
Package ‘gadget3’
January 12, 2026

Type Package

Title Globally-Applicable Area Disaggregated General Ecosystem Toolbox
V3

Version 0.15-1

Date 2026-01-12

Maintainer Jamie Lentin <lentinj@shuttlethread.com>

Description A framework to assist creation of marine ecosystem models,
generating either 'R' or 'C++' code which can then be optimised using
the 'TMB' package and standard 'R' tools. Principally designed to
reproduce gadget2 models in 'TMB', but can be extended beyond
gadget2's capabilities.
Kasper Kristensen, An-
ders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> ``TMB: Au-
tomatic Differentiation and Laplace Approximation.''.
Begley, J., & Howell, D. (2004) <https://files01.core.ac.uk/download/pdf/225936648.
pdf> ``An overview of Gadget, the globally applicable area-
disaggregated general ecosystem toolbox. ICES.''.

URL https://gadget-framework.github.io/gadget3/,

https://github.com/gadget-framework/gadget3/

Encoding UTF-8

Depends R (>= 4.2.0)

Imports digest, rlang (>= 0.4.5), stats, TMB (>= 1.7.0), utils,

Suggests dplyr, knitr, magrittr (>= 1.5), rmarkdown, unittest (>= 1.4)

VignetteBuilder knitr

License GPL-2

RoxygenNote 7.0.2

NeedsCompilation no

Author Jamie Lentin [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5727-2996>),

Bjarki Thor Elvarsson [aut] (ORCID:
<https://orcid.org/0000-0001-5855-1188>),

1

https://doi.org/10.18637/jss.v070.i05
https://files01.core.ac.uk/download/pdf/225936648.pdf
https://files01.core.ac.uk/download/pdf/225936648.pdf
https://gadget-framework.github.io/gadget3/
https://github.com/gadget-framework/gadget3/
https://orcid.org/0000-0001-5727-2996
https://orcid.org/0000-0001-5855-1188

2 Contents

William Butler [aut] (ORCID: <https://orcid.org/0000-0002-3286-0748>),
Marine and Freshwater Research Institute (Iceland) [cph]

Repository CRAN

Date/Publication 2026-01-12 14:00:02 UTC

Contents
aaa_lang . 3
aab_env . 4
action_age . 7
action_grow . 8
action_mature . 13
action_migrate . 15
action_naturalmortality . 16
action_order . 18
action_predate . 19
action_renewal . 26
action_report . 33
action_spawn . 36
action_spmodel . 41
action_tagging . 43
action_time . 45
action_trace . 47
action_weightloss . 49
array_utils . 51
env_dif . 53
eval . 54
formula_utils . 55
init_val . 56
language . 58
likelihood_bounds_penalty . 60
likelihood_catchdistribution . 61
likelihood_random . 69
likelihood_sparsesample . 71
likelihood_tagging_ckmr . 75
likelihood_understocking . 76
params . 77
param_project . 80
quota . 86
run_desc . 91
run_r . 92
run_tmb . 94
step . 99
stock . 103
stock_age . 105
stock_areas . 106
stock_tag . 107

https://orcid.org/0000-0002-3286-0748

aaa_lang 3

stock_time . 108
suitability . 110
timedata . 114
timevariable . 115

Index 117

aaa_lang Gadget3 language utilities

Description

Produce objects with special meaning to gadget3

Usage

g3_native(r, cpp, depends = c())
g3_global_formula(f = quote(noop), init_val = NULL)

Arguments

r An R function to decorate with a ’C++’ equivalent

cpp Either:

1. A character string containing the ’C++’ equivalent as a Lambda function
2. A character string containing ’C++’ function template definition, calling

the function __fn__

3. A list of type-casts to use when calling an equivalently named native func-
tion

depends A list of string names of dependent functions. The content of this and the initial
[] for any Lambda function should match.

f An optional formula to modify the content of a globablly-defined variable

init_val An optiona formula to set the initial value of a globally-defined variable

Details

These functions are generally for gadget3 development, but made available so actions can be pro-
duced outside the package.

Value

g3_native: Returns a function that can be used in formulas for both R and TMB-based models.

g3_global_formula: Returns a formula that will be defined globally, and this can preserve state
across timesteps.

4 aab_env

Examples

The definition of g3_env$ratio_add_pop looks like:
eg_ratio_add_pop <- g3_native(r = function(orig_vec, orig_amount,

new_vec, new_amount) {
((orig_vec * orig_amount + new_vec * new_amount)

/
avoid_zero_vec(orig_amount + new_amount))

}, cpp = '[](vector<Type> orig_vec, vector<Type> orig_amount,
vector<Type> new_vec, vector<Type> new_amount)
-> vector<Type> {

return (orig_vec * orig_amount + new_vec * new_amount)
/

avoid_zero_vec(orig_amount + new_amount);
}', depends = c('avoid_zero_vec'))
eg_ratio_add_pop() can then be used in formulas, both in R & TMB.

Define a random walk action, using g3_global_formula to keep track of
previous value. NB: my_randomwalk_prevrec must be unique in a model
random_walk_action <- g3_formula(quote({

if (cur_time > 0) nll <- nll + dnorm(x, stock__prevrec, 1, 1)
my_randomwalk_prevrec <- x

}), x = 'TODO', my_randomwalk_prevrec = g3_global_formula(init_val = 0.0))

aab_env Gadget3 global environment

Description

Functions available to any gadget3 model

Details

g3_env is the top-level environment that any gadget3 model uses, populated with utility functions.

NB: Several functions have _vec variants. Due to TMB limitations these should be used when you
have a vector not scalar input.

ADREPORT

TMB’s ADREPORT function. See sdreport documentation

as_integer

C++ compatible equivalent to as.integer

as.numeric

R as.numeric or TMB asDouble

aab_env 5

assert_msg

C++/R function that ensures expression is true, or stops model.

assert_msg(x > 0, "x must be positive")

avoid_zero

Adds small value to input to ensure output is never zero avoid_zero_vec is identical to avoid_zero,
and is only present for backward compatibility.

bounded / bounded_vec

Ensures x is within limits b & a .

If x positive, return a . If x negative, b . If x -10..10, smoothly transition from b to a

bounded_vec(x, 200, 100)

g3_matrix_vec

Apply matrix transformation tf to vector vec , return resultant vector.

g3_matrix_vec(tf, vec)

lgamma_vec

Vector equivalent of lgamma

logspace_add

TMB’s logspace_add, essentially a differentiable version of pmax.

normalize_vec

Divide vector a by it’s sum, i.e. so it now sums to 1. If vector is all-zero, return an all-zero vector
instead.

nvl

Return first non-null argument. NB: No C++ implementation.

print_array

Utility to pretty-print array ar

ratio_add_pop

Sum orig_vec & new_vec according to ratio of orig_amount & new_amount

6 aab_env

nonconform_add / nonconform_mult / nonconform_div / nonconform_div_avz

Scalar sum/multiply/divide 2 non-conforming arrays, by treating the latter as a vector and repeating
as many times as required. Results will be structured identically to the first array.

nonconform_div_avz(x, y) is equivalent to nonconform_div(x, avoid_zero_vec(y))

REPORT

TMB’s REPORT function.

REprintf

Equivalent of RCpp REprintf

Rprintf

Equivalent of RCpp Rprintf

Examples

avoid_zero
g3_eval(quote(c(avoid_zero(0), avoid_zero(10))))
g3_eval(quote(avoid_zero(0:5)))

bounded / bounded_vec
curve(g3_eval(quote(bounded(x, 200, 100)), x = x), -100, 100)

logspace_add
curve(g3_eval(quote(logspace_add(x, 10)), x = x), 0, 40)

normalize_vec
g3_eval(quote(normalize_vec(c(4, 4, 8, 2))))

nonconform_mult
g3_eval(quote(nonconform_mult(

array(seq(0, 4*5*6), dim = c(4,5,6)),
c(1e1, 1e2, 1e3, 1e4))))

nonconform_div_avz
g3_eval(quote(nonconform_div_avz(

array(seq(0, 4*5*6), dim = c(4,5,6)),
c(1e1, 1e2, 0, 1e4))))

g3_eval(quote(nonconform_div(
array(seq(0, 4*5*6), dim = c(4,5,6)),
avoid_zero(c(1e1, 1e2, 0, 1e4)))))

https://teuder.github.io/rcpp4everyone_en/060_printing_massages.html#rprintf-reprintf
https://teuder.github.io/rcpp4everyone_en/060_printing_massages.html#rprintf-reprintf

action_age 7

action_age Gadget3 age action

Description

Add ageing actions to a g3 model

Usage

g3a_age(
stock,
output_stocks = list(),
output_ratios = rep(1/length(output_stocks),
times = length(output_stocks)),
run_f = ~cur_step_final,
run_at = g3_action_order$age,
transition_at = g3_action_order$age)

Arguments

stock g3_stock to age.

output_stocks List of g3_stocks that oldest specimens in stock should move into.

output_ratios Vector of proportions for how to distribute into output_stocks , default evenly
spread.

run_f formula specifying a condition for running this action, default is end of model
year.

run_at Integer order that actions will be run within model, see g3_action_order.

transition_at Integer order that transition actions will be run within model, see g3_action_order.

Value

An action (i.e. list of formula objects) that will, for the given stock ...

1. Move the final age group into temporary storage, stock__transitioning_num / stock__transitioning_wgt

2. Move the contents of all other age groups into the age group above

3. Move the contents of the temporary storage into output_stocks

If stock has only one age, and output_stocks has been specified, then the contentes will be moved,
if output_stocks is empty, then the action will do nothing.

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockmature,
g3_stock

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockmature

8 action_grow

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock('ling_mat', seq(20, 156, 4)) %>% g3s_age(5, 15)

Ageing for immature ling
age_action <- g3a_age(ling_imm,

output_stocks = list(ling_mat))

action_grow Gadget3 growth action

Description

Add growth/maturity actions to a g3 model

Usage

g3a_grow_lengthvbsimple(
linf_f = g3_parameterized('Linf', by_stock = by_stock),
kappa_f = g3_parameterized('K', by_stock = by_stock),
by_stock = TRUE)

g3a_grow_weightsimple(
alpha_f = g3_parameterized('walpha', by_stock = by_stock),
beta_f = g3_parameterized('wbeta', by_stock = by_stock),
by_stock = TRUE)

g3a_grow_impl_bbinom(
delta_len_f = g3a_grow_lengthvbsimple(by_stock = by_stock),
delta_wgt_f = g3a_grow_weightsimple(by_stock = by_stock),
beta_f = g3_parameterized('bbin', by_stock = by_stock),
maxlengthgroupgrowth,
by_stock = TRUE)

g3a_grow_length_multspec(
p0 = g3_parameterized('multispec.p0', value = 1, by_stock = by_stock),
p1 = g3_parameterized('multispec.p1', value = 1, by_stock = by_stock),
p2 = g3_parameterized('multispec.p2', value = 1, by_stock = by_stock),
p3 = g3_parameterized('multispec.p3', value = 0, by_stock = by_stock),
temperature = 0,
by_stock = TRUE)

g3a_grow_weight_multspec(
p4 = g3_parameterized('multispec.p4', value = 1, by_stock = by_stock),
p5 = g3_parameterized('multispec.p5', value = 1, by_stock = by_stock),
p6 = g3_parameterized('multispec.p6', value = 0, by_stock = by_stock),
p7 = g3_parameterized('multispec.p7', value = 1, by_stock = by_stock),

action_grow 9

p8 = g3_parameterized('multispec.p8', value = 0, by_stock = by_stock),
temperature = 0,
by_stock = TRUE)

g3a_grow_length_weightjones(
p0 = g3_parameterized('weightjones.p0', value = 0, by_stock = by_stock),
p1 = g3_parameterized('weightjones.p1', value = 0, by_stock = by_stock),
p2 = g3_parameterized('weightjones.p2', value = 1, by_stock = by_stock),
p3 = g3_parameterized('weightjones.p3', value = 0, by_stock = by_stock),
p4 = g3_parameterized('weightjones.p4', value = 1, by_stock = by_stock),
p5 = g3_parameterized('weightjones.p5', value = 100, by_stock = by_stock),
p6 = g3_parameterized('weightjones.p6', value = 1, by_stock = by_stock),
p7 = g3_parameterized('weightjones.p7', value = 1, by_stock = by_stock),
reference_weight = 0,
temperature = 0,
by_stock = TRUE)

g3a_grow_weight_weightjones(
q0 = g3_parameterized('weightjones.q0', value = 1, by_stock = by_stock),
q1 = g3_parameterized('weightjones.q1', value = 1, by_stock = by_stock),
q2 = g3_parameterized('weightjones.q2', value = 1, by_stock = by_stock),
q3 = g3_parameterized('weightjones.q3', value = 1, by_stock = by_stock),
q4 = g3_parameterized('weightjones.q4', value = 1, by_stock = by_stock),
q5 = g3_parameterized('weightjones.q5', value = 0, by_stock = by_stock),
max_consumption = g3a_predate_maxconsumption(temperature = temperature),
temperature = 0,
by_stock = TRUE)

g3a_growmature(stock, impl_f, maturity_f = ~0, output_stocks = list(),
output_ratios = rep(1/length(output_stocks), times = length(output_stocks)),
transition_f = ~cur_step_final, run_f = ~TRUE,
run_at = g3_action_order$grow,
transition_at = g3_action_order$mature)

Arguments

linf_f A formula to substitute for L∞.

kappa_f A formula to substitute for κ.

alpha_f A formula to substitute for α.

beta_f A formula to substitute for β.
p0, p1, p2, p3, p4, p5, p6, p7, p8, q0, q1, q2, q3, q4, q5

A formula to substitute for the equivalent value.
max_consumption

Maximum predator consumption, see g3a_predate_maxconsumption.

temperature A formula providing values for the current temperature, likely implemented with
g3_timeareadata.

10 action_grow

maxlengthgroupgrowth

An integer with the maximum length groups an individual can jump in one step.
reference_weight

Reference weight. see formula for g3a_grow_length_weightjones.

stock g3_stock to grow.

delta_len_f A formula defining a non-negative vector for mean increase in length for stock
for each lengthgroup, as defined by g3a_grow_lengthvbsimple.

delta_wgt_f A formula defining the corresponding weight increase as a matrix of lengthgroup
to lengthgroup delta for stock, as defined by g3a_grow_weightsimple.

by_stock Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.

impl_f A pair of formula objects, as defined by g3a_grow_impl_bbinom. Both define a
matrix of length groups i to length group deltas j (0..maxlengthgroupgrowth),
the values in the first indicate the proportion of individuals moving from i to
i + j, the values in the second indicate the corresponding weight increase of
individuals moving from i to i + j.

maturity_f A maturity formula, as defined by g3a_mature_constant.

output_stocks List of g3_stocks that maturing stock should move into.

output_ratios Vector of proportions for how to distribute into output_stocks , summing to 1,
default evenly spread.

transition_f formula specifying a contition for running maturation steps as well as growth,
default final step of year.

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that actions will be run within model, see g3_action_order.

transition_at Integer order that transition actions will be run within model, see g3_action_order.

Details

A model can have any number of g3a_growmature actions, so long as the calling arguments are
different. For instance, run_f = ~age == 5 and run_f = ~age == 7.

impl_f ’s dependent variables are analysed to see what will affect growth. If nothing but cur_step_size
will affect growth, then growth will only be recalculated when the step size changes.

Value

g3a_grow_lengthvbsimple: Returns a formula for use as delta_len_f :

∆Li = (L∞ − Li)(1− e−κ∆t)

∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

g3a_grow_weightsimple: Returns a formula for use as delta_wgt_f :

∆W i,j = α((Li +∆Lj)
β − Li

β)

∆L Vector of all possible length group increases i.e 0..maxlengthgroupgrowth

action_grow 11

g3a_grow_length_multspec: Returns a formula for use as delta_len_f :

∆Li = ∆tp0L
p1

i ψi(p2T + p3)

px Supplied parameters
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Li Current length
ψi Feeding level of stock. See g3a_predate_catchability_predator

T Temperature of current region

g3a_grow_weight_multspec: Returns a formula for use as delta_wgt_f :

∆W i,j = ∆tp4Wi
p5(ψi − p6)(p7T + p8)

px Supplied parameters
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Wi Current mean weight
ψi Feeding level of stock. See g3a_predate_catchability_predator

T Temperature of current region

Note that the equation is not dependent on the change in length, the value will be the same for
each j.

g3a_grow_length_weightjones: Returns a formula for use as delta_len_f :

r =
Wi − (p0 + ψi(p1 + p2ψi))Wref

Wi

∆Li = minmax(p3 + p4r, 0, p5)
∆W i,j

p6p7Li
(p7−1)

Wi Current mean weight
px Supplied parameters
ψi Feeding level of stock. See g3a_predate_catchability_predator

Wref Reference weight, from the reference_weight parameter
∆W i,j Change in weight, i.e. the output from the delta_wgt_f formula, probably g3a_grow_weight_weightjones.

g3a_grow_weight_weightjones: Returns a formula for use as delta_wgt_f :

∆W i,j = ∆t(
Mψi

q0Wi
q1 − q2Wi

q3e(q4T+q5))

qx Supplied parameters
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

M Maximum theoretical consumption, as defined by g3a_predate_maxconsumption

ψi Feeding level of stock. See g3a_predate_catchability_predator

Wi Current mean weight
T Temperature of current region

Note that the equation is not dependent on the change in length, the value will be the same for
each j.

12 action_grow

g3a_grow_impl_bbinom: formula object converting mean growths using beta-binomia distribu-
tion. See https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#
beta-binomial

g3a_growmature: An action (i.e. list of formula objects) that will, for the given stock ...

1. Move any maturing individuals into temporary storage, stock__transitioning_num / stock__transitioning_wgt

2. Calculate increase in length/weight using growth_f and impl_f

3. Move the contents of the temporary storage into output_stocks

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockgrowth,
g3_stock

Examples

ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4))
ling_mat <- g3_stock(c(species = 'ling', 'mat'), seq(20, 156, 4))

Growth / maturity for immature ling
growth_action <- g3a_growmature(ling_imm,

impl_f = g3a_grow_impl_bbinom(
Parameters will be ling.Linf, ling.K
g3a_grow_lengthvbsimple(by_stock = 'species'),
Parameters will be ling_imm.walpha, ling_imm.wbeta
g3a_grow_weightsimple(),
maxlengthgroupgrowth = 15),

maturity_f = g3a_mature_constant(
alpha = g3_parameterized('ling.mat1', scale = 0.001),
l50 = g3_parameterized('ling.mat2')),
output_stocks = list(ling_mat))

Multspec growth - define a data frame with temperature
temperature <- g3_timeareadata(

'temp',
data.frame(year = 2000, step=c(1,2), temp=c(10, 14)),
value_field = "temp")

ms_growth_actions <- list(
g3a_growmature(ling_imm, g3a_grow_impl_bbinom(
g3a_grow_length_multspec(temperature = temperature),
g3a_grow_weight_multspec(temperature = temperature),
maxlengthgroupgrowth = 8)),

NULL)

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#beta-binomial
https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#beta-binomial
https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockgrowth

action_mature 13

action_mature Gadget3 maturity action

Description

Add maturity actions to a g3 model

Usage

g3a_mature_continuous(
alpha = g3_parameterized('mat.alpha', by_stock = by_stock),
l50 = g3_parameterized('mat.l50', by_stock = by_stock),
beta = 0,
a50 = 0,
bounded = TRUE,
by_stock = TRUE)

g3a_mature_constant(alpha = NULL, l50 = NA, beta = NULL, a50 = NA, gamma = NULL,
k50 = NA)

g3a_mature(stock, maturity_f, output_stocks, output_ratios = rep(1/length(output_stocks),
times = length(output_stocks)), run_f = ~TRUE,
run_at = g3_action_order$grow,
transition_at = g3_action_order$mature)

Arguments

alpha A formula to substitute for α.
l50 A formula to substitute for l50. Must be defined if alpha is defined.
beta A formula to substitute for β.
a50 A formula to substitute for a50. Must be defined if beta is defined.
gamma A formula to substitute for γ.
k50 A formula to substitute for k50. Must be defined if gamma is defined.
bounded Should the maturity ratio be bounded to 0..1? Set TRUE if maturity is producing

negative numbers of individuals.
by_stock Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.
stock g3_stock to mature.
maturity_f A maturity formula, as defined by g3a_mature_constant.
output_stocks List of g3_stocks that maturing stock should move into.
output_ratios Vector of proportions for how to distribute into output_stocks , summing to 1,

default evenly spread.
run_f formula specifying a condition for running this action, default always runs.
run_at Integer order that actions will be run within model, see g3_action_order.
transition_at Integer order that transition actions will be run within model, see g3_action_order.

14 action_mature

Details

Generally you would use g3a_growmature, which does both growth and maturity at the same time.

A model can have any number of g3a_mature actions, so long as the calling arguments are different.
For instance, run_f = ~age == 5 and run_f = ~age == 7.

Value

g3a_mature_continuous: A formula object representing

m0 ∗ (α∆L+ β∆t)⊤

m0 The g3a_mature_constant formula, as defined below, using parameters supplied to g3a_mature_continuous

∆L Vector of all possible changes in length, as per current growth matrix (see g3a_grow_impl_bbinom)
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

g3a_mature_constant: A formula object with the following equation

1

1 + e−α(l−l50)−β(a−a50)−γ(k−k50)

l length of stock
l50 length of stock when 50% are mature
a age of stock
a50 age of stock when 50% are mature
k weight of stock
k50 weight of stock when 50% are mature

g3a_mature: An action (i.e. list of formula objects) that will, for the given stock ...

1. Move any maturing individuals into temporary storage, stock__transitioning_num / stock__transitioning_wgt
2. Move the contents of the temporary storage into output_stocks

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockmature,
g3a_growmature, g3_stock

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4))
ling_mat <- g3_stock('ling_mat', seq(20, 156, 4))

Maturity for immature ling
maturity_action <- g3a_mature(ling_imm,

maturity_f = g3a_mature_continuous(),
output_stocks = list(ling_mat))

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockmature

action_migrate 15

action_migrate Gadget3 migration action

Description

Add migration to a g3 model

Usage

g3a_migrate_normalize(row_total = 1)

g3a_migrate(stock, migrate_f, normalize_f = g3a_migrate_normalize(),
run_f = TRUE,
run_at = g3_action_order$migrate)

Arguments

row_total When calculating the proportion of individuals that will stay in place, use this
total for what rows are expected to sum to.

stock The g3_stock that will migrate in this action.

migrate_f A formula describing the migration in terms of (source) area and dest_area.

normalize_f Function to normalize a vector of possible destinations, to make sure fish aren’t
added or destroyed.

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that spawning actions will be run within model, see g3_action_order.

Details

To restrict movement to a particular step in a year, or a particular area, use run_f . For example:

cur_step == 1 Migration will happen on first step of every year

cur_step == 1 && cur_year >= 1990 Migration will happen on first step of every year after 1990

cur_step == 2 && area = 1 Migration will happen on second step of every year, in the first area

Multiple migration actions can be added, for a separate spring and autumn migration, for instance.

The action will define the following stock instance variables for each given stock :

stock__migratematrix a×a array, containing proportion of (stock) moved from one area to another.
If NaN, no movement has occurred

16 action_naturalmortality

Value

g3a_migrate_normalize: A formula transforming stock__migratematrix[,stock__area_idx]
(i.e. all possible destinations from a given area) by:

1. Squaring so values are all positive
2. Altering the proportion of static individuals so a row sums to row_total
3. Dividing by row_total so a row sums to 1

g3a_migrate: An action (i.e. list of formula objects) that will, for the given stock ...

1. Fill in stock__migratematrix using migrate_f and normalize_f
2. Apply movement to stock

See Also

g3_stock

Examples

areas <- list(a=1, b=2, c=3, d=4)

NB: stock doesn't live in b, so won't figure in stock_acd__migratematrix
stock_acd <- (g3_stock('stock_acd', seq(10, 40, 10))

%>% g3s_livesonareas(areas[c('a', 'c', 'd')]))

movement_action <- list(
g3a_migrate(

stock_acd,
In spring, individuals in area 'a' will migrate to 'd'.
~if (area == area_a && dest_area == area_d) 0.8 else 0,
run_f = ~cur_step == 2),

g3a_migrate(
stock_acd,
In autumn, individuals in all areas will migrate to 'a'
~if (dest_area == area_a) 0.8 else 0,
run_f = ~cur_step == 4),

list())

action_naturalmortality

Gadget3 natural mortality action

Description

Add natural mortality to a g3 model

action_naturalmortality 17

Usage

g3a_naturalmortality_exp(
param_f = g3_parameterized('M', by_stock = by_stock, by_age = TRUE),
by_stock = TRUE,
action_step_size_f = ~cur_step_size)

g3a_naturalmortality(
stock,
mortality_f = g3a_naturalmortality_exp(),
run_f = TRUE,
run_at = g3_action_order$naturalmortality)

Arguments

param_f A formula to substitute for m.
action_step_size_f

How much model time passes in between runs of action? defaults to ~cur_step_size,
i.e. every step. Use action_step_size_f = 1 if action only runs yearly.

by_stock Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.

stock g3_stock mortality applies to.

mortality_f A mortality formula, as defined by g3a_naturalmortality_exp.

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

A model can have any number of g3a_naturalmortality actions, so long as the calling arguments
are different. For instance, run_f = ~age == 5 and run_f = ~age == 7.

Value

g3a_naturalmortality_exp: A formula object with the following equation

e−m∆t

∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

g3a_naturalmortality: An action (i.e. list of formula objects) that will, for the given stock ...

