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abline_mfd Add reference lines to all panels of the current multi-panel plot
Description

Calls abline in every panel actually used by the most recent call to plot.mfd.

Usage

abline_mfd(a = NULL, b = NULL, h = NULL, v = NULL, ...)

Arguments
a, b the intercept and slope, single values.
h the y-value(s) for horizontal line(s).
v the x-value(s) for vertical line(s).
Further graphical parameters (e.g., col, 1ty, 1wd).
Details

The function relies on plot.mfd having stored the number of variables in options(”last_mfd_nvar").
It then loops over exactly that many panels in the current layout.

Calls abline in every panel actually used by the most recent call to plot.mfd. Vertical and hori-
zontal lines span the full x- or y-range of each panel, even when scales differ.
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air Air quality data

Description

This data set has been included from the R package FRegSigCom. The original .RData file is avail-
able at https://github.com/cran/FRegSigCom/blob/master/data/air.RData.

Data collected hourly in 355 days (days with missing values removed) in a significantly polluted
area within an Italian city.

Usage

data("air")

Format

A list of 7 matrices with 355 rows and 24 columns:

NO2 Hourly observation of concentration level of NO2 in 355 days

CO Hourly observation of concentration level of CO in 355 days

NMHC Hourly observation of concentration level of NMHC in 355 days

NOx Hourly observation of concentration level of NOx in 355 days

C6H6 Hourly observation of concentration level of C6H6 in 355 days
temperature Hourly observation of concentration level of temperature in 355 days

humidity Hourly observation of concentration level of humidity in 355 days

Source

https://archive.ics.uci.edu/ml/datasets/Air+quality

References

De Vito, S., Massera E., Piga M., Martinotto L. and Di Francia G. (2008). On field calibration of
an electronic nose for benzene estimation in an urban pollution monitoring scenario Sensors and
Actuators B: Chemical, 129: 50-757. doi:10.1016/j.snb.2007.09.060

Xin Qi and Ruiyan Luo (2019). Nonlinear function on function additive model with multiple pre-
dictor curves. Statistica Sinica, 29:719-739. doi:10.5705/ss.202017.0249


https://github.com/cran/FRegSigCom/
https://github.com/cran/FRegSigCom/blob/master/data/air.RData
https://archive.ics.uci.edu/ml/datasets/Air+quality
doi:10.1016/j.snb.2007.09.060
doi:10.5705/ss.202017.0249

AMFCC_Phasel

AMFCC_Phasel

Phase I of the Adaptive Multivariate Functional Control Chart (AM-
FCCQ).

Description

This function implements the design phase (Phase I) of the Adaptive Multivariate Functional Con-

trol Chart.

Usage

AMFCC_PhaseI(

data_tra,

data_tun =

grid,
q = 30,

NULL,

par_seq_list = list(10*seq(-7, 2, 1 = 10), c(0.5, 0.7, 0.8, 0.9, 0.99)),

alpha_diagn

alpha_mon
ncores = 1

Arguments

data_tra

data_tun

grid
q

par_seq_list

alpha_diagn
alpha_mon

ncores

0.05,

0.05,

a data frame with the training data with the following columns:

e var: vector of the variable indexes.
e curve: vector of the curve indexes.

* timeindex: vector of the time indexes corresponding to given elements of
grid.

¢ x: concatenated vector of the observed curves.

a data frame with the tuning data with the same structure as data_tra. If NULL,
data_tun is set to data_tra.

The vector of time points where the curves are sampled.
The dimension of the set of B-spline functions.

a list with two elements. The first element is a sequence of values for the reg-
ularization parameter A and the second element is a sequence of percentages of
the total variability to select L.

Type I error probability for the diagnostic.
Type I error probability for the monitoring.

number of cores to use for parallel computing
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Value

A list containing the following arguments:

statistics_IC: A matrix with the values of the Hotelling T/2-type statistics for each obser-
vation and parameter combination.

p_values_combined: A list with two elements containing the monitoring statistics obtained
with the Fisher omnibus and Tippett combining functions.

CL: The control limits for the monitoring statistics obtained with the Fisher omnibus and Tip-
pett combining functions.

contributions_IC: A list where each element corresponds to a variable and is a matrix with
the contributions to the Hotelling T-type statistics for each observation and parameter com-
bination.

p_values_combined_cont: A list where each element corresponds to a variable and is a
list of two elements containing the contribution to the monitoring statistics obtained with the
Fisher omnibus and Tippett combining functions.

CL_cont: The control limits for the contribution to the monitoring statistics obtained with the
Fisher omnibus and Tippett combining functions.

par_seq_list: The list of the sequences of the tuning parameters.

g: The dimension of the set of B-spline functions.

basis: The basis functions used for the functional data representation.
grid: The vector of time points where the curves are sampled.
comb_list_tot: The matrix with all the parameter combinations.

mod_pca_list: The list of the MFPCA models for each value of 1lambda_s.

References

Centofanti, F., A. Lepore, and B. Palumbo (2025). An Adaptive Multivariate Functional Control
Chart. Accepted for publication in Technometrics.

Examples
library(funcharts)
N <- 10
1 _grid <- 10
p <-2

grid <- seq(@, 1, 1 = 1_grid)

Xall_tra <- funcharts::simulate_mfd(
nobs = N,
p=p,
ngrid = 1_grid,
correlation_type_x = c("Bessel”, "Gaussian")

)

X_tra <-
data.frame(

X

= c(Xall_tra$X_list[[1]], Xall_tra$x_list[[2]1]),
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timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), 1_grid * p),
var = rep(1:p, each = 1_grid * N)

)

Xall_II <- funcharts::simulate_mfd(
nobs = N,
p=0p,
ngrid = 1_grid,
shift_type_x = list("A", "B"),
d_x = c(10, 10),
correlation_type_x = c("Bessel”, "Gaussian")

)

X_II <-
data.frame(
x = c(Xall_II$X_list[[1]11, Xall_II$X_list[[2]1]),
timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), l_grid * p),
var = rep(1:p, each = 1_grid * N)
)

B AMFCC —mmmmmmm o m o
print("AMFCC")

mod_phaseI_AMFCC <- AMFCC_PhaseI(
data_tra = X_tra,
data_tun =
NULL,
grid = grid,
ncores = 1

)

mod_phaseII_AMFCC <- AMFCC_PhaselI(data = X_II,
mod_Phase_I = mod_phaseI_AMFCC,
ncores = 1)

plot(mod_phaseII_AMFCC)
plot(mod_phaseII_AMFCC, type='cont',ind_obs=1)

AMFCC_Phasell Phase II of the Adaptive Multivariate Functional Control Chart (AM-
FCC).

Description

This function implements the monitoring phase (Phase II) of the Adaptive Multivariate Functional
Control Chart.
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Usage

AMFCC_PhaseIl(data = NULL, mod_Phase_I, ncores = 1)

Arguments

data a data frame with the testing data with the following columns:
var: vector of the variable indexes.
curve: vector of the curve indexes.
timeindex: vector of the time indexes corresponding to given elements of \code{grid
x: concatenated vector of the observed curves.

mod_Phase_I a list with the output of the Phase 1.

ncores number of cores to use for parallel computing

Value

A list containing the following arguments:
* ARL: The average run length (ARL) for the monitoring statistics obtained with the Fisher
omnibus and Tippett combining functions.

e ARL_cont: The average run length for the contribution to the monitoring statistics obtained
with the Fisher omnibus and Tippett combining functions.

* statistics: A matrix with the values of the Hotelling TA2-type statistics for each observation
and parameter combination.

* contributions: A list where each element is a matrix with the contributions to the Hotelling
TA2-type statistics for each observation and parameter combination.

* p_values_combined: A list with two elements containing the monitoring statistics obtained
with the Fisher omnibus and Tippett combining functions.

* p_values_combined_cont: A list where each element is a list of two elements containing
the contribution to the monitoring statistics obtained with the Fisher omnibus and Tippett
combining functions.

* CL: The control limits for the monitoring statistics obtained with the Fisher omnibus and Tip-
pett combining functions.

e CL_cont: The control limits for the contribution to the monitoring statistics obtained with the
Fisher omnibus and Tippett combining functions.

References

Centofanti, F., A. Lepore, and B. Palumbo (2025). An Adaptive Multivariate Functional Control
Chart. Accepted for publication in Technometrics.
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Examples

library(funcharts)

N <- 10

1_grid <- 10

p<-2

grid <- seq(@, 1, 1 = 1_grid)

Xall_tra <- funcharts::simulate_mfd(
nobs = N,
p=p,
ngrid = 1_grid,
correlation_type_x = c("Bessel”, "Gaussian")
)
X_tra <-
data. frame(
x = c(Xall_tra$X_list[[1]1]1, Xall_tra$x_list[[2]]),
timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), 1l_grid * p),
var = rep(1:p, each = 1_grid * N)
)

Xall_II <- funcharts::simulate_mfd(
nobs = N,
p=p,
ngrid = 1_grid,
shift_type_x = list("A", "B"),
d_x = c(10, 10),
correlation_type_x = c("Bessel”, "Gaussian")

)

X_II <-
data.frame(
x = c(Xall_II$X_list[[1]1], Xall_II$X_list[[2]1]),
timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), 1l_grid * p),
var = rep(1:p, each = 1_grid * N)
)

# OAMFCC —=—— === m—mmm oo
print("AMFCC")

mod_phaseI_AMFCC <- AMFCC_PhaseI(
data_tra = X_tra,
data_tun =
NULL,
grid = grid,
ncores = 1

)

mod_phaseII_AMFCC <- AMFCC_Phasell(data = X_II,
mod_Phase_I = mod_phaseI_AMFCC,
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ncores = 1)

plot(mod_phaseII_AMFCC)
plot(mod_phaseII_AMFCC, type='cont', ind_obs=1)

AMFEWMA_Phasel Adaptive Multivariate Functional EWMA control chart - Phase 1

Description

This function performs Phase I of the Adaptive Multivariate Functional EWMA (AMFEWMA)
control chart proposed by Capezza et al. (2024)

Usage

AMFEWMA _PhaseI(
mfdobj,
mfdobj_tuning,
lambda = NULL,
k = NULL,
ARLO = 200,
bootstrap_pars = list(n_seq = 200, 1_seq = 2000),
optimization_pars = list(lambda_grid = c(0.1, 0.2, 0.3, 0.5, 1), k_grid=c(1, 2, 3,
4), epsilon = 0.1, sd_small = 0.25, sd_big = 2),
discrete_grid_length = 25,

score_function = "huber”,
fev = 0.9,
n_skip = 100
)
Arguments
mfdobj An object of class mfd containing the Phase I multivariate functional data set, to

be used to train the multivariate functional principal component analysis model.

mfdobj_tuning An object of class mfd containing the Phase I multivariate functional data set, to
be used as tuning data set to estimate the AMFEWMA control chart limit.

lambda lambda parameter to be used in the score function. See Equation (7) or (8) of
Capezza et al. (2024). If it is provided, it must be a number between zero and
one. If NULL, it is chosen through the selected according to the optimization
procedure presented in Section 2.4 of Capezza et al. (2024). In this case, it is
chosen among the values of optimization_pars$lambda_grid. Default value
is NULL.

k k parameter to be used in the score function. See Equation (7) or (8) of Capezza
etal. (2024). If it is provided, it must be a number greater than zero. If NULL, it
is chosen through the selected according to the optimization procedure presented
in Section 2.4 of Capezza et al. (2024). In this case, it is chosen among the
values of optimization_pars$k_grid. Default value is NULL.
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ARLOQ

bootstrap_pars

AMFEWMA_ Phasel

The nominal in-control average run length. Default value is 200.

