:

e GSFeatureType$new()

* GSFeatureType$decode()

* GSFeatureType$setCqlFilter()

e GSFeatureType$setVirtualTable()
* GSFeatureType$delVirtualTable()
* GSFeatureType$clone()

Method new(): Initializes an object of class GSFeatureType

Usage:
GSFeatureType$new(xml = NULL)
Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML
Usage:

GSFeatureType

GSFeatureType$decode(xml)

Arguments:
xml object of class xml_node-class

Method setCqlFilter(): Set CQL filter

Usage:
GSFeatureType$setCqlFilter(cqlFilter)

Arguments:
cqlFilter CQL filter
Method setVirtualTable(): Set virtual table

Usage:
GSFeatureType$setVirtualTable(vt)

Arguments:
vt object of class GSVirtualTable

Returns: TRUE if set/added, FALSE otherwise

Method delVirtualTable(): Deletes virtual table

Usage:
GSFeatureType$delVirtualTable()

Arguments:
vt object of class GSVirtualTable

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSFeatureType$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

ft <- GSFeatureType$new()

48 GSGeoPackageDataStore

GSGeoPackageDataStore Geoserver REST API GeoPackageDataStore

Description

Geoserver REST API GeoPackageDataStore
Geoserver REST API GeoPackageDataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer GeoPackage dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi: :GSAbstractDataStore
-> geosapi: :GSAbstractDBDataStore -> GSGeoPackageDataStore

Methods

Public methods:

e GSGeoPackageDataStore$new()
* GSGeoPackageDataStore$clone()

Method new(): initializes an GeoPackage data store

Usage:
GSGeoPackageDataStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
database = NULL

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE
database database

Method clone(): The objects of this class are cloneable with this method.
Usage:

GSGeoTIFFCoverageStore

GSGeoPackageDataStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

ds <- GSGeoPackageDataStore$new(
name = "ds”, description = "des",
enabled = TRUE, database = NULL
)

49

GSGeoTIFFCoverageStore
Geoserver REST API GeoTIFF CoverageStore

Description

Geoserver REST API GeoTIFF CoverageStore
Geoserver REST API GeoTIFF CoverageStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer GeoTIFF CoverageStore

Super classes
geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi
-> GSGeoTIFFCoverageStore

Public fields

url url

: :GSAbstractCoverageStore

50 GSImageMosaicCoverageStore

Methods

Public methods:

* GSGeoTIFFCoverageStore$new()
* GSGeoTIFFCoverageStore$clone()

Method new(): Initializes an GeoTIFF coverage store

Usage:
GSGeoTIFFCoverageStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url = NULL

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE

url url

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSGeoTIFFCoverageStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSImageMosaicCoverageStore
Geoserver REST API ImageMosaicCoverageStore

Description

Geoserver REST API ImageMosaicCoverageStore
Geoserver REST API ImageMosaicCoverageStore

Format

R6Class object.

GSImageMosaicCoverageStore 51

Value

Object of R6Class for modelling a GeoServer ImageMosaic CoverageStore

Super classes

geosapi: :GSRESTResource -> geosapi: :GSAbstractStore -> geosapi: :GSAbstractCoverageStore
-> GSImageMosaicCoverageStore

Public fields

url url

Methods
Public methods:

e GSImageMosaicCoverageStore$new()
e GSImageMosaicCoverageStore$clone()

Method new(): Initializes an Image Mosaic coverage store

Usage:
GSImageMosaicCoverageStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url = NULL

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE

url url

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSImageMosaicCoverageStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

52 GSInputCoverageBand

GSInputCoverageBand Geoserver REST API GSInputCoverageBand

Description

Geoserver REST API GSInputCoverageBand
Geoserver REST API GSInputCoverageBand

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer input coverage band

Super class

geosapi: :GSRESTResource -> GSInputCoverageBand

Public fields

coverageName coverage name
band band

Methods

Public methods:
e GSInputCoverageBand$new()
¢ GSInputCoverageBand$decode()
* GSInputCoverageBand$setCoverageName()
e GSInputCoverageBand$setBand()
¢ GSInputCoverageBand$clone()

Method new(): Initializes an object of class GSInputCoverageBand
Usage:
GSInputCoverageBand$new(xml = NULL, coverageName = NULL, band = NULL)
Arguments:
xml object of class xml_node-class
coverageName coverage name
band band name

Method decode(): Decodes from XML

Usage:
GSInputCoverageBand$decode (xml)

GSLayer 53

Arguments:
xml object of class xml_node-class

Method setCoverageName(): Set coverage name

Usage:
GSInputCoverageBand$setCoverageName(coverageName)

Arguments:
coverageName coverage name
Method setBand(): Set band

Usage:
GSInputCoverageBand$setBand(band)

Arguments:
band band

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSInputCoverageBand$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSInputCoverageBand$new()

GSLayer A GeoServer layer resource

Description
This class models a GeoServer layer. This class is to be used for published resource (feature type

or coverage).
This class models a GeoServer style.

Format

R6Class object.
R6Class object.

54

Details

Geoserver REST API Resource
Geoserver REST API Style

Value

Object of R6Class for modelling a GeoServer layer

Object of R6Class for modelling a GeoServer style

Super class

geosapi: :GSRESTResource -> GSLayer

Public fields

full full

name name

path path

defaultStyle default style

styles styles
enabled enabled

queryable queryable

advertised advertised

Methods

Public methods:

GSLayers$new()
GSLayer$decode ()
GSLayer$setName ()
GSLayer$setPath()
GSLayer$setEnabled()
GSLayer$setQueryable()
GSLayer$setAdvertised()
GSLayer$setDefaultStyle()
GSLayers$setStyles()
GSLayer$addStyle()
GSLayers$delStyle()
GSLayer$clone()

Method new(): Initializes an object of class GSLayer

Usage:
GSLayer$new(xml = NULL)

GSLayer

GSLayer

Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSLayer$decode (xml)

Arguments:

xml object of class xml_node-class

Method setName(): Set name

Usage:
GSLayer$setName (name)

Arguments:

name name

Method setPath(): Set path

Usage:
GSLayer$setPath(path)

Arguments:
path path
Method setEnabled(): Setenabled

Usage:
GSLayer$setEnabled(enabled)

Arguments:
enabled enabled

Method setQueryable(): Set queryable

Usage:
GSLayer$setQueryable(queryable)

Arguments:
queryable queryable
Method setAdvertised(): Set advertised

Usage:
GSLayer$setAdvertised(advertised)

Arguments:
advertised advertised

Method setDefaultStyle(): Set default style

Usage:
GSLayer$setDefaultStyle(style)

55

56

Arguments:
style object o class GSStyle or character

Method setStyles(): Set styles

Usage:
GSLayer$setStyles(styles)

Arguments:

styles styles

Method addStyle(): Adds style

Usage:
GSLayer$addStyle(style)

Arguments:
style style, object o class GSStyle or character

Returns: TRUE if added, FALSE otherwise

Method delStyle(): Deletes style

Usage:
GSLayer$delStyle(style)

Arguments:
style style, object o class GSStyle or character

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSLayer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Super class

geosapi: :GSRESTResource -> GSStyle

Public fields
full full

name name

filename filename

GSLayer

GSLayer

Methods

Public methods:

e GSStyle$new()

* GSStyle$decode()

e GSStyle$setName()

* GSStyle$setFilename()
e GSStyle$clone()

Method new(): Initializes a GSStyle

Usage:
GSStyle$new(xml = NULL, name = NULL, filename = NULL)

Arguments:
xml an object of class xml_node-class
name name
filename filename
Method decode(): Decodes from XML

Usage:
GSStyle$decode(xml)

Arguments:
xml an object of class xml_node-class

Method setName(): set name

Usage:
GSStyle$setName(name)

Arguments:
name name
Method setFilename(): Set filename

Usage:
GSStyle$setFilename(filename)

Arguments:
filename filename
Method clone(): The objects of this class are cloneable with this method.

Usage:
GSStyle$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

57

58 GSLayerGroup

Examples

lyr <- GSLayer$new()

lyr <- GSStyle$new()

GSLayerGroup A GeoServer layergroup resource

Description
This class models a GeoServer layer group. This class is to be used for clustering layers into a
group.

Format

R6Class object.

Details
Geoserver REST API LayerGroup

Value

Object of R6Class for modelling a GeoServer layergroup

Super class

geosapi: : GSRESTResource -> GSLayerGroup

Public fields
full full

name name
mode mode

title title

abstractTxt abstract
workspace workspace
publishables publishables
styles styles

metadatalLinks metadata links

bounds bounds

GSLayerGroup

Methods

Public methods:
e GSLayerGroup$new()
* GSLayerGroup$decode()
* GSLayerGroup$setName ()
e GSLayerGroup$setMode()
* GSLayerGroup$setTitle()
* GSLayerGroup$setAbstract()
* GSLayerGroup$setWorkspace()
e GSLayerGroup$addLayer ()
* GSLayerGroup$addLayerGroup()
* GSLayerGroup$addPublishable()
¢ GSLayerGroup$setStyles()
* GSLayerGroup$addStyle()
* GSLayerGroup$setMetadatalinks()
e GSLayerGroup$addMetadatalLink()
e GSLayerGroup$deleteMetadatalink ()
* GSLayerGroup$setBounds()
* GSLayerGroup$clone()

Method new(): Initializes an object of class GSLayerGroup

Usage:
GSLayerGroup$new(xml = NULL)

Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML
Usage:
GSLayerGroup$decode (xml)

Arguments:

xml object of class xml_node-class

Method setName(): Set name

Usage:
GSLayerGroup$setName (name)

Arguments:

name name

Method setMode(): Set mode
Usage:
GSLayerGroup$setMode (mode)

Arguments:

60

mode a mode value among "SINGLE", "NAMED", "CONTAINER", "EQ"

Method setTitle(): Set title

Usage:
GSLayerGroup$setTitle(title)

Arguments:
title title

Method setAbstract(): Set abstract

Usage:
GSLayerGroup$setAbstract(abstract)

Arguments:
abstract abstract

Method setWorkspace(): Set workspace

Usage:
GSLayerGroup$setWorkspace (workspace)

Arguments:

workspace workspace name, object of class GSWorkspace or character

Method addLayer(): Adds layer

Usage:
GSLayerGroup$addLayer (layer, style)

Arguments:
layer layer name
style style name

Method addLayerGroup(): Adds layer group
Usage:

GSLayerGroup$addLayerGroup(layerGroup)

Arguments:

layerGroup layer group

Method addPublishable(): Adds publishable

Usage:

GSLayerGroup$addPublishable(publishable)

Arguments:
publishable publishable

Returns: TRUE if added, FALSE otherwise

Method setStyles(): Set styles

Usage:
GSLayerGroup$setStyles(styles)

GSLayerGroup

GSLayerGroup

Arguments:
styles styles

Method addStyle(): Adds a style
Usage:
GSLayerGroup$addStyle(style)

Arguments:
style style
Returns: TRUE if added, FALSE otherwise

Method setMetadatalinks(): Set metadata links
Usage:
GSLayerGroup$setMetadatalinks(metadatalinks)

Arguments:
metadatalLinks metadata links

Method addMetadatalLink(): Adds metadata link
Usage:
GSLayerGroup$addMetadatalink(metadatalink)
Arguments:
metadatalLink object of class GSMetadataLink
Returns: TRUE if added, FALSE otherwise

Method deleteMetadatalink(): Deletes metadata link
Usage:
GSLayerGroup$deleteMetadatal ink(metadatalink)
Arguments:
metadatalLink object of class GSMetadatalLink
Returns: TRUE if deleted, FALSE otherwise

Method setBounds(): Set bounds

Usage:

GSLayerGroup$setBounds(minx, miny, maxx, maxy, bbox = NULL, crs)
Arguments:

minx minx

miny miny

maxx maxx

maxy maxy

bbox bbox

crs crs

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSLayerGroup$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

62 GSLayerManager

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

lyr <- GSLayerGroup$new()

GSLayerManager Geoserver REST API Layer Manager

Description

Geoserver REST API Layer Manager
Geoserver REST API Layer Manager

Format

R6Class object.