1. Remove a proportion of each stock group as calculated by the mortality formula mortality_f

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stocknatmort,
g3a_growmature, g3_stock

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stocknatmort

18 action_order

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)

Natural mortality for immature ling
naturalmortality_action <- g3a_naturalmortality(ling_imm)

NB: M is used in both g3a_naturalmortality and g3a_renewal_initabund, to
customise, you need to make sure the definitions are in sync, for example:

M <- g3_parameterized('M', by_stock = TRUE, by_age = FALSE)
actions <- list(

g3a_naturalmortality(ling_imm,
g3a_naturalmortality_exp(M)),

g3a_initialconditions_normalparam(ling_imm,
factor_f = g3a_renewal_initabund(M = M)),

NULL)

action_order Standard gadget3 order of actions

Description

Constant defining standard order of actions

Usage

g3_action_order

Details

All gadget3 actions have a run_at parameter. This decides the point in the model that the action will
happen relative to others.

The defaults for these are set via g3_action_order.

Value

A named integer list

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-order.html

https://gadget-framework.github.io/gadget2/userguide/chap-order.html

action_predate 19

Examples

The default action order
unlist(g3_action_order)

View single value
g3_action_order$age

action_predate Gadget3 predation actions

Description

Add predation to a g3 model

Usage

g3a_predate_catchability_totalfleet(E)

g3a_predate_catchability_numberfleet(E)

g3a_predate_catchability_linearfleet(E)

g3a_predate_catchability_project(
quota_f = NULL,
landings_f = NULL,
interim_f = g3_parameterized("quota.interim", value = 0,

by_predator = TRUE, by_step = TRUE),
quota_prop = g3_parameterized("quota.prop", by_predator = TRUE, value = 1),
cons_step = g3_parameterized("cons.step", by_predator = TRUE, by_step = TRUE,

value = quote(step_lengths / 12.0)),
interim_unit = unit,
unit = c("biomass", "biomass-year", "harvest-rate", "harvest-rate-year",

"individuals", "individuals-year"))

g3a_predate_catchability_effortfleet(catchability_fs, E)

g3a_predate_catchability_quotafleet(quota_table, E,
sum_stocks = list(),
recalc_f = NULL)

g3a_predate_maxconsumption(
m0 = g3_parameterized('consumption.m0', value = 1,

by_predator = TRUE, optimise = FALSE),
m1 = g3_parameterized('consumption.m1', value = 0,

by_predator = TRUE, optimise = FALSE),
m2 = g3_parameterized('consumption.m2', value = 0,

20 action_predate

by_predator = TRUE, optimise = FALSE),
m3 = g3_parameterized('consumption.m3', value = 0,

by_predator = TRUE, optimise = FALSE),
temperature = 0)

g3a_predate_catchability_predator(
prey_preferences = 1,
energycontent = g3_parameterized('energycontent', value = 1,

by_stock = by_stock, optimise = FALSE),
half_feeding_f = g3_parameterized('halffeeding',

by_predator = by_predator, optimise = FALSE),
max_consumption = g3a_predate_maxconsumption(temperature = temperature),
temperature = 0,
by_predator = TRUE,
by_stock = TRUE)

g3a_predate(
predstock,
prey_stocks,
suitabilities,
catchability_f,
overconsumption_f = quote(dif_pmin(stock__consratio, 0.95, 1e3)),
run_f = ~TRUE,
run_at = g3_action_order$predate)

NB: Deprecated interface, use g3a_predate()
g3a_predate_fleet(fleet_stock, prey_stocks, suitabilities, catchability_f,

overconsumption_f = quote(dif_pmin(stock__consratio, 0.95, 1e3)),
run_f = ~TRUE, run_at = g3_action_order$predate)

NB: Deprecated interface, use g3a_predate() with g3a_predate_catchability_totalfleet
g3a_predate_totalfleet(fleet_stock, prey_stocks, suitabilities, amount_f,

overconsumption_f = quote(dif_pmin(stock__consratio, 0.95, 1e3)),
run_f = ~TRUE, run_at = g3_action_order$predate)

Arguments

predstock, fleet_stock
g3_stock that describes the harvesting predators/fleet, or a list of g3_stock
objects, in which case g3a_predate will be run for each in turn.

prey_stocks List of g3_stocks that maturing stock should move into.

suitabilities Either a list of stock names to formula objects, with an optional unnamed default
option, or a formula object (which is always used).
Each formula should define suitability of a stock, for example by using g3_suitability_exponentiall50.

catchability_f A list of formulas generated by one of the g3a_predate_catchability_* func-
tions, which define the total biomass a fleet is able to catch.

E, landings_f A formula defining total catch a fleet can harvest at the current time/area (to-
talfleet/numberfleet), or a scaling factor used to define the stock caught (lin-

action_predate 21

earfleet/effortfleet/quotafleet).

quota_f A per-year quota for use during projection time periods, or for the whole model
if landings_f is NULL. Generally, this will be produced by g3_quota.

interim_f A formula used to determine catch in the gap between landings data & a quota
calculated from projections.

quota_prop A quota can apply to multiple fleets, in which case use this parameter to as-
sign the proportion of quota available to the current fleet. Note that ideally all
quota_prop values sum to 1, but this doesn’t have to be the case (e.g. over/under-
utilisation of quotas).

cons_step The proportion of the per-year quota that is used in each step. As with quota_prop
ideally all values sum to 1.

unit, interim_unit
The unit that landings_f / interim_f is provided in. "biomass", "effort", "indi-
viduals" are equivalent to totalfleet / linearfleet & numberfleet respectively. (the
default quota functions supply their own unit via. an attribute).

catchability_fs

Either a list of stock names to formula objects, with an optional unnamed default
option, or a formula object (which is always used).

quota_table A data.frame with ’biomass’ and ’quota’ columns, ’biomass’ a numeric col-
umn, an upper bound for total biomass amount, the final value always being
Inf. ’quota’ being a list of formulas, defining the quota for each, e.g. with
g3_parameterized.

sum_stocks Either a list of g3_stock objects to sum when choosing a value from quote_table ,
or NULL, in which case choose the quota based on the current prey.

recalc_f A formula denoting when to recalculate the current quota. For example ~cur_step
== 1 will ensure the quota is only recalculated at the beginning of the year.

amount_f Equivalent to E passed to g3a_predate_catchability_totalfleet.
prey_preferences

Either 1, indicating a Type II functional response, or >1 for a Type III functional
response. Either a list of stock names to numbers, with an optional unnamed
default option, or a single number to be used for all stocks.

energycontent A formula object for the energy content of the current prey, in in kilojoules per
kilogram.

half_feeding_f The biomass of prey required to allow the predator to consume prey at half the
maximum consumption level.

max_consumption

A formula for maximum consumption of the predator, in kilojoules per month.
Generally generated by g3a_predate_maxconsumption

m0, m1, m2, m3 Parameters for maximum possible consumption formula, see below.

temperature A formula object for the current temperature, probably generated by g3_timeareadata.
overconsumption_f

Overconsumption rule, a formula that should cap all values in stock__consratio
to <= 95

by_stock Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.

22 action_predate

by_predator Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

g3a_predate will, given a g3_fleet "predator" and a set of g3_stock preys, add predation into a
model. The behaviour is driven by 2 parameters:

suitabilities Defines a predator’s preference within a prey stock, normally one of the suitability
functions, e.g. g3_suitability_exponentiall50

catchability_f Defines a predator’s overall requirements, set with one of the catchability functions,
e.g. g3a_predate_catchability_totalfleet

For the definition of each catchability function, see the values section below.

Details for custom actions: The actions will define the following stock instance variables for
each given fleet_stock and prey_stock :

(predstock)__totalsuit Total suitable prey for (predstock), i.e.
∑p

preys

∑l
lengths Fpl

prey_stock__suit_fleet_stock Suitability of (prey_stock) for (fleet_stock), i.e. Fpl

(predstock)_(prey_stock)__cons Biomass of (prey_stock) caught by (predstock), by predator &
prey dimensions

prey_stock__totalpredate Biomass of total consumed (prey_stock), in a prey array
prey_stock__consratio Ratio of prey_stock__totalpredate / (current biomass), capped by over-

consumption_f

In addition, g3a_predate_fleet will generate prey_stock__predby_predstock , Biomass of (prey_stock)
caught by (fleet_stock), in a prey array, for compatibility with older models. It is otherwise iden-
tical to g3a_predate.
A model can have any number of g3a_predate_* actions, so long as the calling arguments are
different. For instance, run_f = ~age == 5 and run_f = ~age == 7.

Value

g3a_predate_catchability_totalfleet: formula objects that define a fleet’s desired catch by total
biomass (e.g. landings data):

Fpl = SNplWpl

Cpl =
EFpl

p∑
preys

l∑
lengths

Fpl

S Suitability form suitabilities argument
E E argument, biomass caught by fleet. Generally a g3_timeareadata table containing landings

data, with year/step/area/weight columns
Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l

action_predate 23

g3a_predate_catchability_numberfleet: formula objects that define a fleet’s desired catch by
total number of stock landed (individuals, not biomass):

Fpl = SNpl

Cpl =
EFplWpl

p∑
preys

l∑
lengths

Fpl

S Suitability form suitabilities argument
E E argument, numbers caught by fleet. Generally a g3_timeareadata table containing landings

data, or a constant quota
Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l

g3a_predate_catchability_linearfleet: formula objects that define a linear relationship between
desired catch and available biomass:

Fpl = SNplWpl

Cpl = E∆tFpl

S Suitability form suitabilities argument
E E argument, scaling factor for the stock that is to be caught, per month
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l

g3a_predate_catchability_project: The formula used depends on the unit parameter. "biomass",
"effort", "individuals" are equivalent to totalfleet / linearfleet & numberfleet respectively. How-
ever, E will switch from landings to quota once the model is projecting.

g3a_predate_catchability_effortfleet: This is a multi-species extension to linearfleet, allowing
differently-parameterized catchability per-stock:

Fpl = SNplWpl

Cpl = csE∆tFpl

S Suitability form suitabilities argument
cs catchability_fs argument for the current stock
E E argument, scaling factor for the stock that is to be caught, per month
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l

g3a_predate_catchability_quotafleet: A formula onject that defines catch based on the avail-
able biomass of the stock multiplied by a scaling factor set according to a simple harvest control
rule:

Fpl = SNplWpl

Cpl = qE∆tFpl

24 action_predate

q quota selected from quota_table , corresponding to the total biomass of sum_stocks . For exam-
ple, given data.frame(biomass = c(10000, Inf), quota = I(list(g3_parameterized('quota.low'),
g3_parameterized('quota.high')))), ’quota.low’ will be chosen when total biomass is
less than 10000, otherwise ’quota.high’ will be used.

S Suitability form suitabilities argument
E E argument, scaling factor for the stock that is to be caught, per month
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l

...if recalc_f is set, this will only be recaculated when true. Any other step will use the previous
value.

g3a_predate_maxconsumption: formula objects that define a predator’s maximum consump-
tion:

ML = m0∆te
(m1T−m2T

3)Lm3

mx mx parameter, for ML, maximum possible consumption for the predator on the current
timestep

∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

T temperature parameter, formula representing current temperature

g3a_predate_catchability_predator: formula objects that define the predator/prey relationship:

Fpl = (SEpNplWpl)
dp

Cpl =
NLMLψLFpl

Ep

p∑
preys

l∑
lengths

Fpl

ψL =

p∑
preys

l∑
lengths

Fpl

H∆t+

p∑
preys

l∑
lengths

Fpl

S Suitability form suitabilities argument
∆t Length of current step as a proportion of the year, e.g. 0.25. See cur_step_size in g3a_time

Npl Number of prey in length cell for prey p, length l
Wpl Mean weight of prey in length cell for prey p, length l
ML Maximum possible consumption for the predator on the current timestep, in in kilojoules per

month. See g3a_predate_maxconsumption

L Length of the current predator
Ep energycontent parameter, the energy content of prey
H half_feeding_f parameter, the biomass of prey required to allow the predator to consume prey

at half the maximum consumption level
T temperature parameter, formula representing current temperature

action_predate 25

g3a_predate: An action (i.e. list of formula objects) that will...

1. For each prey, collect all suitable stock into a predstock_prey_stock__suit variable, using the
catchability_f Fpl formula. The units here will depend on the catchability_f method used.

2. After all predator consumption is done, scale consumption using the catchability_f Cpl for-
mula into predstock_prey_stock__cons , summed into prey_stock__totalpredate

3. Calculate prey_stock__consratio (ratio of consumed to available), capping using overcon-
sumption_f . Update prey_stock__num

4. Recalculate predstock_prey_stock__cons , predstock_prey_stock__suit , post-overconsumption

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockpredator,
g3_stock

Examples

areas <- c(a = 1, b = 2)
ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock(c(species = 'ling', 'mat'), seq(20, 156, 4)) %>% g3s_age(5, 15)
lln <- g3_fleet('lln') %>% g3s_livesonareas(areas[c('a', 'b')])

Invent a lln_landings table
lln_landings <- expand.grid(

year = 1999:2000,
step = c(1, 2),
area = areas[c('a', 'b')])

lln_landings$total_weight <- floor(runif(nrow(lln_landings), min=100, max=999))

g3a_predate_catchability_totalfleet(): Set catch accordings to landings data
predate_action <- g3a_predate_fleet(

lln,
list(ling_imm, ling_mat),
suitabilities = g3_suitability_exponentiall50(by_stock = 'species'),
catchability_f = g3a_predate_catchability_totalfleet(

g3_timeareadata('lln_landings', lln_landings, "total_weight")))

g3a_predate_catchability_numberfleet(): Fixed quota of 1000 fish
predate_action <- g3a_predate_fleet(

lln,
list(ling_imm, ling_mat),
suitabilities = g3_suitability_exponentiall50(by_stock = 'species'),
catchability_f = g3a_predate_catchability_numberfleet(

g3_parameterized(
'quota',
value = 1000,
by_predator = TRUE,
scale = 0.5,
optimise = FALSE)))

attr(suppressWarnings(g3_to_r(list(predate_action))), 'parameter_template')

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockpredator

26 action_renewal

action_renewal Gadget3 renewal actions

Description

Add renewal / initialconditions to a g3 model

Usage

g3a_renewal_vonb_recl(
Linf = g3_parameterized('Linf', value = 1, by_stock = by_stock),
K = g3_parameterized('K', value = 1, by_stock = by_stock),
recl = g3_parameterized('recl', by_stock = by_stock),
recage = g3_parameterized('recage', by_stock = FALSE, optimise = FALSE),
by_stock = TRUE)

g3a_renewal_vonb_t0(
Linf = g3_parameterized('Linf', value = 1, by_stock = by_stock),
K = g3_parameterized('K', value = 1, by_stock = by_stock),
t0 = g3_parameterized('t0', by_stock = by_stock),
by_stock = TRUE)

g3a_renewal_initabund(
scalar = g3_parameterized('init.scalar', value = 1, by_stock = by_stock),

init = g3_parameterized('init', value = 1, by_stock = by_stock, by_age = TRUE),
M = g3_parameterized('M', by_stock = by_stock, by_age = TRUE),
init_F = g3_parameterized('init.F', by_stock = by_stock_f),
recage = g3_parameterized('recage', by_stock = FALSE, optimise = FALSE),
proportion_f = ~1,
by_stock = TRUE,
by_stock_f = FALSE)

############################# g3a_initialconditions

g3a_initialconditions_normalparam(
stock,
factor_f = g3a_renewal_initabund(by_stock = by_stock),
mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
stddev_f = g3_parameterized('init.sd', value = 10,

by_stock = by_stock, by_age = by_age),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
age_offset = quote(cur_step_size),
by_stock = TRUE,
by_age = FALSE,
wgt_by_stock = TRUE,
run_f = ~cur_time == 0L,

action_renewal 27

run_at = g3_action_order$initial)

g3a_initialconditions_normalcv(
stock,
factor_f = g3a_renewal_initabund(by_stock = by_stock),
mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
cv_f = g3_parameterized('lencv', by_stock = by_stock, value = 0.1,

optimise = FALSE),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
age_offset = quote(cur_step_size),
by_stock = TRUE,
by_age = FALSE,
wgt_by_stock = TRUE,
run_f = ~cur_time == 0L,
run_at = g3_action_order$initial)

############################# g3a_renewal

g3a_renewal_normalparam(
stock,
factor_f = g3_parameterized('rec',

by_stock = by_stock,
by_year = TRUE,
scale = g3_parameterized(

name = 'rec.scalar',
by_stock = by_stock),

ifmissing = g3_parameterized(
name = 'rec.proj',
optimise = FALSE,
by_stock = by_stock)),

mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
stddev_f = g3_parameterized('rec.sd', value = 10, by_stock = by_stock),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
wgt_by_stock = TRUE,
run_age = quote(stock__minage),
run_projection = TRUE,
run_step = 1,
run_f = NULL,
run_at = g3_action_order$renewal)

g3a_renewal_normalcv(
stock,
factor_f = g3_parameterized('rec',

by_stock = by_stock,
by_year = TRUE,

28 action_renewal

scale = g3_parameterized(
name = 'rec.scalar',
by_stock = by_stock),

ifmissing = g3_parameterized(
name = 'rec.proj',
optimise = FALSE,
by_stock = by_stock)),

mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
cv_f = g3_parameterized('lencv', by_stock = by_stock, value = 0.1,

optimise = FALSE),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
wgt_by_stock = TRUE,
run_age = quote(stock__minage),
run_projection = TRUE,
run_step = 1,
run_f = NULL,
run_at = g3_action_order$renewal)

############################# g3a_otherfood

g3a_otherfood(
stock,
num_f = g3_parameterized('of_abund', by_year = TRUE, by_stock = by_stock,

scale = g3_parameterized(
'of_abund.step', value = 1, by_step = TRUE, by_stock = by_stock),

ifmissing = "of_abund.proj"),
wgt_f = g3_parameterized('of_meanwgt', by_stock = by_stock),
by_stock = TRUE,
force_lengthvector = !any(grepl("__midlen$", all.vars(num_f))),
run_f = quote(cur_time <= total_steps),
run_at = g3_action_order$initial)

g3a_otherfood_normalparam(
stock,
factor_f = g3_parameterized(

'of_abund', by_year = TRUE, by_stock = by_stock,
scale = g3_parameterized(

'of_abund.step', value = 1, by_step = TRUE, by_stock = by_stock),
ifmissing = "of_abund.proj"),

mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
stddev_f = g3_parameterized('init.sd', value = 10,

by_stock = by_stock, by_age = by_age),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
by_age = FALSE,

action_renewal 29

wgt_by_stock = TRUE,
run_f = quote(cur_time <= total_steps),
run_at = g3_action_order$initial)

g3a_otherfood_normalcv(
stock,
factor_f = g3_parameterized(

'of_abund', by_year = TRUE, by_stock = by_stock,
scale = g3_parameterized(

'of_abund.step', value = 1, by_step = TRUE, by_stock = by_stock),
ifmissing = "of_abund.proj"),

mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
cv_f = g3_parameterized('lencv', by_stock = by_stock, value = 0.1,

optimise = FALSE),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
by_age = FALSE,
wgt_by_stock = TRUE,
run_f = quote(cur_time <= total_steps),
run_at = g3_action_order$initial)

Arguments

stock The g3_stock to apply to

num_f formula that produces a lengthgroup vector of number of individuals for the
current age/area/... length group.

wgt_f formula that produces a lenghgroup vector of mean weight for the current age/area/...
length group.

run_at Integer order that actions will be run within model, see g3_action_order.
factor_f, mean_f, stddev_f, alpha_f, beta_f

formula substituted into normalparam calcuations, see below.

cv_f formula substituted into normalcv calcuations, basically stddev_f = mean_f *
cv_f, see below.

age_offset Replace age with age - age_offset in mean_f . Used to simulate initialcondi-
tions at time "-1".

force_lengthvector

Should we assume that num_f is a constant, and needs repeating enough times
to turn into a length vector?

run_age Age to run renewals for, used as age == (run_age) into default run_f

run_projection Boolean. Run renewal in projection years? If false adds !cur_year_projection
into default run_f

run_step Which step to perform renewal in, or NULL for continuous renewal. Adds cur_step
== (run_step) into default run_f

30 action_renewal

run_f formula specifying a condition for running this action, For initialconditions de-
faults to first timestep. For renewal, the default is a combination of run_age ,
run_step & run_projection . For otherfood, the default is to always run, apart
from when the model is ending.

Linf, K, t0, recl formula substituted into vonb calcuations, see below.

recage formula substituted into initial abundance and vonb calcuations, see below.
proportion_f, scalar, init, M, init_F

formula substituted into initial abundance calcuations, see below.
by_stock, wgt_by_stock, by_stock_f, by_age

Controls how parameters are grouped, see g3_parameterized

Details

All of the following actions will renew stock in a model. The differences are when and what they
apply to by default:

g3a_initialconditions_* Will run at the start of the model, building an inital state of all ages

g3a_renewal_* Will run at every step but only for the minimal age, adding new recruits as an
alternative to g3a_spawn()

g3a_otherfood_* Will run at every step, replacing the previous state, creating a non-dynamic
stock for predators to consume

Specifying the quantities and mean-weights in each case works identically.

A model can have any number of g3a_renewal_* actions, so long as the calling arguments are
different. For instance, run_f = ~age == 5 and run_f = ~age == 7.

The g3a_renewal_* actions will define the following stock instance variables for stock :

stock__renewalnum Extra individuals added to the stock

stock__renewalwgt Mean weight of added individuals

Value

g3a_renewal_vonb_recl: A formula object representing

L∞(1− e−κ(a−a0+
log(1−L0/L∞)

κ))

L∞ Linf argument, by default model parameter named (stock).Linf

κ K argument, by default model parameter named (stock).K

L0 recl argument, by default model parameter named (stock).recl

a0 recage argument, by default model parameter named recage

NB: g3a_initialconditions_normalparam will replace a with a−∆t, see age_offset

g3a_renewal_vonb_t0: A formula object representing

L∞(1− e−κ(a−t0))

L∞ Linf argument, by default model parameter named (stock).Linf

action_renewal 31

κ K argument, by default model parameter named (stock).K

t0 t0 argument, by default model parameter named (stock).t0

NB: g3a_initialconditions_normalparam will replace a with a−∆t, see age_offset

g3a_renewal_vonb: An alias for g3a_renewal_vonb_recl()

g3a_renewal_initabund: A formula object representing

ps0sae
−1(M+F0)(a−a0)

s0 scalar argument, by default model parameter named (stock).init.scalar

sa init argument, by default model parameter named (stock).init.(age)

M M argument, by default model parameter named (stock).M.(age)

F0 init_F argument, by default model parameter named init.F

a0 recage argument, by default model parameter named recage

p proportion argument, by default 1

g3a_otherfood: An action (i.e. list of formula objects) that will, for the given stock , iterate over
each area/age/etc. combination, and generate a lengthgroup vector of new individuals and weights
using num_f and wgt_f .
renewal will add fish to the existing stock, whereas initialconditions & otherfood will replace any
previous values.

g3a_initialconditions_normalparam / g3a_renewal_normalparam / g3a_otherfood_normalparam:
An action (i.e. list of formula objects) that will, for the given stock , iterate over each area/age/etc.
combination, and generate new individuals.
The following formulas are used to calculate abundance (N) and mean weight (W):

n = dnorm(L, µ, σ)

N = F10000
n∑
n

W = αLβ

L Midlength of all length groups for current area/age/...
F factor_f argument, by default output of g3a_renewal_initabund
µ mean_f argument, by default output of g3a_renewal_vonb_t0
σ stddev_f argument, by default model parameter named (stock).(init|rec).sd

α alpha_f argument, by default model parameter named (stock).walpha

β beta_f argument, by default model parameter named (stock).wbeta

g3a_initialconditions_normalcv / g3a_renewal_normalcv / g3a_otherfood_normalcv: An
action (i.e. list of formula objects) that will, for the given stock , iterate over each area/age/etc.
combination, and generate new individuals.
The following formulas are used to calculate abundance (N) and mean weight (W):

n = dnorm(L, µ, µ ∗ CV)

N = F10000
n∑
n

W = αLβ

32 action_renewal

L Midlength of all length groups for current area/age/...
F factor_f argument, by default output of g3a_renewal_initabund
µ mean_f argument, by default output of g3a_renewal_vonb_t0
CV cv_f argument, by default model parameter named (stock).lencv

α alpha_f argument, by default model parameter named (stock).walpha

β beta_f argument, by default model parameter named (stock).wbeta

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockinitial,
https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockrenew,
https://gadget-framework.github.io/gadget2/userguide/chap-other.html#chap-other,
g3_stock

Examples

stocks <- list(
imm = g3_stock(c('ling', maturity = "imm"), seq(10, 100, 10)) %>% g3s_age(3, 7),
mat = g3_stock(c('ling', maturity = "mat"), seq(10, 100, 10)) %>% g3s_age(5, 10))

actions <- list(
g3a_time(2000, 2000),
g3a_initialconditions_normalcv(stocks$imm),
g3a_initialconditions_normalcv(stocks$mat),
NULL)

model_fn <- g3_to_r(c(actions, list(
g3a_report_detail(actions))))

attr(model_fn, 'parameter_template') |>
g3_init_val("init.F", 0.4) |>
g3_init_val("ling_imm.Linf", 80) |>
g3_init_val("ling_mat.Linf", 160) |>
g3_init_val("ling_*.K", 90) |>
g3_init_val("ling_*.t0", 0) |>
g3_init_val("ling_*.lencv", 0.1) |>
g3_init_val("ling_imm.init.#", 3:7 * 100) |>
g3_init_val("ling_mat.init.#", 5:10 * 200) |>
g3_init_val("ling_*.init.scalar", 200) |>
g3_init_val("ling_*.walpha", 2.275e-06) |>
g3_init_val("ling_*.wbeta", 3.2020) |>
g3_init_val("ling_*.M.#", 0.15) |>
identity() -> params.in

r <- model_fn(params.in)

g3_array_plot(attr(r, "dstart_ling_imm__num")[,,time=1])
g3_array_plot(attr(r, "dstart_ling_mat__num")[,,time=1])