Parameters of the bootstrap procedure described in Section 2.4 of Capezza et al.
(2024) for the estimation of the control chart limit. It must be a list with two
arguments. n_seq is the number of bootstrap sequences to be generated. 1_seq
is the length of each bootstrap sequence, i.e., the number of observations to be
sampled with replacement from the tuning set. Default value is list(n_seq=
200, 1_seq =2000).

optimization_pars

Parameters to be used in the optimization procedure described in Section 2.4
of Capezza et al. (2024) for the selection of the parameters lambda and k. It
must be a list of the following parameters. lambda_grid contains the possible
values of the parameter lambda. k_grid contains the possible values of the
parameter k. epsilon is the parameter used in Equation (10) of Capezza et
al. (2024). When performing the parameter optimization, first the parameters
lambda and k are selected to minimize the ARL with respect to a large shift,
then the same parameters are chosen to minimize the ARL with respect to a
small shift, given that the resulting ARL with respect to the previous large shift
does not increase, in percentage, more than epsilon*100. Default value is 0.1.
sd_small is a positive constant that multiplies the standard deviation function
to define the small shift delta_1 in Section 2.4 of Capezza et al. (2024). In fact,
the small shift is defined as delta_1(t) = mu_0(t) + sd_small * sigma(t), where
mu_0(t) is the estimated in-control mean function and sigma(t) is the estimated
standard deviation function. Default value is 0.25. sd_big is a positive constant
that multiplies the standard deviation function to define the large shift delta_2
in Section 2.4 of Capezza et al. (2024). In fact, the large shift is defined as
delta_2(t) = mu_0(t) + sd_large * sigma(t), where mu_0(t) is the estimated in-
control mean function and sigma(t) is the estimated standard deviation function.
Default value is 2.

discrete_grid_length

score_function

fev

n_skip

The number of equally spaced argument values at which the mfd objects are
discretized. Default value is 25.

Score function to be used in Equation (7) or (8) of Capezza et al. (2024), to
calculate the weighting parameter of the EWMA statistic for each observation
of the sequence. Two values are possible. If "huber", it uses the score function
(7) inspired by the Huber’s function. If "tukey", it uses the score function (8)
inspired by the Tukey’s bisquare function.

Number between 0 and 1 denoting the fraction of variability that must be ex-
plained by the principal components to be selected after applying multivariate
functional principal component analysis on mfdobj. Default is 0.9.

The upper control limit of the AMFEWMA control chart is set to achieve a de-
sired in-control ARL, evaluated after the monitoring statistic has reached steady
state. A monitoring statistic is in a steady state if the process has been in control
long enough for the effect of the starting value to become negligible (Lucas and
Saccucci, 1990). In this regard, the first n_skip observations are excluded from
the calculation of the run length. Default value is 100.
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Value

A list with the following elements. lambda is the selected lambda parameter. k is the selected k
parameter. mod_1 contains the estimated Phase I model. It is a list with the following elements.

* mfdobj the mfdobj object passed as input to this function,

* mfdobj_tuning the mfdobj_tuning object passed as input to this function,

e inv_sigmaY_reg: the matrix containing the discretized version of the function K**(s,t) de-
fined in Equation (9) of Capezza et al. (2024),

¢ mean_mfdobj: the estimated mean function,
* h: the calculated upper control limit of the AMFEWMA control chart,

* ARLO: the estimated in-control ARL, which should be close to the nominal value passed as
input to this function,

* lambda: the lambda parameter selected by the optimization procedure described in Section
2.4 of Capezza et al. (2024).

* k: The function C_j(t)=k sigma_j(t) appearing in the score functions (7) and (8) of Capezza et
al. (2024).

* grid_points: the grid containing the points over which the functional data are discretized
before computing the AMFEWMA monitoring statistic and estimating all the model parame-
ters.

e V2_mat: the n_seqX1_seq matrix containing, in each column, the AMFEWMA monitoring
statistic values of each bootstrap sequence. This matrix is used to set the control chart limit h
to ensure that the desired average run length is achieved.

* n_skip: the n_skip input parameter passed to this function,
* huber: if the input parameter score_function is "huber"”, this is TRUE, else is FALSE,

* vectors: the discretized eigenfunctions psi_I(t) of the covariance function, appearing in
Equation (9) of Capezza et al. (2024).

* values: the eigenvalues rho_l of the covariance function, appearing in Equation (9) of Capezza
et al. (2024).

References

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate
Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1-15, doi:https://doi.org/10.1080/00224065.2024.23

Lucas, J. M., Saccucci, M. S. (1990) Exponentially weighted moving average control schemes:
properties and enhancements. Technometrics, 32(1), 1-12.

Examples

set.seed(0)
library(funcharts)
dat_I <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel”),
sd_x = c(0.3, 0.3, 0.3))
dat_tun <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel”),
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sd_x = ¢c(0.3, 0.3, 0.3))
dat_II <- simulate_mfd(nobs = 20,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel"),
shift_type_x = c("C", "C", "C"),
d_x = c(2, 2, 2),
sd_x = c(0.3, 0.3, 0.3))
mfdobj_I <- get_mfd_list(dat_I$X_list, lambda = 1e-2)
mfdobj_tun <- get_mfd_list(dat_tun$X_list, lambda = 1e-2)
mfdobj_II <- get_mfd_list(dat_II$X_list, lambda = 1e-2)

# p <- plot_mfd(mfdobj_I[1:100])
# lines_mfd(p, mfdobj_II, col = "red")

mod <- AMFEWMA_PhaseI(mfdobj = mfdobj_I,
mfdobj_tuning = mfdobj_tun,
lambda = 0.1,
k =c(1, 2))

cc <- AMFEWMA_PhaseII(mfdobj_2 = rbind_mfd(mfdobj_I[1:100], mfdobj_II),
mod_1 = mod)
plot_control_charts(cc$cc, nobsI = 100)

AMFEWMA_Phasell Adaptive Multivariate Functional EWMA control chart - Phase I1

Description
This function performs Phase II of the Adaptive Multivariate Functional EWMA (AMFEWMA)
control chart proposed by Capezza et al. (2024)

Usage

AMFEWMA_PhaseII(mfdobj_2, mod_1, n_seq_2 = 1, 1_seq_2 = 2000)

Arguments

mfdobj_2 An object of class mfd containing the Phase II multivariate functional data set,
to be monitored with the AMFEWMA control chart.

mod_1 The output of the Phase I achieved through the AMFEWMA_PhaseI function.

n_seq_2 Ifitis 1, the Phase II monitoring statistic is calculated on the data sequence. If it
is an integer number larger than 1, a number n_seq_2 of bootstrap sequences are
sampled with replacement from mfdobj_2 to allow uncertainty quantification on
the estimation of the run length. Default value is 1.

1_seq_2 If n_seq_2 is larger than 1, this parameter sets the length of each bootstrap

sequence to be generated. Default value is 2000 (which is ignored if the default
value
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Value

A list with the following elements.

* ARL_2: the average run length estimated over the bootstrap sequences. If n_seq_2 is 1, it is
simply the run length observed over the Phase II sequence, i.e., the number of observations up
to the first alarm,

* RL: the run length observed over the Phase II sequence, i.e., the number of observations up to
the first alarm,

* V2: alist with length n_seq_2, containing the AMFEWMA monitoring statistic in Equation
(8) of Capezza et al. (2024), calculated in each bootstrap sequence, until the first alarm.

* cc: a data frame with the information needed to plot the AMFEWMA control chart in Phase
I, with the following columns. id contains the id of each multivariate functional observation,
amfewma_monitoring_statistic contains the AMFEWMA monitoring statistic values cal-
culated on the Phase II sequence, amfewma_monitoring_statistic_limis the upper control
limit.

References

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate
Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1-15, doi:https://doi.org/10.1080/00224065.2024.23

Examples

set.seed(0)
library(funcharts)
dat_I <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel”),
sd_x = c(0.3, 0.3, 0.3))
dat_tun <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel”),
sd_x = c(0.3, 0.3, 0.3))
dat_II <- simulate_mfd(nobs = 20,
correlation_type_x = c("Bessel”, "Bessel”, "Bessel"),
shift_type_x = c("C", "C", "C"),
d_x = c(2, 2, 2),
sd_x = c(0.3, 0.3, 0.3))
mfdobj_I <- get_mfd_list(dat_I$X_list, lambda = 1e-2)
mfdobj_tun <- get_mfd_list(dat_tun$X_list, lambda = 1e-2)
mfdobj_II <- get_mfd_list(dat_II$X_list, lambda = 1e-2)

# p <- plot_mfd(mfdobj_I[1:10071)
# lines_mfd(p, mfdobj_II, col = "red")

mod <- AMFEWMA_PhaseI(mfdobj = mfdobj_I,
mfdobj_tuning = mfdobj_tun,
lambda = 0.1,
k =c(1, 2))

cc <- AMFEWMA_PhaseII(mfdobj_2 = rbind_mfd(mfdobj_I[1:100], mfdobj_II),
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mod_1 = mod)
plot_control_charts(cc$cc, nobsI = 100)

cbind_mfd Bind variables of two Multivariate Functional Data Objects

Description

Bind variables of two Multivariate Functional Data Objects

Usage

cbind_mfd(mfdobj1, mfdobj2)

Arguments
mfdobj1 An object of class mfd, with the same number of replications of mfdobj2 and
different variable names with respect to mfdobj2.
mfdobj2 An object of class mfd, with the same number of replications of mfdobjl, and
different variable names with respect to mfdobj1.
Value

An object of class mfd, whose replications are the same of mfdobjl and mfdobj2 and whose func-
tional variables are the union of the functional variables in mfdobj1 and mfdobj2.

Examples

library(funcharts)

mfdobjl <- data_sim_mfd(nvar = 3)

mfdobj2 <- data_sim_mfd(nvar = 2)

dimnames(mfdobj2$coefs)[[3]] <- mfdobj2$fdnames[[3]] <- c("var1@”, "var11l")

plot_mfd(mfdobj1)

plot_mfd(mfdobj2)

mfdobj_cbind <- cbind_mfd(mfdobj1, mfdobj2)
plot_mfd(mfdobj_cbind)
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control_charts_pca T2 and SPE control charts for multivariate functional data

Description

This function builds a data frame needed to plot the Hotelling’s T2 and squared prediction error
(SPE) control charts based on multivariate functional principal component analysis (MFPCA) per-
formed on multivariate functional data, as Capezza et al. (2020) for the multivariate functional
covariates. The training data have already been used to fit the model. An optional tuning data set
can be provided to estimate the control chart limits. A phase II data set contains the observations to
be monitored with the control charts.

Usage

control_charts_pca(
pca,
components = NULL,
tuning_data = NULL,
newdata,
alpha = 0.05,
limits = "standard”,
seed,
nfold = 5,
ncores = 1,
tot_variance_explained = 0.9,
single_min_variance_explained = 0,
absolute_error = FALSE

Arguments

pca An object of class pca_mfd obtained by doing MFPCA on the training set of
multivariate functional data.

components A vector of integers with the components over which to project the multivariate
functional data. If this is not NULL, the arguments single_min_variance_explained
and tot_variance_explained are ignored. If NULL, components are selected
such that the total fraction of variance explained by them is at least equal to the
argument tot_variance_explained, where only components explaining indi-
vidually a fraction of variance at least equal to the argument single_min_variance_explained
are considered to be retained. Default is NULL.

tuning_data An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the T2 and SPE control chart limits. If NULL, the training
data, i.e. the data used to fit the MFPCA model, are also used as the tuning data
set, i.e. tuning_data=pca$data. Default is NULL.

newdata An object of class mfd containing the phase II set of the multivariate functional
data to be monitored.
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alpha

limits

seed

nfold

ncores

control_charts_pca

If it is a number between 0 and 1, it defines the overall type-I error probability
and the Bonferroni correction is applied by setting the type-I error probability in
the two control charts equal to alpha/2. If you want to set manually the Type-I
error probabilities in the two control charts, then the argument alpha must be a
named list with two elements, named T2 and spe, respectively, each containing
the desired Type I error probability of the corresponding control chart. Default
value is 0.05.