Value

Object of R6Class with methods for managing GeoServer Layers as results of published feature
types or coverages

Super class

geosapi: :GSManager -> GSLayerManager

Methods

Public methods:
e GSLayerManager$getlLayers()
* GSLayerManagers$getLayerNames()
e GSLayerManagers$getLayer()
* GSLayerManager$createlLayer()
e GSLayerManager$updatelLayer ()
e GSLayerManager$deletelayer()
* GSLayerManager$getLayerGroups()
* GSLayerManager$getLayerGroupNames()
* GSLayerManager$getLayerGroup()
e GSLayerManager$createlLayerGroup()
* GSLayerManager$updatelLayerGroup()
* GSLayerManager$deletelLayerGroup()
* GSLayerManager$clone()

GSLayerManager 63

Method getLayers(): Get the list of layers.

Usage:
GSLayerManagers$getLayers()

Returns: an object of class 1ist giving items of class GSLayer

Method getLayerNames(): Get the list of layer names.

Usage:
GSLayerManager$getLayerNames()

Returns: a vector of class character

Method getLayer(): Get layer by name

Usage:
GSLayerManagers$getLayer(lyr)

Arguments:

lyr layer name

Returns: an object of class GSLayer

Method createLayer(): Creates a new layer given an object of class GSLayer

Usage:
GSLayerManager$createlLayer(layer)

Arguments:
layer object of class GSLayer

Returns: TRUE if created, FALSE otherwise

Method updateLayer(): Updates a layer given an object of class GSLayer

Usage:
GSLayerManagers$updatelLayer(layer)

Arguments:

layer object of class GSLayer
Returns: TRUE if updated, FALSE otherwise

Method deletelLayer(): Deletes layer given an object of class GSLayer

Usage:
GSLayerManager$deletelLayer(lyr)

Arguments:

lyr layer name

Returns: TRUE if deleted, FALSE otherwise

Method getLayerGroups(): Get layer groups

Usage:
GSLayerManager$getlLayerGroups(ws = NULL)

GSLayerManager

Arguments:
ws workspace name. Optional

Returns: alist of objects of class GSLayerGroup

Method getLayerGroupNames(): Get layer group names
Usage:
GSLayerManagers$getlLayerGroupNames(ws = NULL)
Arguments:
ws workspace name

Returns: alist of layer group names, as vector of class character

Method getLayerGroup(): Get layer group
Usage:
GSLayerManagers$getlLayerGroup(lyr, ws = NULL)
Arguments:
lyr lyr
ws workspace name

Returns: an object of class GSLayerGroup

Method createlLayerGroup(): Creates a layer group
Usage:
GSLayerManager$createlayerGroup(layerGroup, ws = NULL)

Arguments:
layerGroup object of class GSLayerGroup
ws workspace name. Optional

Returns: TRUE if created, FALSE otherwise

Method updatelLayerGroup(): Updates a layer group
Usage:
GSLayerManager$updatelLayerGroup(layerGroup, ws = NULL)

Arguments:
layerGroup object of class GSLayerGroup

ws workspace name. Optional

Returns: TRUE if updated, FALSE otherwise

Method deletelLayerGroup(): Deletes a layer group
Usage:
GSLayerManager$deletelLayerGroup(lyr, ws = NULL)
Arguments:

lyr layer group name
ws workspace name. Optional

GSLayerRule

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSLayerManager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:
GSLayerManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

GSLayerRule A GeoServer access control list layer rule

Description

This class models a GeoServer access control list layer rule

Format

R6Class object.

Details

Geoserver REST API Access Control List Layer Rule

Value

Object of R6Class for modelling a GeoServer access control list layer rule

Super classes

geosapi: :GSRESTResource -> geosapi: :GSRule -> GSLayerRule

Public fields

roles one or more roles

66

Methods

Public methods:

e GSLayerRule$new()
e GSLayerRule$clone()

Method new(): Initializes a GSLayerRule

Usage:
GSLayerRule$new(
xml = NULL,
ws = NULL,
lyr,
permission = c("r”, "w”, "a"),
roles
)
Arguments:
xml an object of class xml_node-class
ws the resource workspace. Default is NULL
lyr the target layer to which the access control should be added
permission the rule permission, either r (read), w (write) or a (administer)
roles one or more roles to add for the rule

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSLayerRule$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSManager

GSManager Geoserver REST API Manager

Description

Geoserver REST API Manager
Geoserver REST API Manager

Format

R6Class object.

GSManager 67

Value

Object of R6Class with methods for communication with the REST API of a GeoServer instance.

Public fields

verbose. info if geosapi logs have to be printed
verbose.debug if curl logs have to be printed
loggerType the type of logger

url the Base url of GeoServer

version the version of Geoserver. Handled as GSVersion object

Methods

Public methods:

* GSManager$logger()

¢ GSManager$INFO()

* GSManager$WARN()

* GSManager$ERROR()

* GSManager$new()

* GSManager$getUrl()

* GSManager$connect()

* GSManager$reload()

* GSManagers$getSystemStatus()

* GSManager$monitor()

* GSManager$getClassName()

* GSManager$getWorkspaceManager ()
¢ GSManager$getNamespaceManager ()
* GSManager$getDataStoreManager()
* GSManager$getCoverageStoreManager()
* GSManager$getServiceManager()

* GSManagers$getStyleManager()

* GSManager$clone()

Method logger(): Prints a log message

Usage:

GSManager$logger(type, text)

Arguments:

type type of log, "INFO", "WARN", "ERROR"
text text

Method INFO(): Prints an INFO log message
Usage:
GSManager$INFO(text)

68

GSManager

Arguments:

text text

Method WARN(): Prints an WARN log message
Usage:
GSManager$WARN(text)
Arguments:

text text

Method ERROR(): Prints an ERROR log message
Usage:
GSManager$ERROR(text)
Arguments:

text text

Method new(): This method is used to instantiate a GSManager with the url of the GeoServer
and credentials to authenticate (user/pwd).

By default, the logger argument will be set to NULL (no logger). This argument accepts two
possible values: INFO: to print only geosapi logs, DEBUG: to print geosapi and CURL logs.

The keyring_backend can be set to use a different backend for storing the Geoserver user pass-
word with keyring (Default value is ’env’).

Usage:
GSManager$new(url, user, pwd, logger = NULL, keyring_backend = "env")

Arguments:

url url

user user

pwd pwd

logger logger

keyring_backend keyring backend. Default is ’env’

Method getUrl(): Get URL
Usage:
GSManager$getUrl()

Returns: the Geoserver URL

Method connect(): Connects to geoServer

Usage:
GSManager$connect()

Returns: TRUE if connected, raises an error otherwise

Method reload(): Reloads the GeoServer catalog

Usage:
GSManager$reload()

GSManager 69

Returns: TRUE if reloaded, FALSE otherwise

Method getSystemStatus(): Get system status

Usage:
GSManagers$getSystemStatus()

Returns: an object of class data. frame given the date time and metrics value

Method monitor(): Monitors the Geoserver by launching a small shiny monitoring application

Usage:
GSManager$monitor(file = NULL, append = FALSE, sleep = 1)

Arguments:

file file where to store monitoring results

append whether to append results to existing files
sleep sleeping interval to trigger a system status call

Method getClassName(): Get class name

Usage:
GSManager$getClassName ()

Returns: the self class name, as character

Method getWorkspaceManager(): Get Workspace manager

Usage:
GSManager$getWorkspaceManager ()

Returns: an object of class GSWorkspaceManager

Method getNamespaceManager(): Get Namespace manager

Usage:
GSManager$getNamespaceManager ()

Returns: an object of class GSNamespaceManager

Method getDataStoreManager(): Get Datastore manager

Usage:
GSManager$getDataStoreManager ()

Returns: an object of class GSDataStoreManager

Method getCoverageStoreManager(): Get Coverage store manager

Usage:
GSManager$getCoverageStoreManager ()

Returns: an object of class GSCoverageStoreManager

Method getServiceManager(): Get service manager

Usage:
GSManager$getServiceManager ()

70 GSMetadataLink

Returns: an object of class GSServiceManager

Method getStyleManager(): Get style manager

Usage:
GSManager$getStyleManager ()

Returns: an object of class GSStyleManager

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSManager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel 1 @ gmail.com>

Examples

Not run:
GSManager$new("http://localhost:8080/geoserver”, "admin”, "geoserver")

End(Not run)

GSMetadatalLink A GeoServer resource metadataLink

Description
This class models a GeoServer resource metadatal.ink made of a type (free text e.g. text/xml,
text/html), a metadataType (Possible values are ISO19115:2003, FGDC, TC211, 19139, other), and
a content: an URL that gives the metadatalink

Format

R6Class object.

Details
Geoserver REST API Metadatalink

Value

Object of R6Class for modelling a GeoServer resource metadatal.ink

GSMetadatalink

Super class

geosapi: :GSRESTResource -> GSMetadatalink

Public fields
type type
metadataType metadata type

content content

Methods

Public methods:

¢ GSMetadataLink$new()

¢ GSMetadatalink$decode()

¢ GSMetadatalLink$setType()

* GSMetadatalink$setMetadataType()
* GSMetadatalLink$setContent()

¢ GSMetadatalLink$clone()

Method new(): Initializes an object of class GSMetadataLink
Usage:
GSMetadatalLink$new(xml = NULL, type, metadataType, content)
Arguments:
xml object of class xml_node-class

type type
metadataType metadata type
content content

Method decode(): Decodes from XML

Usage:
GSMetadatal ink$decode (xml)

Arguments:
xml object of class xml_node-class

Method setType(): Set type type

Usage:
GSMetadatalLink$setType(type)

Arguments:
type type
Method setMetadataType(): Set metadata type

Usage:
GSMetadatalLink$setMetadataType(metadataType)

71

72 GSMonitorManager

Arguments:
metadataType metadata type. Supported values: "ISO19115:2003", "FGDC", "TC211", "19139",

"other"
Method setContent(): Set content

Usage:
GSMetadatalLink$setContent(content)

Arguments:

content content

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSMetadatalLink$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSMonitorManager Geoserver REST API Monitor Manager

Description

Geoserver REST API Monitor Manager
Geoserver REST API Monitor Manager

Format

R6Class object.