Plots
par(mar = c(4,2,2,1), cex.main = 1)
curve(g3_eval(g3a_renewal_vonb_t0(Linf = 20, K = 0.8, t0 = 0), age = x),

0, 10, col = 2, xlab = "age", main = "g3a_renewal_vonb_t0(Linf = 20, K = 0.8..1.4, t0 = 0)")
curve(g3_eval(g3a_renewal_vonb_t0(Linf = 20, K = 1.0, t0 = 0), age = x),

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockinitial
https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec:stockrenew
https://gadget-framework.github.io/gadget2/userguide/chap-other.html#chap-other

action_report 33

0, 10, col = 1, add = TRUE)
curve(g3_eval(g3a_renewal_vonb_t0(Linf = 20, K = 1.2, t0 = 0), age = x),

0, 10, col = 3, add = TRUE)
curve(g3_eval(g3a_renewal_vonb_t0(Linf = 20, K = 1.4, t0 = 0), age = x),

0, 10, col = 4, add = TRUE)

Otherfood
"Otherfood" stocks are defined in a similar manner to any other stock
Note that _normalparam & _normalcv need both length & age dimensions
other_wgt <- g3_stock('other_wgt', 0)
other_cv <- g3_stock('other_cv', seq(50, 100, by = 10)) %>% g3s_age(5,10)

actions <- list(
g3a_time(2000, 2010),
Will get other_wgt.of_abund.1998.1, other_wgt.of_meanwgt parameters
g3a_otherfood(other_wgt),
Use standard vonB parameters (Linf/K/t0) to define abundance
g3a_otherfood_normalcv(other_cv),
NULL)

model_fn <- g3_to_r(c(actions, list(
g3a_report_detail(actions))))

attr(model_fn, 'parameter_template') |>
g3_init_val("other_cv.Linf", 80) |>
g3_init_val("other_cv.K", 90) |>
g3_init_val("other_cv.t0", 0) |>
g3_init_val("other_cv.of_abund.#", 100:110) |>
g3_init_val("other_wgt.of_abund.#", 100:110) |>
g3_init_val("other_wgt.of_abund.step.#", 1) |>
g3_init_val("other_cv.of_abund.proj", 80) |>
g3_init_val("other_wgt.of_abund.proj", 70) |>
g3_init_val("project_years", 5) |>
identity() -> params.in

r <- model_fn(params.in)

g3_array_plot(t(attr(r, "dstart_other_wgt__num")))
g3_array_plot(t(attr(r, "dstart_other_cv__num")[,age="age7",]))

action_report Gadget3 report actions

Description

Add report to a g3 model

Usage

g3a_report_stock(report_stock, input_stock, report_f,
include_adreport = FALSE,
run_f = TRUE,
run_at = g3_action_order$report)

34 action_report

g3a_report_history(
actions,
var_re = "__num$|__wgt$",
out_prefix = "hist_",
run_f = TRUE,
run_at = g3_action_order$report)

g3a_report_detail(actions,
run_f = quote(g3_param('report_detail', optimise = FALSE, value = 1L,

source = "g3a_report_detail") == 1),
abundance_run_at = g3_action_order$report_early,
run_at = g3_action_order$report)

Arguments

report_stock The g3_stock to aggregate into

input_stock The g3_stock that will be aggregated

report_f formula specifying what to collect, for instance g3_formula(stock_ss(input_stock__num)
) or g3_formula(stock_ss(input_stock__wgt)).

actions List of actions that model will consist of.

var_re Regular expression specifying variables to log history for.

out_prefix Prefix to add to history report output, e.g. hist_ling_imm__num.
include_adreport

Should the aggregated value get ADREPORT’ed?
abundance_run_at

Integer order that abundance will be collected within the model. Note that by
default it’s collected at the start, not the end

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The g3a_report_detail defines a selection of default reports from your model, using g3a_report_history:

*_surveyindices_*__params The slope/intercept as used by g3l_distribution_surveyindices_log

step_lengths

*_weight The weighting of likelihood components

nll_* Breakdown of nll for each likelihood component

dstart_*__num Abundance in numbers, at start of each model step

dstart_*__wgt Mean weight of individuals, at start of each model step

detail_*__renewalnum Numbers produced by renewal at each model step

detail_*__spawnednum Numbers produced by spawning at each model step

detail_*_*__cons Total biomass of prey consumed by predator, at each model step

action_report 35

detail_*_*__suit Total suitable biomass of prey for predator, at each model step

The reports produced by g3a_report_history will vary based on the provided inputs. A model
can have any number of g3a_report_* actions, so long as the calling arguments are different. For
instance, run_f = ~age == 5 and run_f = ~age == 7.

Value

g3a_report_stock: An action (i.e. list of formula objects) that will...

1. Iterate over input_stock , collecting data into report_stock
2. Add the contents of report_stock__instance_name to the model report

g3a_report_history: An action (i.e. list of formula objects) that will store the current state of
each variable found matching var_re .

g3a_report_detail: Uses g3a_report_history to generate detailed reports suitable for use in
g3_fit.

See Also

g3_stock

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)

Report that aggregates ages together
agg_report <- g3_stock('agg_report', c(1)) %>%

g3s_agegroup(list(young = 1:3, old = 4:5)) %>%
g3s_time(year = 2000:2002)

Generate dissaggregated report by cloning the source stock, adding time
raw_report <- g3s_clone(ling_imm, 'raw_report') %>%

g3s_time(year = 2000:2002)

actions <- list(
g3a_age(ling_imm),
g3a_report_stock(agg_report, ling_imm, g3_formula(stock_ss(ling_imm__num)),

include_adreport = TRUE),
g3a_report_stock(raw_report, ling_imm, g3_formula(stock_ss(ling_imm__num))))

"raw_report__num" and "agg_report__num" will be available in the model report
In addition, agg_report__num will be included in TMB::sdreport() output

Report history of all "__num" and "__wgt" variables
actions <- c(actions, list(g3a_report_history(actions)))

Report history of just "ling_imm__num"
actions <- c(actions, list(g3a_report_history(actions, "^ling_imm__num$")))

Add a detail report suitable for g3_fit
actions <- c(actions, list(g3a_report_detail(actions)))

36 action_spawn

action_spawn Gadget3 spawning action

Description

Add spawning to a g3 model

Usage

g3a_spawn_recruitment_fecundity(
p0 = g3_parameterized('spawn.p0', value = 1, by_stock = by_stock),
p1 = g3_parameterized('spawn.p1', value = 1, by_stock = by_stock),
p2 = g3_parameterized('spawn.p2', value = 1, by_stock = by_stock),
p3 = g3_parameterized('spawn.p3', value = 1, by_stock = by_stock),
p4 = g3_parameterized('spawn.p4', value = 1, by_stock = by_stock),
by_stock = TRUE)

g3a_spawn_recruitment_simplessb(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
by_stock = TRUE)

g3a_spawn_recruitment_ricker(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
lambda = g3_parameterized('spawn.lambda', by_stock = by_stock),
by_stock = TRUE)

g3a_spawn_recruitment_bevertonholt(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
lambda = g3_parameterized('spawn.lambda', by_stock = by_stock),
by_stock = TRUE)

g3a_spawn_recruitment_bevertonholt_ss3(
Steepness parameter
h = g3_parameterized('spawn.h', lower = 0.1, upper = 1, value = 0.5,

by_stock = by_stock),
Recruitment deviates
R = g3_parameterized('spawn.R', by_year = TRUE, exponentiate = TRUE,

Unfished equilibrium recruitment
scale = "spawn.R0",
by_stock = by_stock),

Unfished equilibrium spawning biomass (corresponding to R0)
B0 = g3_parameterized('spawn.B0', by_stock = by_stock),
by_stock = TRUE)

g3a_spawn_recruitment_hockeystick(
r0 = g3_parameterized('spawn.r0', by_stock = by_stock),
blim = g3_parameterized('spawn.blim', value = 1, by_stock = by_stock),

action_spawn 37

by_stock = TRUE)

g3a_spawn(
stock,
recruitment_f,
proportion_f = 1,
mortality_f = 0,
weightloss_f = 0,
weightloss_args = list(),
output_stocks = list(),

output_ratios = rep(1 / length(output_stocks), times = length(output_stocks)),
mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
stddev_f = g3_parameterized('rec.sd', value = 10, by_stock = by_stock),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
wgt_by_stock = TRUE,
run_step = NULL,
run_f = ~TRUE,
run_at = g3_action_order$spawn,
recruit_at = g3_action_order$renewal)

Arguments

p0, p1, p2, p3, p4 Substituted into g3a_spawn_recruitment_fecundity formula, see below.
mu, lambda, h, R, B0, r0, blim

Substituted into g3a_spawn_recruitment_* formula, see below.

stock The mature g3_stock that will spawn in this action.

recruitment_f A list of formula generated by one of the g3a_spawn_recruitment_* functions,
containing

s Formula run for each subset of stock
r Final formula for calculating number of recruits for spawning action

proportion_f formula generated by one of the g3_suitability_* functions, describing the pro-
portion of stock that will spawn at this timestep.

mortality_f formula generated by one of the g3_suitability_* functions, describing the pro-
portion of spawning stock that will die during spawning.

weightloss_f formula generated by one of the g3_suitability_* functions, describing the over-
all weight loss during spawning.
DEPRECATED: Use weightloss_args for new models.

weightloss_args

list of options to pass to g3a_weightloss, e.g. rel_loss & abs_loss . If not
empty, a weightloss action will be included as part of spawning.

output_stocks List of g3_stocks that will be spawned into.

output_ratios Vector of proportions for how to distribute into output_stocks , summing to 1,
default evenly spread.

38 action_spawn

mean_f, stddev_f, alpha_f, beta_f
formula substituted into stock structure calculations, see g3a_renewal_normalparam
for details.

run_step Which step to perform renewal in, or NULL for continuous spawning. Adds
cur_step == (run_step) into default run_f .

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that spawning actions will be run within model, see g3_action_order.

recruit_at Integer order that recruitment from spawning will be run within model, see
g3_action_order.

by_stock, wgt_by_stock
Controls how parameters are grouped, see g3_parameterized

Details

To restrict spawning to a particular step in a year, or a particular area, use run_f . For example:

cur_step == 1 Spawning will happen on first step of every year

cur_step == 1 && cur_year >= 1990 Spawning will happen on first step of every year after 1990

cur_step == 2 && area = 1 Spawning will happen on second step of every year, in the first area

The action will define the following stock instance variables for each given stock and output_stock :

stock__spawnprop Proportion of (stock) that are spawning in this spawning event

stock__spawningnum Numbers of (stock) that are spawning in this spawning event

output_stock__spawnednum Numbers of (output_stock) that will be produced in this spawning
event

Value

g3a_spawn_recruitment_fecundity: A pair of formula objects:

S = lp1ap2(pNal)
p3W p4

al

R = p0S

Nal Number of parent stock
Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f
p0..4 Arguments provided to function

g3a_spawn_recruitment_simplessb: A pair of formula objects:

S = NalpWal

R = µS

Nal Number of parent stock
Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f

action_spawn 39

µ Argument provided to function

g3a_spawn_recruitment_ricker: A pair of formula objects:

S = NalpWal

R = µSe−λS

Nal Number of parent stock
Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f
µ Argument provided to function
λ Argument provided to function

g3a_spawn_recruitment_bevertonholt: A pair of formula objects:

S = NalpWal

R =
µS

λ+ S

Nal Number of parent stock
Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f
µ Argument provided to function
λ Argument provided to function

g3a_spawn_recruitment_bevertonholt_ss3: A modified beverton-holt implementation from
SS3 returning a pair of formula objects:

S = NalpWal

R =
4hR0sR

B0(1− h) + S(5h− 1)

Nal Number of parent stock
Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f
h Steepness parameter, by default provided by the srr_h parameter
R0 Unfished equilibrium recruitment, by default provided by the R0 parameter
R Recruitment deviates, by default provided by the R parameter table
B0 Unfished equilibrium spawning biomass (corresponding to R0), by default provided by the

B0 parameter
λ Argument provided to function

g3a_spawn_recruitment_hockeystick: A pair of formula objects:

S = NalpWal

R = R0 min (S/Blim, 1)

Nal Number of parent stock

https://nmfs-ost.github.io/ss3-doc/SS330_User_Manual_release.html#beverton-holt
https://nmfs-ost.github.io/ss3-doc/SS330_User_Manual_release.html#beverton-holt

40 action_spawn

Wal Weight of parent stock
p Proportion of parent stock spawning, from proportion_f
R0 Argument r0 provided to function
Blim Argument blim provided to function

NB: This formula is differentiable, despite using min() in the definition above.

g3a_spawn: An action (i.e. list of formula objects) that will, for the given stock ...

1. Use proportion_f to calculate the total parent stock that will spawn
2. Use recruitment_f to derive the total newly spawned stock
3. Apply weightloss and mortality_f to the parent stock

... then, at recruitment stage ...

1. Recruit evenly into output_stocks , using mean_f , stddev_f , alpha_f , beta_f as-per g3a_renewal_normalparam

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec-stockspawn,
https://nmfs-ost.github.io/ss3-doc/SS330_User_Manual_release.html#beverton-holt,
g3a_naturalmortality, g3_stock

Examples

ling_imm <- g3_stock(c('ling', maturity = 'imm'), seq(20, 156, 4)) |> g3s_age(0, 10)
ling_mat <- g3_stock(c('ling', maturity = 'mat'), seq(20, 156, 4)) |> g3s_age(3, 10)

actions <- list(
g3a_time(1990, 1994, c(6, 6)),
g3a_initialconditions_normalcv(ling_imm),
g3a_initialconditions_normalcv(ling_mat),
g3a_age(ling_imm),
g3a_age(ling_mat),

g3a_spawn(
Spawn from ling_mat
ling_mat,
Use Ricker Recruitment Function to calculate # of recruits from total biomass
recruitment_f = g3a_spawn_recruitment_ricker(),
Proportion of ling_mat spawning exponential relationship based on length
proportion_f = g3_suitability_exponentiall50(

alpha = g3_parameterized("spawn.prop.alpha", value = 4, scale = -1),
l50 = g3_parameterized("spawn.prop.l50", value = 60)),

Proportion of ling_mat dying during spawning linear relationship to length
mortality_f = g3_suitability_straightline(

alpha = g3_parameterized("spawn.mort.alpha"),
beta = g3_parameterized("spawn.mort.beta")),

Weight of spawning ling_imm should reduce by a fixed absolute amount (see g3a_weightloss)
weightloss_args = list(abs_loss = g3_parameterized("spawn.weightloss", value = 0.1)),

Spawn into ling_imm
output_stocks = list(ling_imm),
Spawning should happen on the first step of every year
run_f = ~cur_step==1),

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec-stockspawn
https://nmfs-ost.github.io/ss3-doc/SS330_User_Manual_release.html#beverton-holt

action_spmodel 41

NULL)
model_fn <- g3_to_r(c(actions,

g3a_report_detail(actions),
g3a_report_history(actions, "__spawningnum$|__offspringnum$")))

attr(model_fn, "parameter_template") |>
g3a_initialconditions_normalcv()
g3_init_val("*.Linf", 50) |>
g3_init_val("*.t0", -1.4) |>
g3_init_val("*.walpha", 0.1) |>
g3_init_val("*.wbeta", 1) |>
g3a_spawn_recruitment_ricker()
g3_init_val("*.spawn.mu", 1e6) |>
g3_init_val("*.spawn.lambda", 30) |>
identity() -> params

r <- attributes(model_fn(params))
colSums(r$dstart_ling_imm__num)
colSums(r$dstart_ling_mat__wgt)

action_spmodel Gadget3 surplus production model

Description

A simple production model can be used in place of a set of gadget stock dynamics actions.

Usage

g3a_spmodel_logistic(
r = g3_parameterized("spm_r", lower = 0.01, upper = 1, value = 0.5,

by_stock = by_stock),
p = g3_parameterized("spm_p", lower = 0.01, upper = 10, value = 1,

by_stock = by_stock),
K = g3_parameterized("spm_K", lower = 100, upper = 1e6, value = 1000,

by_stock = by_stock),
by_stock = TRUE)

g3a_spmodel(
stock,
spm_num = g3a_spmodel_logistic(),
spm_num_init = g3_parameterized("spm_n0", by_stock = TRUE),
spm_wgt = 1,
run_f = TRUE,
run_at = g3_action_order$initial)

42 action_spmodel

Arguments

r, p, K Parameters for the logistic model, see value section.

by_stock Change the default parameterisation (e.g. to be by ’species’), see g3_parameterized.

stock g3_stock object to apply the simple production model to.

spm_num formula to calculate the relative change in abundance, one of the g3a_spmodel_*
functions.

spm_num_init Starting point for stock abundance.

spm_wgt formula to calculate the mean weight, if "1", then abundance in numbers ==
total biomass.

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The actions will define the following variables in your model, which could be reported with g3a_report_history:

(stock)__renewalnum Numbers added to the abundance of stock

Note that the input stock should not have g3s_age, if the stock was broken up by age the model
would quickly not make sense.

Value

g3a_spmodel_logistic: Returns a formula for use as spm_num:

rs(1− (
s

K
)p)

s

r r argument, by default the (stock)_spm_r model parameter
p p argument, by default the (stock)_spm_p model parameter
K K argument, by default the (stock)_spm_K model parameter

g3a_spmodel: G3 action that maintains stock abundance / mean weight according to simple
production model

See Also

g3_stock

Examples

NB: Stock only has one length group, 30:40. So the stocks midlen is 35
stock_a <- g3_stock(c("stock", "a"), c(30, 40), open_ended = FALSE)
stocks <- list(stock_a)
fleet_a <- g3_fleet(c('fleet', "a"))

actions <- list(
g3a_time(2000, 2010, step_lengths = c(6,6), project_years = 0),

action_tagging 43

g3a_spmodel(
stock_a),

g3a_predate(
fleet_a,
stocks,
suitabilities = 1,
catchability_f = g3a_predate_catchability_linearfleet(

g3_parameterized("effort", value = 1e-1, by_predator = TRUE))),

NB: Dummy parameter so model will compile in TMB
~{nll <- nll + g3_param("x", value = 0, optimise = TRUE)})

actions <- c(actions, list(
NB: Late reporting for abundance
g3a_report_history(actions, "__num$|__wgt$", out_prefix="dend_"),
g3a_report_detail(actions)))

model_fn <- g3_to_r(actions)

attr(model_fn, 'parameter_template') |>
Surplus production model parameters
g3_init_val("*.spm_n0", 1e4) |>
g3_init_val("*.spm_r", 0.1) |>
g3_init_val("*.spm_p", 0.01) |>
g3_init_val("*.spm_K", 1e8, lower = 0, upper = 1e20) |>

identity() -> params.in
r <- attributes(model_fn(params.in))

barplot(r$dend_stock_a__num, las = 2)
barplot(r$detail_stock_a__renewalnum, las = 2)

action_tagging Gadget3 tag-release action

Description

Add tag-release to a g3 model

Usage

g3a_predate_tagrelease(
fleet_stock, prey_stocks, suitabilities, catchability_f,
output_tag_f, mortality_f = 0, run_f = ~TRUE,
run_at = g3_action_order$predate, ...)

g3a_tag_shedding(stocks, tagshed_f, run_f = ~TRUE,
run_at = g3_action_order$straying)

44 action_tagging

Arguments

fleet_stock Tagging fleet, see g3a_predate_fleet

prey_stocks Stocks fleet harvests, see g3a_predate_fleet

suitabilities See g3a_predate_fleet

catchability_f See g3a_predate_fleet

output_tag_f formula specifying which numeric tag (see g3s_tag) stock will be released into.
Implemented with a g3_timeareadata table, e.g.

mortality_f formula generated by one of the g3_suitability_* functions, describing the pro-
portion of tagged stock that will die during tagging.

stocks Stocks that will shed tags

tagshed_f formula for proportion that will shed tags at this point

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that spawning actions will be run within model, see g3_action_order.

... Any further options for g3a_predate_fleet

Value

g3a_predate_tagrelease: An action (i.e. list of formula objects) that will...

1. Harvest as-per g3a_predate_fleet
2. Use mortality_f to apply tagging mortality to harvested stock
3. Use output_tag_f to decide what tag should be applied to harvested stock
4. Put harvested stock back into general circulation

g3a_tag_shedding: An action (i.e. list of formula objects) that will...

1. For each stock , move the proportion tagshed_f back to the "untagged" tag

See Also

g3a_predate_fleet, g3s_tag

Examples

tags <- c('H1-00', 'H1-01')
tags <- structure(seq_along(tags), names = tags)

prey_a <- g3_stock('prey_a', seq(1, 10)) %>% g3s_tag(tags)
fleet_a <- g3_fleet('fleet_a')

actions <- list(
NB: If g3_tag() is used in the stock, initialconditions/renewal
will only renew into tag == 0 (i.e. untagged)
g3a_predate_tagrelease(

Setup as-per g3a_predate_fleet
fleet_a,
list(prey_a),

action_time 45

suitabilities = list(prey_a = 1),
catchability_f = g3a_predate_catchability_numberfleet(~100),

Optional tag mortality suitability
mortality_f = g3_suitability_straightline(

g3_parameterized('mort_alpha'),
g3_parameterized('mort_beta')),

Formula to decide which tag to output into, generate table
with one tag per year
output_tag_f = g3_timeareadata('fleet_a_tags', data.frame(

year = 2000:2001,
tag = tags[c('H1-00', 'H1-01')],
stringsAsFactors = FALSE), value_field = "tag"),

Experiment only happens in spring
run_f = ~cur_step == 2),

g3a_tag_shedding(
list(prey_a),
i.e. 0.125 will loose their tag each step
tagshed_f = log(8)))

action_time Gadget3 timekeeping actions

Description

Add timekeeping to a g3 model

Usage

g3a_time(
start_year,
end_year,
step_lengths = c(12),
final_year_steps = quote(length(step_lengths)),

project_years = g3_parameterized("project_years", value = 0, optimise = FALSE),
retro_years = g3_parameterized("retro_years", value = 0, optimise = FALSE),
run_at = g3_action_order$initial,
run_stop_at = g3_action_order$time)

Arguments

start_year Year model run will start.

end_year After this year, model run will stop.

46 action_time

step_lengths Either an MFDB time grouping, e.g. mfdb::mfdb_timestep_quarterly, or a
vector of step lengths which should should sum to 12, for example, c(3,3,3,3)
for quarterly steps within a year.

final_year_steps

Number of steps of final year to include. Either as an integer or quoted code, in
which case it will be calcuated when the model runs. For example:

0 Model stops before the start of end_year (it is exclusive)
length(step_lengths) Model stops at the end of end_year (it is inclusive)
2 Model stops at the second step of end_year , mid-year if step_lengths is quar-

terly

project_years Number of years to continue running after the "end" of the model. Must be >= 0

Defaults to an unoptimized project_years parameter, set to 0 (i.e. no projec-
tion). Generally, you would change this parameter in the parameter template,
rather than changing here.

retro_years Adjust end_year to finish model early. Must be >= 0 Can be used in conjunction
with project_years to project instead.
The true end year of the model will be end_year - retro_years + project_years.
Defaults to an unoptimized retro_years parameter, set to 0. Generally, you
would change this parameter in the parameter template, rather than changing
here.

run_at, run_stop_at
Integer order that actions will be run within model, see g3_action_order.
run_at does year variable accounting, run_stop_at is when the model will finish
if past the final step in the model.

Details

The actions will define the following variables in your model:

cur_time Current iteration of model, starts at 0 and increments until finished

cur_step Current step within individual year

cur_step_size Proportion of year this step contains, e.g. quarterly = 3/12

cur_year Current year

cur_step_final TRUE iff this is the final step of the year

cur_year_projection TRUE iff we are currently projecting past end_year

total_steps Total # of iterations (including projection) before model stops

total_years Total # of years (including projection) before model stops

Value

g3a_time: An action (i.e. list of formula objects) that will...

1. Define cur_* variables listed above
2. If we’ve reached the end of the model, return nll

action_trace 47

Examples

Run model 2000..2004, in quarterly steps
time_action <- g3a_time(

start_year = 2000,
end_year = 2004,
c(3, 3, 3, 3))

action_trace Tracing and debugging tools

Description

Tracing and debugging tools for a G3 model

Usage

g3a_trace_var(
actions,
check_finite = TRUE,
check_positive = FALSE,
check_strictly_positive = FALSE,
on_error = c("continue", "browser", "stop"),
print_var = FALSE,
var_re = c("__num$", "__wgt$"))

g3a_trace_timings(
actions,
action_re = NULL)

Arguments

actions A list of model actions to add tracing to

check_finite Boolean, notify if variable is not finite (i.e. Inf, NA, NaN)

check_positive Boolean, notify if variable is < 0
check_strictly_positive

Boolean, notify if variable is <= 0

on_error What to do when a variable fails one of the checks? NB: "browser" will not
work in a TMB-compiled model.

print_var Boolean, if true print the value of the variable at the point the test fails. NB:
This will not work in a TMB-compiled model.

var_re Regular expression(s), variable whose name matches will be traced.

action_re Regular expression(s), action step IDs that match will be traced (or all if NULL)

48 action_trace

Details

The main reason to use g3a_trace_var is to find out why a model is producing NaN in reports /
likelihood. Adding this to your model will help pinpoint the action this originally occurs in, so you
can inspect closer for incorrect settings and/or bugs.