A character value. If "standard", it estimates the control limits on the tuning data
set. If "cv", the function calculates the control limits only on the training data
using cross-validation using calculate_cv_limits. Default is "standard".

If limits=="cv", since the split in the k groups is random, you can fix a seed to
ensure reproducibility. Deprecated: use set.seed() before calling the function
for reproducibility.

If limits=="cv", this gives the number of groups k used for k-fold cross-
validation. If it is equal to the number of observations in the training data set,
then we have leave-one-out cross-validation. Otherwise, this argument is ig-
nored.

If limits=="cv", if you want perform the analysis in the k groups in parallel,
give the number of cores/threads. Otherwise, this argument is ignored.

tot_variance_explained

The minimum fraction of variance that has to be explained by the set of multi-
variate functional principal components retained into the MFPCA model fitted
on the functional covariates. Default is 0.9.

single_min_variance_explained

The minimum fraction of variance that has to be explained by each multivariate
functional principal component such that it is retained into the MFPCA model.
Default is 0.

absolute_error If FALSE, the SPE statistic, which monitors the principal components not re-

Value

tained in the MFPCA model, is calculated as the sum of the integrals of the
squared prediction error functions, obtained as the difference between the actual
functions and their approximation after projection over the selected principal
components. If TRUE, the SPE statistic is calculated by replacing the square
of the prediction errors with the absolute value, as proposed by Capizzi and
Masarotto (2018). Default value is FALSE.

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

* one id column identifying the multivariate functional observation in the phase II data set,

* one T2 column containing the Hotelling T2 statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the T2 statistic,

* one spe column containing the SPE statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the SPE statistic,

* T2_lim gives the upper control limit of the Hotelling’s T2 control chart,
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* one contribution_T2_*_lim column per each functional variable giving the limits of the
contribution of that variable to the Hotelling’s T2 statistic,

* spe_lim gives the upper control limit of the SPE control chart

* one contribution_spe*_lim column per each functional variable giving the limits of the
contribution of that variable to the SPE statistic.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477-500. doi:10.1002/asmb.2507

Capizzi, G., & Masarotto, G. (2018). Phase I distribution-free analysis with the R package dfphasel.
In Frontiers in Statistical Quality Control 12 (pp. 3-19). Springer International Publishing.

See Also

regr_cc_fof

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:220, , drop = FALSEI)
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:100]
y_tuning <- y[101:200]
y2 <- y[201:220]
mfdobj_x1 <- mfdobj_x[1:100]
mfdobj_x_tuning <- mfdobj_x[101:200]
mfdobj_x2 <- mfdobj_x[201:220]
pca <- pca_mfd(mfdobj_x1)
cclist <- control_charts_pca(pca = pca,
tuning_data = mfdobj_x_tuning,
newdata = mfdobj_x2)
plot_control_charts(cclist)

control_charts_pca_mfd_real_time
Real-time T2 and SPE control charts for multivariate functional data
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Description

control_charts_pca_mfd_real_time

This function produces a list of data frames, each of them is produced by control_charts_pca
and is needed to plot control charts for monitoring multivariate functional covariates each evolving
up to an intermediate domain point.

Usage

control_charts_pca_mfd_real_time(

pca_list,

components_list = NULL,
mfdobj_x_test,
mfdobj_x_tuning = NULL,

alpha = 0.05,

limits = "standard"”,
seed,

nfold = NULL,

tot_variance_explained = 0.9,
single_min_variance_explained = 0,
absolute_error = FALSE,

ncores = 1

Arguments

pca_list

components_list

mfdobj_x_test

mfdobj_x_tuning

alpha

limits

A list of lists produced by pca_mfd_real_time, containing a list of multivariate
functional principal component analysis models estimated on functional data
each evolving up to an intermediate domain point.

A list of components given as input to pca_mfd for each intermediate domain
point.

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multi-
variate functional data. The length of this list and pca_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with ob-
servations of the multivariate functional data The length of this list and pca_list
must be equal, and their elements in the same position in the list must corre-
spond to the same intermediate domain point. If NULL, the training data, i.e.
the functional data in pca_list, are also used as the tuning data set. Default is
NULL.

See control_charts_pca.

See control_charts_pca.
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seed Deprecated: See control_charts_pca.

nfold See control_charts_pca.

tot_variance_explained
See control_charts_pca.

single_min_variance_explained
See control_charts_pca.

absolute_error See control_charts_pca.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data. frames each produced by control_charts_pca, corresponding to a given instant.

See Also

pca_mfd_real_time, control_charts_pca

Examples

library(funcharts)
data("air")
airl <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_x2_list <- get_mfd_list_real_time(air2[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
pca_list <- pca_mfd_real_time(mfdobj_x1_list)

cclist <- control_charts_pca_mfd_real_time(
pca_list = pca_list,
components_list = 1:3,
mfdobj_x_test = mfdobj_x2_list)
plot_control_charts_real_time(cclist, 1)

control_charts_sof_pc Control charts for monitoring a scalar quality characteristic adjusted
for by the effect of multivariate functional covariates
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Description

control_charts_sof_pc

This function builds a data frame needed to plot control charts for monitoring a monitoring a scalar
quality characteristic adjusted for the effect of multivariate functional covariates based on scalar-
on-function regression, as proposed in Capezza et al. (2020).

In particular, this function provides:

* the Hotelling’s T2 control chart,

* the squared prediction error (SPE) control chart,

* the scalar regression control chart.

This function calls control_charts_pca for the control charts on the multivariate functional co-
variates and regr_cc_sof for the scalar regression control chart.

The training data have already been used to fit the model. An optional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the control charts.

Usage

control_charts_sof_pc(

mod,
y_test,

mfdobj_x_test,
mfdobj_x_tuning = NULL,
alpha = 1ist(T2 = 0.0125, spe = 0.0125, y = 0.025),

limits = "standard",
seed,
nfold = NULL,
ncores = 1

)

Arguments
mod A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.
y_test A numeric vector containing the observations of the scalar response variable in

mfdobj_x_test

mfdobj_x_tuning

alpha

the phase II data set.

An object of class mfd containing the phase II data set of the functional covari-
ates observations.

An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the T2 and SPE control chart limits. If NULL, the training
data, i.e. the data used to fit the MFPCA model, are also used as the tuning data
set, i.e. tuning_data=pca$data. Default is NULL.

A named list with three elements, named T2, spe, and y, respectively, each
containing the desired Type I error probability of the corresponding control chart
(T2 corresponds to the T2 control chart, spe corresponds to the SPE control
chart, y corresponds to the scalar regression control chart). Note that at the
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limits

seed

nfold

ncores

Value
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moment you have to take into account manually the family-wise error rate and
adjust the two values accordingly. See Capezza et al. (2020) for additional
details. Default value is 1ist(T2=0.0125, spe=0.0125, y=0.025).

A character value. If "standard", it estimates the control limits on the tuning data
set. If "cv", the function calculates the control limits only on the training data
using cross-validation using calculate_cv_limits. Default is "standard".

If limits=="cv", since the split in the k groups is random, you can fix a seed to
ensure reproducibility. Deprecated: use set.seed() before calling the function
for reproducibility.

If limits=="cv", this gives the number of groups k used for k-fold cross-
validation. If it is equal to the number of observations in the training data set,
then we have leave-one-out cross-validation. Otherwise, this argument is ig-
nored.

If limits=="cv", if you want perform the analysis in the k groups in parallel,
give the number of cores/threads. Otherwise, this argument is ignored.

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

* one id column identifying the multivariate functional observation in the phase II data set,

* one T2 column containing the Hotelling T2 statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the T2 statistic,

* one spe column containing the SPE statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the SPE statistic,

* T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

* one contribution_T2_*_lim column per each functional variable giving the limits of the
contribution of that variable to the Hotelling’s T2 statistic,

* spe_lim gives the upper control limit of the SPE control chart

* one contribution_spe*_lim column per each functional variable giving the limits of the
contribution of that variable to the SPE statistic.

* y_hat: the predictions of the response variable corresponding to mfdobj_x_new,

* y: the same as the argument y_new given as input to this function,

* lwr: lower limit of the 1-alpha prediction interval on the response,

* pred_err: prediction error calculated as y-y_hat,

* pred_err_sup: upper limit of the 1-alpha prediction interval on the prediction error,

* pred_err_inf: lower limit of the 1-alpha prediction interval on the prediction error.

See Also

control_charts_pca, regr_cc_sof
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Examples

#' library(funcharts)

data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:60]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(yl, mfdobj_x1)
cclist <- control_charts_sof_pc(mod = mod,
y_test = y2,
mfdobj_x_test = mfdobj_x2,
mfdobj_x_tuning = mfdobj_x_tuning)
plot_control_charts(cclist)

control_charts_sof_pc_real_time
Real-time scalar-on-function regression control charts

Description

This function is deprecated. Use regr_cc_sof_real_time. This function produces a list of data
frames, each of them is produced by control_charts_sof_pc and is needed to plot control charts
for monitoring in real time a scalar quality characteristic adjusted for by the effect of multivariate
functional covariates.

Usage

control_charts_sof_pc_real_time(
mod_list,
y_test,
mfdobj_x_test,
mfdobj_x_tuning
alpha = 1ist(T2

NULL,
0.0125, spe = 0.0125, y = 0.025),

limits = "standard",
seed,

nfold = NULL,

ncores = 1
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Arguments

mod_list

y_test

mfdobj_x_test

mfdobj_x_tuning

alpha
limits
seed
nfold

ncores

Value

A list of lists produced by sof_pc_real_time, containing a list of scalar-on-
function linear regression models estimated on functional data each evolving up
to an intermediate domain point.

A numeric vector containing the observations of the scalar response variable in
the phase II monitoring data set.

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

See control_charts_sof_pc.
See control_charts_sof_pc.
Deprecated: see control_charts_sof_pc.
See control_charts_sof_pc.

If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

A list of data.frames each produced by control_charts_sof_pc, corresponding to a given in-

stant.

See Also

sof_pc_real_time, control_charts_sof_pc

Examples

library(funcharts)

data("air")

airl <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("C0", "temperature”)],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
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mfdobj_x2_list <- get_mfd_list_real_time(air2[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
y1 <- rowMeans(air1$N02)
y2 <- rowMeans(air2$N02)
mod_list <- sof_pc_real_time(y1, mfdobj_x1_list)
cclist <- control_charts_sof_pc_real_time(
mod_list = mod_list,
y_test = y2,
mfdobj_x_test = mfdobj_x2_list)
plot_control_charts_real_time(cclist, 1)

cont_plot

cont_plot Produce contribution plots

Description

This function produces a contribution plot from functional control charts for a given observation of

a phase II data set, using ggplot.