Value

Object of R6Class with methods for the GeoServer Monitoring extension.

Super class

geosapi: :GSManager -> GSMonitorManager

GSNamespace

Methods

Public methods:
¢ GSMonitorManager$getRequests()
¢ GSMonitorManager$clone()
Method getRequests(): Get the requests

Usage:
GSMonitorManager$getRequests(offset = @)

Arguments:
offset offset

Returns: an object of class data. frame
Method clone(): The objects of this class are cloneable with this method.

Usage:
GSMonitorManager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel 1 @ gmail.com>

Examples

Not run:
GSMonitorManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

GSNamespace Geoserver REST API Namespace

Description

Geoserver REST API Namespace
Geoserver REST API Namespace

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer namespace

74

Super class

geosapi: : GSRESTResource -> GSNamespace

Public fields

name namespace name
prefix namespace prefix
uri namespace URI

full completeness of the namespace description

Methods

Public methods:
* GSNamespace$new()
* GSNamespace$decode ()
* GSNamespace$clone()

Method new(): Initializes an object of class GSNamespace
Usage:
GSNamespace$new(xml = NULL, prefix, uri)
Arguments:
xml object of class xml_node-class
prefix prefix
uri uri

Method decode(): Decodes from XML
Usage:
GSNamespace$decode (xml)
Arguments:
xml object of class xml_node-class

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSNamespace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSNamespace$new(prefix = "my_ns"”, uri = "http://my_ns")

GSNamespace

GSNamespaceManager 75

GSNamespaceManager Geoserver REST API Namespace Manager

Description

Geoserver REST API Namespace Manager
Geoserver REST API Namespace Manager

Format

R6Class object.

Value

Object of R6Class with methods for managing the namespaces of a GeoServer instance.

Super class

geosapi: :GSManager -> GSNamespaceManager

Methods
Public methods:

* GSNamespaceManager$getNamespaces()

* GSNamespaceManager$getNamespaceNames ()
* GSNamespaceManager$getNamespace()

* GSNamespaceManager$createNamespace()

* GSNamespaceManager$updateNamespace()

* GSNamespaceManager$deleteNamespace()

¢ GSNamespaceManager$clone()

Method getNamespaces(): Get the list of available namespace. Re
Usage:
GSNamespaceManager$getNamespaces()

Returns: an object of class 1ist containing items of class GSNamespace

Method getNamespaceNames(): Get the list of available namespace names.

Usage:
GSNamespaceManager $getNamespaceNames ()

Returns: a vector of class character

Method getNamespace(): Get a GSNamespace object given a namespace name.

Usage:
GSNamespaceManager $getNamespace(ns)

76 GSNamespaceManager

Arguments:
ns namespace
Returns: an object of class GSNamespace

Method createNamespace(): Creates a GeoServer namespace given a prefix, and an optional
URL

Usage:

GSNamespaceManager$createNamespace(prefix, uri)

Arguments:

prefix prefix

uri uri

Returns: TRUE if the namespace has been successfully created, FALSE otherwise

Method updateNamespace(): Updates a GeoServer namespace given a prefix, and an optional
URL

Usage:
GSNamespaceManager$updateNamespace(prefix, uri)

Arguments:

prefix prefix

uri uri

Returns: TRUE if the namespace has been successfully updated, FALSE otherwise
Method deleteNamespace(): Deletes a GeoServer namespace given a name.

Usage:
GSNamespaceManager$deleteNamespace(name, recurse = FALSE)

Arguments:

name name

recurse recurse

Returns: TRUE if the namespace has been successfully deleted, FALSE otherwise
Method clone(): The objects of this class are cloneable with this method.

Usage:
GSNamespaceManager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:
GSNamespaceManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

GSOracleNGDataStore

77

GSOracleNGDataStore Geoserver REST API OracleNGDataStore

Description

Geoserver REST API OracleNGDataStore
Geoserver REST API OracleNGDataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer OracleNG dataStore

Super classes

geosapi: :GSRESTResource ->geosapi: : GSAbstractStore -> geosapi
-> geosapi: :GSAbstractDBDataStore -> GSOracleNGDataStore

Methods

Public methods:

e GSOracleNGDataStore$new()
* GSOracleNGDataStore$clone()

Method new(): initializes an Oracle NG data store

Usage:
GSOracleNGDataStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE
)
Arguments:
xml an object of class xml_node-class to create object from XML
name coverage store name
description coverage store description
enabled whether the store should be enabled or not. Default is TRUE

: :GSAbstractDataStore

Method clone(): The objects of this class are cloneable with this method.

Usage:

GSOracleNGDataStore$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

78 GSPostGISDataStore

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

GSOracleNGDataStore$new(name = "ds"”, description = "des"”, enabled = TRUE)

GSPostGISDataStore Geoserver REST API PostGISDataStore

Description

Geoserver REST API PostGISDataStore
Geoserver REST API PostGISDataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer PostGIS dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi: :GSAbstractDataStore
-> geosapi: :GSAbstractDBDataStore -> GSPostGISDataStore

Methods

Public methods:

e GSPostGISDataStore$new()
e GSPostGISDataStore$clone()

Method new(): initializes a PostGIS data store

Usage:
GSPostGISDataStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

GSPublishable 79

description coverage store description
enabled whether the store should be enabled or not. Default is TRUE

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSPostGISDataStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSPostGISDataStore$new(name = "ds"”, description = "des”, enabled = TRUE)

GSPublishable A GeoServer layer group publishable

Description

This class models a GeoServer layer. This class is to be used internally by geosapi for configuring
layers or layer groups within an object of class GSLayerGroup

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer layer group publishable

Super class

geosapi: :GSRESTResource -> GSPublishable

Public fields
full full

name name

attr_type type of attribute

80 GSPublishable

Methods

Public methods:
* GSPublishable$new()
* GSPublishable$decode()
* GSPublishable$setName()
* GSPublishable$setType()
* GSPublishable$clone()

Method new(): Initializes a GSPublishable

Usage:
GSPublishable$new(xml = NULL, name, type)

Arguments:
xml an object of class xml_node-class
name name
type type
Method decode(): Decodes from XML

Usage:
GSPublishable$decode(xml)

Arguments:
xml an object of class xml_node-class

Method setName(): set name

Usage:
GSPublishable$setName(name)

Arguments:

name name

Method setType(): Set type

Usage:
GSPublishable$setType(type)

Arguments:
type type
Method clone(): The objects of this class are cloneable with this method.

Usage:
GSPublishable$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSResource 81

Examples

publishable <- GSPublishable$new(name = "name"”, type = "layer")

GSResource A GeoServer abstract resource

Description

This class models an abstract GeoServer resource. This class is used internally for modelling in-
stances of class GSFeatureType or GSCoverage

Format

R6Class object.

Details
Geoserver REST API Resource

Value

Object of R6Class for modelling a GeoServer resource

Super class

geosapi: : GSRESTResource -> GSResource

Public fields
full full

name resource name
nativeName resource native name

title resource title

description resource description

abstract resource abstract

keywords resource keywords

metadatalinks resource metadata links

nativeCRS resource native CRS

Srs resource srs

nativeBoundingBox resource lat/lon native bounding box
latLonBoundingBox resource lat/lon bounding box
projectionPolicy resource projection policy

enabled enabled

metadata metadata

Methods

Public methods:

* GSResource$new()

¢ GSResource$decode()

* GSResource$setEnabled()

* GSResource$setName()

* GSResource$setNativeName()

* GSResource$setTitle()

* GSResource$setDescription()

* GSResource$setAbstract()

* GSResource$setKeywords()

* GSResource$addKeyword()

* GSResource$delKeyword()

e GSResource$setMetadatalLinks()

¢ GSResource$addMetadatalink()

* GSResource$deleteMetadatalink()

* GSResource$setProjectionPolicy()
* GSResource$setSrs()

* GSResource$setNativeCRS()

* GSResource$setlLatlLonBoundingBox ()
* GSResource$setNativeBoundingBox ()
* GSResource$setMetadata()

* GSResource$delMetadata()

* GSResource$setMetadataDimension()
* GSResource$clone()

Method new(): Initializes a GSResource
Usage:
GSResource$new(rootName = NULL, xml
Arguments:
rootName root name
xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSResource$decode (xml)

Arguments:

xml object of class xml_node-class

Method setEnabled(): Set enabled
Usage:
GSResource$setEnabled(enabled)

= NULL)

GSResource

GSResource

Arguments:
enabled enabled
Method setName(): Set name

Usage:
GSResource$setName (name)

Arguments:
name name
Method setNativeName(): Set native name

Usage:
GSResource$setNativeName(nativeName)

Arguments:
nativeName native name
Method setTitle(): Settitle

Usage:
GSResource$setTitle(title)

Arguments:
title title
Method setDescription(): Set description

Usage:
GSResource$setDescription(description)

Arguments:
description description
Method setAbstract(): Set abstract

Usage:
GSResource$setAbstract(abstract)

Arguments:
abstract abstract
Method setKeywords(): Set keyword(s)

Usage:
GSResource$setKeywords (keywords)

Arguments:
keywords keywords
Method addKeyword(): Adds keyword

Usage:
GSResource$addKeyword(keyword)

83

84

Arguments:
keyword keyword
Returns: TRUE if added, FALSE otherwise

Method delKeyword(): Deletes keyword

Usage:
GSResource$delKeyword(keyword)
Arguments:

keyword keyword

Returns: TRUE if deleted, FALSE otherwise

Method setMetadatalinks(): Set metadata links

Usage:
GSResource$setMetadatalinks(metadatalinks)

Arguments:
metadatalLinks metadata links

Method addMetadatalLink(): Adds metadata link

Usage:
GSResource$addMetadatalink (metadatalink)

Arguments:
metadatalLink object of class GSMetadataLink

Returns: TRUE if added, FALSE otherwise

Method deleteMetadatalink(): Deletes metadata link

Usage:
GSResource$deleteMetadatalink (metadatalink)

Arguments:
metadatalLink object of class GSMetadatalLink

Returns: TRUE if deleted, FALSE otherwise

Method setProjectionPolicy(): Set projection policy

Usage:
GSResource$setProjectionPolicy(projectionPolicy)

Arguments:

projectionPolicy projection policy
Method setSrs(): Set SRS

Usage:

GSResource$setSrs(srs)

Arguments:

Srs srs

GSResource

GSResource 85

Method setNativeCRS(): Set native CRS
Usage:
GSResource$setNativeCRS(nativeCRS)
Arguments:

nativeCRS native crs

Method setLatLonBoundingBox(): Set LatLon bounding box

Usage:

GSResource$setlLatLonBoundingBox(minx, miny, maxx, maxy, bbox = NULL, crs)
Arguments:

minx minx

miny miny

maxx maxx

maxy maxy

bbox bbox

crs crs

Method setNativeBoundingBox(): Set native bounding box

Usage:

GSResource$setNativeBoundingBox(minx, miny, maxx, maxy, bbox = NULL, crs)
Arguments:

minx minx

miny miny

maxx maxx

maxy maxy

bbox bbox

crs crs

Method setMetadata(): Set metadata
Usage:
GSResource$setMetadata(key, metadata)
Arguments:
key key
metadata metadata

Returns: TRUE if added, FALSE otherwise

Method delMetadata(): Deletes metadata
Usage:
GSResource$delMetadata(key)
Arguments:

key key

86 GSRESTEntrySet

Returns: TRUE if deleted, FALSE otherwise

Method setMetadataDimension(): Set metadata dimension

Usage:
GSResource$setMetadataDimension(key, dimension, custom = FALSE)

Arguments:

key key

dimension dimension
custom custom

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSResource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples
res <- GSResource$new(rootName = "featureType")
GSRESTEntrySet Geoserver REST APl XML entry set
Description

Geoserver REST API XML entry set
Geoserver REST API XML entry set

Format

R6Class object.