Suggested var_re settings: The var_re parameter chooses which variables are traced, and should
be tweaked to further pinpoint the problem. Generally, once an error has been found, dig into the
code (e.g. by doing edit(g3_to_r(actions))), and see what other variables are available for
tracing. Some pre-canned suggestions follow:

c("__num$", "__wgt$") (i.e. default) This will trace abundance/weight for all stocks, and
a good starting point.

^[stock_name]__(num|wgt|cons|suit|totalpredate|consratio|feedinglevel)$ This will,
once [stock_name] is replaced with the name of your stock, dig deeper into the predation
mechanisms.

g3a_trace_timings will report a variable, trace_timings, with the min/mean/max number of
seconds spent computing each step in the model. You can use g3_to_desc to extract more descrip-
tive names for each step.

Value

g3_trace_var: A list of actions that will report when variables stop being finite (e.g.)

g3_trace_timings: A list of actions to report a trace_timings variable, with how long each
step is taking

See Also

g3a_predate_catchability_project

Examples

stocks <- list(
st = g3_stock("st", 1:10 * 10) |> g3s_age(1, 5))

actions <- list(
g3a_time(1990, 1995, c(3,3,3,3)),
g3a_initialconditions_normalcv(stocks$st),
g3a_growmature(stocks$st, impl_f = gadget3::g3a_grow_impl_bbinom(

maxlengthgroupgrowth = 2L)),

NULL)
model_fn <- g3_to_r(c(actions, list(

g3a_trace_var(actions),
g3a_trace_timings(actions),
g3a_report_detail(actions))))

Configure set of working parameters
attr(model_fn, "parameter_template") |>

g3_init_val("*.K", 0.3) |>

action_weightloss 49

g3_init_val("*.t0", 0.2) |>
g3_init_val("*.Linf", 80) |>
g3_init_val("*.lencv", 0.1) |>
g3_init_val("*.walpha", 0.01) |>
g3_init_val("*.wbeta", 3) |>
g3_init_val("*.M.#", 0.01) |>
identity() -> params.in

nll <- model_fn(params.in) ; r <- attributes(nll) ; nll <- as.vector(nll)

Show timings of each step of model
r$trace_timings

Find more informative names with g3_to_desc
as.list(g3_to_desc(actions))

Try setting parameters to NaN and see what fails:
r <- model_fn(params.in |> g3_init_val("*.t0", NaN))
r <- model_fn(params.in |> g3_init_val("*.bbin", NaN))

action_weightloss Gadget3 weightloss action

Description

Add weight loss events to a g3 model

Usage

g3a_weightloss(
stock,
rel_loss = NULL,
abs_loss = NULL,
min_weight = 1e-7,
apply_to_pop = quote(stock__num),
run_f = TRUE,
run_step = NULL,
run_at = g3_action_order$naturalmortality)

Arguments

stock The g3_stock that will lose weight in this action.

rel_loss Fractional weight loss, 0.1 will result in the stock having 90 NULL means no
fractional weight loss will be applied.

abs_loss Absolute weight loss, applied after rel_loss . NULL means no absolute weight
loss will be applied.

min_weight Minimum weight below which weight cannot fall further. Should be more than
zero to avoid models returning NaN.

50 action_weightloss

apply_to_pop Stock instance weightloss applies to, by default applies to whole stock. Used by
g3a_spawn to apply to subset that spawned.

run_step Which step to perform renewal in, or NULL for continuous spawning. Adds
cur_step == (run_step) into default run_f .

run_f formula specifying a condition for running this action, default always runs.

run_at Integer order that spawning actions will be run within model, see g3_action_order.

Value

g3a_weightloss: An action (i.e. list of formula objects) that will, for the given stock ...

1. Apply rel_loss and abs_loss to the parent stock

See Also

g3a_naturalmortality, g3a_spawn, g3_stock

Examples

st <- g3_stock('st', 10:20) |> g3s_age(3, 5)

actions <- list(
g3a_time(2000, 2005, step_lengths = c(3, 3, 3, 3)),
gadget3:::g3a_initialconditions_manual(st,

Set initial abundance & weight based on age
~1e5 + 0 * st__midlen,
~1000 * age + 0 * st__midlen),

g3a_age(st),

g3a_weightloss(st,
20% of body weight should be shed in autumn
rel_loss = g3_parameterized("rel_loss_autumn", by_stock = TRUE, value = 0.2),
run_step = 4),

g3a_weightloss(st,
Remove "10" from body weight, with a minimum based on length
abs_loss = g3_parameterized("absloss_length_mw", by_stock = TRUE, value = 10),
min_weight = g3_formula(

wmin.a * st__midlen^wmin.b,
wmin.a = g3_parameterized("wmin.a", by_stock = TRUE, value = 10),
wmin.b = g3_parameterized("wmin.a", by_stock = TRUE, value = 2))),

NULL)

model_fn <- g3_to_r(c(actions, g3a_report_detail(actions)))
r <- model_fn(attr(model_fn, 'parameter_template'))
g3_array_agg(attr(r, "dstart_st__wgt"), c("age", "time"))

See g3a_spawn for an example of weightloss in spawning

array_utils 51

array_utils Gadget3 array-handling utilities

Description

Tools to make munging array reports easier

Usage

g3_array_agg(
ar,
margins = NULL,
agg = c(

"sum",
"length_mean", "length_sd",
"predator_length_mean", "predator_length_sd"),

opt_time_split = !("time" %in% margins || "time" %in% ...names()),
opt_length_midlen = FALSE,
...)

g3_array_combine(
arrays,
agg = sum,
init_val = 0)

g3_array_plot(
ar,
legend = "topright")

Arguments

ar Input array, e.g. dstart_fish__num from a model report, or list of arrays

arrays List of input arrays, can be a nested list as generated by cons in g3_quota_assess

margins dimension names to include in the final array, e.g. c("age", "year") to gener-
ate a report by-year & age. If NULL, no aggregation is done

agg Function or character. Function to use when aggregating, or name of one of the
built-in functions

init_val The initial value to use when combining arrays

opt_time_split Boolean, should we split up "time" into separate "year" & "step" dimensions?
opt_length_midlen

Boolean, should we convert "length"

legend Location of legend, passed to legend’s x parameter

... Filters to apply to any dimension, including "year" / "step" if opt_time_split is
TRUE. e.g. length = 40, age = 5, step = 1

52 array_utils

Details

g3_array_agg allows you to both filter & aggregate an array at the same time.

Specifying a filter in ... is simplfied in comparison to a regular R subset:

1. You can give the dimensions in any order

2. Values are always interpreted, age = 3 will be interpreted as "age3", not the third age.

For particular dimensions we have extra helpers:

age Numeric ages e.g. age = 5 are converted to "age5", as generated by gadget3

length Numeric lengths will pick a value within groups, e.g. with lengths "10:20", "20:30", length
= 15 will pick the smaller lengthgroup

g3_array_combine generates the union of 2 disjoint arrays, so you can combine aggregated output
from an immature and mature stock for example.

g3_array_plot will plot the contents of an array, for arrays with 2 dimensions or less.

Value

An array, filtered by ... and aggregated by margins .

If ar was a list, a list of filtered/aggregated arrays

Examples

Generate an array to test with
dn <- list(

length = c("50:60", "60:70", "70:Inf"),
age = paste0("age", 0:5),
time = paste0(rep(1990:1996, each = 2), c("-01", "-02")))

ar <- array(
seq_len(prod(sapply(dn, length))),
dim = sapply(dn, length),
dimnames = dn)

ar[,,"1994-02", drop = FALSE]
g3_array_plot(ar[,,"1994-02"])
g3_array_plot(ar["50:60","age3",])

Generate by-year report for ages 2..4
g3_array_agg(ar, c('age', 'year'), age = 2:4)

...for only step 1
g3_array_agg(ar, c('age', 'year'), age = 2:4, step = 1)

Report on smallest length group, for each timestep
g3_array_agg(ar, c('length', 'time'), length = 55)
Use midlen as the dimension name
g3_array_agg(ar, c('length', 'time'), length = 55, opt_length_midlen = TRUE)

Combine 2 arrays with disjoint age ranges into one list
g3_array_combine(list(

env_dif 53

g3_array_agg(ar, c('age', 'year'), age = 2:4),
g3_array_agg(ar / 1000, c('age', 'year'), age = 3:5)))

We can aggregate lists of arrays, applying the same options for each
list(a = ar, b = ar * 10) |> g3_array_agg(c('year', 'age'), length = 55)

We can aggregate then combine
list(a = ar, b = ar * 10) |>

g3_array_agg(c('year', 'age'), length = 55) |> g3_array_combine()

env_dif g3 env: differentiable functions

Description

Differentiable helper functions available to any gadget3 model

Details

These functions are part of g3_env is the top-level environment that any gadget3 model uses.

dif_pmax

dif_pmax(a, b, scale)

Returns the maximum of a & b . If a is a vector/array, then all members of a are compared against
b . If b is also a vector, then all members of a are compared against the matching member of b
(repeating b if necessary).

scale influences the sharpness of inflection points, should be about 1e5, depending on ranges of
input values.

dif_pmin

dif_pmin(a, b, scale)

Returns the minimum of a & b , otherwise works like dif_pmax.

scale influences the sharpness of inflection points, should be about 1e5, depending on ranges of
input values.

dif_pminmax

dif_pminmax(a, lower, upper, scale)

Returns values of a bounded between lower & upper .

scale influences the sharpness of inflection points at lower & upper , should be about 1e5, depending
on ranges of input values.

54 eval

Examples

dif_pmax
g3_eval(quote(dif_pmax(1:10, 5, 1e5)))
g3_eval(quote(dif_pmax(1:10, c(4, 7), 1e5)))
g3_eval(quote(dif_pmax(array(1:9, dim = c(3,3)), c(3,6,8), 1e5)))

dif_pmin
g3_eval(quote(dif_pmin(1:10, 5, 1e5)))
g3_eval(quote(dif_pmin(1:10, c(4, 7), 1e5)))

dif_pminmax
g3_eval(quote(dif_pminmax(1:10, 3, 6, 1e5)))

eval Evaluate G3 forumulas

Description

Evaluate G3 formulas / code outside a model

Usage

g3_eval(f, ...)

Arguments

f A formula object or quoted code to be evaluated

... Named items to add to the formula’s environment, or a single list / environment
to use.

Details

Allows snippets of gadget3 code to be run outside a model. This could be done with regular eval,
however, g3_eval does a number of things first:

1. The global g3_env is in the environment, so functions such as avoid_zero can be used

2. If substituting a g3_stock, all definitions such as stock__minlen will also be substituted

3. g3_param('x') will pull param.x from the environment

Value

Result of evaluating f .

formula_utils 55

Examples

Evaluate suitiability function for given stocks
g3_eval(

g3_suitability_andersen(0,1,2,3,4),
predator_length = 100,
stock = g3_stock('prey', 1:10))

Parameters can be filled in with "param." items in environment
g3_eval(quote(g3_param('x')), param.x = 88)
g3_eval(

g3_parameterized('lln.alpha', by_stock = TRUE, value = 99),
stock = g3_stock("fish", 1:10),
param.fish.lln.alpha = 123)

Graph gadget3's built-in logspace_add()
if (interactive()) {

curve(g3_eval(quote(logspace_add(a, 10)), a = x), 0, 50)
}

formula_utils Gadget3 formula helpers

Description

Tools to create R formulas

Usage

g3_formula(code, ...)

Arguments

code Unevaluated code to be turned into a formula

... Named items to add to the formula’s environment, or a single list / environment
to use.

Details

When using ~, the local environment is attached to the code. This can leak unwanted variables into
a model. This allows you to avoid the problem without resorting to local.

Value

A formula object, with environment created from Can then be used anywhere in gadget3 that
accepts a formula.

56 init_val

Examples

g3_formula is identical to defining a formula within local():
stopifnot(all.equal(

g3_formula(x + 1, z = 44),
local({ z = 44; ~x + 1 })
))

If the code is destined for CRAN, you need to quote() to avoid check errors:
stopifnot(all.equal(

g3_formula(quote(x + 1), z = 44),
local({ z = 44; ~x + 1 })
))

init_val Gadget3 parameter value setter

Description

Helper for setting initial parameter value

Usage

g3_init_val(
param_template,
name_spec,
value = NULL,
spread = NULL,

lower = if (!is.null(spread)) min(value * (1-spread), value * (1+spread)),
upper = if (!is.null(spread)) max(value * (1-spread), value * (1+spread)),
optimise = !is.null(lower) & !is.null(upper),
parscale = if (is.null(lower) || is.null(upper)) NULL else 'auto',
random = NULL,
auto_exponentiate = TRUE)

Arguments

param_template A parameter template generated by g3_to_r or g3_to_tmb

name_spec A glob-like string to match parameter names, see Details

value Numeric value / vector of values to set for value / ’value’ column in template.
Original value left if NULL

spread Shortcut for setting lower & upper .

lower Numeric value / vector of values to set for ’lower’ column in template. Original
value left if NULL

upper Numeric value / vector of values to set for ’upper’ column in template. Original
value left if NULL

init_val 57

optimise Boolean value to set for ’optimise’ column in template. Default is true iff both
lower and upper are non-NULL. Original value left if NULL

parscale Numeric value / vector of values to set for ’parscale’ column in template. De-
fault (auto) is difference between lower & upper (or NULL if they’re not set).
Original value left if NULL

random Boolean value to set for ’random’ column in template. If set to TRUE, any
existing optimise/lower/upper/parscale values will be cleared. Original value
left if NULL

auto_exponentiate

If TRUE, will implicitly match parameters ending with "_exp", and if this is the
case log all value/lower/upper values

Details

name_spec is a glob (or wildcard) matching parameters. It is a string separated by ., where each
part can be:

1. A wildcard matching anything (*), or a matching anything with a prefix, e.g. m*

2. A wildcard matching any number (#), or a matching a number with a prefix, e.g. age*

3. A range of numbers, e.g. [1979-1984]

4. A choice of options can be separated with |, e.g. init|rec or [1979-1984]|[2000-2003]

Value

A new parameter template list/table containing modifications

See Also

g3_parameterized

Examples

A parameter template, would already be got via. attr(g3_to_tmb(...), "parameter_template")
pt <- data.frame(

switch = c(
paste0('fish.init.', 1:9),
paste0('fish.rec.', 1990:2000),
'fish.M'),

value = NA,
lower = NA,
upper = NA,
parscale = NA,
optimise = FALSE,
random = FALSE)

Set all fish.init.# parameters to optimise
pt <- g3_init_val(pt, 'fish.init.#', 4, spread = 8)

Set a fixed value for any .M
pt <- g3_init_val(pt, '*.M', value = 0.3, optimise = FALSE)

58 language

Set a fixed value for a range of recruitment years, optimise the rest
pt |>

g3_init_val('*.rec.#', value = 4, lower = 0, upper = 10) |>
g3_init_val('*.rec.[1993-1996]', value = 0, optimise = FALSE) |>
identity() -> pt

pt

language G3 language extensions to R

Description

Additional meta-functions available for use in G3 formula.

Details

Whilst used as functions, these functions alter the code output of the model, rather than appearing
directly.

g3_idx

Adds a - 1 to the supplied expression, but only in C++ (which has 0-based indexes). Under R the
expression is passed through unchanged.

Note: This is generally for internal use, as [[will do this automatically for you.

For example, g3_idx(a) will be replaced with a in R output and a - 1 in C++ output.

g3_param

Reference a scalar parameter by name. Arguments:

name Variable name for parameter. Required

value Initial value in model parameter_template. Default 0

optimise Initial optimise setting in parameter_template. Default TRUE

random Initial random setting in parameter_template. Default FALSE

lower Initial lower setting in parameter_template. Default NA

upper Initial upper setting in parameter_template. Default NA

For example, g3_param("ling.Linf") will register a scalar parameter called ling.Linf , available
in the model parameter template, and be replaced by a reference to that parameter.

g3_param("ling.Linf") can be used multiple times, to refer to the same value.

language 59

g3_param_vector

Reference a vector parameter by name. Arguments:

name Variable name for parameter. Required

value Initial value for use in model paramter_template. Default 0

Same as g3_param, but the parameter will be expected to be a vector. You can then dereference
with [[.

For example, g3_param_vector("lingimm.M")[[age - 3 + 1]].

g3_param_table

Reference a lookup-table of parameters.

name Variable name for parameter. Required

table A data.frame, one column for each variable to check, one row for possible values. Required

value Initial value(s) for use in model parameter_template. Default 0

optimise Initial optimise setting in parameter_template. Default TRUE

random Initial random setting in parameter_template. Default FALSE

lower Initial lower setting(s) in parameter_template. Default NA

upper Initial upper setting(s) in parameter_template. Default NA

ifmissing Value to return when outside of table bounds. Default NaN with warning if a value is
missing

This is similar to providing a vector, but can use values in the model to provide bounds-checking.

The function takes 2 arguments, a prefix for the generated parameters, and a data.frame of variables
to possible values. expand.grid can be used to produce a cross product of all provided variables.

value , lower , upper can be vectors, in which case it is split up with one per parameter.

Note: The variables referenced will need to be integer variables, most likely iteration variables such
as cur_year, age, area...

For example, the following: g3_param_table('lingimm.M', expand.grid(age = seq(ling_imm__minage,
ling_imm__maxage))) will generate parameters lingimm.M.3 ..lingimm.M.10 , assuming that ling_imm
has ages 3..10.

The call to g3_param_table will be replaced with param[[paste("lingimm.M", age, sep = ".")]],
or equivalent code in C++.

g3_with

g3_with(var1 := val1, var2 := val2, { x <- val1 * val2 }) is equivalent to local({var1 <-
val1, var2 <- val2, { x <<- val1 * val2 } })

However, we don’t make a new environment for the code block in R, only in C++.

60 likelihood_bounds_penalty

likelihood_bounds_penalty

Gadget3 likelihood bounds_penalty action

Description

Add a liklihood penalty for parameters leaving the bounds set in parameter_template

Usage

g3l_bounds_penalty(
actions_or_parameter_template,
weight = 1,
scale = 1e6,
run_at = g3_action_order$likelihood)

Arguments

actions_or_parameter_template

Either:

A list of actions, to extract parameters from and to add bounds to.

A parameter template generated by g3_to_tmb, with optimise , lower , upper
populated, bounds for the parameters will be hard-coded.

weight Weighting applied to this likelihood component.

scale Influences the sharpness of inflection points, smaller values mean a more gentle
transition.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

Whilst lower/upper can be passed to optim, not all methods can use them. Adding g3l_bounds_penalty
OTOH can be used with any method.

Value

g3l_bounds_penalty: An action (i.e. list of formula objects) that will... If a actions list is
supplied, add a large number to likelihood when any parameter is outside bounds. Bounds are
updated whenever g3_tmb_adfun is run.

If a parameter_template is supplied, add a large number to likelihood when outside the bounds in
the template. The bounds are baked into the model at this point.

likelihood_catchdistribution 61

Examples

anch <- g3_stock('anch', seq(20, 156, 4)) %>% g3s_age(3, 10)
actions <- list(

g3a_time(1990, 1994),
g3a_growmature(anch, g3a_grow_impl_bbinom(
maxlengthgroupgrowth = 38L)),

g3a_naturalmortality(anch),
g3a_initialconditions_normalparam(anch),
g3a_renewal_normalparam(anch,

run_step = NULL),
g3a_age(anch),
NULL)

Generate code with bounds added
model_code <- g3_to_tmb(c(actions, list(g3l_bounds_penalty(actions))))

attr(model_code, "parameter_template") %>%
Set lower / upper bounds for initial conditions
g3_init_val("*.init.#", 10, lower = 0.001, upper = 200) %>%
identity() -> params.in

The objective function produced by g3_tmb_adfun() will honour the bounds
above, without having to pass them to stats::optim()

likelihood_catchdistribution

Gadget3 likelihood actions

Description

Gather nll in a g3 model

Usage

g3l_distribution_sumofsquares(
over = c('area', 'predator', 'predator_tag', 'predator_age', 'predator_length'))

g3l_distribution_multinomial(epsilon = 10)

g3l_distribution_multivariate(rho_f, sigma_f, over = c("area"))

g3l_distribution_surveyindices_log(alpha = NULL, beta = 1)

g3l_distribution_surveyindices_linear(alpha = NULL, beta = 1)

g3l_distribution_sumofsquaredlogratios(epsilon = 10)

g3l_abundancedistribution(

62 likelihood_catchdistribution

nll_name,
obs_data,
fleets = list(),
stocks,
function_f,
predators = list(),
transform_fs = list(),
missing_val = 0,
area_group = NULL,
report = FALSE,
nll_breakdown = FALSE,
weight = g3_parameterized(paste0(nll_name, "_weight"),

optimise = FALSE, value = 1),
run_at = g3_action_order$likelihood)

g3l_catchdistribution(
nll_name,
obs_data,
fleets = list(),
stocks,
function_f,
predators = list(),
transform_fs = list(),
missing_val = 0,
area_group = NULL,
report = FALSE,
nll_breakdown = FALSE,
weight = g3_parameterized(paste0(nll_name, "_weight"),

optimise = FALSE, value = 1),
run_at = g3_action_order$likelihood)

g3_distribution_preview(
obs_data,
predators = list(),
fleets = list(),
stocks = list(),
area_group = NULL)

Arguments

over When comparing proportions of lengthgroups, specifies the dimensions that de-
fine the total. For example the default "area" means the proprtion of the current
lengthgroup to all individuals in that area.
c('area', 'predator_tag', 'predator_age', 'predator_length')) will com-
pare the current lengthgroup to all individuals consumed by that predator.
Note that any unknown dimensions will be ignored; for example a fleet does not
have a tag/age/length, so only area will have an effect here.

rho_f, sigma_f formula substituted into multivariate calcuations, see below.

likelihood_catchdistribution 63

epsilon Value to be used whenever the calculated probability is very unlikely. Default
10.

alpha formula substituted into surveyindices calcuations to fix intercept of linear re-
gression, or NULL if not fixed. See below.

beta formula substituted into surveyindices calcuations to fix slope of linear regres-
sion, or NULL if not fixed. See below.

nll_name Character string, used to define the variable name for obsstock and modelstock .

obs_data Data.frame of observation data, for example the results of mfdb_sample_count.
Should at least have a year column, and a length or weight column. For more
information, see "obs_data and data aggregation" below.

fleets, predators
A list of g3_stock objects to collect catch data for. If empty, will collect abun-
dance data for stocks instead.

stocks A list of g3_stock objects to collect catch or abundance data for, depending if
stocks were provided.

function_f A formula to compare obsstock__x to modelstock__x and generate nll, defined
by one of the g3l_distribution_* functions.
This will be adapted to compare either number (modelstock__num) or weight
(modelstock__wgt) depending on what columns obs_data has.

transform_fs A list of dimension names to either formula objects or list of stock names to
formula objects (where the transform differs between stocks). See examples.

missing_val Where there are missing values in the incoming data, value to replace them with.

area_group mfdb_group or list mapping area names used in obs_data to integer model areas,
see "obs_data and data aggregation" below.

report If TRUE, add model and observation arrays to the model report, called cdist_nll_name_model__num/wgt
and cdist_nll_name_obs__num/wgt respectively

nll_breakdown Should the nll report be broken down by time? TRUE / FALSE

weight Weighting applied to this likelihood component. Default is a g3_param that
defaults to 1, allowing weights to be altered without recompiling.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The actions will define the following variables in your model:

obsstock__num/wgt A g3_stock instance that contains all observations in an array

modelstock__num/wgt A g3_stock instance that groups in an identical fashion to obsstock , that
will be filled with the model’s predicted values

The model report will contain nll_cdist_nll_name__num and/or nll_cdist_nll_name__wgt, depend-
ing on the columns in obs_data (a number column will compare by individuals, and produce a
corresponding num report). If nll_breakdown is TRUE, this will be an array with one entry per
timestep.

g3l_abundancedistribution compares abundance of stocks, g3l_catchdistribution compares fleet
catch. Thus providing fleets is mandatory for g3l_catchdistribution , and an error for g3l_abundancedistribution .