Usage

cont_plot(cclist, id_num, which_plot = c("T2", "spe"), print_id = FALSE)

Arguments
cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.
id_num An index number giving the observation in the phase II data set to be plotted,
i.e. 1 for the first observation, 2 for the second, and so on.
which_plot A character vector. Each value indicates which contribution you want to plot:
"T2" indicates contribution to the Hotelling’s T2 statistic,
"spe" indicates contribution to the squared prediction error statistic.
print_id A logical value, if TRUE, it prints also the id of the observation in the title of
the ggplot. Default is FALSE.
Value

A ggplot containing the contributions of functional variables to the monitoring statistics. Each plot
is a bar plot, with bars corresponding to contribution values and horizontal black segments denoting
corresponding (empirical) upper limits. Bars are coloured by red if contributions exceed their limit.
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Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1l, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,
y_hnew = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)
get_ooc(cclist)
cont_plot(cclist, 3)

cor_mfd Correlation Function for Multivariate Functional Data

Description

Computes the correlation function for two multivariate functional data objects of class mfd.

Usage

cor_mfd(mfdobj1, mfdobj2 = mfdobj1)

Arguments
mfdobj1 An object of class mfd representing the first multivariate functional data set. It
contains N observations of a p-dimensional multivariate functional variable.
mfdobj2 An object of class mfd representing the second multivariate functional data set.

Defaults to mfdobj1. If provided, it must also contain N observations of a p-
dimensional multivariate functional variable.
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Details

The function calculates the correlation between all pairs of dimensions from the two multivari-
ate functional data objects. The data is first scaled using scale_mfd, and the correlation is then
computed as the covariance of the scaled data using cov_mfd.

Value

A bifd object representing the correlation function of the two input objects. The output is a collec-
tion of p? functional surfaces, each corresponding to the correlation between two components of
the multivariate functional data.

Examples

library(funcharts)
data("air")

x <- get_mfd_list(air[1:3])
cor_result <- cor_mfd(x)
plot_bifd(cor_result)

cov_mfd Covariance Function for Multivariate Functional Data

Description

Computes the covariance function for two multivariate functional data objects of class mfd.

Usage
cov_mfd(mfdobj1, mfdobj2 = mfdobj1)

Arguments
mfdobj1 An object of class mfd representing the first multivariate functional data set. It
contains N observations of a p-dimensional multivariate functional variable.
mfdobj2 An object of class mfd representing the second multivariate functional data set.
Defaults to mfdobj1. If provided, it must also contain N observations of a p-
dimensional multivariate functional variable.
Details

The function calculates the covariance between all pairs of dimensions from the two multivariate
functional data objects. Each covariance is represented as a functional surface in the resulting bifd
object. The covariance function is useful for analyzing relationships between functional variables.
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Value

A bifd object representing the covariance function of the two input objects. The output is a collec-
tion of p? functional surfaces, each corresponding to the covariance between two components of
the multivariate functional data.

Examples

library(funcharts)
data("air")

x <- get_mfd_list(air[1:3])
cov_result <- cov_mfd(x)
plot_bifd(cov_result)

data_sim_mfd Simulate multivariate functional data

Description

Simulate random coefficients and create a multivariate functional data object of class mfd. It is
mainly for internal use, to check that the package functions work.

Usage

data_sim_mfd(nobs = 5, nbasis = 5, nvar = 2, seed)

Arguments

nobs Number of functional observations to be simulated.

nbasis Number of basis functions.

nvar Number of functional covariates.

seed Deprecated: use set.seed() before calling the function for reproducibility.
Value

A simulated object of class mfd.

Examples

library(funcharts)
data_sim_mfd()
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estimate_mixture

estimate_mixture Performs the estimation of gaussian mixtures of regression models and

gaussian mixture models. Used in FMRCC_Phasel.

Description

Performs the estimation of gaussian mixtures of regression models and gaussian mixture models.

Used in FMRCC_Phasel.

Usage
estimate_mixture(
y = NULL,
x = NULL,
ninit = 10,
groups = 1:5,
mode = "regression”,
intercept = TRUE,
init_met = "kmeans",
sigma_par = c("VVV", "EEE", "VII", "EII")
)
Arguments
y a matrix with the scores of the response variable
X a matrix with the scores of the covariates
ninit the number of random starts for the model estimation. It is ignored if init_met =
’kmeans’. Default is 10
groups the number of groups to consider in the model estimation. Default is 1:3
mode the type of model to estimate, it can be 'regression’ or ’clustering’. Default is
‘regression’
intercept logical, if TRUE the model includes an intercept. Default is TRUE
init_met the method to initialize the model, it can be ’kmeans’ or ‘random’. Default is
’kmeans’
sigma_par the covariance parametrization to consider in the model estimation. Default is
cCVVV’EEE’, VII'EIT’)
Value

a list with the model estimated, the residuals variance matrix and the BIC values
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FMRCC_Phasel

Phase I of the FMRCC

Description

Performs Phase I of the Functional Mixture Regression Control Chart methodology, which consists
of model estimation and control limit calculation using training and tuning datasets.

Usage

FMRCC_PhaseI(

Y_train,
X_train,
Y_tun,
X_tun,
FVEy,
FVEx,

studentized = T,

alpha = 0.01,

intercept =T,

init_met

ninit = 1

groups =

"kmeans",

sigma_par = c("VVV", "EEE", "VII", "EII"),

scale = T,

ncompx = NULL,
ncompy = NULL,
userBwCov = NULL

Arguments

Y_train

X_train

Y_tun

X_tun

FVEy
FVExX

Training response variable. Object of class 'mfd' (dense functional data) or
'list' (sparse functional data). For dense data, pca_mfd is performed. For
sparse data, PACE (Yao et al., 2005) via FPCA is used.

Training predictor variables. Object of class 'mfd' (dense functional), 'matrix’
(scalar), or 'list' (sparse functional). For dense data, pca_mfd is performed.
For sparse data, PACE (Yao et al., 2005) via FPCA is used.

Tuning response variable for control limit calculation. Must be same type as
Y_train.

Tuning predictor variables for control limit calculation. Must be same type as
X_train.

Fraction of variance explained threshold for response variable.

Fraction of variance explained threshold for covariates. Ignored if covariates are
scalar.
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studentized
alpha
intercept
init_met
ninit
groups

sigma_par

scale

ncompx

ncompy

userBwCov

Value

A list containing:

model
phasel
estimate
fpca
BIC_plt
studentized
intercept
type_y
type_x

References

FMRCC_Phasel

Logical. If TRUE, statistics are studentized. Default is TRUE.
Type I error rate for control limit calculation. Default is @.01.
Logical. If TRUE, model includes an intercept. Default is TRUE.

Initialization method: 'kmeans' or 'random'. If 'random’', ninit initializa-
tions are performed and the model with lowest BIC is retained. Default is
'kmeans'.

Number of random starts for model estimation. Ignored if init_met = 'kmeans'.
Default is 10.

Integer vector specifying number of mixture components to consider. Default is
1:5.

Character vector of covariance parametrizations to consider. Options are 'VVV'
(variable volume, shape, orientation), 'EEE' (equal volume, shape, orientation),
'"VII' (variable volume, spherical), 'EII"' (equal volume, spherical). Default is
c('VW', 'EEE','VII', 'EIIL").

Logical. Should dense functional objects be scaled? Default is TRUE.

Integer. Number of principal components to retain for functional covariates. If
NULL, chosen according to FVEx. Default is NULL.

Integer. Number of principal components to retain for functional response. If
NULL, chosen according to FVEy. Default is NULL.

Bandwidth for covariance smoothing in PACE. See FPCA for details. Default is
NULL.

The best fitted mixture regression model

Phase I results including control limits

Estimation results including values to studentize residuals
FPCA results for response and (if applicable) covariates
ggplot object showing BIC values across models

Logical indicating if studentization was used

Logical indicating if intercept was included

Character indicating response type (‘dense’ or ’sparse’)

Character indicating covariate type ("dense’, ’sparse’, or ’scalar’)

Capezza, C., Centofanti, F., Forcina, D., Lepore, A., & Palumbo, B. (2025). Functional Mixture Re-
gression Control Chart. Accepted for publication in Annals of Applied Statistics. arXiv:2410.20138.

Yao, F., Miiller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association, 100(470), 577-590.
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See Also

FMRCC_PhaseIl, FPCA

Examples

# Example with dense functional data
# Length of the functional grid

1 <- 100

# Number of observations

n <- 300
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# Generate training in-control data with three equally-sized clusters, maximum dissimilarity

data <- simulate_data_fmrcc(n_obs = n, delta_1 =1, delta_2

X_train_mfd <- get_mfd_list(data_list = data['X'], n_basis
datal['Y'], n_basis

Y_train_mfd <- get_mfd_list(data_list =
# Generate tuning in-control data with three equally-sized
data <- simulate_data_fmrcc(n_obs = n, delta_1 =1, delta_2
X_tun_mfd <- get_mfd_list(data_list = datal['X'], n_basis
Y_tun_mfd <- get_mfd_list(data_list = data['Y'], n_basis

# Example with dense functional data
phasel_results <- FMRCC_PhaseI(

Y_train = Y_train_mfd,
X_train = X_train_mfd,
Y_tun = Y_tun_mfd,

X_tun = X_tun_mfd,

FVEy = 0.95,

FVEx = 0.90,

alpha = 0.01,

groups = 1:3,

sigma_par = c('VVV', 'EEE")

)

# View BIC plot
phasel_results$BIC_plt

=0.5, len_grid =1, severity =0)
20)
20)

clusters, maximum dissimilarity
0.5, len_grid =1, severity = 0)
20)
20)

FMRCC_PhaseIl Phase Il of the FMRCC

Description

Performs Phase II of the FMRCC methodology.

Usage

FMRCC_PhaseII(Y_test, X_test, phasel)
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Arguments
Y_test Test response variable. Must be same type as training data (mfd for dense or
list for sparse functional data).
X_test Test predictor variables. Must be same type as training data (mfd, matrix, or
list).
phasel Output from FMRCC_Phasel containing the trained model and parameters.
Value
A list containing:
ARL Average Run Length
phasell Detailed Phase II results, a list with:

» df: Data frame with columns:
— 1id: Observation identifier
— loglikelihood: Log-likelihood statistic for each observation
— status: "IC’ (in-control) or ’OC’ (out-of-control)

* ARL: Average Run Length value

See Also

FMRCC_Phasel

Examples

# Length of the functional grid
1 <- 100

# Number of observations

n <- 300

# Generate training in-control data with three equally-sized clusters, maximum dissimilarity
data <- simulate_data_fmrcc(n_obs = n, delta_1 =1, delta_2 =0.5, len_grid =1, severity = 0)
X_train_mfd <- get_mfd_list(data_list = datal['X'], n_basis = 20)
Y_train_mfd <- get_mfd_list(data_list = data['Y'], n_basis = 20)

# Generate tuning in-control data with three equally-sized clusters, maximum dissimilarity
data <- simulate_data_fmrcc(n_obs = n, delta_1 =1, delta_2 =0.5, len_grid =1, severity =0)
X_tun_mfd <- get_mfd_list(data_list = data['X'], n_basis = 20)
Y_tun_mfd <- get_mfd_list(data_list = datal'Y'], n_basis = 20)

# Example with dense functional data
phasel_results <- FMRCC_PhaseI(
Y_train = Y_train_mfd,

X_train = X_train_mfd,
Y_tun = Y_tun_mfd,
X_tun = X_tun_mfd,
FVEy = 0.95,

FVEx = 0.90,

alpha = 0.01,
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groups = 1:3,
sigma_par = c('VVV', 'EEE')
)

# View BIC plot
phasel_results$BIC_plt

# Generate out-of-control data with three equally-sized clusters, maximum dissimilarity
data <- simulate_data_fmrcc(n_obs = n, delta_1 =1, delta_2 =0.5, len_grid =1, severity = 2)
X_test_mfd <- get_mfd_list(data_list = data['X'], n_basis = 20)

Y_test_mfd <- get_mfd_list(data_list = data['Y'], n_basis = 20)

# Perform the monitoring of the Phase II data
phaseIl_results <- FMRCC_PhaseII(

Y_test = Y_test_mfd,

X_test = X_test_mfd,

phasel = phasel_results

)

# Check Average Run Length
phaselIl_results$ARL

# View monitoring results
head(phasell_results$phaseIl$df)

# Identify out-of-control observations
oc_observations <- phasell_results$phaseIl$df[phasell_results$phasell$df$status == '0C',]
oc_observations

fof_pc Function-on-function linear regression based on principal compo-
nents

Description

Function-on-function linear regression based on principal components. This function performs
multivariate functional principal component analysis (MFPCA) to extract multivariate functional
principal components from the multivariate functional covariates as well as from the functional
response, then it builds a linear regression model of the response scores on the covariate scores.
Both functional covariates and response are standardized before the regression. See Centofanti et
al. (2021) for additional details.