Value

Object of R6Class for modelling a entry set

Super class

geosapi: :GSRESTResource -> GSRESTEntrySet

GSRESTEntrySet

Public fields

entryset entryset

Methods

Public methods:
* GSRESTEntrySet$new()
e GSRESTEntrySet$decode()
* GSRESTEntrySet$setEntryset()
* GSRESTEntrySet$addEntry()
* GSRESTEntrySet$setEntry()
* GSRESTEntrySet$delEntry()
* GSRESTEntrySet$clone()

Method new(): Initializes an object of class GSRESTEntrySet
Usage:
GSRESTEntrySet$new(rootName, xml = NULL, entryset)

Arguments:

rootName root name

xml object of class xml_node-class
entryset entry set

Method decode(): Decodes from XML
Usage:
GSRESTEntrySet$decode (xml)

Arguments:

xml object of class xml_node-class

Method setEntryset(): Setentry set
Usage:
GSRESTEntrySet$setEntryset(entryset)
Arguments:

entryset entry set

Method addEntry(): Adds entry set
Usage:
GSRESTEntrySet$addEntry(key, value)
Arguments:
key key
value value

Returns: TRUE if added, FALSE otherwise

Method setEntry(): Sets entry set

87

88

Usage:

GSRESTEntrySet$setEntry(key, value)
Arguments:

key key

value value

Method delEntry(): Deletes entry set
Usage:
GSRESTEntrySet$delEntry(key)
Arguments:
key key
Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSRESTEntrySet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSRESTResource

GSRESTResource Geoserver REST API REST Resource interface

Description

Geoserver REST API REST Resource interface
Geoserver REST API REST Resource interface

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer REST resource interface

Public fields

rootName root name

attrs attrs

GSRESTResource 89

Methods

Public methods:

* GSRESTResource$new()

¢ GSRESTResource$decode()

¢ GSRESTResource$encode()

e GSRESTResource$print()

* GSRESTResource$getClassName()
* GSRESTResource$clone()

Method new(): Initializes an object of class GSRESTResource
Usage:
GSRESTResource$new(xml, rootName)
Arguments:
xml object of class xml_node-class
rootName root name

Method decode(): Decodes from XML. Abstract method to be implemented by sub-classes
Usage:
GSRESTResource$decode (xml)
Arguments:
xml object of class xml_node-class

Method encode(): Encodes as XML
Usage:
GSRESTResource$encode ()

Returns: an object of class xml_node-class

Method print(): Provides a custom print output (as tree) of the current class
Usage:
GSRESTResource$print(..., depth = 1)
Arguments:
. args
depth class nesting depth

Method getClassName(): Get class name
Usage:
GSRESTResource$getClassName()

Returns: an object of class character

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSRESTResource$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

90 GSRestRule

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSRestRule A GeoServer access control list service rule

Description

This class models a GeoServer access control list service rule

Format

R6Class object.

Details
Geoserver REST API Access Control List REST Rule

Value

Object of R6Class for modelling a GeoServer access control list service rule

Super classes

geosapi: :GSRESTResource -> geosapi: : GSRule -> GSRestRule

Public fields

roles one or more roles

Methods

Public methods:

¢ GSRestRule$new()
¢ GSRestRule$clone()

Method new(): Initializes a GSLayerRule

Usage:
GSRestRule$new(
xml = NULL,
pattern,
methods,
permission = c("r", "w", "a"),
roles

)

Arguments:

GSRule

xml an object of class xml_node-class

pattern a URL Ant pattern, only applicable for domain rest. Default is /**
methods HTTP method(s)

permission the rule permission, either r (read), w (write) or a (administer)

roles one or more roles to add for the rule

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSRestRule$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

91

GSRule A GeoServer access control list rule

Description

This class models a GeoServer access control list rule

Format

R6Class object.

Details

Geoserver REST API Access Control List Rule

Value

Object of R6Class for modelling a GeoServer access control list rule

Super class

geosapi: :GSRESTResource -> GSRule

92
Methods
Public methods:
* GSRule$new()
* GSRule$encode()
* GSRule$decode()
* GSRule$clone()
Method new(): Initializes a GSRule
Usage:
GSRule$new(xml = NULL, domain = c("layers"”, "services”, "rest"))
Arguments:
xml an object of class xml_node-class
domain the access control domain
Method encode(): Encodes as XML
Usage:
GSRule$encode ()
Returns: an object of class xml_node-class
Method decode(): Decodes from XML
Usage:
GSRule$decode (xml)
Arguments:
xml an object of class xml_node-class
Method clone(): The objects of this class are cloneable with this method.
Usage:
GSRule$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Note
Abstract class
Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSRule

GSServiceManager

93

GSServiceManager Geoserver REST API Service Manager

Description

Geoserver REST API Service Manager
Geoserver REST API Service Manager

Format

R6Class object.

Value

Object of R6Class with methods for managing GeoServer services

Super class

geosapi: :GSManager -> GSServiceManager

Methods

Public methods:

* GSServiceManager$getServiceSettings()

* GSServiceManager$getWmsSettings()

* GSServiceManager$getWfsSettings()

* GSServiceManagers$getWcsSettings()

* GSServiceManager$updateServiceSettings()
* GSServiceManager$deleteServiceSettings()
e GSServiceManager$updateWmsSettings()

* GSServiceManager$updateWfsSettings()

e GSServiceManager$updateWcsSettings()

* GSServiceManager$enableWMS()

* GSServiceManager$enableWFS()

* GSServiceManager$enableWCS()

* GSServiceManager$disableServiceSettings()
e GSServiceManager$disableWMS()

* GSServiceManager$disableWFS()

e GSServiceManager$disableWCS()

e GSServiceManager$clone()

Method getServiceSettings():

Get the service settings. To get the service settings for a

specific workspace, specify the workspace name as ws parameter, otherwise global settings are

retrieved.

GSServiceManager

Usage:
GSServiceManager$getServiceSettings(service, ws = NULL)
Arguments:

service service

WS workspace name

Returns: an object of class GSServiceSettings

Method getWmsSettings(): Get WMS settings. To get the WMS settings for a specific
workspace, specify the workspace name as ws parameter, otherwise global settings are retrieved.

Usage:
GSServiceManager$getWmsSettings(ws = NULL)
Arguments:

ws workspace name

Returns: an object of class GSServiceSettings

Method getWfsSettings(): Get WFS settings. To get the WFS settings for a specific workspace,
specify the workspace name as ws parameter, otherwise global settings are retrieved.

Usage:
GSServiceManager$getWfsSettings(ws = NULL)
Arguments:

WS workspace name

Returns: an object of class GSServiceSettings

Method getWcsSettings(): Get WCS settings. To get the WCS settings for a specific workspace,
specify the workspace name as ws parameter, otherwise global settings are retrieved.

Usage:

GSServiceManager$getWcsSettings(ws = NULL)

Arguments:

WS Workspace name

Returns: an object of class GSServiceSettings

Method updateServiceSettings(): Updates the service settings with an object of class
GSServiceSettings. An optional workspace name ws can be specified to update service set-

tings applying to a workspace.
Usage:
GSServiceManager$updateServiceSettings(serviceSettings, service, ws = NULL)

Arguments:
serviceSettings serviceSettings object of class GSServiceSettings
service service

WS workspace name

Returns: TRUE if updated, FALSE otherwise

GSServiceManager 95

Method deleteServiceSettings(): Deletes the service settings. This method is used inter-
nally by geosapi for disabling a service setting at workspace level.

Usage:
GSServiceManager$deleteServiceSettings(service, ws = NULL)
Arguments:

service service

ws workspace name

Returns: TRUE if deleted, FALSE otherwise

Method updateWmsSettings(): Updates the WMS settings with an object of class GSServiceSettings.
An optional workspace name ws can be specified to update WMS settings applying to a workspace.

Usage:
GSServiceManager$updateWmsSettings(serviceSettings, ws = NULL)

Arguments:
serviceSettings service settings object of class GSServiceSettings
ws workspace name

Returns: TRUE if deleted, FALSE otherwise

Method updateWfsSettings(): Updates the WES settings with an object of class GSServiceSettings.
An optional workspace name ws can be specified to update WFES settings applying to a workspace.

Usage:
GSServiceManager$updateWfsSettings(serviceSettings, ws = NULL)

Arguments:

serviceSettings service settings object of class GSServiceSettings

ws workspace name

Returns: TRUE if deleted, FALSE otherwise
Method updateWcsSettings(): Updates the WCS settings with an object of class GSServiceSettings.
An optional workspace name ws can be specified to update WCS settings applying to a workspace.

Usage:
GSServiceManager$updateWcsSettings(serviceSettings, ws = NULL)

Arguments:
serviceSettings service settings object of class GSServiceSettings

WS Workspace name

Returns: TRUE if deleted, FALSE otherwise

Method enableWMS(): Enables WMS service settings

Usage:
GSServiceManager$enableWMS(ws = NULL)

Arguments:

WS Workspace name

GSServiceManager

Returns: TRUE if enabled, FALSE otherwise

Method enableWFS(): Enables WFS service settings

Usage:
GSServiceManager$enableWFS(ws = NULL)

Arguments:

WS Workspace name

Returns: TRUE if enabled, FALSE otherwise

Method enableWCS(): Enables WCS service settings

Usage:
GSServiceManager$enableWCS(ws = NULL)

Arguments:
ws workspace name

Returns: TRUE if enabled, FALSE otherwise

Method disableServiceSettings(): Disables service settings

Usage:
GSServiceManager$disableServiceSettings(service, ws = NULL)

Arguments:
service service
ws workspace name

Returns: TRUE if disabled, FALSE otherwise

Method disableWMS(): Disables WMS service settings

Usage:
GSServiceManager$disableWMS(ws = NULL)

Arguments:

WS Workspace name

Returns: TRUE if disabled, FALSE otherwise

Method disableWFS(): Disables WES service settings

Usage:
GSServiceManager$disableWFS(ws = NULL)

Arguments:

WS workspace name

Returns: TRUE if disabled, FALSE otherwise

Method disableWCS(): Disables WCS service settings

Usage:
GSServiceManager$disableWCS(ws = NULL)

GSServiceRule

Arguments:

WS Workspace name

Returns: TRUE if disabled, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSServiceManager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:
GSServiceManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

GSServiceRule A GeoServer access control list service rule

Description

This class models a GeoServer access control list service rule

Format

R6Class object.