64 likelihood_catchdistribution

obs_data and data aggregation: The obs_data data.frame, as well as providing the observation
data to compare the model data against, controls the grouping of model data to compare to the ob-
servation data, by inspecting the MFDB column attributes produced by e.g. mfdb_sample_count.
Metadata columns describe the observation datapoint in that row. The columns should be from
this list:

year Required. Year for the data point. Gaps in years will result in no comparison for that year
step Optional. If there is no step column, then the data is assumed to be yearly, and the model

data for all timesteps will be summed before comparing.
Model timestep for the data point. Gaps in steps will result in no comparison for that
year/step.

length Optional. If missing all lengthgroups in the model will be summed to compare to the data.
The column can be a factor, as generated by cut(), e.g cut(raw_length, c(seq(0, 50, by
= 10), Inf), right = FALSE) for an open-ended upper group.
The column can be character strings also formatted as factors as above. The column entries
are assumed to be sorted in order and converted back to a factor.
If open_ended = c('lower', 'upper') was used when querying MFDB for the data, then
the bottom/top length groups will be modified to start from zero or be infinite respectively.
Any missing lengthgroups (when there is otherwise data for that year/step) will be compared
to zero.

age Optional. If missing all age-groups (if any) in the model will be summed to compare to the
data.
Model ages will be grouped by the same groupings as MFDB used, thus if the data was
formed with a query age = mfdb_group(young = 1:3, old = 4:5), then the model data will
similarly have 2 groups in it.
Any missing ages (when there is otherwise data for that year/step) will be compared to zero.

predator_length / predator_age / predator_tag Optional.
Values are the same as with length/age/tag respectively, but group by the predator rather than
the prey.

stock Optional. If tmissing all stocks in stocks will be summed to compare to the data.
The values in the stocks column should match the names of the stocks given in the stocks
parameter. This column can be factor or character.
The values can also some of the stock name parts, e.g. "st_f" or "f" which would then
aggregate "st_imm_f", "st_mat_f" together.
However, note that a stock can only be included in one grouping, so given columns "f" &
"imm", "st_imm_f" would only be included in the former group. If you want to do something
along these lines, 2 separate likelihood actions would be more appropriate.
Any missing stocks (when there is otherwise data for that year/step) will be compared to zero.

stock_re Optional. If this and stock are missing all stocks in stocks will be summed to compare
to the data.
The values in the stocks column will be used as regular expressions to match the names of
the stocks given in the stocks parameter. For example, ’_mat_’ will match both ’ghd_mat_f’
and ’ghd_mat_m’ and will be compared against the sum of the 2 stocks.
Any missing stocks (when there is otherwise data for that year/step) will be compared to zero.

fleet Optional. If this and fleet_re are missing all fleets in fleets will be summed to compare to
the data.
The values in the fleets column should match the names of the fleets given in the fleets
parameter. This column can be factor or character.

likelihood_catchdistribution 65

Any missing fleets (when there is otherwise data for that year/step) will be compared to zero.
fleet_re Optional. If this and fleet are missing all fleets in fleets will be summed to compare to

the data.
The values in the fleets column will be used as regular expressions to match the names of the
fleets given in the fleets parameter. For example, ’_trawl_’ will match both ’fleet_trawl_is’
and ’fleet_trawl_no’ and will be compared against the sum of the 2 fleets.
Any missing fleets (when there is otherwise data for that year/step) will be compared to zero.

area Optional. If missing all areas in the model will be summed to compare to the data.
Unlike other columns, the MFDB grouping here is ignored (the areas it is grouping over
aren’t integer model areas). Instead, the area_group parameter should describe how to map
from the area names used in the table to integer model areas.
For example, if area_group = list(north=1:2, south=3:5), then the area column of obs_data
should contain either "north" or "south", and corresponding model data will be summed from
integer model areas 1,2 and 3,4,5 respectively.
If area_group is not supplied, then we assume that obs_data area column will contain model
area integers.
Any missing areas (when there is otherwise data for that year/step) will be compared to zero.

Data columns contain the observation data to compare. There should be at least one of:

number If a number column appears in obs_data , then the stock abundance by individuals will
be aggregated and compared to the obs_data number column.

weight If a weight column appears in obs_data , then the total biomass of the stock will be aggre-
gated and compared to the obs_data number column.

You can use g3_distribution_preview to see how your observation data will be converted into
an array.

Value

g3l_distribution_sumofsquares: Returns a formula for use as function_f :

∑
lengths

(Ntral

Ntr
− νtral

νtr

)2

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
Ntr Total observation sample size for current time/area (or dimensions set in over)
νtr Total model sample size for current time/area (or dimensions set in over)

g3l_distribution_multinomial: Returns a formula for use as function_f :

2(
∑

lengths

logNtral!− log(
∑

lengths

Ntral)!−
∑

lengths

(Ntral logmin(
νtral∑

lengths νtral
,
1

lϵ
)))

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
l Number of lengthgroups in sample
ϵ epsilon parameter

66 likelihood_catchdistribution

g3l_distribution_multivariate: Returns a formula for use as function_f , which calls TMB’s
SCALE(AR1(rho), sigma)(x), where rho and sigma are parameters, and x is defined as:

Ntral

Ntr
− νtral

νtr

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
Ntr Total observation sample size for current time/area (or dimensions set in over)
νtr Total model sample size for current time/area (or dimensions set in over)

For more information, see Autoregressive processes in the TMB book.

g3l_distribution_surveyindices_log: Returns a formula for use as function_f :∑
time

(α+ β logNtral − log νtral)
2

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
α alpha parameter
β beta parameter

If alpha or beta is not provided, then linear regression is performed on N , ν over time for each
area/age/length combination. The used values will be stored in a cdist_nll_name_model__param
array and reported after model run, whether calculated or hard-coded.

g3l_distribution_surveyindices_linear: Returns a formula for use as function_f :∑
lengths

(α+ βNtral − νtral)
2

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
α alpha parameter
β beta parameter

If alpha or beta is not provided, then linear regression is performed on N , ν over time for each
area/age/length combination. The used values will be stored in a cdist_nll_name_model__param
array and reported after model run, whether calculated or hard-coded.

g3l_distribution_sumofsquaredlogratios: The equivalent of gadget2’s catchinkilos.
Returns a formula for use as function_f :∑

lengths

(log(Ntral + ϵ)− log(νtral + ϵ))2

Ntral Observation sample size for current time/area/age/length combination
νtral Model sample size for current time/area/age/length combination
ϵ epsilon parameter

g3l_abundancedistribution: An action (i.e. list of formula objects) that will...

http://kaskr.github.io/adcomp/_book/Densities.html#autoregressive-processes

likelihood_catchdistribution 67

1. For all stocks , collect catch data into modelstock__num or modelstock__wgt, depending on
the columns provided in obs_data

2. Compare modelstock__num/wgt with obsstock__num/wgt, using function_f

The output of function_f is summed over all stock dimensions (age/area) and time and added to
nll.

g3l_catchdistribution: An action (i.e. list of formula objects) that will...

1. For all fleets and stocks combinations, collect catch data into modelstock__num or model-
stock__wgt, depending on the columns provided in obs_data

2. Compare modelstock__num/wgt with obsstock__num/wgt, using function_f

The output of function_f is summed over all stock dimensions (age/area) and time and added to
nll.

g3_distribution_preview: The input obs_data formatted as an array, applying the same rules
that g3l_*distribution will.

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-like.html, g3_stock

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock('ling_mat', seq(20, 156, 4)) %>% g3s_age(5, 15)
lln <- g3_fleet('lln')

Invent a ldist.lln table for our tests
ldist.lln.raw <- data.frame(

year = c(1999, 2000),
age = sample(5:9, 100, replace = TRUE),
length = sample(10:70, 100, replace = TRUE),
number = 1,
stringsAsFactors = FALSE)

Group length into 10-long bins
NB: The last 2 bins will be empty, but gadget3 will use the factor levels, include them as zero
NB: Generally one would use mfdb::mfdb_sample_count() source and group data for you
ldist.lln.raw |> dplyr::group_by(

year = year, age = age,
length = cut(length, breaks = seq(10, 100, by = 10), right = FALSE)

) |> dplyr::summarise(number = sum(number), .groups = 'keep') -> ldist.lln

Turn age into a factor, indicating all ages we should be interested in
ldist.lln$age <- factor(ldist.lln$age, levels = 5:15)

We can see the results of this being turned into an array:
g3_distribution_preview(ldist.lln)

likelihood_actions <- list(
g3l_catchdistribution(
'ldist_lln',

https://gadget-framework.github.io/gadget2/userguide/chap-like.html

68 likelihood_catchdistribution

ldist.lln,
fleets = list(lln),
stocks = list(ling_imm, ling_mat),
g3l_distribution_sumofsquares()))

Make an (incomplete) model using the action, extract the observation array
fn <- suppressWarnings(g3_to_r(likelihood_actions))
environment(fn)$cdist_sumofsquares_ldist_lln_obs__num

Apply age-reading error matrix to model data
more_likelihood_actions <- list(

g3l_catchdistribution(
'ldist_lln_readerror',
ldist.lln,
fleets = list(lln),
stocks = list(ling_imm, ling_mat),
transform_fs = list(age = g3_formula(

g3_param_array('reader1matrix', value = diag(5))[g3_idx(preage), g3_idx(age)]
)),

g3l_distribution_sumofsquares()))

Apply per-stock age-reading error matrix to model data
more_likelihood_actions <- list(

g3l_catchdistribution(
'ldist_lln_readerror',
ldist.lln,
fleets = list(lln),
stocks = list(ling_imm, ling_mat),
transform_fs = list(age = list(

ling_imm = quote(g3_param_array('imm_readermatrix',
value = diag(ling_imm__maxage - ling_imm__minage + 1)
)[ling_imm__preage_idx, ling_imm__age_idx]),

ling_mat = quote(g3_param_array('mat_readermatrix',
value = diag(ling_mat__maxage - ling_mat__minage + 1)
)[ling_mat__preage_idx, ling_mat__age_idx]),

unused = 0)),
g3l_distribution_sumofsquares()))

Stomach content: predator-prey species preference
prey_a <- g3_stock('prey_a', seq(1, 10)) |> g3s_age(1,3)
prey_b <- g3_stock('prey_b', seq(1, 10)) |> g3s_age(1,3)
pred_a <- g3_stock('pred_a', seq(50, 80, by = 10)) |> g3s_age(0, 10)
otherfood <- g3_stock('otherfood', 0)

Produce data.frame with columns:
* predator_length or predator_age
* stock
* number or weight
pred_a_preypref_obs <- expand.grid(

year = 2000:2005,
predator_length = c(50,70),
stock = c('prey_a', 'prey_b', 'otherfood'),
number = 0)

likelihood_random 69

Create catchdistribution likelihood component
actions <- list(

g3l_catchdistribution(
'pred_a_preypref',
pred_a_preypref_obs,
fleets = list(pred_a),
stocks = list(prey_a, prey_b, otherfood),
g3l_distribution_sumofsquares(),
nll_breakdown = TRUE,
report = TRUE),

NULL)

Stomach content: predator-prey size preference
Produce data.frame with columns:
* predator_length or predator_age
* (prey) length
* number or weight
pred_a_sizepref_obs <- expand.grid(

year = 2000:2005,
predator_length = c(50,70),
length = seq(1, 10),
number = 0)

Create catchdistribution likelihood component
actions <- list(

g3l_catchdistribution(
'pred_a_sizepref',
pred_a_sizepref_obs,
predators = list(pred_a),
NB: Only referencing stocks included in observation data
stocks = list(prey_a),
function_f = g3l_distribution_sumofsquares(),
Use transform_fs to apply digestioncoefficients
transform_fs = list(length = list(prey_a = g3_formula(

quote(diag(d0 + d1 * prey_a__midlen^d2)),
d0 = g3_parameterized('d0', by_stock = TRUE),
d1 = g3_parameterized('d1', by_stock = TRUE),
d2 = g3_parameterized('d2', by_stock = TRUE)))),

nll_breakdown = TRUE,
report = TRUE),

NULL)

likelihood_random Gadget3 random effects likelihood actions

Description

Add likelihood components for random effects

70 likelihood_random

Usage

g3l_random_dnorm(
nll_name,
param_f,
mean_f = 0,
sigma_f = 1,
log_f = TRUE,
period = 'auto',
nll_breakdown = FALSE,
weight = g3_parameterized(paste0(nll_name, "_weight"),

optimise = FALSE, value = 1),
run_at = g3_action_order$likelihood)

g3l_random_walk(
nll_name,
param_f,
sigma_f = 1,
log_f = TRUE,
period = 'auto',
nll_breakdown = FALSE,
weight = g3_parameterized(paste0(nll_name, "_weight"),

optimise = FALSE, value = 1),
run_at = g3_action_order$likelihood)

Arguments

param_f A formula representing the value to apply dnorm to. Invariably a g3_param for
g3l_random_dnorm, a g3_param_table with cur_year for g3l_random_walk.

mean_f A formula representing mean in dnorm.

sigma_f A formula representing sigma in dnorm.

log_f A formula representing log in dnorm.

period When dnorm should be recalculated. Once per year every step, or single for
once. The default, auto, will assume the input is generated by g3_parameterized
and will derive the most appropriate option.

nll_name Character string, used to define the variable name for dnorm output.

nll_breakdown Should the nll report be broken down by time? TRUE / FALSE

weight Weighting applied to this likelihood component.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The model report will contain nll_random_dnorm_dnorm_lin__dnorm, the results of applying
dnorm. If nll_breakdown is TRUE, this will be an array with one entry per timestep.

likelihood_sparsesample 71

Value

g3l_random_dnorm: An action (i.e. list of formula objects) that will...

1. On the final model step, calculate dnorm(param_f, mean_f, sigma_f) & add to nll

g3l_random_walk: An action (i.e. list of formula objects) that will...

1. Calculate dnorm(param_f, previous param_f, sigma_f) (at final year if period = year)
2. Add to nll.

Examples

likelihood_actions <- list(
Calculate dnorm() for the dnorm_log parameter
g3l_random_dnorm('dnorm_log',

g3_parameterized('dnorm_log', value = 0, random = TRUE),
mean_f = 0),

Treat the walk_year.xxxx parameters as a random walk
g3l_random_walk('walk_year',

g3_parameterized('walk_year', by_year = TRUE, value = 0, random = TRUE))
)

likelihood_sparsesample

Gadget3 likelihood actions for sparse data

Description

Compare model predictions against a set of sparse data points

Usage

g3l_sparsesample_linreg(
fit = c('log', 'linear'),
slope = 1,
intercept = NULL)

g3l_sparsesample_sumsquares(
weighting = "model_stddev")

g3l_sparsesample(
nll_name,
obs_df,
stocks,
measurement_f = quote(wgt),
function_f = g3l_sparsesample_linreg(),
predstocks = list(),

72 likelihood_sparsesample

area_group = NULL,
weight = g3_parameterized(paste(

if (length(predstocks) > 0) "csparse" else "asparse",
function_f_name,
nll_name,
"weight",
sep = "_"), optimise = FALSE, value = 1),

run_at = g3_action_order$likelihood)

Arguments

slope, intercept
formula substituted into surveyindices calcuations to fix slope/intercept of linear
regression, or NULL if not fixed. See below.

fit Is the fit ’log’ or ’linear’? See below.

weighting Weighting applied to sum-of-squares. One of "model_stddev", "obs_stddev" or
a formula.

nll_name Character string, used to define the variable name for obsstock and modelstock .
By default set to (asparse|csparse)_(name_of_function_f)_(nll_name)_weight.

obs_df Data.frame of observation data. See details.

stocks A list of g3_stock objects to collect sparsesample data for, depending if stocks
were provided.

measurement_f formula to derive the model’s equivalent predicted value for a data point. You
can use wgt to refer to weight of matching individuals, length to refer to length
of matching individuals.

function_f A formula to compare obs_df to predicted values generated via transform_f and
generate nll, defined by one of the g3l_sparsesample_* functions.

predstocks A list of g3_stock predator or fleet objects. If present, we will compare against
the model predicted catch. Without (the default), we compare against overall
abundance.

area_group List mapping area names used in obs_df to integer model areas, most likely
generated by g3_areas.

weight Weighting applied to this likelihood component. Default is a g3_param that
defaults to 1, allowing weights to be altered without recompiling.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The actions will define the following variables in your model, which could be reported with g3a_report_history:

nll_sp(abund|catch)_name__obs_mean Observation mean, the mean column from obs_df

nll_sp(abund|catch)_name__obs_stddev Observation standard deviation, the stddev column from
obs_df

nll_sp(abund|catch)_name__obs_n Observation number, the number column from obs_df

nll_sp(abund|catch)_name__model_sum The corresponding model prediction vector, total data-
points. __model_sum / __model_n for the mean

likelihood_sparsesample 73

nll_sp(abund|catch)_name__model_sqsum The corresponding model prediction vector, sqared-
sum datapoints.

nll_sp(abund|catch)_name__model_n The number of data points at each point in the model pre-
diction vector, if predstocks set this is the number of individuals caught matching the datapoint
(length/age/...), otherwise abundance of individuals matching the datapoint.

obs_df format: data.frame of observation data. Unlike g3l_abundancedistribution, gaps
and sparse data is accepted, and gaps will not be filled with zero.
For each row in the table, all matching predictions are aggregated. Aggregation columns include:

year Required. The year the sample is from
step Optional. The timestep/season the sample is from
area Optional. Only aggregate predicted values from given area
age Optional. Only aggregate predicted values with given age
length Optional. Only aggregate predicted values with given length (matches nearest length-

group)

So, a row with "year=1998,age=4" will be compared against age 4 individuals of all lengths in
1998, step 1 & 2. A row with "year=2004,step=1,age=2,length=19" will be compared against
individuals of age 4, length 10..20, in winter 2004.
The observation data is provided in the following columns:

mean Required. Mean value at this data point
number Optional. Number of data points, defaults to 1
stddev Optional. Observed standard deviation (only required if weighting = "obs_stddev")

Value

g3l_sparsesample_linreg: Returns a formula for use as function_f :
If fit = "log":

rows∑
i

(α+ β logNi − log
νi
Pi

)2

If fit = "linear":
rows∑

i

(α+ βNi −
νi
Pi

)2

Ni "mean" column from obs_df
νi Total predicted values for all data points, i.e. nll_spabund_name__model_sum
Pi Number of data points, i.e. nll_spabund_name__model_n
α intercept parameter, defaults to 1, i.e. fixed slope
β slope parameter, defaults to NULL, i.e. linear regression performed to find optimal value

If either alpha or beta is not provided, then linear regression is performed on N vs ν for each
value in table, and the optimal value used for each.

g3l_sparsesample_sumsquares: Returns a formula for use as function_f :

rows∑
i

w(
νi
Pi

−Ni)
2

74 likelihood_sparsesample

Ni "mean" column from obs_df
νi Total predicted values, i.e. nll_spabund_name__model_sum
Pi Number of data points, i.e. nll_spabund_name__model_n
w weighting parameter, either:

1. 1/σ2, using stddev of model predicted values if weighting = "model_stddev"

2. 1/σ2, using stddev column from obs_df if weighting = "obs_stddev"

3. A custom forumla provided for weighting

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-like.html, g3l_catchdistribution
g3_stock

Examples

st <- g3_stock("fish", c(10, 20, 30)) %>% g3s_age(3,5)

Generate some random sparsesample samples
obs_df <- data.frame(

NB: No 1993, we don't have any samples for that year
year = rep(c(1990, 1991, 1992, 1994), each = 2),
step = 1:2)

obs_df$age = floor(runif(nrow(obs_df), min = 3, max = 5.1))
obs_df$length = floor(runif(nrow(obs_df), min = 10, max = 50))
obs_df$mean = runif(nrow(obs_df), min = 10, max = 1000)

actions <- list(
g3a_time(1990, 1994, c(6,6)),
Use otherfood to populate abundance / mean weight
g3a_otherfood(st,

quote(age * 100 + stock__minlen),
quote(cur_year * 1e5 + cur_step * 1e4 + 0 * stock__minlen)),

g3l_sparsesample(
"bt",
obs_df,
list(st),
measurement_f = g3_formula(

Derive blubber thickness from length/weight
((wgt/(wmax.a * length^wmax.b) - 0.5) * 100 - 4.44) / (5693 * (length/wgt)^0.5),
wmax.a = g3_parameterized("wmax.a", by_stock = TRUE),
wmax.b = g3_parameterized("wmax.b", by_stock = TRUE),
end = NULL),

function_f = g3l_sparsesample_linreg(fit = "linear")),
NULL)

model_fn <- g3_to_r(c(actions, list(
g3a_report_detail(actions), # TODO: Not reporting anything useful
NULL)))

r <- attributes(model_fn())
colSums(r$dstart_fish__num) # TODO: Report something related

https://gadget-framework.github.io/gadget2/userguide/chap-like.html

likelihood_tagging_ckmr 75

likelihood_tagging_ckmr

Gadget3 CKMR likelihood

Description

Experimental CKMR tagging likelihood

Usage

g3l_tagging_ckmr(
nll_name,
obs_data,
fleets,
parent_stocks,
offspring_stocks,
weight = g3_parameterized(paste0(nll_name, "_weight"),

optimise = FALSE, value = 1),
run_at = g3_action_order$likelihood)

Arguments

nll_name Character string, used to define the variable name for obsstock and modelstock .
obs_data Data.frame of observed mother-offspring pairs with columns year / parent_age /

offspring_age / mo_pairs
fleets A list of g3_stock objects to collect catch data for.
parent_stocks A list of g3_stock objects that are parents in a g3a_spawn action
offspring_stocks

A list of g3_stock objects that are output_stocks in a g3a_spawn action
weight Weighting applied to this likelihood component. Default is a g3_param that

defaults to 1, allowing weights to be altered without recompiling.
run_at Integer order that actions will be run within model, see g3_action_order.

Details

Implementation of CKMR based on Bravington, M.V., Skaug, H.J., & Anderson, E.C. (2016).
Close-Kin Mark-Recapture. Statistical Science, 31, 259-274.

Only one kinship probability is implemented, mother-offspring with lethal sampling, i.e. (3.2) in
the paper. This is then used as a pseudo-likelihood as per (4.1).

obs_data: The obs_data data.frame provides observed pairs. Unlike other likelihood mehthods,
it has a fixed structure:

year Year of observation for the data point.
parent_age Age of the parent in an observed parent-offspring pair.
offspring_age Age of the offspring in an observed parent-offspring pair.
mo_pairs Number of pairs observed with these ages.

76 likelihood_understocking

Value

g3l_tagging_ckmr: An action (i.e. list of formula objects) that will...

1. For all parent_stocks and offspring_stocks , collect spawing rate into modelhist__spawning
and modelhist__spawned, total number of parents and total number of spawned offspring
respectively

2. For all fleets , collect catch data into modelhist__catch
3. For any observed pairs that year, include the probability of that event happening into nll

See Also

Bravington, M.V., Skaug, H.J., & Anderson, E.C. (2016). Close-Kin Mark-Recapture. Statistical
Science, 31, 259-274. g3_stock

likelihood_understocking

Gadget3 likelihood understocking action

Description

Add rates of understocking in a g3 model to nll

Usage

g3l_understocking(
prey_stocks,
power_f = ~2,
nll_breakdown = FALSE,
weight = 1e+08,
run_at = g3_action_order$likelihood)

Arguments

prey_stocks A list of g3_stock objects to collect catch data for

power_f A formula representing power coefficient p to use.

nll_breakdown Should the nll report be broken down by time? TRUE / FALSE

weight Weighting applied to this likelihood component.

run_at Integer order that actions will be run within model, see g3_action_order.

Details

The model report will contain nll_understocking__wgt, the results of the formula below. If nll_breakdown
is TRUE, this will be an array with one entry per timestep.

params 77

Value

g3l_distribution_understocking: An action (i.e. list of formula objects) that will...

1. Sum the total biomass adjustment due to overstocking for each prey according to the formula

ℓ =
∑
time

∑
areas

(∑
prey_stocks

Utrs

)p

Where p is the power coefficient from power_f , Utrs is the total biomass adjustment to preda-
tor consumtion due to overconsumtion.

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock('ling_mat', seq(20, 156, 4)) %>% g3s_age(5, 15)
lln <- g3_fleet('lln')

likelihood_actions <- list(
g3l_understocking(list(ling_imm, ling_mat)))

params Gadget3 parameter helpers

Description

Shortcuts to parameterise a model with g3_param

Usage

g3_parameterized(
name,
by_stock = FALSE,
by_predator = FALSE,
by_year = FALSE,
by_step = FALSE,
by_age = FALSE,
by_area = FALSE,
prepend_extra = list(),
exponentiate = FALSE,
avoid_zero = FALSE,
scale = 1,
offset = 0,
ifmissing = NULL,
...)

78 params

Arguments

name Suffix for parameter name.
by_stock Should there be individual parameters per-stock?

FALSE No
TRUE Produce a "stock_name.name" parameter
character vector Select the stock name_part(s) to use, e.g. to produce "stock_species.name"

parameter with "species"
List of g3_stock objects Produce a parameter that applies to all given stocks

by_predator Should there be individual parameters per-predator (read: per-fleet) stock?
FALSE No
TRUE Produce a "fleet_stock_name.name" parameter
character vector Select the stock name_part(s) to use, e.g. to produce "fleet_country.name"

parameter with "country"
List of g3_stock objects Produce a parameter that applies to all given stocks

by_year Should there be individual parameters per model year?
FALSE No
TRUE Produce a "name.1998" parameter for each year the model runs
1998:2099 Override the year range, so when projecting there will be sufficient

parameters available.
by_step Should there be individual parameters per step within years?

FALSE No
TRUE Produce a "name.1" seasonal parameter for each step, or "name.1998.1"

for every timestep in the model if combined with by_year .
by_age Should there be individual parameters per stock age?

FALSE No
TRUE Produce a "name.4" parameter for each age of the stock(s) in by_stock

by_area Should there be individual parameters per stock area?
FALSE No
TRUE Produce a "name.area" parameter for each area of the stock(s) in by_stock

prepend_extra List of extra things to prepend to the parameter name. Can be a string, or a stock
object. See stock_prepend, which prepend_extra is passed to

ifmissing Value to use for when there is no valid parameter (read: year when by_year =
TRUE) Either a numeric constant or character. If character, add another param-
eter for ifmissing, using the same by_stock value.

exponentiate Use exp(value) instead of the raw parameter value. Will add "_exp" to the
parameter name.

avoid_zero If TRUE, wrap parameter with avoid_zero

scale Use scale * value instead of the raw parameter value. Either a numeric con-
stant or character. If character, add another parameter for scale, using the same
by_stock value.

offset Use value + offset instead of the raw parameter value Either a numeric con-
stant or character. If character, add another parameter for offset, using the same
by_stock value.

... Additional parameters passed through to g3_param, e.g. optimise , random , ...

params 79

Details

The function provides shortcuts to common formulas used when parameterising a model.