Usage

fof_pc(
mfdobj_y,
mfdobj_x,
tot_variance_explained_x = 0.95,
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tot_variance_explained_y = 0.95,
tot_variance_explained_res = 0.95,
components_x = NULL,
components_y = NULL,
type_residuals = "standard”
)
Arguments
mfdobj_y A multivariate functional data object of class mfd denoting the functional re-
sponse variable. Although it is a multivariate functional data object, it must
have only one functional variable.
mfdobj_x A multivariate functional data object of class mfd denoting the functional co-

variates.

tot_variance_explained_x

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional covariates. Default is 0.95.

tot_variance_explained_y

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional response. Default is 0.95.

tot_variance_explained_res

components_x

components_y

type_residuals

Value

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional residuals of the functional regression model. Default is 0.95.

A vector of integers with the components over which to project the functional co-
variates. If NULL, the first components that explain a minimum fraction of vari-
ance equal to tot_variance_explained_x is selected. # If this is not NULL,
the criteria to select components are ignored. Default is NULL.

A vector of integers with the components over which to project the functional re-
sponse. If NULL, the first components that explain a minimum fraction of vari-
ance equal to tot_variance_explained_y is selected. # If this is not NULL,
the criteria to select components are ignored. Default is NULL.

A character value that can be "standard" or "studentized". If "standard", the
MEFPCA on functional residuals is calculated on the standardized covariates and
response. If "studentized", the MFPCA on studentized version of the functional
residuals is calculated on the non-standardized covariates and response. See
Centofanti et al. (2021) for additional details.

A list containing the following arguments:

* mod: an object of class 1m that is a linear regression model where the response variables are
the MFPCA scores of the response variable and the covariates are the MFPCA scores of the
functional covariates. mod$coefficients contains the matrix of coefficients of the functional
regression basis functions,



fof_pc

37

beta_fd: a bifd object containing the bivariate functional regression coefficients /3(s, t) es-
timated with the function-on-function linear regression model,

fitted.values: a multivariate functional data object of class mfd with the fitted values of the
functional response observations based on the function-on-function linear regression model,

residuals_original_scale: a multivariate functional data object of class mfd with the
functional residuals of the function-on-function linear regression model on the original scale,
i.e. they are the difference between mfdobj_y and fitted. values,

residuals: a multivariate functional data object of class mfd with the functional residuals of
the function-on-function linear regression model, standardized or studentized depending on
the argument type_residuals,

type_residuals: the same as the provided argument,

pca_x: an object of class pca_mfd obtained by doing MFPCA on the functional covariates,
pca_y: an object of class pca_mfd obtained by doing MFPCA on the functional response,
pca_res: an object of class pca_mfd obtained by doing MFPCA on the functional residuals,
components_x: a vector of integers with the components selected in the pca_x model,
components_y: a vector of integers with the components selected in the pca_y model,
components_res: a vector of integers with the components selected in the pca_res model,
y_standardized: the standardized functional response obtained doing scale_mfd(mfdobj_y),
tot_variance_explained_x: the same as the provided argument
tot_variance_explained_y: the same as the provided argument
tot_variance_explained_res: the same as the provided argument

get_studentized_residuals: a function that allows to calculate studentized residuals on
new data, given the estimated function-on-function linear regression model.

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281-294. doi:10.1080/00401706.2020.1753581

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:1@, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj <- get_mfd_list(air, lambda = 1e-2)
mfdobj_y <- mfdobj[, "N02"]

mfdobj_x <- mfdobj[, fun_covariates]

mod <- fof_pc(mfdobj_y, mfdobj_x)
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fof_pc_real_time Get a list of function-on-function linear regression models estimated
on functional data each evolving up to an intermediate domain point.

Description

This function produces a list of objects, each of them contains the result of applying fof_pc to a
functional response variable and multivariate functional covariates evolved up to an intermediate
domain point.

Usage

fof_pc_real_time(
mfdobj_y_list,
mfdobj_x_list,

tot_variance_explained_x = 0.95,
tot_variance_explained_y = 0.95,
tot_variance_explained_res = 0.95,

components_x = NULL,
components_y = NULL,

type_residuals = "standard”,
ncores = 1
)
Arguments

mfdobj_y_list A listcreated using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the functional response variable.

mfdobj_x_list A listcreated using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional covariates.

tot_variance_explained_x
See fof_pc.
tot_variance_explained_y
See fof_pc.
tot_variance_explained_res
See fof_pc.
components_x See fof_pc.
components_y See fof_pc.
type_residuals See fof_pc.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.
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Value

A list of lists each produced by fof_pc, corresponding to a given instant.

See Also

fof_pc, get_mfd_df_real_time, get_mfd_list_real_time

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_y_list <- get_mfd_list_real_time(air["NO2"],

n_basis = 15,

lambda = 1e-2,

k_seq = c(0.5, 0.75, 1))
mfdobj_x_list <- get_mfd_list_real_time(air[c("CO", "temperature”)],

n_basis = 15,

lambda = 1e-2,

k_seq = c(0.5, 0.75, 1))
mod_list <- fof_pc_real_time(mfdobj_y_list, mfdobj_x_list)

FRTM_Phasel Phase I of the FRTM method.

Description

This function implements the design phase (Phase I) of FRTM method.

Usage
FRTM_PhaseI(
data_tra,
data_tun = NULL,
alpha = 0.05,

n_basis_xall = 30,
control.FDTW = list(),
control.mFPCA = list(),
control.rtr = list(),
ncores = 1,

print = TRUE
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Arguments

data_tra

data_tun

alpha

n_basis_xall

control .FDTW

control.mFPCA

control.rtr

ncores

print

Value

FRTM Phasel

A list containing the following arguments: x_err a list containing the discrete
observations for each curve of the training set; grid_i a list of vector of time
points where the curves of the training set are sampled.

A list containing the following arguments: grid_i a list containing the discrete
observations for each curve of the tuning set; grid_i a list of vector of time
points where the curves of the tuning set are sampled. If NULL, the tuning set
is not used.

Overall type I error probability to obtain the control chart limits.

Number of basis to obtain the functional observation via the spline smooth-
ing approach based on cubic B-splines and a roughness penalty on the second
derivative.

A list of control parameters for the open-end/open-begin functional dynamic
time warping to replace defaults returned by par.FDTW. Values not set assume
default values.

A list of control parameters for the mixed functional principal component anal-
ysis to replace defaults returned by par.mFPCA. Values not set assume default
values.

A list of control parameters for the real-time registration step to replace defaults
returned by par.rtr. Values not set assume default values.

If ncores>1, then parallel computing is used, with ncores cores. Default is 1.
If TRUE, some information are printed. Default is TRUE.

A list containing the following arguments:

T2_fd List of T functions for each observation in the tuning set.

SPE_fd List of SPE functions for each observation in the tuning set.
CL_T2 Control limit of the Hotelling’s 7% control chart.
CL_SPE Control limit of the SPE control chart.

template_fd Template function used in the registration.

der_template_fd First derivative of the template function.

u_fd Upper extreme of the band constraint.

1_fd Lower extreme of the band constraint.

x_list_tun List, for each observation in the tuning set, of partial registered functions.
h_list_tun List, for each observation in the tuning set, of partial warping functions.
x_list List, for each observation in the training set, of partial registered functions.
h_list List, for each observation in the training set, of partial warping functions.
x_err A list containing the discrete observations for each curve of the training set.
grid_i A list of vector of time points where the curves of the training set are sampled.

x_list_smooth Smooth curves from the training set.
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lambda Lambda identified through the average curve distance to obtain the OEB-FDTW solution.

par_reg Additional parameters to be used in the monitoring phase (Phase II).

References

Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of func-

tional data. Journal of Quality Technology, 57(2):135-152, doi:https://doi.org/10.1080/00224065.2024.2430978.
See Also

FRTM_Phasel

Examples

library(funcharts)
data <- simulate_data_FRTM(n_obs = 20)

data_oc <-
simulate_data_FRTM(
n_obs = 2,
scenario = "1",
shift = "0C_h",
severity = 0.5
)

lambda <- 10 * -5

max_x <- max(unlist(data$grid_i))

seq_t_tot <- seq(@, 1, length.out = 30)[-1]
seq_x <- seq(@.1, max_x, length.out = 10)

mod_phaseI_FRTM <- FRTM_PhaseI(
data_tra = data,
control.FDTW = list(
M= 30,
N = 30,
lambda = lambda,
seq_t = seq_t_tot,
iter_tem = 1,
iter =1
),
control.rtr = list(seq_x = seq_x)
)
mod_phaseII_FRTM <- FRTM_PhaselI(data_oc = data_oc , mod_phasel = mod_phasel_FRTM)

plot(mod_phasel_FRTM)
plot(mod_phaseII_FRTM)
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FRTM_Phasell Phase Il of the FRTM method.

Description

This function implements the monitoring phase (Phase II) of FRTM method.

Usage

FRTM_PhaselI(data_oc, mod_phasel, ncores = 1)

Arguments
data_oc A list containing the following arguments: x_err a list containing the discrete
observations for each curve to be monitored; grid_i a list of vector of time
points where the curves to be monitored are sampled.
mod_phasel An object of class mod_phaseI_FRTM obtained as output of the function FRTM_Phasel.
ncores If ncores>1, then parallel computing is used, with ncores cores. Default is 1.
Value

A list containing the following arguments:

T2_fd List of T2 functions for each observation.

SPE_fd List of SPE functions for each observation.

CL_T2 Control limit of the Hotelling’s 72 control chart.

CL_SPE Control limit of the SPE control chart.

x_err A list containing the discrete observations for each curve.
grid_i A list of vector of time points where the curves are sampled.
x_list_smooth Smooth curves.

mod_phaseI An object of class mod_phaseI_FRTM obtained as output of the function FRTM_Phasel.

References

Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of func-

tional data. Journal of Quality Technology, 57(2):135-152, doi:https://doi.org/10.1080/00224065.2024.2430978.
Examples

library(funcharts)
data <- simulate_data_FRTM(n_obs = 20)

data_oc <-
simulate_data_FRTM(
n_obs = 2,

scenario = "1",
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shift = "0C_h",
severity = 0.5

)

lambda <- 10 * -5

max_x <- max(unlist(data$grid_i))

seq_t_tot <- seq(@, 1, length.out = 30)[-1]
seq_x <- seq(@.1, max_x, length.out = 10)

mod_phaseI_FRTM <- FRTM_PhaseI(
data_tra = data,
control.FDTW = list(
M= 30,
N = 30,
lambda = lambda,
seq_t = seq_t_tot,
iter_tem = 1,
iter =1
),
control.rtr = list(seq_x = seq_x)
)
mod_phaseII_FRTM <- FRTM_PhaselI(data_oc = data_oc , mod_phasel = mod_phasel_FRTM)

plot(mod_phaseI_FRTM)
plot(mod_phaseII_FRTM)

functional_filter Finds functional componentwise outliers

Description

It finds functional componentwise outliers as described in Capezza et al. (2024).