Details
Geoserver REST API Access Control List Service Rule

Value

Object of R6Class for modelling a GeoServer access control list service rule

Super classes

geosapi: :GSRESTResource -> geosapi: : GSRule -> GSServiceRule

Public fields

roles one or more roles

98

Methods
Public methods:

* GSServiceRule$new()
e GSServiceRule$clone()

Method new(): Initializes a GSLayerRule
Usage:
GSServiceRule$new(
xml = NULL,
service,
method,
permission = c("r", "w", "a"),
roles
)
Arguments:
xml an object of class xml_node-class
service service subject to the access control rule, eg. *wfs’

method service method subject to the access control rule, eg. *GetFeature’
permission the rule permission, either r (read), w (write) or a (administer)

roles one or more roles to add for the rule

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSServiceRule$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

GSServiceSettings

GSServiceSettings A GeoServer service settings resource

Description

This class models a GeoServer OWS service settings.

Format

R6Class object.

Details
Geoserver REST API Service Setting

GSServiceSettings 99

Value

Object of R6Class for modelling a GeoServer OWS service setting

Super class

geosapi: :GSRESTResource -> GSServiceSettings

Public fields

enabled is service enabled or not?
citeCompliant is service cite compliant?
name service name

title service title

maintainer service maintainer

abstrct service abastract
accessConstraints service access constraints
fees service fees

keywords services keywords
onlineResource service online resource
schemaBaseURL service schema base URL

verbose service verbose or not?

Methods

Public methods:

e GSServiceSettings$new()

* GSServiceSettings$decode()

e GSServiceSettings$setEnabled()

* GSServiceSettings$setCiteCompliant()
e GSServiceSettings$setName()

* GSServiceSettings$setTitle()

e GSServiceSettings$setMaintainer()

* GSServiceSettings$setAbstract()

* GSServiceSettings$setAccessConstraints()
* GSServiceSettings$setFees()

e GSServiceSettings$setKeywords()

* GSServiceSettings$addKeyword()

e GSServiceSettings$delKeyword()

e GSServiceSettings$clone()

Method new(): Initializes an object of class GSServiceSettings

Usage:
GSServiceSettings$new(xml = NULL, service)

100

Arguments:
xml object of class xml_node-class
service service service acronym

Method decode(): Decodes from XML

Usage:
GSServiceSettings$decode(xml)

Arguments:

xml object of class xml_node-class

Method setEnabled(): Setenabled
Usage:
GSServiceSettings$setEnabled(enabled)

Arguments:
enabled enabled

Method setCiteCompliant(): Set cite compliant
Usage:
GSServiceSettings$setCiteCompliant(citeCompliant)

Arguments:

citeCompliant cite compliant

Method setName(): Set name
Usage:
GSServiceSettings$setName(name)

Arguments:

name name

Method setTitle(): Set title
Usage:
GSServiceSettings$setTitle(title)

Arguments:
title title

Method setMaintainer(): Set maintainer

Usage:
GSServiceSettings$setMaintainer(maintainer)

Arguments:

maintainer maintainer

Method setAbstract(): Set abstract

Usage:
GSServiceSettings$setAbstract(abstract)

GSServiceSettings

GSServiceSettings 101

Arguments:
abstract abstract

Method setAccessConstraints(): Set access constraints

Usage:
GSServiceSettings$setAccessConstraints(accessConstraints)

Arguments:
accessConstraints access constraints

Method setFees(): Set fees

Usage:
GSServiceSettings$setFees(fees)

Arguments:
fees fees

Method setKeywords(): Set keywords

Usage:
GSServiceSettings$setKeywords (keywords)

Arguments:
keywords keywords

Method addKeyword(): Adds a keyword

Usage:
GSServiceSettings$addKeyword(keyword)

Arguments:
keyword keyword
Returns: TRUE if added, FALSE otherwise

Method delKeyword(): Deletes a keyword

Usage:
GSServiceSettings$delKeyword(keyword)

Arguments:
keyword keyword

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSServiceSettings$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

102 GSShapefileDataStore

Examples

settings <- GSServiceSettings$new(service = "WMS")
settings$setEnabled(TRUE)

GSShapefileDataStore Geoserver REST API ShapeFileDataStore

Description

Geoserver REST API ShapeFileDataStore
Geoserver REST API ShapeFileDataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer Shapefile dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi: :GSAbstractDataStore
-> GSShapefileDataStore

Methods

Public methods:
¢ GSShapefileDataStore$new()
¢ GSShapefileDataStore$setUrl()
e GSShapefileDataStore$setCharset()
* GSShapefileDataStore$setCreateSpatialIndex()
¢ GSShapefileDataStore$setMemoryMappedBuffer()
¢ GSShapefileDataStore$setCacheReuseMemoryMaps()
* GSShapefileDataStore$setDefautConnectionParameters()
e GSShapefileDataStore$clone()

Method new(): initializes a shapefile data store

Usage:
GSShapefileDataStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url

GSShapefileDataStore 103

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE
url url

Method setUrl(): Set the spatial files data URL

Usage:
GSShapefileDataStore$setUrl(url)

Arguments:
url url

Method setCharset(): Set the charset used for DBF file.

Usage:
GSShapefileDataStore$setCharset(charset = "IS0-8859-1")

Arguments:
charset charset. Default value is "ISO-8859-1’

Method setCreateSpatialIndex(): Set the ’Create Spatial Index’ option

Usage:
GSShapefileDataStore$setCreateSpatialIndex(create = TRUE)

Arguments:
create create. Default is TRUE

Method setMemoryMappedBuffer(): Set the 'Memory Mapped Buffer’ option

Usage:
GSShapefileDataStore$setMemoryMappedBuffer(buffer = FALSE)

Arguments:
buffer buffer. Default is FALSE

Method setCacheReuseMemoryMaps(): Set the ’Cache & Reuse Memory Maps’ option.
Usage:
GSShapefileDataStore$setCacheReuseMemoryMaps(maps = TRUE)
Arguments:
maps maps. Default is TRUE

Method setDefautConnectionParameters(): Setdefault connection parameters
Usage:
GSShapefileDataStore$setDefautConnectionParameters()
Method clone(): The objects of this class are cloneable with this method.
Usage:
GSShapefileDataStore$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

104 GSShapefileDirectoryDataStore

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSShapefileDataStore$new(name = "ds”, description = "des”,
enabled = TRUE, url = "file://data/shape.shp")

GSShapefileDirectoryDataStore
Geoserver REST API ShapeFileDirectoryDataStore

Description

Geoserver REST API ShapeFileDirectoryDataStore
Geoserver REST API ShapeFileDirectoryDataStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer Shapefile directory dataStore

Super classes

geosapi: :GSRESTResource -> geosapi: : GSAbstractStore -> geosapi: :GSAbstractDataStore
-> geosapi: :GSShapefileDataStore -> GSShapefileDirectoryDataStore

Methods

Public methods:

* GSShapefileDirectoryDataStore$new()

e GSShapefileDirectoryDataStore$setUrl()

* GSShapefileDirectoryDataStore$setCharset()

* GSShapefileDirectoryDataStore$setCreateSpatialIndex()

¢ GSShapefileDirectoryDataStore$setMemoryMappedBuffer()

* GSShapefileDirectoryDataStore$setCacheReuseMemoryMaps()

e GSShapefileDirectoryDataStore$setDefautConnectionParameters()
* GSShapefileDirectoryDataStore$clone()

Method new(): initializes a shapefile directory data store

Usage:

GSShapefileDirectoryDataStore 105

GSShapefileDirectoryDataStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE
url url

Method setUrl(): Set the spatial files data URL
Usage:
GSShapefileDirectoryDataStore$setUrl(url)
Arguments:

url url

Method setCharset(): Set the charset used for DBF file.
Usage:
GSShapefileDirectoryDataStore$setCharset(charset = "IS0-8859-1")

Arguments:
charset charset. Default value is "ISO-8859-1°

Method setCreateSpatialIndex(): Set the *Create Spatial Index’ option
Usage:
GSShapefileDirectoryDataStore$setCreateSpatialIndex(create = TRUE)

Arguments:

create create. Default is TRUE

Method setMemoryMappedBuffer(): Set the "Memory Mapped Buffer’ option
Usage:
GSShapefileDirectoryDataStore$setMemoryMappedBuffer(buffer = FALSE)

Arguments:
buffer buffer. Default is FALSE

Method setCacheReuseMemoryMaps(): Set the ’Cache & Reuse Memory Maps’ option.
Usage:
GSShapefileDirectoryDataStore$setCacheReuseMemoryMaps(maps = TRUE)
Arguments:

maps maps. Default is TRUE

106 GSShinyMonitor

Method setDefautConnectionParameters(): Set default connection parameters
Usage:
GSShapefileDirectoryDataStore$setDefautConnectionParameters()

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSShapefileDirectoryDataStore$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples
GSShapefileDirectoryDataStore$new(name = "ds"”, description = "des”,
enabled = TRUE, url = "file://data")
GSShinyMonitor Geoserver REST API DataStore
Description

Geoserver REST API DataStore
Geoserver REST API DataStore

Format

R6Class object.

Value

Object of R6Class for setting a GS Shiny monitoring app

Methods

Public methods:

¢ GSShinyMonitor$new()

e GSShinyMonitor$getMetric()
¢ GSShinyMonitor$run()

e GSShinyMonitor$clone()

Method new(): Initializes a Geoserver shiny monitoring tool

Usage:

GSStyleManager

GSShinyMonitor$new(manager, file = NULL, append = FALSE, sleep = 1)

Arguments:

manager object of class GSManager

file file File where to store monitoring results

append append. Whether results should be appended to existing file
sleep sleep. Interval in seconds to trigger monitor calls

Method getMetric(): Get metric

Usage:
GSShinyMonitor$getMetric(name)

Arguments:

name name

Returns: the Geoserver monitored metric

Method run(): Runs the application

Usage:
GSShinyMonitor$run()

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSShinyMonitor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

Internal class used for GSManager$monitor method

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

107

GSStyleManager Geoserver REST API Style Manager

Description

Geoserver REST API Style Manager
Geoserver REST API Style Manager

Format

R6Class object.