Value

A formula object defining the given parameters

See Also

g3_param, g3_param_table, stock_prepend

Examples

stock_imm <- g3_stock(c(species = 'stock', 'imm'), seq(10, 35, 5)) %>% g3s_age(1, 4)
stock_mat <- g3_stock(c(species = 'stock', 'mat'), seq(10, 35, 5)) %>% g3s_age(3, 6)

Helper function that shows the parameter template for the given parameter
param_template_for <- function (g3_param) {

model_code <- g3_to_tmb(list(
g3a_naturalmortality() isn't important, it is a place to add our parameter
g3a_naturalmortality(stock_imm, g3_param),
We also need stock_mat in the model at least once
g3a_naturalmortality(stock_mat, 0),

Set a year range to use for parameters where relevant
g3a_time(1990, 1994)))

Extract template, throw away default parameters from g3a_time()
params <- attr(model_code, "parameter_template")
params <- params[!(rownames(params) %in% c('retro_years', 'project_years')),]
return(params)

}

Not 'by' anything, so we add a single parameter value
param_template_for(g3_parameterized('K'))

Can set defaults for the parameter template when defining a parameter
param_template_for(g3_parameterized('K', value = 5, lower = 2,

upper = 8, optimise = FALSE))

by_stock, so the parameters will have the stock name prepended
param_template_for(g3_parameterized('K', by_stock = TRUE))

Similarly, we can prepend year & age
param_template_for(g3_parameterized('K', by_stock = TRUE, by_year = TRUE, by_age = TRUE))

You can specify the name part to use,
e.g. if a parameter should be shared between mature and immature:
param_template_for(g3_parameterized('K', by_stock = 'species', by_year = TRUE))

Can give a list of stocks, in which case it works out name parts for you
param_template_for(g3_parameterized('K', by_stock = list(stock_imm, stock_mat)))

80 param_project

param_template_for(g3_parameterized('K', by_stock = list(stock_imm, stock_mat), by_age = TRUE))

If there are no shared name parts, then all names will be added
param_template_for(g3_parameterized(

'btrigger',
by_stock = list(g3_fleet("surv"), g3_fleet("comm"))))

You can set fixed scale/offset for the parameter
g3_parameterized('K', scale = 5, offset = 9)

...or give names and they will also be parameters, sharing the by_stock setting
param_template_for(g3_parameterized('K', by_stock = TRUE, scale = "sc", offset = "offs"))

param_project Gadget3 projected parameters

Description

Add time-based random deviates / projections

Usage

g3_param_project_dlnorm(
lmean_f = g3_parameterized("proj.dlnorm.mean",

value = 1e-5, optimise = FALSE, type = "LOG",
prepend_extra = quote(param_name)),

lstddev_f = g3_parameterized("proj.dlnorm.stddev",
value = 0.2, optimise = FALSE, type = "LOG",
prepend_extra = quote(param_name)))

g3_param_project_dnorm(
mean_f = g3_parameterized("proj.dnorm.mean",

value = 0, optimise = FALSE,
prepend_extra = quote(param_name)),

stddev_f = g3_parameterized("proj.dnorm.stddev",
value = 1, optimise = FALSE,
prepend_extra = quote(param_name)))

g3_param_project_rwalk(
mean_f = g3_parameterized("proj.rwalk.mean",

value = 0, optimise = FALSE,
prepend_extra = quote(param_name)),

stddev_f = g3_parameterized("proj.rwalk.stddev",
value = 1, optimise = FALSE,
prepend_extra = quote(param_name)))

g3_param_project_ar1(

param_project 81

phi_f = g3_parameterized(
"proj.ar1.phi",
value = 0.8, lower = 0, upper = 1, optimise = FALSE,
prepend_extra = quote(param_name)),

stddev_f = g3_parameterized(
"proj.ar1.stddev",
value = 1, optimise = FALSE,
prepend_extra = quote(param_name)),

level_f = g3_parameterized(
"proj.ar1.level",
value = 0,
prepend_extra = quote(param_name)),

lastx_f = 0L)

g3_param_project_logar1(
phi_f = g3_parameterized(

"proj.logar1.phi",
value = 0.8, lower = 0, upper = 1, optimise = FALSE,
prepend_extra = quote(param_name)),

lstddev_f = g3_parameterized(
"proj.logar1.stddev",
value = 0.2, optimise = FALSE, type = "LOG",
prepend_extra = quote(param_name)),

loglevel_f = g3_parameterized(
"proj.logar1.level",
value = 1, type = "LOG",
prepend_extra = quote(param_name)),

lastx_f = 0L)

g3_param_project(
param_name,
project_fs = g3_param_project_rwalk(),
by_step = TRUE,
by_stock = FALSE,
weight = g3_parameterized(

paste("proj", project_fs$name, param_name, "weight", sep = "_"),
optimise = FALSE, value = 1),

scale = 1,
offset = 0,
random = TRUE)

Arguments

mean_f, stddev_f, phi_f, lmean_f, lstddev_f
mean / stddev in normal / logspace used for both the likelihood of deviates & to
project future values. Defaults to parameters with names (by_stock).(param_name).proj.(mean|stddev)

level_f, loglevel_f
(logspace) level (or offset) applied on top of ar1/logar1 regression. Defaults to
parameter with name (by_stock).(param_name).proj.(level|loglevel),

82 param_project

lastx_f If > 0, the setting of level_f / loglevel_f will be ignored, and the mean of the last
(x) non-projection values are used as (log)level. Defaults to 0L, i.e. disabled.

param_name Character string used to name the parameters.

project_fs Results of either g3_param_project_dnorm, g3_param_project_rwalk.

by_step Boolean, generate per-step or per-year values.

by_stock Prepend stock name to the projection variable, i.e. param_name . Unlike g3_parameterized,
can only be FALSE or g3_stock objects, TRUE or "species" isn’t supported.

weight A weighting to give to the likelhood when generating total nll.

scale, offset Number, formula or string. Scale / offset to add to parameter values. If string,
then the scale/offset will also be a parameter, equivalent to setting scale =
g3_parameterized(c(param_name, "proj", "scale")).

random Boolean, tell TMB to treat the deviates as random variables by default. Can be
changed in the parameter template.

Details

The actions will define the following variables in your model, which could be reported with g3a_report_history:

proj_(dnorm|rwalk)_(param_name)__var Vector of all values, both parameters & projected, by
time

proj_(dnorm|rwalk)_(param_name)__lvar Vector of all values, both parameters & projected, by
time (logarithmic scale)

proj_(dnorm|rwalk)_(param_name)__nll Likelihood of each value

Value

g3_param_project_dlnorm: Returns a "nll" & "project" formula objects for use as project_fs .
The functions compare / generate normally-distributed deviates around a mean, i.e:

Vt = ϵ
M− e2∗Σ

2 ,Σ

v = exp(V)

M lmean_f / (by_stock).(param_name).proj.lmean parameter
Σ lstddev_f / (by_stock).(param_name).proj.lstddev parameter
ϵµ,σ Normally distributed noise generated using rnorm

v Output time series

nll Compare values against dnorm(x, mean_f, stddev_f)

proj Generate new values with rnorm(mean_f, stddev_f)

g3_param_project_dnorm: Returns a "nll" & "project" formula objects for use as project_fs .
The functions compare / generate log-normal deviates around a mean, i.e:

vt = ϵµ,σ

µ mean_f / (by_stock).(param_name).proj.mean parameter

param_project 83

σ stddev_f / (by_stock).(param_name).proj.stddev parameter
ϵµ,σ Normally distributed noise generated using rnorm

v Output time series

nll Compare values against dnorm(x, mean_f, stddev_f)

proj Generate new values with rnorm(mean_f, stddev_f)

g3_param_project_rwalk: Returns a "nll" & "project" formula objects for use as project_fs .
The functions compare / generate to a random walk, i.e:

vt = vt−1 + ϵµ,σ

µ mean_f / (by_stock).(param_name).proj.mean parameter
σ stddev_f / (by_stock).(param_name).proj.stddev parameter
ϵµ,σ Normally distributed noise generated using rnorm

v Output time series

nll Compare difference between values dnorm(x, mean_f, stddev_f)

proj Generate new values with a delta of rnorm(mean_f, stddev_f)

g3_param_project_ar1: Returns a "nll" & "project" formula objects for use as project_fs .
The functions compare / generate a AR1 process projecting from any existing values, i.e:

vt = ϕvt−1 + (1− ϕ)θ + ϵ0,σ

ϕ phi_f / (by_stock).(param_name).proj.phi parameter
θ level_f / (by_stock).(param_name).proj.level parameter
σ stddev_f / (by_stock).(param_name).proj.stddev parameter, if 0 1e-7 is used, so we don’t

return Inf
ϵµ,σ Normally distributed noise generated using rnorm

v Output time series

g3_param_project_logar1: Returns a "nll" & "project" formula objects for use as project_fs .
The functions compare / generate a log-AR1 process projecting from any existing values, i.e:

Vt = ΦVt−1 + (1− Φ)Θ + ϵ
0− e2∗Σ

2 ,Σ

v = exp(V)

Φ phi_f / (by_stock).(param_name).proj.phi parameter
Θ loglevel_f / (by_stock).(param_name).proj.loglevel parameter
Σ lstddev_f / (by_stock).(param_name).proj.lstddev parameter, if 0 1e-7 is used, so we

don’t return Inf
ϵµ,σ Normally distributed noise generated using rnorm

v Output time series

g3_param_project: Returns a formula to choose the current value from the __var / __lvar
vector.
An extra G3 action will:

84 param_project

1. Populate the array with random deviates from parameters (see examples)
2. Project for any projection years (see g3a_time)
3. Add likelihood comparing random deviates to expected values

g3l_sparsesample_sumsquares: Returns a formula for use as function_f :

rows∑
i

w(
νi
Pi

−Ni)
2

Ni "mean" column from obs_df
νi Total predicted values, i.e. nll_spabund_name__model_sum
Pi Number of data points, i.e. nll_spabund_name__model_n
w weighting parameter, either:

1. 1/σ2, using stddev of model predicted values if weighting = "model_stddev"

2. 1/σ2, using stddev column from obs_df if weighting = "obs_stddev"

3. A custom forumla provided for weighting

See Also

g3a_time g3_parameterized

Examples

st <- list(
imm = g3_stock(c("fish", maturity = "imm"), c(10, 20, 30)),
mat = g3_stock(c("fish", maturity = "mat"), c(10, 20, 30)))

st2 <- g3_stock("other", c(10, 20, 30))

Set up a projected parameter to share over both stocks
st_Mdn <- g3_param_project(

"Mdn",
g3_param_project_dnorm(),
Append common part of stock names to parameter name
by_stock = st)

actions <- list(
g3a_time(1990, 1994, c(6,6)),
gadget3:::g3a_initialconditions_manual(st$imm,

quote(100 + stock__minlen),
quote(1e4 + 0 * stock__minlen)),

gadget3:::g3a_initialconditions_manual(st$mat,
quote(100 + stock__minlen),
quote(1e4 + 0 * stock__minlen)),

gadget3:::g3a_initialconditions_manual(st2,
quote(100 + stock__minlen),
quote(1e4 + 0 * stock__minlen)),

Natural mortality with per-step deviates
g3a_naturalmortality(st$imm, g3a_naturalmortality_exp(st_Mdn)),
g3a_naturalmortality(st$mat, g3a_naturalmortality_exp(st_Mdn)),

param_project 85

Natural mortality with per-year random walk
g3a_naturalmortality(st2, g3a_naturalmortality_exp(

g3_param_project(
"Mrw",
g3_param_project_rwalk(),
The same value will be used for each step
by_step = FALSE,
by_stock means the stock name will be included in parameter names
by_stock = st2))),

NULL)

model_fn <- g3_to_r(c(actions, list(
g3a_report_history(actions, 'proj_.*', out_prefix = NULL),
NULL)))

Mdn has a parameter for each year/step, as well as mean/sd (added above) & likelihood weighting
grep("^fish.Mdn", names(attr(model_fn, 'parameter_template')), value = TRUE)

Mrw has parameters for each year
grep("^other.Mrw", names(attr(model_fn, 'parameter_template')), value = TRUE)

attr(model_fn, 'parameter_template') |>
g3_init_val("stst.Mdn.#.#", 0.5, lower = 0.1, upper = 0.9, random = TRUE) |>
g3_init_val("stst.Mdn.proj.dnorm.lmean", 0.1) |>
g3_init_val("stst.Mdn.proj.dnorm.lstddev", 0.001) |>

g3_init_val("other.Mrw.proj.rwalk.mean", 0) |>
g3_init_val("other.Mrw.proj.rwalk.stddev", 0.001) |>
g3_init_val("other.Mrw.#", 0.5, lower = 0.1, upper = 0.9, random = TRUE) |>

Project forwards 20 years
g3_init_val("project_years", 20) |>

Don't include projections in nll calculations:
allows a stddev to be supplied for projections, but estimated freely
g3_init_val("proj_rwalk_fish_Mrw_weight", 0) |>
g3_init_val("proj_dnorm_fish_Mdn_weight", 0) |>

identity() -> params
r <- attributes(model_fn(params))

Values used for dnorm
plot(r$proj_dnorm_fish_Mdn__var)

Values used for random walk
plot(r$proj_rwalk_other_Mrw__var)

Plot values for an individual projection function

actions <- list(g3a_time(1990, 1991), g3_param_project("M", g3_param_project_dlnorm()))
model_fn <- g3_to_r(c(actions, list(

g3a_report_history(actions, 'proj_.*', out_prefix = NULL),

86 quota

NULL)))

attr(model_fn, 'parameter_template') |>
g3_init_val("M.proj.dlnorm.lmean", log(20)) |>
g3_init_val("M.proj.dlnorm.lstddev", log(1e-6)) |>
g3_init_val("M.#.#", 20) |>

g3_init_val("project_years", 100) |>

identity() -> params

par(mfrow=c(3, 1))
plot(attr(model_fn(params |>

g3_init_val("M.proj.dlnorm.lstddev", log(1.001))), "proj_dlnorm_M__lvar"), ylim = c(15, 25))
plot(attr(model_fn(params |>

g3_init_val("M.proj.dlnorm.lstddev", log(1e-1))), "proj_dlnorm_M__lvar"), ylim = c(15, 25))
plot(attr(model_fn(params |>

g3_init_val("M.proj.dlnorm.lstddev", log(1e-2))), "proj_dlnorm_M__lvar"), ylim = c(15, 25))

quota Gadget3 projected quotas

Description

Add projected fishing quotas / MSE

Usage

g3_quota_hockeystick(
predstocks, # Predator / fleet stocks forming a name for quota
preystocks, # Mature spawning-stocks
preyprop_fs = 1, # NB: Doesn't have to sum to 1
trigger = g3_parameterized("hs.trigger", by_stock = predstocks),
target = g3_parameterized("hs.target", by_stock = predstocks),
stddev = g3_parameterized("hs.stddev", by_stock = predstocks, value = 0),
unit = c("harvest-rate-year", "biomass-year", "individuals-year"))

g3_quota_hockeyfleet(
predstocks, # Predator / fleet stocks forming a name for quota
preystocks, # Mature spawning-stocks
preyprop_fs = 1, # NB: Doesn't have to sum to 1
btrigger = g3_parameterized("hf.btrigger", by_stock = predstocks),

harvest_rate = g3_parameterized("hf.harvest_rate", by_stock = predstocks),
stddev = g3_parameterized("hf.stddev", by_stock = predstocks, value = 0))

g3_quota_assess(
predstocks,
preystocks,

quota 87

assess_f,
unit = c("biomass-year", "biomass", "harvest-rate", "harvest-rate-year",

"individuals", "individuals-year"))

g3_quota(
function_f,
quota_name = attr(function_f, 'quota_name'),
init_val = NaN,
year_length = 1L,
start_step = 1L,
run_revstep = -1,
run_historical = FALSE,
run_f = TRUE,
run_at = g3_action_order$quota)

Arguments

predstocks A list of g3_stock objects for all predators/fleets that will use the quota. In
g3_quota_hockeyfleet, these will be used to name the quota/parameters. In
g3_quota_assess, these will define helper variables for use in function_f .

preystocks A list of g3_stock objects for all prey that the quota will apply to. In g3_quota_hockeyfleet,
these will be used to define the spawning stock biomass. In g3_quota_assess,
these will define helper variables for use in function_f .

preyprop_fs A formula or list of formulas representing the proportion of that prey that makes
up the Spawning Stock Biomass (SSB). The proportions do not need to sum to
1, for example you may use preyprop_fs = 0.4 to assume that 40
Using a suitability function is also supported, e.g. g3_suitability_exponentiall50.

trigger, btrigger
Trigger biomass (or number of individuals, if unit is "individuals-year"), see
formula

target, harvest_rate
The maximum quota value to be returned, assuming the stock is healthy, and
above trigger , see formula

stddev If > 0, then apply log-normal noise to the output quota.

assess_f A formula that runs an assessment model & returns a quota. See vignette TODO:

unit A single string representing the returned quota’s unit, as used by g3a_predate_catchability_project.
In g3_quota_hockeyfleet, the unit of both harvest_rate and btrigger In g3_quota_assess,
the value returned by assess_f will be assumed to have this unit.

function_f Output of one of the g3_quota_* functions, responsible for choosing the next
quota

quota_name A name used to refer to the quota internally, by default a combination of the
quota function and the stocks used.

init_val Pre-fill the quota with this value on the start of the model, will be used if no
quota assessment has run for the current fishing year. This needs to be NaN for
g3a_predate_catchability_project to detect interim periods.

year_length The length of the fishing year, in years, see details.

88 quota

start_step The initial step of the fishing year, in model steps, see details. This can be used
to offset the fishing year from the calendar year for, if your fishing year should
run autumn–autum. It can also offset from the start of the model, if your model
starts at 1998 and your fishing year should run 2000–2005.

run_historical Boolean. Should the quota be calculated for historical periods? Default FALSE,
assuming g3a_predate_catchability_project will be supplying landings
data and any quota would be unused. Requied to be FALSE to detect interim
periods.

run_revstep A negative integer, defining which step in the fishing year an assessment for next
year is performed. If NULL, run every step.

run_f When the quota should be recalculated, in addition to any condition defined by
run_revstep .

run_at Integer order that actions will be run within model, see g3_action_order.

Details

Variables defined in your model: Once added the following variables can be reported:

quota_quota_name__var A vector of quota values, one per fishing year in your model, see
quota_hockeyfleet_trawl__var in example below

Fishing year: Instead of generating a quota per calendar year or step, as we do with other
projections, quotas are per fishing year.
The schedule of the fishing calendar is defined with:

year_length The length of the fishing year, in years. If > 1, the same yearly quota will be used
for all years

start_step Offset of the initial fishing year, in model steps. So you can both start your fishing
year in autumn, and have a fishing year that is offset against the model start year

run_revstep The step in the fishing year that the quota for the next year should be calculated

In addition, g3a_predate_catchability_project will allow you to assign proportions of a
quota to model steps.
Examples:

year_length = 2, start_step = 3, run_revstep = -2 A 2 year fishing calendar, i.e. a quota
will be calculated every other year and the same value used for the next 2 years. Assuming 4
model steps, the quota will be calculated in winter for the next fishing year in summer.

year_length = 5, start_step = 4 * 2 A 5 year fishing calendar, the quota will be recalulated
every 5 years in the autumn (the final step before the next fishing year starts). If our model
starts at 1998 and have 4 steps, 4 * 2 means our first full fishing year is 2000–2005.

Value

g3_quota_hockeystick: A formula for use in g3_quota

SS =

preys∑
p

SpNp

quota 89

... if unit = "individuals-year"

SS =

preys∑
p

SpNpWp

... otherwise
Tgmin(

SS

Tr
, 1)

Tg Target consumption, provided by target argument, by default the hs.target parameter
Tr Trigger biomass / harvest-rate / individuals, provided by trigger argument, by default the

hs.trigger parameter
SS Spawning Stock (SS) in biomass / individuals
Sp Suitable proportion of prey p, as decided by preyprop_fs
Np Total abundance of prey p
Np Mean weight of prey p

g3_quota_hockeyfleet: For backward-compatibility, essentially the same as g3_quota_hockeystick(...,
unit = "harvest-rate-year")

g3_quota_assess: A formula for use in g3_quota

g3_quota: A formula for use in g3a_predate_catchability_project, returning the current
value of the quota quota_quota_name__var time vector.
In addition, returns an ancillary step that populates the quota_quota_name__var time vector
according to the fishing year.

See Also

g3a_predate_catchability_project

Examples

st <- g3_stock("st", c(10))
fleets <- list(

NB: We break down our fleet names into parts, g3_quota_hockeystick() will
use the common name part (read: trawl) when naming parameters.
nor = g3_fleet(c(type = "trawl", country = "nor")),
oth = g3_fleet(c(type = "trawl", country = "oth")))

Define quota for both fleets, with an assessment in spring, application in autumn
fl_quota <- g3_quota(

g3_quota_hockeystick(fleets, list(st), preyprop_fs = 1, unit="harvest-rate"),
start_step = 4L,
run_revstep = -2L)

Invent some historical landings tables for the sake of example
landings_trawl_nor <- expand.grid(year = 1990:1995, step = 2)
landings_trawl_nor$total_weight <- 1e6
landings_trawl_oth <- expand.grid(year = 1990:1995, step = 2)
landings_trawl_oth$total_weight <- 1e8

90 quota

actions <- list(
g3a_time(1990, 1995, c(3,3,3,3)),
Define st with steadily collapsing stock
g3a_otherfood(st, num_f = g3_timeareadata('st_abund', data.frame(

year = 1990:2050,
abund = 1e6 - 1e4 * seq(0, 2050-1990)), "abund"), wgt_f = 10),

Fleet predation, both sharing the same quota
g3a_predate(

fleets$nor,
list(st),
suitabilities = 0.8,
catchability_f = g3a_predate_catchability_project(

Use the (shared) quota when projecting, otherwise use historical landings
quota_f = fl_quota,
landings_f = g3_timeareadata("landings_trawl_nor", landings_trawl_nor))),

g3a_predate(
fleets$oth,
list(st),
suitabilities = 0.8,
catchability_f = g3a_predate_catchability_project(

Use the (shared) quota when projecting, otherwise use historical landings
quota_f = fl_quota,
landings_f = g3_timeareadata("landings_trawl_oth", landings_trawl_oth))),

NULL)
model_fn <- g3_to_r(c(actions,

g3a_report_detail(actions),
g3a_report_history(actions, "__num$|__wgt$", out_prefix="dend_"), # NB: Late reporting
g3a_report_history(actions, "quota_", out_prefix = NULL)))

attr(model_fn, "parameter_template") |>
Project for 30 years
g3_init_val("project_years", 30) |>
Quota is yearly, so specify cons.step parameters to divide up into steps
Fishing predominantly occurs in spring/summer, none in winter
g3_init_val("trawl_*.cons.step.#", c(0.0, 0.5, 0.4, 0.1)) |>
3/4 of the quota goes to nor, the rest to oth
g3_init_val("trawl_nor.quota.prop", 0.75) |>
g3_init_val("trawl_oth.quota.prop", 0.25) |>
Hockefleet: harvest rate & trigger biomass (shared across trawl_nor & trawl_oth)
g3_init_val("trawl.hs.target", 0.2) |>
g3_init_val("trawl.hs.trigger", 7.2e6) |>
identity() -> params.in

r <- attributes(model_fn(params.in))

Total biomass at assessment point
g3_array_agg(r$dend_st__num * r$dend_st__wgt, "year", step = 2)

Quota values, inflection once total biomass falls below btrigger
par(mar = c(6, 5, 1, 0)) ; barplot(r$quota_hockeystick_trawl__var, las = 2) ; abline(v=27.7)

Consumption by fleet, demonstrating
(a) fixed landings before projections (landings_trawl_nor)

run_desc 91

(b) inflection of hitting btrigger
(c) Uneven spread of fishing effort throughout year (fl.quota.step.#)
barplot(g3_array_agg(r$detail_st_trawl_nor__cons, "time"), las = 2)

Timing of calculations for fishing year
fl_quota <- g3_quota(

Our quota values are year/step at the assessment time step
quote(cur_year * 10 + cur_step),

"init_val" will be used in the interim period, replaced by g3a_predate_catchability_project()
init_val = 99,
year_length = 1L,
start_step = 4L,
run_revstep = -3L)

yr <- as.integer(format(Sys.Date(), "%Y"))
actions <- list(

g3a_time(yr - 6, yr - 1, project_years = 10, step_lengths = rep(3L, 4)),
fl_quota,

At each step in the model, print the current year/step, and the quota value that will get used
NB: before projection, g3a_predate_catchability_project() will use landings data not the quota
g3_step(g3_formula(

writeLines(paste(cur_year, cur_step, if (cur_year_projection) q else "landings")),
q = fl_quota)),

NULL)
model_fn <- g3_to_r(c(actions,

g3a_report_history(actions, "quota_", out_prefix = NULL)))
attr(model_fn(), "quota__var")

run_desc Gadget3 actions into R code

Description

Convert g3 actions into a character vector describing the model

Usage

g3_to_desc(actions, minor_steps = FALSE)

Arguments

actions A list of actions (i.e. list of formula objects), as produced by g3a_* functions.

minor_steps Include minor steps (e.g. zeroing cumulative arrays)? TRUE / FALSE

Value

Character vector describing each step in the model. An action in a model may have generated
multiple steps (e.g. select each prey stock, scale total amount, apply overstocking), and there will
be a line in here for each.