Usage
functional_filter(
mfdobj,
method_pca = "ROBPCA",
alpha = 0.95,
fev = 0.999,
delta = 0.1,

alpha_binom = 0.99,
bivariate = TRUE,
max_proportion_componentwise = 0.5
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Arguments

mfdobj A multivariate functional data object of class mfd.

method_pca The method used in rpca_mfd to perform robust multivariate functional princi-
pal component analysis (ROMFPCA). See rpca_mfd.

alpha Probability value such that only values of functional distances greater than the
alpha-quantile of the Chi-squared distribution, with a number of degrees of
freedom equal to the number of principal components selected by fev, are con-
sidered to determine the proportion of flagged componentwise outliers. Default
value is 0.95, as recommended by Agostinelli et al. (2015). See Capezza et al.
(2024) for more details.

fev Number between 0 and 1 denoting the fraction of variability that must be ex-

plained by the principal components to be selected to calculate functional dis-
tances after applying ROMFPCA on mfdobj. Default is 0.999.

delta Number between 0 and 1 denoting the parameter of the Binomial distribution
whose alpha_binom-quantile determines the threshold used in the bivariate fil-
ter. Given the i-th observation and the j-th functional variable, the number of
pairs flagged as functional componentwise outliers in the i-th observation where
the component (i, j) is involved is compared against this threshold to identify
additional functional componentwise outliers to the ones found by the univari-
ate filter. Default is 0.1, recommended as conservative choice by Leung et al.
(2017). See Capezza et al. (2024) for more details.

alpha_binom Probability value such that the alpha-quantile of the Binomial distribution is
considered as threshold in the bivariate filter. See delta and Capezza et al.
(2024) for more details. Default value is 0.99.

bivariate If TRUE, both univariate and bivariate filters are applied. If FALSE, only the
univariate filter is used. Default is TRUE.

max_proportion_componentwise
If the functional filter identifies a proportion of functional componentwise out-
liers larger than max_proportion_componentwise, for a given observation,
then it is considered as a functional casewise outlier. Default value is 0.5.

Value

A list with two elements. The first element is an mfd object containing the original observation
in the mfdobj input, but where the basis coefficients of the components identified as functional
componentwise outliers are replaced by NA. The second element of the list is a list of numbers,
with length equal to the number of functional variables in mfdobj. Each element of this list contains
the observations of the flagged functional componentwise outliers for the corresponding functional
variable.

References

Agostinelli, C., Leung, A., Yohai, V. J., and Zamar, R. H. (2015). Robust estimation of multi-
variate location and scatter in the presence of componentwise and casewise contamination. 7est,
24(3):441-461.

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.
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Leung, A., Yohai, V., and Zamar, R. (2017). Multivariate location and scatter matrix estimation

under componentwise and casewise contamination. Computational Statistics & Data Analysis,
111:59-76.

Examples

library(funcharts)

mfdobj <- get_mfd_list(air, grid = 1:24, n_basis = 13, lambda = 1e-2)
plot_mfd(mfdobj)

out <- functional_filter(mfdobj, bivariate = FALSE)

get_mfd_array Get Multivariate Functional Data from a three-dimensional array

Description

Get Multivariate Functional Data from a three-dimensional array

Usage
get_mfd_array(
data_array,
grid = NULL,

n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,

lambda =

NULL,

lambda_grid = 10%seq(-10@, 1, length.out = 10),

ncores =
)
Arguments
data_array A three-dimensional array. The first dimension corresponds to argument values,
the second to replications, and the third to variables within replications.
grid See get_mfd_list.
n_basis See get_mfd_list.
n_order # See get_mfd_list.
basisobj # See get_mfd_list.
Lfdobj # See get_mfd_list.
lambda See get_mfd_list.

lambda_grid

ncores

See get_mfd_list.
Deprecated. See get_mfd_list.
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Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also

get_mfd_list, get_mfd_df

Examples

library(funcharts)

library(fda)

data(”CanadianWeather™)

mfdobj <- get_mfd_array(CanadianWeather$dailyAv[, 1:10, ],
lambda = 1e-5)

plot_mfd(mfdobj)

get_mfd_array_real_time

Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_array for each domain point.

Usage
get_mfd_array_real_time(
data_array,
grid = NULL,

n_basis = 30,

n_order = 4,

basisobj = NULL,

Lfdobj = 2,

lambda = NULL,

lambda_grid = 10%seq(-10, 1, length.out = 10),
k_seq = seq(from = 0.25, to = 1, length.out = 10),
ncores = 1
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Arguments

data_array
grid
n_basis
n_order
basisobj
Lfdobj
lambda
lambda_grid
k_seq

ncores

Value
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See get_mfd_array.
See get_mfd_array.
See get_mfd_array.
See get_mfd_array.
See get_mfd_array.
See get_mfd_array.
See get_mfd_array.
See get_mfd_array.

A vector of values between 0 and 1, containing the domain points over which
functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,k(b-a)).

If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

A list of mfd objects as produced by get_mfd_array.

See Also

get_mfd_array

Examples

library(funcharts)

library(fda)

data("CanadianWeather™)
fdobj <- get_mfd_array_real_time(CanadianWeather$dailyAv[, 1:5, 1:2],

lambda = 1e-2)

get_mfd_df

Get Multivariate Functional Data from a data frame

Description

Get Multivariate Functional Data from a data frame
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Usage

get_mfd_df(
dt,
domain,
arg,
id,
variables,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10%seq(-10, 1, length.out = 10),

ncores = 1
)
Arguments

dt A data. frame containing the discrete data. For each functional variable, a sin-
gle column, whose name is provided in the argument variables, contains dis-
crete values of that variable for all functional observation. The column indicated
by the argument id denotes which is the functional observation in each row. The
column indicated by the argument arg gives the argument value at which the
discrete values of the functional variables are observed for each row.

domain A numeric vector of length 2 defining the interval over which the functional data
object can be evaluated.

arg A character variable, which is the name of the column of the data frame dt
giving the argument values at which the functional variables are evaluated for
each row.

id A character variable indicating which is the functional observation in each row.

variables A vector of characters of the column names of the data frame dt indicating the
functional variables.

n_basis An integer variable specifying the number of basis functions; default value is
30. See details on basis functions.

n_order An integer specifying the order of b-splines, which is one higher than their de-
gree. The default of 4 gives cubic splines.

basisobj An object of class basisfd defining the basis function expansion. Default is
NULL, which means that a basisfd object is created by doing create.bspline.basis(rangeval
=domain,nbasis = n_basis, norder =n_order)

Lfdobj An object of class Lfd defining a linear differential operator of order m. It is

used to specify a roughness penalty through fdPar. Alternatively, a nonnegative
integer specifying the order m can be given and is passed as Lfdobj argument to
the function fdPar, which indicates that the derivative of order m is penalized.
Default value is 2, which means that the integrated squared second derivative is
penalized.
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lambda

lambda_grid

ncores

Details
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A non-negative real number. If you want to use a single specified smoothing
parameter for all functional data objects in the dataset, this argument is passed
to the function fda: : fdPar. Default value is NULL, in this case the smooth-
ing parameter is chosen by minimizing the generalized cross-validation (GCV)
criterion over the grid of values given by the argument. See details on how
smoothing parameters work.

A vector of non-negative real numbers. If 1ambda is provided as a single number,
this argument is ignored. If lambda is NULL, then this provides the grid of
values over which the optimal smoothing parameter is searched. Default value
is 10%seq(-10,1,1=20).

If you want parallelization, give the number of cores/threads to be used when
doing GCV separately on all observations.

Basis functions are created with fda: :create.bspline.basis(domain, n_basis), i.e. B-spline
basis functions of order 4 with equally spaced knots are used to create mfd objects.

The smoothing penalty lambda is provided as fda: : fdPar(bs, 2, lambda), where bs is the basis
object and 2 indicates that the integrated squared second derivative is penalized.

Rather than having a data frame with long format, i.e. with all functional observations in a sin-
gle column for each functional variable, if all functional observations are observed on a common
equally spaced grid, discrete data may be available in matrix form for each functional variable. In
this case, see get_mfd_list.

Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also

get_mfd_list

Examples

library(funcharts)

x <- seq(1, 10, length = 25)

y11 <= cos(x)

y21 <- cos(2 * x)

y12 <= sin(x)

y22 <- sin(2 * x)

df <- data.frame(id = factor(rep(1:2, each = length(x))),
X = rep(x, times = 2),
y1 = c(y11, y21),
y2 = c(y12, y22))

mfdobj <- get_mfd_df(dt = df,
domain = c(1, 10),

nyn

arg = "X,
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id = "id",
variables = c("y1", "y2"),
lambda = 1e-5)

get_mfd_df_real_time Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_df for each domain point.

Usage

get_mfd_df_real_time(
dt,
domain,
arg,
id,
variables,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10%seq(-10@, 1, length.out = 10),
k_seq = seq(from = @0.25, to = 1, length.out = 10),

ncores = 1
)
Arguments

dt See get_mfd_df.
domain See get_mfd_df.
arg See get_mfd_df.
id See get_mfd_df.
variables See get_mfd_df.
n_basis See get_mfd_df.
n_order See get_mfd_df.

basisobj See get_mfd_df.
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Lfdobj See get_mfd_df.
lambda See get_mfd_df.
lambda_grid See get_mfd_df.
k_seq A vector of values between 0 and 1, containing the domain points over which

functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,k(b-a)).

ncores If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

Value

A list of mfd objects as produced by get_mfd_df, corresponding to a given instant.

See Also
get_mfd_df

Examples

library(funcharts)

x <- seq(1, 10, length = 25)

y11 <= cos(x)

y21 <- cos(2 * x)

y12 <= sin(x)

y22 <- sin(2 * x)

df <- data.frame(id = factor(rep(1:2, each = length(x))),
X = rep(x, times = 2),
y1 = c(y11, y21),
y2 = c(y12, y22))

mfdobj_list <- get_mfd_df_real_time(dt = df,
domain = c(1, 10),
arg = "x",
id = "id",
variables = c("y1", "y2"),
lambda = 1e-2)

get_mfd_fd Convert a fd object into a Multivariate Functional Data object.

Description

Convert a fd object into a Multivariate Functional Data object.

Usage
get_mfd_fd(fdobj)
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Arguments

fdobj An object of class fd.

Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also
mfd

Examples

library(funcharts)

library(fda)

bs <- create.bspline.basis(nbasis = 10)
fdobj <- fd(coef = 1:10, basisobj = bs)
mfdobj <- get_mfd_fd(fdobj)

get_mfd_list Get Multivariate Functional Data from a list of matrices

Description

Get Multivariate Functional Data from a list of matrices

Usage
get_mfd_list(
data_list,
grid = NULL,

n_basis = 30,

n_order = 4,

basisobj = NULL,

Lfdobj = 2,

lambda = NULL,

lambda_grid = 10%seq(-10, 1, length.out = 10),
ncores = 1

Arguments

data_list A named list of matrices. Names of the elements in the list denote the functional
variable names. Each matrix in the list corresponds to a functional variable. All
matrices must have the same dimension, where the number of rows corresponds
to replications, while the number of columns corresponds to the argument values
at which functions are evaluated.
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grid A numeric vector, containing the argument values at which functions are eval-
vated. Its length must be equal to the number of columns in each matrix in
data_list. Default is NULL, in this case a vector equally spaced numbers be-
tween 0 and 1 is created, with as many numbers as the number of columns in
each matrix in data_list.

n_basis An integer variable specifying the number of basis functions; default value is
30. See details on basis functions.

n_order An integer specifying the order of B-splines, which is one higher than their
degree. The default of 4 gives cubic splines.

basisobj An object of class basisfd defining the B-spline basis function expansion. De-
faultis NULL, which means that a basisfd object is created by doing create.bspline.basis(rangeval
=domain,nbasis = n_basis, norder =n_order)

Lfdobj An object of class Lfd defining a linear differential operator of order m. It is
used to specify a roughness penalty through fdPar. Alternatively, a nonnegative
integer specifying the order m can be given and is passed as Lfdobj argument to
the function fdPar, which indicates that the derivative of order m is penalized.
Default value is 2, which means that the integrated squared second derivative is
penalized.

lambda A non-negative real number. If you want to use a single specified smoothing
parameter for all functional data objects in the dataset, this argument is passed
to the function fda: : fdPar. Default value is NULL, in this case the smooth-
ing parameter is chosen by minimizing the generalized cross-validation (GCV)
criterion over the grid of values given by the argument. See details on how
smoothing parameters work.

lambda_grid A vector of non-negative real numbers. If 1ambda is provided as a single number,
this argument is ignored. If lambda is NULL, then this provides the grid of
values over which the optimal smoothing parameter is searched. Default value
is 10*seq(-10,1,1=20).

ncores Deprecated.

Details

Basis functions are created with fda: :create.bspline.basis(domain, n_basis), i.e. B-spline
basis functions of order 4 with equally spaced knots are used to create mfd objects.

The smoothing penalty lambda is provided as fda: : fdPar(bs, 2, lambda), where bs is the basis
object and 2 indicates that the integrated squared second derivative is penalized.

Rather than having a list of matrices, you may have a data frame with long format, i.e. with all func-
tional observations in a single column for each functional variable. In this case, see get_mfd_df.

Value

An object of class mfd. See also mfd for additional details on the multivariate functional data class.

See Also

mfd, get_mfd_list, get_mfd_array
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Examples

library(funcharts)

data("air")

# Only take first 5 multivariate functional observations

# and only two variables from air

air_small <- lapply(air[c("”N02", "C0")], function(x) x[1:5, 1)
mfdobj <- get_mfd_list(data_list = air_small)

get_mfd_list_real_time
Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_list for each domain point.

Usage
get_mfd_list_real_time(
data_list,
grid = NULL,

n_basis = 30,

n_order = 4,

basisobj = NULL,

Lfdobj = 2,

lambda = NULL,

lambda_grid = 10%seq(-10, 1, length.out = 10),
k_seq = seq(from = 0.2, to =1, by = 0.1),

ncores = 1
)
Arguments
data_list See get_mfd_list.
grid See get_mfd_list.
n_basis See get_mfd_list.
n_order See get_mfd_list.
basisobj See get_mfd_list.

Lfdobj See get_mfd_list.
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lambda See get_mfd_list.
lambda_grid See get_mfd_df.
k_seq A vector of values between 0 and 1, containing the domain points over which

functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,a+k(b-a)).

ncores If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

Value

A list of mfd objects as produced by get_mfd_list.

See Also

get_mfd_list

Examples

library(funcharts)
data("air")
# Only take first 5 multivariate functional observations from air
air_small <- lapply(air, function(x) x[1:5, 1)
# Consider only 3 domain points: 0.5, 0.75, 1
mfdobj <- get_mfd_list_real_time(data_list = air_small,
lambda = 1e-2,
k_seq = c(0.5, 0.75, 1))

get_ooc Get out of control observations from control charts

Description

Get out of control observations from control charts

Usage

get_ooc(cclist)

Arguments
cclist A data. frame produced by control_charts_pca, control_charts_sof_pc,
regr_cc_fof, or regr_cc_sof.
Value

A data. frame with the same number of rows as cclist, and the same number of columns apart from
the columns indicating control chart limits. Each value is TRUE if the corresponding observation is
in control and FALSE otherwise.
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Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1l, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,
y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)
get_ooc(cclist)

get_outliers_mfd Get outliers from multivariate functional data

Description

Get outliers from multivariate functional data using the functional boxplot with the modified band
depth of Sun et al. (2011, 2012). This function relies on the fbplot function of the roahd package.

Usage

get_outliers_mfd(mfdobj)

Arguments

mfdobj A multivariate functional data object of class mfd

Value

A numeric vector with the indexes of the functional observations signaled as outliers.
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References

e Sun, Y., & Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graph-
ical Statistics, 20(2), 316-334.

e Sun, Y., & Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal data
visualization and outlier detection. Environmetrics, 23(1), 54-64.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:20, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
get_outliers_mfd(mfdobj_x)

get_sof_pc_outliers Get possible outliers of a training data set of a scalar-on-function re-
gression model.

Description

Get possible outliers of a training data set of a scalar-on-function regression model. It sets the
training data set also as tuning data set for the calculation of control chart limits, and as phase
II data set to compare monitoring statistics against the limits and identify possible outliers. This
is only an empirical approach. It is advised to use methods appropriately designed for phase I
monitoring to identify outliers.

Usage

get_sof_pc_outliers(y, mfdobj)

Arguments
y A numeric vector containing the observations of the scalar response variable.
mfdobj A multivariate functional data object of class mfd denoting the functional co-
variates.
Value

A character vector with the ids of functional observations signaled as possibly anomalous.
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Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:1@, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = le-2)
y <- rowMeans(air$N02)
get_sof_pc_outliers(y, mfdobj_x)

inprod_mfd Inner products of functional data contained in mfd objects.

Description

Inner products of functional data contained in mfd objects.

Usage

inprod_mfd(mfdobj1, mfdobj2 = NULL)

Arguments
mfdobj1 A multivariate functional data object of class mfd.
mfdobj2 A multivariate functional data object of class mfd. It must have the same func-
tional variables as mfdobj1. If NULL, it is equal to mfdob3j1.
Details

Note that L2 inner products are not calculated for couples of functional data from different func-
tional variables. This function is needed to calculate the inner product in the product Hilbert space
in the case of multivariate functional data, which for each observation is the sum of the L2 inner
products obtained for each functional variable.

Value

a three-dimensional array of L2 inner products. The first dimension is the number of functions
in argument mfdobjl, the second dimension is the same thing for argument mfdobj2, the third
dimension is the number of functional variables. If you sum values over the third dimension, you
get a matrix of inner products in the product Hilbert space of multivariate functional data.
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Examples

library(funcharts)
set.seed(123)

mfdobj1 <- data_sim_mfd()
mfdobj2 <- data_sim_mfd()
inprod_mfd(mfdobj1)
inprod_mfd(mfdobj1, mfdobj2)

inprod_mfd_diag Inner product of two multivariate functional data objects, for each
observation

Description

Inner product of two multivariate functional data objects, for each observation

Usage

inprod_mfd_diag(mfdobj1, mfdobj2 = NULL)

Arguments
mfdobj1 A multivariate functional data object of class mfd.
mfdobj2 A multivariate functional data object of class mfd, with the same number of func-
tional variables and observations as mfdobj1. If NULL, then mfdobj2=mfdobj1.
Default is NULL.
Value

It calculates the inner product of two multivariate functional data objects. The main function inprod
of the package fda calculates inner products among all possible couples of observations. This
means that, if mfdobj1 has n1 observations and mfdobj2 has n2 observations, then for each variable
n1 X n2 inner products are calculated. However, often one is interested only in calculating the n
inner products between the n observations of mfdobj1 and the corresponding n observations of
mfdobj2. This function provides this "diagonal" inner products only, saving a lot of computation
with respect to using fda: :inprod and then extracting the diagonal elements. Note that the code
of this function calls a modified version of fda: :inprod().

Examples

mfdobj <- data_sim_mfd()
inprod_mfd_diag(mfdobj)
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is.mfd Confirm Object has Class mfd

Description

Check that an argument is a multivariate functional data object of class mfd.

Usage
is.mfd(mfdobj)

Arguments

mfdobj An object to be checked.

Value

a logical value: TRUE if the class is correct, FALSE otherwise.

lines.mfd Add curves to an existing multivariate functional data plot

Description

Adds new curves from an mfd object to an existing plot created by plot.mfd. Each variable is
added to its corresponding panel, using the same scales and layout as the original plot.

Usage
## S3 method for class 'mfd’
lines(x, ...)
Arguments
X An mfd object.
Graphical arguments passed to plot.mfd with add=TRUE.
Value

Invisibly returns NULL.

See Also
plot.mfd, abline_mfd
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lines_mfd Add the plot of a new multivariate functional data object to an existing
plot.

Description

Add the plot of a new multivariate functional data object to an existing plot.

Usage

lines_mfd(
plot_mfd_obj,
mfdobj_new,
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity”,
na.rm = TRUE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
type_mfd = "mfd",
y_lim_equal = FALSE,

Arguments

plot_mfd_obj A plot produced by link{plot_mfd}

mfdobj_new A new multivariate functional data object of class mfd to be plotted.
mapping See plot_mfd
data See plot_mfd.
stat See plot_mfd.
position See plot_mfd.
na.rm See plot_mfd.
orientation See plot_mfd.

show. legend
inherit.aes
type_mfd

y_lim_equal

See plot_mfd.
See plot_mfd.
See plot_mfd.
See plot_mfd.
See plot_mfd.



62 mean.mfd

Value

A plot of the multivariate functional data object added to the existing one.

Examples

library(funcharts)
library(ggplot2)

mfdobj1 <- data_sim_mfd()

mfdobj2 <- data_sim_mfd()

p <- plot_mfd(mfdobj1)
lines_mfd(p, mfdobj_new = mfdobj2)

mean.mfd Mean Function for Multivariate Functional Data

Description

Computes the mean function for an object of class mfd.

Usage
## S3 method for class 'mfd’
mean(x, ...)
Arguments
X An object of class mfd, containing /N observations of a p-dimensional multivari-
ate functional variable.
Further arguments are ignored (required for S3 consistency).
Details

The method averages the coefficient array across the observation dimension, resulting in a new mfd
object with one observation (the sample mean).

Value

An object of class mfd representing the mean function. The output contains a single observation,
corresponding to the mean function for each variable.

See Also
mfd, plot.mfd
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library(funcharts)

data(air)

mfdobj <- get_mfd_list(air)
mean_result <- mean(mfdobj)

plot(mean_result)

mfd

Define a Multivariate Functional Data Object

Description

This is the constructor function for objects of the mfd class. It is a wrapper to fda: :fd, but it
forces the coef argument to be a three-dimensional array of coefficients even if the functional data
is univariate. Moreover, it allows to include the original raw data from which you get the smooth
functional data. Finally, it also includes the matrix of precomputed inner products of the basis
functions, which can be useful to speed up computations when calculating inner products between
functional observations

Usage

mfd(coef, basisobj, fdnames = NULL, raw = NULL, id_var = NULL, B = NULL)

Arguments

coef

basisobj

fdnames

raw

A three-dimensional array of coefficients:

* the first dimension corresponds to basis functions.

¢ the second dimension corresponds to the number of multivariate functional
observations.

* the third dimension corresponds to variables.

A functional basis object defining the basis, as provided to fda: : fd, but there is
no default.

A list of length 3, each member being a string vector containing labels for the
levels of the corresponding dimension of the discrete data.