108 GSStyleManager

Value

Object of R6Class with methods for managing the styles of a GeoServer instance.

Super class

geosapi: :GSManager -> GSStyleManager

Methods

Public methods:
* GSStyleManager$getStyles()
* GSStyleManager$getStyleNames()
* GSStyleManager$getStyle()
* GSStyleManager$createStyle()
* GSStyleManager$updateStyle()
* GSStyleManager$deleteStyle()
e GSStyleManager$getSLDVersion()
e GSStyleManager$getSLDBody ()
e GSStyleManager$clone()

Method getStyles(): Get the list of available styles.

Usage:
GSStyleManagers$getStyles(ws = NULL)

Arguments:

ws an optional workspace name

Returns: an object of class 1ist containing items of class GSStyle

Method getStyleNames(): Get the list of available style names

Usage:
GSStyleManager$getStyleNames(ws = NULL)

Arguments:

ws an optional workspace name

Returns: a vector of class character

Method getStyle(): Geta GSStyle object given a style name.

Usage:
GSStyleManagers$getStyle(style, ws = NULL)

Arguments:
style style name
ws workspace name. Optional

Returns: object of class GSStyle

Method createStyle(): Creates a GeoServer style given a name.

GSStyleManager 109

Usage:

GSStyleManager$createStyle(file, sldBody = NULL, name, raw = FALSE, ws = NULL)
Arguments:

file file

sldBody SLD body

name name

raw raw

WS Workspace name

Returns: TRUE if the style has been successfully created, FALSE otherwise

Method updateStyle(): Updates a GeoServer style given a name.
Usage:
GSStyleManager$updateStyle(file, sldBody = NULL, name, raw = FALSE, ws = NULL)
Arguments:
file file
sldBody SLD body
name name
raw raw

WS workspace name

Returns: TRUE if the style has been successfully updated, FALSE otherwise

Method deleteStyle(): Deletes a style given a name. By defaut, the option recurse is set to
FALSE, ie datastore layers are not removed. To remove all coverage store layers, set this option to
TRUE. The purge parameter is used to customize the delete of files on disk (in case the underlying
reader implements a delete method).

Usage:

GSStyleManager$deleteStyle(name, recurse = FALSE, purge = FALSE, ws = NULL)

Arguments:

name name

recurse recurse

purge purge

ws workspace name

Returns: TRUE if the style has been successfully deleted, FALSE otherwise

Method getSLDVersion(): Get SLD version

Usage:
GSStyleManagers$getSLDVersion(sldBody)

Arguments:

sldBody SLD body

Method getSLDBody(): Get SLD body
Usage:

110
GSStyleManager$getSLDBody(style, ws = NULL)
Arguments:
style style name
ws workspace name
Returns: an object of class xml_node-class
Method clone(): The objects of this class are cloneable with this method.
Usage:
GSStyleManager$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:

GSStyleManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

GSUtils

GSUtils Geoserver REST API Manager Utils

Description

Geoserver REST API Manager Utils
Geoserver REST API Manager Utils

Format

R6Class object.

Value

Object of R6Class with static util methods for communication with the REST API of a GeoServer

instance.

GSUtils 111

Static methods

getUserAgent () This method is used to get the user agent for performing GeoServer API requests.
Here the user agent will be compound by geosapi package name and version.

getUserToken(user, pwd) This method is used to get the user authentication token for perform-
ing GeoServer API requests. Token is given a Base64 encoded string.

GET(url, user, pwd, path, verbose) This method performs a GET request for a given path to
GeoServer REST API

PUT(url, user, pwd, path, filename, contentType, verbose) This method performs a PUT
request for a given path to GeoServer REST API, to upload a file of name filename with
given contentType

POST(url, user, pwd, path, content, contentType, verbose) This method performs a POST
request for a given path to GeoServer REST API, to post content of given contentType

DELETE(url, user, pwd, path, verbose) This method performs a DELETE request for a given
GeoServer resource identified by a path in GeoServer REST API

parseResponseXML(req) Convenience method to parse XML response from GeoServer REST
APIL.

getPayloadXML (obj) Convenience method to create payload XML to send to GeoServer.

setBbox(minx, miny, maxx, maxy, bbox, crs) Creates an list object representing a bbox. Either
from coordinates or from a bbox object (matrix).

Methods

Public methods:

e GSUtils$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSUtils$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

112 GS Version

GSVersion A GeoServer version

Description

This class allows to grab the GeoServer version. By default, a tentative is made to fetch version
from web admin default page, since Geoserver REST API did not support GET operation for the
Geoserver version in past releases of Geoserver.

Format

R6Class object.

Details

Geoserver REST API - Geoserver Version

Value

Object of R6Class for modelling a GeoServer version

Public fields

version version

value value

Methods

Public methods:
e GSVersion$new()
e GSVersion$lowerThan()
e GSVersion$greaterThan()
* GSVersion$equalTo()
* GSVersion$clone()

Method new(): Initializes an object of class GSVersion
Usage:
GSVersion$new(url, user, pwd)
Arguments:
url url
user user
pwd pwd

Method lowerThan(): Compares to a version and returns TRUE if it is lower, FALSE otherwise

Usage:

GSVersion 113

GSVersion$lowerThan(version)
Arguments:
version version

Returns: TRUE if lower, FALSE otherwise

Method greaterThan(): Compares to a version and returns TRUE if it is greater, FALSE
otherwise

Usage:
GSVersion$greaterThan(version)

Arguments:

version version

Returns: TRUE if greater, FALSE otherwise

Method equalTo(): Compares to a version and returns TRUE if it is equal, FALSE otherwise

Usage:
GSVersion$equalTo(version)

Arguments:

version version

Returns: TRUE if equal, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSVersion$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:

version <- GSVersion$new(
url = "http://localhost:8080/geoserver”,
user = "admin”, pwd = "geoserver”

)

End(Not run)

114

GSVirtualTable

GSVirtualTable Geoserver REST API GSVirtualTable

Description

Geoserver REST API GSVirtualTable
Geoserver REST API GSVirtualTable

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer virtual table

Super class

geosapi: :GSRESTResource -> GSVirtualTable

Public fields

name name
sql SQL statement
escapeSql escape SQL?
keyColumn key column
geometry geometry

parameters list of virtual parameters

Methods

Public methods:

e GSVirtualTable$new()

e GSVirtualTable$decode()

e GSVirtualTable$setName()

* GSVirtualTable$setSql()

e GSVirtualTable$setEscapeSql()
e GSVirtualTable$setKeyColumn()
* GSVirtualTable$setGeometry ()
e GSVirtualTable$addParameter()
e GSVirtualTable$delParameter()
* GSVirtualTable$clone()

Method new(): Initializes an object of class GSVirtualTable

GSVirtualTable

Usage:
GSVirtualTable$new(xml = NULL)

Arguments:
xml object of class xml_node-class
Method decode(): Decodes from XML

Usage:
GSVirtualTable$decode(xml)

Arguments:
xml object of class xml_node-class

Method setName(): Set name

Usage:
GSVirtualTable$setName(name)

Arguments:

name name

Method setSql(): Set SQL

Usage:
GSVirtualTable$setSql(sql)

Arguments:
sql sql
Method setEscapeSql(): Setescape SQL

Usage:
GSVirtualTable$setEscapeSql (escapeSql)

Arguments:
escapeSql escape SQL
Method setKeyColumn(): Set key column

Usage:
GSVirtualTable$setKeyColumn(keyColumn)

Arguments:
keyColumn key column

Method setGeometry(): Set geometry

Usage:
GSVirtualTable$setGeometry(vtg)

Arguments:
vtg object of class GSVirtualTableGeometry

Method addParameter(): Adds parameter

115

116 GS VirtualTableGeometry

Usage:
GSVirtualTable$addParameter (parameter)

Arguments:
parameter object of class GSVirtualTableParameter

Returns: TRUE if added, FALSE otherwise

Method delParameter(): Deletes parameter

Usage:
GSVirtualTable$delParameter(parameter)

Arguments:
parameter object of class GSVirtualTableParameter

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSVirtualTable$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSVirtualTable$new()

GSVirtualTableGeometry
Geoserver REST API GSVirtualTableGeometry

Description

Geoserver REST API GSVirtualTableGeometry
Geoserver REST API GSVirtualTableGeometry

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer virtual table geometry

GSVirtualTableGeometry

Super class

geosapi: :GSRESTResource -> GSVirtualTableGeometry

Public fields

name geometry name
type geometry type
srid geometry SRID

Methods

Public methods:
* GSVirtualTableGeometry$new()
e GSVirtualTableGeometry$decode()
e GSVirtualTableGeometry$clone()

Method new(): Initializes an object of class GSVirtualTableGeometry
Usage:
GSVirtualTableGeometry$new(xml = NULL, name, type, srid)
Arguments:
xml object of class xml_node-class
name name

type type
srid srid

Method decode(): Decodes from XML
Usage:
GSVirtualTableGeometry$decode(xml)
Arguments:

xml object of class xml_node-class

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSVirtualTableGeometry$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSVirtualTableGeometry$new(name = "work”, type = "MultiPolygon”, srid = 4326)

117

118 GS VirtualTableParameter

GSVirtualTableParameter
Geoserver REST API GSVirtualTableParameter

Description

Geoserver REST API GSVirtualTableParameter
Geoserver REST API GSVirtualTableParameter

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer virtual table parameter

Super class

geosapi: :GSRESTResource -> GSVirtualTableParameter

Public fields

name parameter name
defaultValue parameter default value

regexpValidator parameter regexp validator

Methods

Public methods:

e GSVirtualTableParameter$new()
e GSVirtualTableParameter$decode()
e GSVirtualTableParameter$clone()

Method new(): Initializes an object of class GSVirtualTableParameter
Usage:
GSVirtualTableParameter$new(xml = NULL, name, defaultValue, regexpValidator)
Arguments:
xml object of class xml_node-class
name name
defaultValue default value
regexpValidator regexp validator

Method decode(): Decodes from XML
Usage:

GSWorkspace 119

GSVirtualTableParameter$decode(xml)

Arguments:

xml object of class xml_node-class

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSVirtualTableParameter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples
GSVirtualTableParameter$new(name = "fieldname”, defaultValue = "default_value”,
regexpValidator = "someregexp")
GSWorkspace Geoserver REST API Workspace
Description

Geoserver REST API Workspace
Geoserver REST API Workspace

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer workspace

Super class

geosapi: :GSRESTResource -> GSWorkspace

Public fields

name name

120 GSWorkspaceManager

Methods

Public methods:
* GSWorkspace$new()
* GSWorkspace$decode ()
e GSWorkspace$clone()
Method new(): initializes a GSWorkspace

Usage:
GSWorkspace$new(xml = NULL, name)

Arguments:
xml an object of class xml_node-class

name name

Method decode(): Decodes from XML

Usage:
GSWorkspace$decode (xml)

Arguments:
xml an object of class xml_node-class
Method clone(): The objects of this class are cloneable with this method.