92 run_r

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)

initialconditions_action <- g3a_initialconditions_normalparam(
ling_imm,
by_age = TRUE)

Timekeeping action
time_action <- g3a_time(

start_year = 2000,
end_year = 2004,
c(3, 3, 3, 3))

Generate a list outlining the steps the model uses
as.list(g3_to_desc(list(initialconditions_action, time_action)))

run_r Gadget3 actions into R code

Description

Convert g3 actions into an R function that can then be executed

Usage

g3_to_r(
actions,
work_dir = getOption('gadget3.r.work_dir', default = tempdir()),
trace = FALSE,
strict = FALSE,
cmp_options = list(optimize = 3))

S3 method for class 'g3_r'
print(x, ..., with_environment = FALSE, with_template = FALSE)

Arguments

actions A list of actions (i.e. list of formula objects), as produced by g3a_* functions.

work_dir Where to write the temporary R script containing your function

cmp_options options to pass through to compiler::cmpfun(). If NULL, then don’t run the
model through the byte-code compiler

trace If TRUE, turn all comments into print statements.

strict If TRUE, enable extra sanity checking in actions. Any invalid conditions (e.g.
more/less fish after growth) will result in a warning.

x The g3_to_r-generated function to print

run_r 93

with_environment

If TRUE, list data stored in function environment when printing

with_template If TRUE, show parameter template when printing

... Other arguments

Value

A function that takes a params variable, which can be:

1. A list of parameters as defined by attr(fn, 'parameter_template')

2. A data.frame of parameters defined by g3_to_tmb’s parameter template

3. Not provided, in which case the parameter defaults are used

The function will have the following attributes:

actions The original actions list given to the function

parameter_template A list of all parameters expected by the model, to fill in

Use e.g. attr(fn, 'parameter_template') to retrieve them.

Invariant model data will be stored as a closure, i.e. in environment(fn). This can be fetched with
environment(fn)$cdist_sumofsquares_ldist_gil_obs__num.

The function will return nll produced by the model. You can also use attributes(nll) to get any
report variables from the model.

Examples

ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)

initialconditions_action <- g3a_initialconditions_normalparam(
ling_imm,
factor_f = g3a_renewal_initabund(by_stock_f = 'species'),
by_stock = 'species',
by_age = TRUE)

Timekeeping action
time_action <- g3a_time(

start_year = 2000,
end_year = 2004,
c(3, 3, 3, 3))

Generate a model from the above 2 actions
NB: Obviously in reality we'd need more actions
fn <- g3_to_r(list(initialconditions_action, time_action))

if (interactive()) {
Edit the resulting function
fn <- edit(fn)

}

param <- attr(fn, 'parameter_template')

94 run_tmb

param$project_years <- 0
param$ling.init.F <- 0.4
param$ling.Linf <- 160
param$ling.K <- 90
param$ling.recl <- 12
param$recage <- g3_stock_def(ling_imm, 'minage')
param[grepl('^ling.init.sd.', names(param))] <- 50.527220
param[grepl('^ling_imm.init.\\d+', names(param))] <- 1
param$ling_imm.init.scalar <- 200
param$ling_imm.walpha <- 2.27567436711055e-06
param$ling_imm.wbeta <- 3.20200445996187
param$ling_imm.M <- 0.15

Run the model with the provided parameters
nll <- fn(param)

Get the report from the last model run
report <- attributes(nll)

Fetch a value from the model data
environment(fn)$ling_imm__midlen

run_tmb Gadget3 actions into TMB code

Description

Turn g3 actions into CPP code that can be compiled using TMB

Usage

g3_to_tmb(actions, trace = FALSE, strict = FALSE)

g3_tmb_adfun(
cpp_code,
parameters = attr(cpp_code, 'parameter_template'),
compile_flags = getOption('gadget3.tmb.compile_flags', default =

if (.Platform$OS.type == "windows") c("-O1", "-march=native")
else c("-O3", "-flto=auto", "-march=native")),

work_dir = getOption('gadget3.tmb.work_dir', default = tempdir()),
output_script = FALSE,
compile_args = list(

framework = getOption("gadget3.tmb.framework", default = "TMBad")),
...)

g3_tmb_fn(
cpp_code,
def.parameters = attr(cpp_code, 'parameter_template'),

run_tmb 95

...)

g3_tmb_par(parameters, include_random = TRUE)

g3_tmb_lower(parameters)

g3_tmb_upper(parameters)

g3_tmb_parscale(parameters)

g3_tmb_relist(parameters, par)

Arguments

actions A list of actions (i.e. list of formula objects), as produced by g3a_* functions.

trace If TRUE, turn all comments into print statements.

strict If TRUE, enable extra sanity checking in actions. Any invalid conditions (e.g.
more/less fish after growth) will result in a warning.

cpp_code cpp_code as produced by g3_to_tmb .

parameters, def.parameters
Parameter table as produced by attr(g3_to_tmb(...), 'parameter_template'),
modified to provide initial conditions, etc.

par Parameter vector, as produced by one of

1. nlminb(...)$par

2. obj.funenvlast.par

3. g3_tmb_par()

The first will not include random parameters by default, the others will.

include_random Should random parameters assumed to be part of par? Should be TRUE if using
obj.fun$fn, obj.fun$report directly, e.g. obj.fun$fn(g3_tmb_par(param_tbl)).
In other cases, FALSE.

compile_flags List of extra flags to compile with, use e.g. "-g" to enable debugging output. Can
be set with an option, e.g. options(gadget3.tmb.compile_flags = c('-O0',
'-g'))

compile_args Any other arguments to pass to TMB::compile

work_dir Directory to write and compile .cpp files in. Defaults to R’s current temporary
directory Set this to preserve compiled output and re-use between R sessions if
possible. Can be set with an option, e.g. options(gadget3.tmb.work_dir =
fs::path_abs('tmb-workdir'))

output_script If TRUE, create a temporary R script that runs MakeADFun, and return the loca-
tion. This can then be directly used with gdbsource or callr::rscript.

... Any other options handed directly to MakeADFun or g3_tmb_adfun (for g3_tmb_fn).

96 run_tmb

Details

g3_tmb_adfun: g3_tmb_adfun will do both the compile and MakeADFun steps of making a
model. If the code is identical to an already-loaded model then it won’t be recompiled, so repeated
calls to g3_tmb_adfun to change parameters are fast.
If MakeADFun is crashing your R session, then you can use output_script to run in a separate R
session. Use this with gdbsource to debug your model.

g3_tmb_fn: Wraps g3_tmb_adfun to produce a function suitable for single model runs or pro-
jection, like g3_to_r. optimise & random are ignored, instead all values from the provided
parameters will be used when calling the function.
Internally it uses obj.fn$simulate, so the R RNG is updated after the run is finished (i.e. suc-
cessive runs will produce different answers).

Value

g3_to_tmb: A string of C++ code that can be used as an input to g3_tmb_adfun , with the
following attributes:

actions The original actions list given to the function
model_data An environment containing data attached to the model
parameter_template A data.frame to be filled in and used as parameters in the other g3_tmb_*

functions

Use e.g. attr(cpp_code, 'parameter_template') to retrieve them.

g3_tmb_adfun: An ADFun as produced by TMB’s MakeADFun, or location of temporary script
if output_script is TRUE

g3_tmb_fn: An R function with the signature function (par = NULL), where: par can be NULL
(use default parameter values), a parameter template data.frame, or a parameter list.
Returns a list with all report variables.

g3_tmb_par: Values extracted from parameters table converted into a vector of values for
obj$fn(par) or nlminb

g3_tmb_lower: Lower bounds extracted from parameters table converted into a vector of values
for nlminb. Random parameters are always excluded

g3_tmb_upper: Lower bounds extracted from parameters table converted into a vector of values
for nlminb. Random parameters are always excluded

g3_tmb_parscale: Parscale extracted from parameters table, converted into a vector of values
for nlminb. Random parameters are always excluded

g3_tmb_relist: The parameters table value column, but with optimised values replaced with
contents of par vector. i.e. the inverse operation to g3_tmb_par. par can either include or discount
random variables.

run_tmb 97

Examples

ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)

initialconditions_action <- g3a_initialconditions_normalparam(
ling_imm,
factor_f = g3a_renewal_initabund(by_stock_f = 'species'),
by_stock = 'species',
by_age = TRUE)

abundance_action <- g3l_abundancedistribution(
'abundance',
data.frame(year = 2000:2004, number = 100),
stocks = list(ling_imm),
function_f = g3l_distribution_sumofsquares())

Timekeeping action
time_action <- g3a_time(

start_year = 2000,
end_year = 2004,
c(3, 3, 3, 3))

Generate a model from the above 2 actions
NB: Obviously in reality we'd need more actions
cpp <- g3_to_tmb(list(initialconditions_action, abundance_action, time_action))

if (interactive()) {
Edit the resulting code
cpp <- edit(cpp)

}

Set initial conditions for parameters
attr(cpp, 'parameter_template') |>

g3_init_val("project_years", 0) |>
g3_init_val("ling.init.F", 0.4) |>
g3_init_val("ling.Linf", 160) |>
g3_init_val("ling.K", 90) |>
g3_init_val("ling.t0", 0) |>
g3_init_val("ling.init.sd.#", 50.527220) |>
g3_init_val("ling_imm.init.#", 1, lower = 0, upper = 1000) |>
g3_init_val("ling_imm.init.scalar", 200) |>
g3_init_val("ling_imm.walpha", 2.275e-06) |>
g3_init_val("ling_imm.wbeta", 3.2020) |>
g3_init_val("ling_*.M.#", 0.15) |>
identity() -> tmb_param

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
Compile to a TMB ADFun
tmb <- g3_tmb_adfun(cpp, tmb_param)

}

98 run_tmb

NB: TMB::gdbsource() requires both "R" and "gdb" to be available
NB: gdbsource hangs on windows - https://github.com/kaskr/adcomp/issues/385
if (all(nzchar(Sys.which(c('gdb', 'R')))) && .Platform$OS.type !="windows") {

cpp_broken <- g3_to_tmb(list(
initialconditions_action,
abundance_action,
g3_formula(quote(stop("This model is broken"))),
time_action))

attr(cpp_broken, 'parameter_template') |>
g3_init_val("ling_imm.init.#", 1, lower = 0, upper = 1000) |>
identity() -> params_broken

Build the model in an isolated R session w/debugger
writeLines(TMB::gdbsource(g3_tmb_adfun(

cpp_broken,
params_broken,
compile_flags = "-g",
output_script = TRUE)))

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
Perform a single run, using values in table
result <- tmb$fn(g3_tmb_par(tmb_param))

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
perform optimisation using upper/lower/parscale from table
fit <- optim(tmbpar, tmbfn, tmb$gr,

method = "L-BFGS-B",
upper = g3_tmb_upper(tmb_param),
lower = g3_tmb_lower(tmb_param),
control = list(maxit=10, parscale=g3_tmb_parscale(tmb_param)))

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
perform optimisation without bounds
fit <- optim(tmbpar, tmbfn, tmb$gr)

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
Go back to a list of parameters, suitable for the R version
NB: This will not set the values for random parameters
param_list <- g3_tmb_relist(tmb_param, fit$par)

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
Update parameters with values from last run, *including* random parameters.
param_list <- g3_tmb_relist(tmb_param, tmbenvlast.par)

}

step 99

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
Rebuild a simple function version for projection
proj.fn <- g3_tmb_fn(cpp)

Get the reported results from a single run
result <- proj.fn(tmb_param)

}

if (!(nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows")) {
We can do similar to g3_tmb_fn() by using g3_tmb_adfun() directly

Rebuild, only including "Fun" (i.e. without auto-differentiation)
Result will only work for tmb$report
NB: Only parameters with optimise=TRUE can be varied
obj.fn <- g3_tmb_adfun(cpp, tmb_param, type = "Fun")
result <- obj.fn$report(g3_tmb_par(tmb_param, include_random = TRUE))

We can also use obj.fn$simulate
result <- obj.fn$simulate(g3_tmb_par(tmb_param, include_random = TRUE))

NB: Before running simulations, you should use set.seed() to ensure random output
}

step G3 stock_* transformation functions

Description

Additional meta-functions to help manage writing stock-handling actions.

Usage

g3_step(step_f, recursing = FALSE, orig_env = environment(step_f))

Arguments

step_f Input formula containing references to functions below

recursing Only use default value

orig_env Only use default value

Details

All action producing functions will run their output through g3_step. This means that the functions
described here will be available in any gadget3 code.

They handle translation of stock instance naming, so code can refer to e.g. stock__num without
having to translate naming to the final stock name, and iterating over stock dimensions.

100 step

Value

g3_step: A formula object with references to above functions replaced.

debug_label

Add a comment to the code to act as a label for that step, when producing an outline of the model.
There shouldn’t be more than one debug_label call in a step.

Models compiled with trace = TRUE will print the resultant string to stdout.

Arguments: Any number of character strings, or g3_stock variables. The latter will be replaced
with the final name.

debug_trace

Identical to debug_label, but not considered a "label", just a code comment, so any number of calls
can be added.

stock_assert

stock_assert(expression, message, message/stock-var, ...)

Assert that expression is true, if not abort with a message.

stock_reshape

stock_reshape(dest_stock, expression)

Output expression with it’s length structure reshaped to match dest_stock . The source stock is
considered to be the first one found in expression

How this is achieved depends on the difference. If the source and destination match then this is a
no-op. Otherwise a transformation matrix is generated and included into the model.

stock_ss

stock_ss(stock_var, [dimname = override, dimname = override, ...][, vec = (dimname|full|single)
])

Subsets stock_var for the current iteration of stock_iterate().

The vec parameter decides the start value for all dimensions If full, no other dimensions are set.
If set to a dimname, all dimensions after that dimension are set (i.e. a dimname-vector will be
returned) If single, all dimensions are set (i.e. a single value wil be returned). The default is
length if a length dimension is present (i.e. a length vector will be returned), otherwise single.

If dimnames are supplied, then the code supplied will override the above. This code can include
default, which will be substituted for the default subset, or missing to represent an empty position
in the subset. If a dimname is not present in stock_var , it will be ignored.

stock_ssinv

stock_ssinv(stock_var, [dimname, dimname, ...])

like stock_ss(), but subset only the mentioned dimnames.

step 101

stock_switch

stock_switch(stock, stock_name1 = expr, stock_name2 = expr, ... [default])

Switch based on name of stock , returning the relevant expr or default . If no default supplied, then
an unknown stock is an error.

expr is implicitly wrapped with stock_with(stock, ...), so any references to the stock variable
will work. If only default is provided, then this is identical to calling stock_with.

stock_with

stock_with(stock, expr)

Replaced with expr but with all stock variables of stock renamed with their final name. This is
generally needed when not iterating over a stock, but e.g. zeroing or summing the whole thing.

stock_iterate

stock_iterate(stock, expr)

Wrap expr with the code to iterate over vector dimensions in stock , accessed using stock_ss(stock).

Which dimensions are iterated over is decided based on the call to stock_ss(stock). By default,
stock_ss leaves length blank so will iterate over a length vector for each dimension.

You can iterate over each value individually with the following: stock_iterate(stock, stock_ss(stock,
length = default))

Current values for each dimension will be available as variables, e.g. area, age, and can be used in
formulae.

stock_intersect

stock_intersect(stock, expr)

Wrap expr with the code to intersect all dimensions with the dimensions of an outer stock_iterate().

stock_interact

stock_interact(stock, expr, prefix = prefix)

Wrap expr with the code to interact with the dimensions of an outer stock_iterate(). Interact means
to intersect over area, but try the combinatoral explosion of all other dimensions, i.e. what would
make most sense when 2 stocks interact in a predator-prey relationship.

Additional variables will be prefixed with prefix .

stock_prepend

stock_prepend(stock, param_call, name_part = NULL)

Converts a g3_param or g3_param_table call, prefixing the parameter name with the stock name,
and renaming any references to stock variables. If name_part given, will only add given part(s) of
the stock name.

Returns param_call with the additions made.

102 step

stock_hasdim

stock_hasdim(stock, dim_name)

Returns TRUE iff dim_name is present in stock .

This is mostly useful to replace code depending on whether a dimension has been used. When used
as part of an if statement, the if statement and the unused branch will be optimised away.

Examples

debug_label
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10)
prey_stock <- g3_stock('herring', 1:3) %>% g3s_age(1,3)
g3_step(~debug_trace("Zero ", stock, "-", prey_stock, " biomass-consuming counter"))

stock_assert
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10)
g3_step(~stock_assert(stock_with(stock, all(is.finite(stock__num))), stock, "__num became NaN/Inf"))

stock_reshape
s <- g3_stock('s', seq(3, 21, 3))
s__num <- g3_stock_instance(s, 100)
agg <- g3_stock('agg', c(3, 10, 21), open_ended = FALSE)
g3_eval(~stock_iterate(s, stock_reshape(agg, stock_ss(s__num))))

stock_ss
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10) %>% g3s_livesonareas(1)
stock__num <- g3_stock_instance(stock)
g3_step(~stock_iterate(stock, { x <- x + stock_ss(stock__num) }))
g3_step(~stock_ss(stock__num, area = 5))
Lengthgroups for age_idx + 1
g3_step(~stock_ss(stock__num, age = default + 1))
Vector for the entirety of the "next" area
g3_step(~stock_ss(stock__num, area = default + 1, vec = area))
g3_step(~stock_ss(stock__num, area = , age = j))

stock_ssinv
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10) %>% g3s_livesonareas(1)
g3_step(~g3_step(~stock_ssinv(stock, 'age')))
g3_step(~g3_step(~stock_ssinv(stock, 'area')))

stock_switch
stock <- g3_stock('halibut', 1:10) ; fleet_stock <- g3_fleet('igfs')
g3_step(~stock_switch(stock, halibut = 2, herring = 3, -1))
g3_step(~stock_switch(fleet_stock, halibut = 2, herring = 3, -1))
g3_step(~stock_switch(stock, halibut = stock__midlen, -1))

stock_with
stock <- g3_stock('halibut', 1:10)
g3_step(~stock_with(stock, sum(stock__num)))

stock_iterate
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10)

stock 103

g3_step(~stock_iterate(stock, x <- x + stock_ss(stock__num)))

stock_intersect
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10)
prey_stock <- g3_stock('herring', 1:3) %>% g3s_age(1,3)
g3_step(~stock_iterate(stock, stock_intersect(prey_stock, {

x <- x + stock_ss(stock__num) + stock_ss(prey_stock__num)
})))

stock_interact
stock <- g3_stock('halibut', 1:10) %>% g3s_age(1,10)
prey_stock <- g3_stock('herring', 1:3) %>% g3s_age(1,3)
g3_step(~stock_iterate(stock, stock_interact(prey_stock, {

x <- x + stock_ss(stock__num) + stock_ss(prey_stock__num)
}, prefix = "prey")))

stock Gadget3 stock storage

Description

Define multi-dimensional storage for use in models, mostly to contain state about stocks.

Usage

g3_stock(var_name, lengthgroups, open_ended = TRUE)

g3_stock_instance(stock, init_value = NA, desc = "")

g3_fleet(var_name)

g3_stock_def(stock, name)

g3s_clone(inner_stock, var_name)

g3_is_stock(stock)

Arguments

var_name Prefix used for all instance variables of this stock. Can have multiple parts that
will be concatentated together, see example.

lengthgroups Vector defining length groups, each entry defining the minimum value.

open_ended If TRUE, final lengthgroups value defines a group x:Inf. If FALSE, final
lengthgroups value is the upper bound for the previous group.

inner_stock A g3_stock or g3_fleet object to clone.

stock A g3_stock or g3_fleet. For g3_stock_def, can also be a list of stock objects.

104 stock

init_value Intially the array will be filled with this constant, e.g. 1, 0 or NaN

desc Description of the array that will be included in models

name Name of definition to extract, e.g. "minlen".

Value

g3_stock: A g3_stock with length groups

g3_stock_instance: An array with dimensions matching the stock.

g3_fleet: A g3_stock without length groups

g3_stock_def: The definition of the given variable in the stock. If stock is a list, then a list with
the definition of each will be returned.

g3s_clone: A g3_stock with identical dimensions to inner_stock but with a new name.

g3_is_stock: TRUE iff stock is a g3_stock object.

Examples

Define a stock with 3 lengthgroups
stock <- g3_stock('name', c(1, 10, 100))

Define a stock with a multi-part name. We can then dig out species name
stock <- g3_stock(c(species = 'ling', 'imm'), c(1, 10, 100))
stopifnot(stock$name == 'ling_imm')
stopifnot(stock$name_parts[['species']] == 'ling')

Use stock_instance define storage for mean weight of stock,
has dimensions matching what was defined above.
g3_stock_instance(stock, 1, "Mean weight")

Can get definitions for multiple stocks in one go
stocks <- list(

imm = g3_stock(c('st', 'imm'), 1:10),
mat = g3_stock(c('st', 'mat'), 1:10))

g3_stock_def(stocks, 'minlen')

Retrieve the upperlen for the stock
g3_stock_def(stock, 'upperlen')

Define a stock, not-open-ended. Now only 2 groups long
stock <- g3_stock('name', c(1, 10, 100), open_ended = FALSE)

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

Fleets don't have lengthgroups
stock <- g3_fleet('name') %>% g3s_livesonareas(1)

stock_age 105

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

stock_age Gadget3 stock age dimensions

Description

Add age dimensions to g3_stock classes

Usage

g3s_age(inner_stock, minage, maxage)

g3s_agegroup(inner_stock, agegroups)

Arguments

inner_stock A g3_stock that we extend with an age dimension

minage Minimum age to store, integer.

maxage Maximum age to store, integer.

agegroups (optionally named) list of vectors of ages, grouping them together.

Value

g3s_age: A g3_stock with an additional ’age’ dimension.
When iterating over the stock, iterate over each age in turn, age will be set to the current integer
age.
When intersecting with another stock, only do anything if age is betweem minage and maxage .
If an age dimension already exists, it is redefined with new parameters.

g3s_agegroup: A g3_stock with an additional ’age’ dimension.
When iterating over the stock, iterate over each agegroup in turn, age will be set to the first age in
the group.
When intersecting with another stock, only do anything if age is part of one of the groups.

Examples

Define a stock with 3 lengthgroups and 3 ages
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_age(5, 10)

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

106 stock_areas

Define a stock that groups age into "young" and "old"
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_agegroup(list(
young = 5:7,
old = 8:10))

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

stock_areas Gadget3 stock area dimensions

Description

Add area dimensions to g3_stock classes

Usage

g3_areas(area_names)

g3s_livesonareas(inner_stock, areas)

g3s_areagroup(inner_stock, areagroups)

Arguments

area_names A character vector of area names to use in the model

inner_stock A g3_stock that we extend with an area dimension

areas A vector of numeric areas that the stock is part of

areagroups A list mapping names to vectors of numeric areas the stock is part of

Details

g3s_livesonareas breaks up a stock by area. Within a model, areas are only referred to by integer,
however if these are named then that name will be used for report output.

Each area will be defined as a variable in your model as area_x, allowing you to use names in
formulas, e.g. run_f = quote(area == area_x).

g3_areas is a helper to map a set of names to an integer

Inside a model each area will only be referred to by integer.

g3s_areagroup allows areas to be combined, this is mostly used internally by g3l_catchdistribution.

stock_tag 107

Value

g3_areas: A named integer vector, assigning each of area_names a number.

g3s_livesonareas: A g3_stock with an additional ’area’ dimension.
When iterating over the stock, iterate over each area in turn, area will be set to the current integer
area.
When intersecting with another stock, only do anything if area is also part of our list of areas.

g3s_areagroup: A g3_stock with an additional ’area’ dimension.
When iterating over the stock, iterate over each areagroup in turn, area will be set to the first area
in the group.
When intersecting with another stock, only do anything if area is part of one of the groups.

Examples

Make a lookup so we can refer to areas by name
area_names <- g3_areas(c('a', 'b', 'c', 'd', 'e'))
stopifnot(area_names == c(a=1, b=2, c=3, d=4, e=5))

Define a stock with 3 lengthgroups and 3 areas
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_livesonareas(area_names[c('a', 'b', 'c')])

Area variables will be defined, so you can refer to them in formulas:
g3a_migrate(stock, g3_parameterized("migrate_spring"),

run_f = ~area == area_b && cur_step == 2)

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

Define a stock that groups areas into "north" and "south"
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_areagroup(list(
north = area_names[c('a', 'b', 'c')],
south = area_names[c('d', 'e')]))

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

stock_tag Gadget3 tag dimension

Description

Add tag dimensions to g3_stock classes

108 stock_time

Usage

g3s_tag(inner_stock, tag_ids, force_untagged = TRUE)

Arguments

inner_stock A g3_stock that we extend with an area dimension

tag_ids A vector of numeric tags the stock can have, generated by seq_along, e.g. Tag
ID 0 is considered to be "untagged".

force_untagged If TRUE, if "untagged" tag 0 isn’t present it will be added.

Value

g3s_tag: A g3_stock with an additional ’tag’ dimension.
When iterating over the stock, iterate over each tag in turn, tag will be set to the current integer
area.
When interacting with another stock, iterate over each tag in turn, the variable name will depend
on the scenario, e.g. prey_tag .

Examples

Make a lookup of text names to integers
tags <- c('H1-00', 'H1-01')
tags <- structure(seq_along(tags), names = tags)

prey_a can have any of these tags
prey_a <- g3_stock('prey_a', seq(1, 10)) %>% g3s_tag(tags)

Use stock_instance to see what the array would look like
g3_stock_instance(prey_a)

stock_time Gadget3 stock time dimensions

Description

Add time dimensions to g3_stock classes

Usage

g3s_time_convert(year_or_time, step = NULL)

g3s_time(inner_stock, times, year = NULL, step = NULL)

stock_time 109

Arguments

year_or_time Etiher vector of years, or vector of year & step strings, e.g. "1999-01".

year Vector of years, used to generate times if provided.

step Vector of steps, used to generate times if provided.

inner_stock A g3_stock that we extend with a time dimension

times A vector of year/step integers as generated by g3s_time_convert

Value

g3s_time_convert: A single integer vector representing year and step .
If step is NULL, returns year , otherwise year * 1000 + step .

g3s_time: A g3_stock with an additional ’time’ dimension.
If year/step provided, time is defined by those, otherwise times .
The g3_stock will not support iterating, only intersecting.
When intersecting with another stock, only do anything if cur_year and cur_step matches a time
stored in the vector

Examples

Define a stock with 3 lengthgroups and 3 years, not continuous
When used, all steps within a year will be aggregated, year 2002 will be ignored.
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_time(year = c(2000, 2001, 2003))

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

Define a stock with 3 lengthgroups and 3 years, 2 steps
The dimension will have 6 entries, 2000.1, 2000.2, 2001.1, 2001.2, 2002.1, 2002.2
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_time(year = c(2000, 2001, 2002), step = 1:2)

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

g3s_time_convert is best used with a data.frame
data <- read.table(header = TRUE, text = '
year step
2001 1
2001 2
NB: No "2002 1"
2002 2
')
stock <- g3_stock('name', c(1, 10, 100)) %>%

g3s_time(times = g3s_time_convert(data$year, data$step))

Will also parse strings

110 suitability

g3s_time_convert(c("1999-01", "1999-02"))

Use stock_instance to see what the array would look like
g3_stock_instance(stock)

suitability Gadget3 suitability formulae

Description

Formula-returning functions describing length suitability relationships.

Usage

g3_suitability_exponentiall50(
alpha = g3_parameterized("alpha", by_stock = by_stock, by_predator = by_predator),
l50 = g3_parameterized("l50", by_stock = by_stock, by_predator = by_predator),
by_stock = TRUE,
by_predator = TRUE)

g3_suitability_andersen(p0, p1, p2, p3 = p4, p4, p5 = quote(predator_length))

g3_suitability_andersenfleet(
p0 = g3_parameterized('andersen.p0', value = 0, optimise = FALSE,

by_stock = by_stock),
p1 = g3_parameterized('andersen.p1', value = log(2),

by_stock = by_stock, by_predator = by_predator),
p2 = g3_parameterized('andersen.p2', value = 1, optimise = FALSE,

by_stock = by_stock),
p3 = g3_parameterized('andersen.p3', value = 0.1, exponentiate = exponentiate,

by_stock = by_stock, by_predator = by_predator),
p4 = g3_parameterized('andersen.p4', value = 0.1, exponentiate = exponentiate,

by_stock = by_stock, by_predator = by_predator),
p5 = quote(stock__maxmidlen),
by_stock = TRUE,
by_predator = TRUE,
exponentiate = TRUE)

g3_suitability_gamma(alpha, beta, gamma)

g3_suitability_exponential(alpha, beta, gamma, delta)

g3_suitability_straightline(alpha, beta)

g3_suitability_constant(
suit = g3_parameterized("suit", by_stock = by_stock, by_predator = by_predator),
by_stock = TRUE,

suitability 111

by_predator = TRUE)

g3_suitability_richards(p0, p1, p2, p3, p4)

Arguments

suit, alpha, beta, gamma, delta, l50, p0, p1, p2, p3, p4, p5
formula substituted into calcuations, see below.

by_stock Change the default parameterisation (e.g. to be by ’species’), passed through to
default calls to g3_parameterized.

by_predator Change the default parameterisation (e.g. to be by ’fleet’), passed through to
default calls to g3_parameterized.

exponentiate Exponentiate parameters,passed through to default calls to g3_parameterized.

Details

When using these to describe a predator/prey relationship, the stock midlength l will refer to the
prey midlength.

Value

All functions return a formula for use in g3a_predate_fleet’s suitabilities argument:

g3_suitability_exponentiall50: A logarithmic dependence on the length of the prey as given
by the following equation (note that the prey length dependence is actually dependant on the
difference between the length of the prey and l50):

1

1 + e−α(l−l50)

l Vector of stock midlength for each lengthgroup
l50 Length of the stock with a 50% probability of predation, from parameter l50

g3_suitability_andersen: This is a more general suitability function that is dependant on the
ratio of the predator length to the prey length as given by the following equation:
If p3 = p4:

p0 + p2e
− (x−p1)2

p4

Otherwise:

p0 + p2e
− (x−p1)2

p4 ∗min(max(p1 − x, 0), 1) + p2e
− (x−p1)2

p3 ∗min(max(x, 0), 1)

...i.e if log L
l <= p1 then p3 used in place of p4.

x log p5

l

L Vector of predator midlength for each lengthgroup
l Vector of stock midlength for each lengthgroup
p0 .. p4 Function parameter p0 .. p4

112 suitability

p5 Function parameter p5 , if unspecified uses L, Vector of predator midlength for each length-
group.

NB: Specifying p5 is equivalent to using the andersenfleet function in gadget2.

g3_suitability_andersenfleet: A simplified version of g3_suitability_andersen, suitable for
predation by fleets, as the defaults do not rely on the predator’s length.

g3_suitability_gamma: This is a suitability function that is more suitable for use when consid-
ering the predation by a fleet, where the parameter γ would represent the size of the mesh used by
the fleet (specified in centimetres).

(
l

(α− 1)βγ
)(α−1)e

α−1− l
βγ

l Vector of stock midlength for each lengthgroup
α Function parameter alpha
β Function parameter beta
γ Function parameter gamma

This is a suitability function that is more suitable for use when considering the predation by a
fleet, where the parameter γ would represent the size of the mesh used by the fleet (specified in
centimetres).

g3_suitability_exponential: This is a suitability function that has a logarithmic dependence on
both the length of the predator and the length of the prey as given by the following equation:

δ

1 + e−α−βl−γL

L Vector of predator midlength for each lengthgroup
l Vector of stock midlength for each lengthgroup
α Function parameter alpha
β Function parameter beta
γ Function parameter gamma
δ Function parameter delta

g3_suitability_straightline: Returns a formula for use in predation function’s suitabilities argu-
ment:

α+ βl

l Vector of stock midlength for each lengthgroup
α Function parameter alpha
β Function parameter beta

g3_suitability_constant: Returns a formula for use in predation function’s suitabilities argu-
ment:

α

α Function parameter suit , i.e. the "prey.predator.suit" model parameter by default

suitability 113

g3_suitability_richards: Returns a formula for use in predation function’s suitabilities argu-
ment:

(p3
1 + e−p0−p1l−p2L

) 1
p4

L Vector of predator midlength for each lengthgroup
l Vector of stock midlength for each lengthgroup
p0 .. p4 Function parameter p0 .. p4

This is an extension to g3_suitability_exponential.

See Also

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec-suitability,

Examples

ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock(c(species = 'ling', 'mat'), seq(20, 156, 4)) %>% g3s_age(5, 15)
igfs <- g3_fleet('igfs')

igfs_landings <-
structure(expand.grid(year=1990:1994, step=2, area=1, total_weight=1),

area_group = list(`1` = 1))

Generate a fleet predation action using g3_suitability_exponentiall50
predate_action <- g3a_predate_fleet(

igfs,
list(ling_imm, ling_mat),
suitabilities = list(

ling_imm = g3_suitability_exponentiall50(
g3_parameterized('lln.alpha', by_stock = 'species'),
g3_parameterized('lln.l50', by_stock = 'species')),

ling_mat = g3_suitability_exponentiall50(
g3_parameterized('lln.alpha', by_stock = 'species'),
g3_parameterized('lln.l50', by_stock = 'species'))),

catchability = g3a_predate_catchability_totalfleet(
g3_timeareadata('igfs_landings', igfs_landings)))

You can use g3_eval to directly calculate values for a stock:
g3_eval(

g3_suitability_exponentiall50(alpha = 0.2, l50 = 60),
stock = g3_stock('x', seq(0, 100, 10)))

Plots
suit_plot <- function (

suit_f,
stock = g3_stock('x', seq(0, 100, 5)),
predator_length = 140,
cols = rainbow(5)) {

par(mar = c(2,2,2,2), cex.main = 1)

https://gadget-framework.github.io/gadget2/userguide/chap-stock.html#sec-suitability

114 timedata

for (a in seq_along(cols)) curve(
g3_eval(

suit_f,
a = a,
stock = stock,
predator_length = predator_length)[x %/% g3_stock_def(stock, 'dl')[[1]] + 1],

from = min(g3_stock_def(stock, 'minlen')),
to = max(g3_stock_def(stock, 'minlen')),

col = cols[[a]],
main = deparse1(sys.call()[[2]]), xlab = "", ylab = "",
add = (a != 1))

}

suit_plot(g3_suitability_exponentiall50(alpha = ~a * 0.1, l50 = 50))
suit_plot(g3_suitability_andersen(0, log(2), 1, p3 = ~a * 0.1, 0.1, 140))
suit_plot(g3_suitability_andersen(0, log(2), 1, 0.1, p4 = ~a * 0.1, 140))
suit_plot(g3_suitability_gamma(alpha = ~2 + a * 0.1, beta = 1, gamma = 40))
suit_plot(g3_suitability_exponential(0, ~0.01 * a, 0, 1))
suit_plot(g3_suitability_straightline(alpha = 0.1, beta = ~0.01 * a))
suit_plot(g3_suitability_constant(~a * 0.1))
suit_plot(g3_suitability_richards(0, 0.05, 0, 1, ~0.1 * a))

timedata Gadget3 time-based data

Description

Convert time-based data into a formula to lookup values

Usage

g3_timeareadata(lookup_name, df, value_field = "total_weight", areas = NULL)

Arguments

lookup_name A unique name for this lookup, e.g. "igfs_landings".

df A data.frame with any of columns out of age, area, year and step, finally value_field .

value_field Column name that contains output value.

areas Named integer vector of area names to integer values. See g3s_livesonareas.

Value

A formula object that looks up value_field for the current values of age, area, cur_year and
cur_step, depending on the columns in df . If there’s no match, return 0.

timevariable 115

Examples

ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)
ling_mat <- g3_stock(c(species = 'ling', 'mat'), seq(20, 156, 4)) %>% g3s_age(5, 15)
igfs <- g3_fleet('igfs')

igfs_landings <-
structure(expand.grid(year=1990:1994, step=2, area=1, total_weight=1),

area_group = list(`1` = 1))

Generate a fleet predation action, use g3_timeareadata to supply landings
NB: Since igfs_landings only contains values for step=2, there will be no
predation on other steps (since g3_timeareadata will return 0).
predate_action <- g3a_predate_fleet(

igfs,
list(ling_imm, ling_mat),
suitabilities = list(

ling_imm = g3_suitability_exponentiall50(
g3_parameterized('lln.alpha', by_stock = 'species'),
g3_parameterized('lln.l50', by_stock = 'species')),

ling_mat = g3_suitability_exponentiall50(
g3_parameterized('lln.alpha', by_stock = 'species'),
g3_parameterized('lln.l50', by_stock = 'species'))),

catchability = g3a_predate_catchability_totalfleet(
g3_timeareadata('igfs_landings', igfs_landings)))

timevariable Gadget3 time-based formulas

Description

Switch formula based on current time step

Usage

g3_timevariable(lookup_name, fs)

Arguments

lookup_name A unique name for this lookup, e.g. "igfs_landings".

fs A list of formula objects, named with either "init", "(year)" or "(year)-(step)".
When the matching time step is reached, the value of the lookup will be changed.

Details

This is mostly for backwards compatibility with gadget2, before using this, consider other simpler
options, e.g. g3_timeareadata or the by_year option in g3_parameterized.

116 timevariable

Value

A formula object that will switch values at the given time points.

Examples

ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>% g3s_age(3, 10)

naturalmortality_action <- g3a_naturalmortality(ling_imm,
g3a_naturalmortality_exp(g3_timevariable("lingimm.M", list(

Start off using lingimm.M.early
"init" = g3_parameterized("lingimm.M.early"),
At 2005 step 2, switch to lingimm.M.mid
"2005-02" = g3_parameterized("lingimm.M.mid"),
At 2010 step 1, switch to lingimm.M.late
"2010" = g3_parameterized("lingimm.M.late")))))

Index

∗ G3 action
action_age, 7
action_grow, 8
action_mature, 13
action_migrate, 15
action_naturalmortality, 16
action_order, 18
action_predate, 19
action_renewal, 26
action_report, 33
action_spawn, 36
action_spmodel, 41
action_tagging, 43
action_time, 45
action_weightloss, 49
likelihood_bounds_penalty, 60
likelihood_catchdistribution, 61
likelihood_random, 69
likelihood_sparsesample, 71
likelihood_tagging_ckmr, 75
likelihood_understocking, 76

∗ G3 compilation
eval, 54
init_val, 56
run_desc, 91
run_r, 92
run_tmb, 94

∗ G3 internals
aaa_lang, 3
aab_env, 4
env_dif, 53
language, 58
step, 99

∗ G3 projections
param_project, 80
quota, 86

∗ G3 stock
stock, 103
stock_age, 105

stock_areas, 106
stock_tag, 107
stock_time, 108

∗ G3 utilities
action_trace, 47
array_utils, 51
formula_utils, 55
params, 77
suitability, 110
timedata, 114
timevariable, 115

aaa_lang, 3
aab_env, 4
action_age, 7
action_grow, 8
action_mature, 13
action_migrate, 15
action_naturalmortality, 16
action_order, 18
action_predate, 19
action_renewal, 26
action_report, 33
action_spawn, 36
action_spmodel, 41
action_tagging, 43
action_time, 45
action_trace, 47
action_weightloss, 49
ADREPORT (aab_env), 4
array_utils, 51
as.integer, 4
as.numeric, 4
as.numeric (aab_env), 4
as_integer (aab_env), 4
assert_msg (aab_env), 4
avoid_zero, 54
avoid_zero (aab_env), 4
avoid_zero_vec (aab_env), 4

117

118 INDEX

bounded (aab_env), 4
bounded_vec (aab_env), 4

compile, 96
compiler::cmpfun(), 92
cut, 64

data.frame, 96, 114
debug_label, 100
debug_label (step), 99
debug_trace (step), 99
dif_pmax (env_dif), 53
dif_pmin (env_dif), 53
dif_pminmax (env_dif), 53
dnorm, 70

env_dif, 53
environment, 4, 53
eval, 54, 54
expand.grid, 59

formula, 3, 7, 9–15, 17, 20–24, 29–31, 34,
37–39, 42, 44, 50, 54, 55, 62, 63, 65,
66, 70, 72, 73, 76, 79, 82–84, 87, 99,
100, 111–116

formula_utils, 55
function, 3

g3_action_order, 7, 10, 13, 15, 17, 22, 29,
34, 38, 42, 44, 46, 50, 60, 63, 70, 72,
75, 76, 88

g3_action_order (action_order), 18
g3_areas, 72
g3_areas (stock_areas), 106
g3_array_agg (array_utils), 51
g3_array_combine (array_utils), 51
g3_array_plot (array_utils), 51
g3_distribution_preview

(likelihood_catchdistribution),
61

g3_env, 54
g3_env (aab_env), 4
g3_eval (eval), 54
g3_fleet, 22, 103
g3_fleet (stock), 103
g3_formula (formula_utils), 55
g3_global_formula (aaa_lang), 3
g3_idx (language), 58
g3_init_val (init_val), 56

g3_is_stock (stock), 103
g3_matrix_vec (aab_env), 4
g3_native (aaa_lang), 3
g3_param, 70, 78, 79, 101
g3_param (language), 58
g3_param_project (param_project), 80
g3_param_project_ar1 (param_project), 80
g3_param_project_dlnorm

(param_project), 80
g3_param_project_dnorm, 82
g3_param_project_dnorm (param_project),

80
g3_param_project_logar1

(param_project), 80
g3_param_project_rwalk, 82
g3_param_project_rwalk (param_project),

80
g3_param_table, 70, 79, 101
g3_param_table (language), 58
g3_param_vector (language), 58
g3_parameterized, 10, 13, 17, 21, 22, 30, 38,

42, 57, 70, 82, 84, 111, 115
g3_parameterized (params), 77
g3_quota, 21, 88, 89
g3_quota (quota), 86
g3_quota_assess, 51, 87
g3_quota_assess (quota), 86
g3_quota_hockeyfleet, 87
g3_quota_hockeyfleet (quota), 86
g3_quota_hockeystick (quota), 86
g3_step (step), 99
g3_stock, 7, 10, 12–17, 20–22, 25, 29, 32, 34,

35, 37, 40, 42, 49, 50, 54, 63, 67, 72,
74–76, 78, 82, 87, 100, 103–109

g3_stock (stock), 103
g3_stock_def (stock), 103
g3_stock_instance (stock), 103
g3_suitability_*, 37, 44
g3_suitability_* (suitability), 110
g3_suitability_andersen, 112
g3_suitability_andersen (suitability),

110
g3_suitability_andersenfleet

(suitability), 110
g3_suitability_constant (suitability),

110
g3_suitability_exponential, 113
g3_suitability_exponential

INDEX 119

(suitability), 110
g3_suitability_exponentiall50, 20, 22,

87
g3_suitability_exponentiall50

(suitability), 110
g3_suitability_gamma (suitability), 110
g3_suitability_richards (suitability),

110
g3_suitability_straightline

(suitability), 110
g3_timeareadata, 9, 21–23, 44, 115
g3_timeareadata (timedata), 114
g3_timevariable (timevariable), 115
g3_tmb_adfun, 60, 95, 96
g3_tmb_adfun (run_tmb), 94
g3_tmb_fn, 95
g3_tmb_fn (run_tmb), 94
g3_tmb_lower (run_tmb), 94
g3_tmb_par, 96
g3_tmb_par (run_tmb), 94
g3_tmb_parscale (run_tmb), 94
g3_tmb_relist (run_tmb), 94
g3_tmb_upper (run_tmb), 94
g3_to_desc, 48
g3_to_desc (run_desc), 91
g3_to_r, 56, 96
g3_to_r (run_r), 92
g3_to_tmb, 56, 60, 93
g3_to_tmb (run_tmb), 94
g3_with (language), 58
g3a_age (action_age), 7
g3a_grow_impl_bbinom, 10, 14
g3a_grow_impl_bbinom (action_grow), 8
g3a_grow_length_multspec (action_grow),

8
g3a_grow_length_weightjones, 10
g3a_grow_length_weightjones

(action_grow), 8
g3a_grow_lengthvbsimple, 10
g3a_grow_lengthvbsimple (action_grow), 8
g3a_grow_weight_multspec (action_grow),

8
g3a_grow_weight_weightjones

(action_grow), 8
g3a_grow_weightsimple, 10
g3a_grow_weightsimple (action_grow), 8
g3a_growmature, 14, 17
g3a_growmature (action_grow), 8

g3a_initialconditions_normalcv
(action_renewal), 26

g3a_initialconditions_normalparam, 30,
31

g3a_initialconditions_normalparam
(action_renewal), 26

g3a_mature (action_mature), 13
g3a_mature_constant, 10, 13, 14
g3a_mature_constant (action_mature), 13
g3a_mature_continuous, 14
g3a_mature_continuous (action_mature),

13
g3a_migrate (action_migrate), 15
g3a_migrate_normalize (action_migrate),

15
g3a_naturalmortality, 40, 50
g3a_naturalmortality

(action_naturalmortality), 16
g3a_naturalmortality_exp, 17
g3a_naturalmortality_exp

(action_naturalmortality), 16
g3a_otherfood (action_renewal), 26
g3a_otherfood_normalcv

(action_renewal), 26
g3a_otherfood_normalparam

(action_renewal), 26
g3a_predate, 20
g3a_predate (action_predate), 19
g3a_predate_catchability_effortfleet

(action_predate), 19
g3a_predate_catchability_linearfleet

(action_predate), 19
g3a_predate_catchability_numberfleet

(action_predate), 19
g3a_predate_catchability_predator, 11
g3a_predate_catchability_predator

(action_predate), 19
g3a_predate_catchability_project, 48,

87–89
g3a_predate_catchability_project

(action_predate), 19
g3a_predate_catchability_quotafleet

(action_predate), 19
g3a_predate_catchability_totalfleet,

21, 22
g3a_predate_catchability_totalfleet

(action_predate), 19
g3a_predate_fleet, 44, 111

120 INDEX

g3a_predate_fleet (action_predate), 19
g3a_predate_maxconsumption, 9, 11, 21, 24
g3a_predate_maxconsumption

(action_predate), 19
g3a_predate_tagrelease

(action_tagging), 43
g3a_predate_totalfleet

(action_predate), 19
g3a_renewal_initabund, 31, 32
g3a_renewal_initabund (action_renewal),

26
g3a_renewal_normalcv (action_renewal),

26
g3a_renewal_normalparam, 38, 40
g3a_renewal_normalparam

(action_renewal), 26
g3a_renewal_vonb (action_renewal), 26
g3a_renewal_vonb_recl (action_renewal),

26
g3a_renewal_vonb_t0, 31, 32
g3a_renewal_vonb_t0 (action_renewal), 26
g3a_report_detail (action_report), 33
g3a_report_history, 35, 42, 72, 82
g3a_report_history (action_report), 33
g3a_report_stock (action_report), 33
g3a_spawn, 30, 50, 75
g3a_spawn (action_spawn), 36
g3a_spawn_recruitment_bevertonholt

(action_spawn), 36
g3a_spawn_recruitment_bevertonholt_ss3

(action_spawn), 36
g3a_spawn_recruitment_fecundity

(action_spawn), 36
g3a_spawn_recruitment_hockeystick

(action_spawn), 36
g3a_spawn_recruitment_ricker

(action_spawn), 36
g3a_spawn_recruitment_simplessb

(action_spawn), 36
g3a_spmodel (action_spmodel), 41
g3a_spmodel_logistic (action_spmodel),

41
g3a_tag_shedding (action_tagging), 43
g3a_time, 10, 11, 14, 17, 23, 24, 84
g3a_time (action_time), 45
g3a_trace_timings (action_trace), 47
g3a_trace_var (action_trace), 47
g3a_weightloss, 37

g3a_weightloss (action_weightloss), 49
g3l_abundancedistribution, 73
g3l_abundancedistribution

(likelihood_catchdistribution),
61

g3l_bounds_penalty
(likelihood_bounds_penalty), 60

g3l_catchdistribution, 74, 106
g3l_catchdistribution

(likelihood_catchdistribution),
61

g3l_distribution_multinomial
(likelihood_catchdistribution),
61

g3l_distribution_multivariate
(likelihood_catchdistribution),
61

g3l_distribution_sumofsquaredlogratios
(likelihood_catchdistribution),
61

g3l_distribution_sumofsquares
(likelihood_catchdistribution),
61

g3l_distribution_surveyindices_linear
(likelihood_catchdistribution),
61

g3l_distribution_surveyindices_log, 34
g3l_distribution_surveyindices_log

(likelihood_catchdistribution),
61

g3l_random_dnorm, 70
g3l_random_dnorm (likelihood_random), 69
g3l_random_walk, 70
g3l_random_walk (likelihood_random), 69
g3l_sparsesample

(likelihood_sparsesample), 71
g3l_sparsesample_linreg

(likelihood_sparsesample), 71
g3l_sparsesample_sumsquares

(likelihood_sparsesample), 71
g3l_tagging_ckmr

(likelihood_tagging_ckmr), 75
g3l_understocking

(likelihood_understocking), 76
g3s_age, 42
g3s_age (stock_age), 105
g3s_agegroup (stock_age), 105
g3s_areagroup (stock_areas), 106

INDEX 121

g3s_clone (stock), 103
g3s_livesonareas, 114
g3s_livesonareas (stock_areas), 106
g3s_tag, 44
g3s_tag (stock_tag), 107
g3s_time (stock_time), 108
g3s_time_convert (stock_time), 108
gdbsource, 95, 96

init_val, 56

language, 58
legend, 51
lgamma, 5
lgamma_vec (aab_env), 4
likelihood_bounds_penalty, 60
likelihood_catchdistribution, 61
likelihood_random, 69
likelihood_sparsesample, 71
likelihood_tagging_ckmr, 75
likelihood_understocking, 76
list, 3, 37
local, 55
logspace_add (aab_env), 4

MakeADFun, 95, 96
mfdb_group, 63
mfdb_sample_count, 63, 64

nonconform_add (aab_env), 4
nonconform_div (aab_env), 4
nonconform_divavz (aab_env), 4
nonconform_mult (aab_env), 4
normalize_vec (aab_env), 4
nvl (aab_env), 4

optim, 60

param_project, 80
params, 77
pmax, 5
print.g3_r (run_r), 92
print_array (aab_env), 4

quota, 86
quote, 54

ratio_add_pop (aab_env), 4
REPORT (aab_env), 4
REprintf (aab_env), 4

rnorm, 82, 83
Rprintf (aab_env), 4
run_desc, 91
run_r, 92
run_tmb, 94

sdreport, 4
step, 99
stock, 103
stock_age, 105
stock_areas, 106
stock_assert (step), 99
stock_interact (step), 99
stock_intersect (step), 99
stock_iterate, 100, 101
stock_iterate (step), 99
stock_prepend, 78, 79
stock_prepend (step), 99
stock_ss, 100
stock_ss (step), 99
stock_ssinv (step), 99
stock_switch (step), 99
stock_tag, 107
stock_time, 108
stock_with, 101
stock_with (step), 99
suitability, 110

timedata, 114
timevariable, 115
TMB::compile, 95

	aaa_lang
	aab_env
	action_age
	action_grow
	action_mature
	action_migrate
	action_naturalmortality
	action_order
	action_predate
	action_renewal
	action_report
	action_spawn
	action_spmodel
	action_tagging
	action_time
	action_trace
	action_weightloss
	array_utils
	env_dif
	eval
	formula_utils
	init_val
	language
	likelihood_bounds_penalty
	likelihood_catchdistribution
	likelihood_random
	likelihood_sparsesample
	likelihood_tagging_ckmr
	likelihood_understocking
	params
	param_project
	quota
	run_desc
	run_r
	run_tmb
	step
	stock
	stock_age
	stock_areas
	stock_tag
	stock_time
	suitability
	timedata
	timevariable
	Index