Usage:
GSWorkspace$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

GSWorkspace$new(name = "work")

GSWorkspaceManager Geoserver REST API Workspace Manager

Description

Geoserver REST API Workspace Manager
Geoserver REST API Workspace Manager

GSWorkspaceManager 121

Format

R6Class object.

Value

Object of R6Class with methods for managing the workspaces of a GeoServer instance.

Super class

geosapi: :GSManager -> GSWorkspaceManager

Methods

Public methods:

¢ GSWorkspaceManager$getWorkspaces()

* GSWorkspaceManager$getWorkspaceNames ()

* GSWorkspaceManager$getWorkspace()

* GSWorkspaceManager$createWorkspace()

¢ GSWorkspaceManager$updateWorkspace ()

* GSWorkspaceManager$deleteWorkspace()

* GSWorkspaceManager$getWorkspaceSettings()

* GSWorkspaceManager$createWorkspaceSettings()
* GSWorkspaceManager$updateWorkspaceSettings()
* GSWorkspaceManager$deleteWorkspaceSettings()
* GSWorkspaceManager$clone()

Method getWorkspaces(): Get the list of available workspace. Returns an object of class list
containing items of class GSWorkspace

Usage:
GSWorkspaceManager$getWorkspaces()

Arguments:

a list of GSWorkspace
Method getWorkspaceNames(): Get the list of available workspace names. Returns an vector
of class character

Usage:

GSWorkspaceManager$getWorkspaceNames ()

Returns: alist of workspace names

Method getWorkspace(): Get a GSWorkspace object given a workspace name.
Usage:
GSWorkspaceManager$getWorkspace(ws)

Arguments:

WS Workspace name

122

GSWorkspaceManager

Returns: an object of class GSWorkspace

Method createWorkspace(): Creates a GeoServer workspace given a name, and an optional
URI. If the URI is not specified, GeoServer will automatically create an associated Names-
pace with the URI built from the workspace name. If the URI is specified, the method in-
vokes the method createNamespace(ns, uri) of the GSNamespaceManager. Returns TRUE if
the workspace has been successfully created, FALSE otherwise

Usage:

GSWorkspaceManager$createWorkspace(name, uri)

Arguments:

name name

uri uri

Returns: TRUE if created, FALSE otherwise
Method updateWorkspace(): Updates a GeoServer workspace given a name, and an optional
URL If the URI is not specified, GeoServer will automatically update the associated Names-
pace with the URI built from the workspace name. If the URI is specified, the method in-

vokes the method updateNamespace(ns, uri) of the GSNamespaceManager. Returns TRUE if
the workspace has been successfully updated, FALSE otherwise

Usage:
GSWorkspaceManagers$updateWorkspace (name, uri)

Arguments:
name name
uri uri

Returns: TRUE if created, FALSE otherwise

Method deleteWorkspace(): Deletes a GeoServer workspace given a name.

Usage:
GSWorkspaceManager$deleteWorkspace(name, recurse = FALSE)

Arguments:
name name
recurse recurse

Returns: TRUE if the workspace has been successfully deleted, FALSE otherwise

Method getWorkspaceSettings(): Updates workspace settings

Usage:
GSWorkspaceManager$getWorkspaceSettings(ws)

Arguments:

WS workspace name

Returns: an object of class GSWorkspaceSettings

Method createWorkspaceSettings(): Creates workspace settings

Usage:

GSWorkspaceManager 123

GSWorkspaceManager$createWorkspaceSettings(ws, workspaceSettings)

Arguments:

ws workspace name
workspaceSettings object of class GSWorkspaceSettings

Returns: TRUE if created, FALSE otherwise

Method updateWorkspaceSettings(): Updates workspace settings

Usage:
GSWorkspaceManager$updateWorkspaceSettings(ws, workspaceSettings)

Arguments:

ws workspace name
workspaceSettings object of class GSWorkspaceSettings

Returns: TRUE if updated, FALSE otherwise

Method deleteWorkspaceSettings(): Deletes workspace settings

Usage:
GSWorkspaceManager$deleteWorkspaceSettings(ws)

Arguments:

WS Workspace name

Returns: TRUE if deleted, FALSE otherwise

Method clone(): The objects of this class are cloneable with this method.

Usage:
GSWorkspaceManager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondell @ gmail.com>

Examples

Not run:
GSWorkspaceManager$new("http://localhost:8080/geoserver”, "admin"”, "geoserver")

End(Not run)

124 GSWorkspaceSettings

GSWorkspaceSettings Geoserver REST API Workspace Setting

Description

Geoserver REST API Workspace Setting
Geoserver REST API Workspace Setting

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer workspace settings

Super class

geosapi: : GSRESTResource -> GSWorkspaceSettings

Public fields

contact contact

charset charset

numDecimals number of decimal
onlineResource online resource
verbose verbose

verboseExceptions verbose exceptions

localWorkspaceIncludesPrefix local workspace includes prefix

Methods

Public methods:

* GSWorkspaceSettings$new()

* GSWorkspaceSettings$decode()

* GSWorkspaceSettings$setCharset()

e GSWorkspaceSettings$setNumDecimals()

* GSWorkspaceSettings$setOnlineResource()

* GSWorkspaceSettings$setVerbose()

e GSWorkspaceSettings$setVerboseExceptions()

* GSWorkspaceSettings$setLocalWorkspaceIncludesPrefix()
e GSWorkspaceSettings$clone()

GSWorkspaceSettings 125

Method new(): This method is used to instantiate a GSWorkspaceSettings. This settings object
is required to activate a workspace configuration, using the method GSManager$createWorkspaceSettings.
Supported from GeoServer 2.12

Usage:
GSWorkspaceSettings$new(xml = NULL)

Arguments:

xml object of class xml_node-class

Method decode(): Decodes from XML

Usage:
GSWorkspaceSettings$decode (xml)

Arguments:

xml object of class xml_node-class

Method setCharset(): Set charset

Usage:
GSWorkspaceSettings$setCharset(charset)

Arguments:

charset charset

Method setNumDecimals(): Set number of decimals

Usage:
GSWorkspaceSettings$setNumDecimals(numDecimals)

Arguments:

numDecimals number of decimals

Method setOnlineResource(): Set online resource

Usage:
GSWorkspaceSettings$setOnlineResource(onlineResource)

Arguments:

onlineResource online resource

Method setVerbose(): Set verbose

Usage:
GSWorkspaceSettings$setVerbose(verbose)

Arguments:

verbose verbose

Method setVerboseExceptions(): Set verbose exceptions

Usage:
GSWorkspaceSettings$setVerboseExceptions(verboseExceptions)

Arguments:

126 GSWorldImageCoverageStore

verboseExceptions verbose exceptions

Method setLocalWorkspaceIncludesPrefix(): Setlocal workspace includes prefix

Usage:
GSWorkspaceSettings$setLocalWorkspaceIncludesPrefix(includesPrefix)

Arguments:

includesPrefix includes prefix

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSWorkspaceSettings$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Examples

settings <- GSWorkspaceSettings$new()
settings$setCharset("UTF-8")
settings$setNumDecimals(5)

GSWorldImageCoverageStore
Geoserver REST API WorldImageCoverageStore

Description

Geoserver REST API WorldlmageCoverageStore
Geoserver REST API WorldImageCoverageStore

Format

R6Class object.

Value

Object of R6Class for modelling a GeoServer WorldImage CoverageStore

Super classes

geosapi: :GSRESTResource -> geosapi: :GSAbstractStore -> geosapi: :GSAbstractCoverageStore
-> GSWorldImageCoverageStore

GSWorldImageCoverageStore 127

Public fields

url url

Methods

Public methods:

e GSWorldImageCoverageStore$new()
¢ GSWorldImageCoverageStore$clone()

Method new(): Initializes an WorldImage coverage store
Usage:
GSWorldImageCoverageStore$new(
xml = NULL,
name = NULL,
description = "",
enabled = TRUE,
url = NULL

)

Arguments:

xml an object of class xml_node-class to create object from XML
name coverage store name

description coverage store description

enabled whether the store should be enabled or not. Default is TRUE
url url

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSWorldImageCoverageStore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Emmanuel Blondel <emmanuel.blondel1 @ gmail.com>

Index

x* ACL
GSAccessControllListManager, 14

* ArcGrid
GSArcGridCoverageStore, 18

x CoverageStore
GSAbstractCoverageStore, 3
GSArcGridCoverageStore, 18
GSCoverageStoreManager, 24
GSGeoTIFFCoverageStore, 49
GSImageMosaicCoverageStore, 50
GSWorldImageCoverageStore, 126

* DB
GSAbstractDBDataStore, 7

x DataStore
GSAbstractDataStore, 5
GSAbstractDBDataStore, 7
GSDataStoreManager, 33
GSGeoPackageDataStore, 48
GSOracleNGDataStore, 77
GSPostGISDataStore, 78
GSShapefileDataStore, 102
GSShapefileDirectoryDataStore, 104

x ESRI
GSShapefileDataStore, 102
GSShapefileDirectoryDataStore, 104

x GeoPackage
GSGeoPackageDataStore, 48

*x GeoTIFF
GSGeoTIFFCoverageStore, 49

+x ImageMosaic
GSImageMosaicCoverageStore, 50

+ Layer
GSLayerManager, 62
GSMonitorManager, 72

* OGC
GSServiceSettings, 98

* OWS
GSServiceSettings, 98

* OracleNG

128

GSOracleNGDataStore, 77

* PostGIS
GSPostGISDataStore, 78

+* WCS
GSServiceSettings, 98

* WFS
GSServiceSettings, 98

* WMS
GSServiceSettings, 98

+ WorldImage
GSWorldImageCoverageStore, 126

* access
GSAccessControllListManager, 14
GSLayerRule, 65
GSRestRule, 90
GSRule, 91
GSServiceRule, 97

* api
GSAbstractCoverageStore, 3
GSAbstractDataStore, 5
GSAbstractDBDataStore, 7
GSAbstractStore, 12
GSAccessControllListManager, 14
GSArcGridCoverageStore, 18
GSCoverage, 19
GSCoverageBand, 21
GSCoverageStoreManager, 24
GSCoverageView, 31
GSDataStoreManager, 33
GSDimension, 42
GSFeatureDimension, 44
GSFeatureType, 46
GSGeoPackageDataStore, 48
GSGeoTIFFCoverageStore, 49
GSImageMosaicCoverageStore, 50
GSInputCoverageBand, 52
GSLayer, 53
GSLayerGroup, 58
GSLayerManager, 62

INDEX

GSLayerRule, 65
GSManager, 66
GSMetadatalLink, 70
GSMonitorManager, 72
GSNamespace, 73
GSNamespaceManager, 75
GSOracleNGDataStore, 77
GSPostGISDataStore, 78
GSPublishable, 79
GSResource, 81
GSRESTEntrySet, 86
GSRESTResource, 88
GSRestRule, 90
GSRule, 91
GSServiceManager, 93
GSServiceRule, 97
GSServiceSettings, 98
GSShapefileDataStore, 102

GSShapefileDirectoryDataStore, 104

GSStyleManager, 107
GSUtils, 110
GSVersion, 112
GSVirtualTable, 114
GSVirtualTableGeometry, 116
GSVirtualTableParameter, 118
GSWorkspace, 119
GSWorkspaceManager, 120
GSWorkspaceSettings, 124
GSWorldImageCoverageStore, 126

* control
GSAccessControllListManager, 14
GSLayerRule, 65
GSRestRule, 90
GSRule, 91
GSServiceRule, 97

* coverageBand
GSCoverageBand, 21

x coverageType
GSCoverage, 19

* coverageView
GSCoverageView, 31

* coverage
GSLayer, 53
GSLayerGroup, 58

+ database
GSAbstractDBDataStore, 7

x dimension
GSDimension, 42

129

GSFeatureDimension, 44

* directory

GSShapefileDirectoryDataStore, 104

* entryset

GSRESTEntrySet, 86

+ featureType

GSFeatureType, 46
GSLayer, 53
GSLayerGroup, 58

* geoserver

GSAbstractCoverageStore, 3
GSAbstractDataStore, 5
GSAbstractDBDataStore, 7
GSAbstractStore, 12
GSAccessControllListManager, 14
GSArcGridCoverageStore, 18
GSCoverage, 19
GSCoverageBand, 21
GSCoverageStoreManager, 24
GSCoverageView, 31
GSDataStoreManager, 33
GSDimension, 42
GSFeatureDimension, 44
GSFeatureType, 46
GSGeoPackageDataStore, 48
GSGeoTIFFCoverageStore, 49
GSImageMosaicCoverageStore, 50
GSInputCoverageBand, 52
GSLayer, 53
GSLayerGroup, 58
GSLayerManager, 62
GSLayerRule, 65
GSManager, 66
GSMetadatalink, 70
GSMonitorManager, 72
GSNamespace, 73
GSNamespaceManager, 75
GSOracleNGDataStore, 77
GSPostGISDataStore, 78
GSPublishable, 79
GSResource, 81
GSRESTEntrySet, 86
GSRESTResource, 88
GSRestRule, 90

GSRule, 91
GSServiceManager, 93
GSServiceRule, 97
GSServiceSettings, 98

130

GSShapefileDataStore, 102

GSShapefileDirectoryDataStore, 104

GSShinyMonitor, 106
GSStyleManager, 107
GSUtils, 110
GSVersion, 112
GSVirtualTable, 114
GSVirtualTableGeometry, 116
GSVirtualTableParameter, 118
GSWorkspace, 119
GSWorkspaceManager, 120
GSWorkspaceSettings, 124
GSWorldImageCoverageStore, 126

* group
GSLayerGroup, 58
GSPublishable, 79

* inputCoverageBand
GSInputCoverageBand, 52

* layer
GSLayer, 53
GSLayerGroup, 58
GSPublishable, 79

x list
GSAccessControllListManager, 14

+x metadataLink
GSMetadatalink, 70

* monitoring
GSShinyMonitor, 106

* namespace
GSNamespace, 73
GSNamespaceManager, 75

* publishable
GSPublishable, 79

* resourcelayer
GSLayer, 53

* resource
GSCoverage, 19
GSDimension, 42
GSFeatureDimension, 44
GSFeatureType, 46
GSLayer, 53
GSLayerGroup, 58
GSMetadatalLink, 70
GSPublishable, 79
GSResource, 81

* rest
GSAbstractCoverageStore, 3
GSAbstractDataStore, 5

INDEX

GSAbstractDBDataStore, 7
GSAbstractStore, 12
GSAccessControllListManager, 14
GSArcGridCoverageStore, 18
GSCoverage, 19
GSCoverageBand, 21
GSCoverageStoreManager, 24
GSCoverageView, 31
GSDataStoreManager, 33
GSDimension, 42
GSFeatureDimension, 44
GSFeatureType, 46
GSGeoPackageDataStore, 48
GSGeoTIFFCoverageStore, 49
GSImageMosaicCoverageStore, 50
GSInputCoverageBand, 52
GSLayer, 53

GSLayerGroup, 58
GSLayerManager, 62
GSLayerRule, 65

GSManager, 66
GSMetadatalink, 70
GSMonitorManager, 72
GSNamespace, 73
GSNamespaceManager, 75
GSOracleNGDataStore, 77
GSPostGISDataStore, 78
GSPublishable, 79
GSResource, 81
GSRESTEntrySet, 86
GSRESTResource, 88
GSRestRule, 90

GSRule, 91
GSServiceManager, 93
GSServiceRule, 97
GSServiceSettings, 98
GSShapefileDataStore, 102
GSShapefileDirectoryDataStore, 104
GSStyleManager, 107

GSUtils, 110

GSVersion, 112
GSVirtualTable, 114
GSVirtualTableGeometry, 116
GSVirtualTableParameter, 118
GSWorkspace, 119
GSWorkspaceManager, 120
GSWorkspaceSettings, 124
GSWorldImageCoverageStore, 126

INDEX

* rule
GSLayerRule, 65
GSRestRule, 90
GSRule, 91
GSServiceRule, 97

* service
GSServiceManager, 93
GSServiceSettings, 98

* settings
GSWorkspaceSettings, 124

+ shapefile
GSShapefileDataStore, 102
GSShapefileDirectoryDataStore, 104

* store
GSAbstractStore, 12

x style
GSLayer, 53
GSStyleManager, 107

* version
GSVersion, 112

x virtualTable
GSVirtualTable, 114
GSVirtualTableGeometry, 116
GSVirtualTableParameter, 118

* workspace
GSWorkspace, 119
GSWorkspaceManager, 120
GSWorkspaceSettings, 124

geosapi, 3

geosapi-package (geosapi), 3

geosapi: :GSAbstractCoverageStore, 18,
49,51, 126

geosapi: :GSAbstractDataStore, 8, 48, 77,
78, 102, 104

geosapi: :GSAbstractDBDataStore, 48, 77,
78

geosapi: :GSAbstractStore, 4, 5, 8, 18, 48,
49,51,77, 78,102, 104, 126

geosapi: :GSDimension, 44

geosapi: :GSManager, 15, 24, 33,62, 72,75,
93,108, 121

geosapi: :GSResource, 19, 46

geosapi: :GSRESTResource, 4, 5, 8, 12, 18
19,21, 31,42,44, 46, 48, 49, 51, 52,
54,56, 58, 65,71,74,77-79, 81, 86,
90, 91, 97,99, 102, 104, 114,
117-119, 124, 126

geosapi: :GSRule, 65, 90, 97

131

geosapi: :GSShapefileDataStore, 104
GSAbstractCoverageStore, 3, 4, 25, 26
GSAbstractDataStore, 5, 6, 25, 34, 35
GSAbstractDBDataStore, 7
GSAbstractStore, 12
GSAccessControllListManager, 14
GSArcGridCoverageStore, 18
GSCoverage, 19, 20, 26, 27
GSCoverageBand, 21, 22, 32, 33
GSCoverageStoreManager, 24, 69
GSCoverageView, 20, 31, 31
GSDataStoreManager, 33, 69
GSDimension, 42, 43
GSFeatureDimension, 44, 45
GSFeatureType, 36, 37, 46, 46
GSGeoPackageDataStore, 48
GSGeoTIFFCoverageStore, 49
GSImageMosaicCoverageStore, 50
GSInputCoverageBand, 23, 52, 52
GSLayer, 37,53, 54, 63
GSLayerGroup, 58, 59, 64
GSLayerManager, 62
GSLayerRule, 65, 66, 90, 98
GSManager, 66, 107
GSMetadatalLink, 61,70, 71, 84
GSMonitorManager, 72
GSNamespace, 73, 74-76
GSNamespaceManager, 69, 75, 122
GSOracleNGDataStore, 77
GSPostGISDataStore, 78
GSPublishable, 79, 80
GSResource, 81, 82
GSRESTEntrySet, 6, 86, 87
GSRESTResource, 88, 89
GSRestRule, 90
GSRule, 16, 17,91, 92
GSServiceManager, 70, 93
GSServiceRule, 97
GSServiceSettings, 94, 95, 98, 99
GSShapefileDataStore, 102
GSShapefileDirectoryDataStore, 104
GSShinyMonitor, 106
GSStyle, 56, 57, 108

GSStyle (GSLayer), 53
GSStyleManager, 70, 107
GSUtils, 110

GSVersion, 112,112
GSVirtualTable, 47, 114, 114

132 INDEX

GSVirtualTableGeometry, 115,116, 117
GSVirtualTableParameter, 116, 118,118
GSWorkspace, 60, 119, 120-122
GSWorkspaceManager, 69, 120
GSWorkspaceSettings, 122, 123, 124
GSWorldImageCoverageStore, 126

R6Class, 3-5,7, 8,12, 14,18, 19, 21, 24, 31,
33,42, 44, 46, 48-54, 58, 62, 65-67,
70,72,73,75,77-79, 81, 86, 88, 90,
91, 93, 97-99, 102, 104, 106-108,
110,112,114,116,118, 119, 121,
124, 126

xml_node-class, 4, 6, 9, 13, 18, 20, 22, 32,
43,4548, 50-53, 55, 57, 59, 66, 71,
74,77, 78, 80, 82, 87, 89, 91, 92, 98,
100, 103, 105, 110, 115, 117-120,
125,127

	geosapi
	GSAbstractCoverageStore
	GSAbstractDataStore
	GSAbstractDBDataStore
	GSAbstractStore
	GSAccessControlListManager
	GSArcGridCoverageStore
	GSCoverage
	GSCoverageBand
	GSCoverageStoreManager
	GSCoverageView
	GSDataStoreManager
	GSDimension
	GSFeatureDimension
	GSFeatureType
	GSGeoPackageDataStore
	GSGeoTIFFCoverageStore
	GSImageMosaicCoverageStore
	GSInputCoverageBand
	GSLayer
	GSLayerGroup
	GSLayerManager
	GSLayerRule
	GSManager
	GSMetadataLink
	GSMonitorManager
	GSNamespace
	GSNamespaceManager
	GSOracleNGDataStore
	GSPostGISDataStore
	GSPublishable
	GSResource
	GSRESTEntrySet
	GSRESTResource
	GSRestRule
	GSRule
	GSServiceManager
	GSServiceRule
	GSServiceSettings
	GSShapefileDataStore
	GSShapefileDirectoryDataStore
	GSShinyMonitor
	GSStyleManager
	GSUtils
	GSVersion
	GSVirtualTable
	GSVirtualTableGeometry
	GSVirtualTableParameter
	GSWorkspace
	GSWorkspaceManager
	GSWorkspaceSettings
	GSWorldImageCoverageStore
	Index