The first dimension is for a single character indicating the argument values, i.e.
the variable on the functional domain.

The second is for replications, i.e. it denotes the functional observations.

The third is for functional variables’ names.

A data frame containing the original discrete data. Default is NULL, however,
if provided, it must contain:

a column (indicated by the id_var argument) denoting the functional observa-
tions, which must correspond to values in fdnames[[2]],
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a column named as fdnames[[1]], returning the argument values of each func-
tion

as many columns as the functional variables, named as in fdnames[[3]], con-
taining the discrete functional values for each variable.

id_var A single character value indicating the column in the raw argument containing
the functional observations (as in fdnames[[2]]), default is NULL.

B A matrix with the inner products of the basis functions. If NULL, it is calculated
from the basis object provided. Default is NULL.

Details

To check that an object is of this class, use function is.mfd.

Value

A multivariate functional data object (i.e., having class mfd), which is a list with components named
coefs, basis, and fdnames, as for class fd, with possibly in addition the components raw and
id_var.

References

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer,
New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer,
New York.

Examples

library(funcharts)

library(fda)

set.seed(0)

nobs <- 5

nbasis <- 10

nvar <- 2

coef <- array(rnorm(nobs * nbasis * nvar), dim = c(nbasis, nobs, nvar))
bs <- create.bspline.basis(rangeval = c(@, 1), nbasis = nbasis)

mfdobj <- mfd(coef = coef, basisobj = bs)

plot_mfd(mfdobj)

mFPCA Mixed Functional Principal Component Analysis (mFPCA)

Description

This function implements the mFPCA.



mFPCA 65

Usage

mFPCA(x_fd, h_fd = NULL, k_weights = "equal”, ncom = "ptv", par_ncom = 0.9)

Arguments
x_fd An object of class fd corresponding to the registered functions.
h_fd An object of class fd corresponding to the warping functions.
k_weights The vector of the four constants in the inner product computation. If "equal”,
the choice of Centofanti et al. (2024) is used.
ncom It is the way to select the number of principal components. If "ptv", it is selected
considering the percentage of the total variability explained. If "kaiserrule", it is
selected considering the Kaiser rule. The number of principal components may
be indicated directly as an integer as well.
par_ncom If ncom="ptv", the threshold for the percentage of the total variability explained.
If ncom="kaiserrule"”, the threshold for the Kaiser rule. Otherwise, this pa-
rameter is not considered.
Value

A list containing the following arguments:

eigfun_fd A List of functions corresponding to the functional part of the principal components.
eigvect_sc A matrix corresponding to the scalar part of the principal components.

scores Scores corresponding to x_fd and h_fd.

values Eigenvalues corresponding to the selected principal components.

varprop Variance proportion explained by each principal component.

k_weights The vector of the four constants in the inner product computation.

x_fd_list A List of two elements: the list of the registered functions and the list of the centered
log-ratio transformation of the first derivatives of the normalized warping functions.

sc_mat Two column matrix corresponding to the scalar part of the observations used.
mean_fd_list Mean functions of the functional part.

mean_sc_mat Means of the scalar part.

sd_fd_list The standard deviation of the functional part.

sd_sc_mat Standard deviations of the scalar part.

h_fd An object of class fd corresponding to the warping functions.

x_fd An object of class fd corresponding to the registered functions. ind_var Additional parameter
used in FRTM_Phasel.
References

Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of func-
tional data. Journal of Quality Technology, 57(2):135-152, doi:https://doi.org/10.1080/00224065.2024.2430978.
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Examples

library(funcharts)

data <- simulate_data_FRTM(n_obs = 100)
X <- sapply(1:100, function(ii)
data$x_truel[ii]])
x_fd <-
fda: :smooth.basis(y = X,
argvals = data$grid,
fda::create.bspline.basis(c(@, 1), 30))$fd
H <- sapply(1:100, function(ii)
data$h[[ii]])
h_fd <-
fda: :smooth.basis(y = H,
argvals = data$grid,
fda::create.bspline.basis(c(@, 1), 30))$fd
mod_mFPCA <- mFPCA(x_fd, h_fd, ncom = "ptv", par_ncom = 0.95)
plot(mod_mFPCA)

minus_mfd Subtract multivariate functional data (and unary negation)

Description

Subtracts two objects of class mfd (elementwise on their coefficient arrays). The same basis,
variable-count, and observation-replication rules as in plus_mfd apply. If mfdobj2 is missing,
returns the unary negation of mfdobj1.

Usage
minus_mfd(mfdobj1, mfdobj2)

## S3 method for class 'mfd'
mfdobj1 - mfdobj2

Arguments
mfdobj1, mfdobj2

Objects of class mfd. If mfdobj2 is missing, unary minus is applied to mfdobj1.
Value

An object of class mfd with coefficients equal to the (possibly replicated) difference mfdobj1 -
mfdobj2, or the negation of mfdobj1 for unary minus.

See Also

plus_mfd, nobs, nbasis, nvar, mfd
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Examples

mfdobj_a - mfdobj_b
minus_mfd(mfdobj_a, mfdobj_b)
Unary minus:

-mfdobj_a

ETE TS

mixregfit_multivariate
Performs the estimation of gaussian mixtures of regression models and
gaussian mixture models. Used in FMRCC_Phasel.

Description

Performs the estimation of gaussian mixtures of regression models and gaussian mixture models.
Used in FMRCC_Phasel.

Usage
mixregfit_multivariate(

y)
X}
k)
init_met = "random”,
intercept = FALSE,
eps = le-06,

max_iter = 500,
model_Sigma

)
Arguments
y a matrix with the scores of the response variable
X a matrix with the scores of the covariates
k the number of groups to consider in the model estimation
init_met the method to initialize the model, it can be ’kmeans’ or ‘random’. Default is
’kmeans’
intercept logical, if TRUE the model includes an intercept. Default is TRUE
eps the convergence criterion. Default is 1e-6
max_iter the maximum number of iterations. Default is 500

model_Sigma the parametrization of the covariance. It can be "VVV’, ’EEE’, *VII” or "EIl’,
with no default

Value

a list with the estimated parameters of the model
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nbasis Number of basis functions

Description

Generic function to extract the number of basis functions from an object.

Usage
nbasis(object, ...)
Arguments
object An object from which to extract the number of basis functions.
Further arguments passed to methods (not used).
nobs.mfd Number of observations in a multivariate functional data object
Description

Number of observations in a multivariate functional data object

Usage
## S3 method for class 'mfd’
nobs(object, ...)

Arguments
object An object of class mfd.

Further arguments passed to methods (not used).

Value

An integer: the number of observations.

Examples

# nobs(mfdobj)
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norm.mfd Norm of Multivariate Functional Data

Description

Norm of multivariate functional data contained in a mfd object.

Usage
norm.mfd(mfdobj)

Arguments

mfdobj A multivariate functional data object of class mfd.

Value

A vector of length equal to the number of replications in mfdobj, containing the norm of each
multivariate functional observation in the product Hilbert space, i.e. the sum of L2 norms for each
functional variable.

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
norm.mfd(mfdobj)

nvar Number of variables

Description

Generic function to extract the number of variables from an object.

Usage
nvar(object, ...)
Arguments
object An object from which to extract the number of variables.

Further arguments passed to methods (not used).
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OEBFDTW Open-end/open-begin Functional Dynamic Time Warping (OEB-
FDTW)

Description

This function implements the OEB-FDTW.

Usage

OEBFDTW(
x_fd,
template_fd,
der_x_fd,
der_template_fd,
alpha_vec = c(@, 0.5, 1),
fit_c = FALSE,
N = 100,
M = 50,
smin = 9.01,
smax = 1000,
lambda = 10*-5,
eta = 0.5,
iter = 3,
delta_xs =
delta_xe
delta_ys
delta_ye = 0,
der_0 = NULL,
seq_t = NULL,
get_fd = "no",
n_basis_x = NULL

’

’

1
[SEEIN ST

’

|
()

Arguments

x_fd An object of class fd corresponding to the misaligned function.
template_fd An object of class fd corresponding to the template function.

der_x_fd An object of class fd corresponding to the first derivative of x_fd.

der_template_fd
An object of class fd corresponding to the first derivative of template_fd.

alpha_vec Grid of values to find the optimal value of «;.

fit_c If TRUE, the value of the objective function without the penalization evaluated
at the solution is returned.

N The number N, of evenly spaced values along the template domain Dy-.
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smin

smax

lambda

eta

iter

delta_xs

delta_xe

delta_ys

delta_ye

der_o

seq_t

get_fd

n_basis_x

Value

71

The number M, of evenly spaced values along the functional observation do-
main Dy;,.

The minimum values allowed for the first derivative of the warping function h;.
If NULL, in FRTM_Phasel, it is set as 0.001 multiplied by the ratio between the
size of the monitoring and template domains.

The maximum values allowed for the first derivative of the warping function h;.

If NULL, in FRTM_Phasel, it is set as 100 multiplied by the ratio between the
size of the monitoring and template domains.

The smoothing parameter A;.

Fraction 7 for updating the constraint bounds to reduce the error associated to
the discretization (Deriso and Boyd, 2022).

Number of iteration in the iterative refinement to reduce the error associated to
the discretization (Deriso and Boyd, 2022).

Maximum allowed misalignment at the beginning of the process along the mis-
aligned function domain.

Maximum allowed misalignment at the end of the process along the misaligned
function domain.

Maximum allowed misalignment at the beginning of the process along the tem-
plate domain.

Maximum allowed misalignment at the end of the process along the template
domain.

The target values towards which shrinking the warping function slope. If NULL,
it is equal to the ratio between the size of the domain of x_fd and the size of the
domain of template_fd.

Discretized sequence in the template domain Dy-. If NULL, an equally spaced
grid of length N in the template domain is used.

If "x_reg", the registered function as a class fd object is returned. If "no", the
registered function as a class fd object is not returned.

Number of basis to obtain the registered function. If NULL, it is set as 0.5 the
length of the optimal path.

A list containing the following arguments:

mod that is a list composed by

* h_fd: The estimated warping function.

* x_reg: The registered function.

e h_list: A list containing the discretized warping function for each iteration of the iterative

refinement.

* min_cost: Optimal value of the objective function.

lambda: The smoothing parameter .

* alpha: Optimal value of the parameter «;.
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obj Values of the objective function for each value in alpha_vec.
fit Values of the objective function without the penalization for each value in alpha_vec.
obj_opt Optimal value of the objective function.

fit_opt Optimal value of the objective function without the penalization.

References

Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of func-
tional data. Journal of Quality Technology, 57(2):135-152, doi:https://doi.org/10.1080/00224065.2024.2430978.

Deriso, D. and S. Boyd (2022). A general optimization framework for dynamic time warping.
Optimization and Engineering, 1-22.

Examples

set.seed(1)
data <- simulate_data_FRTM(n_obs = 100)

dom <- c(0, 1)
basis_x <- fda::create.bspline.basis(c(@, 1), nbasis = 30)
x_fd <-
fda::smooth.basis(data$grid_i[[11] / max(data$grid_i[[1]1]), data$x_err[[1]1], basis_x)$fd
template_fd <-
fda: :smooth.basis(data$grid_template, data$template, basis_x)$fd
der_x_fd <- fda::deriv.fd(x_fd, 1)
der_template_fd <- fda::deriv.fd(template_fd, 1)

mod <-
OEBFDTW(x_fd, template_fd, der_x_fd , der_template_fd, get_fd = "x_reg")

par.FDTW Setting open-end/open-begin functional dynamic time warping (OEB-
FDTW) defaults

Description

This is an internal function of package FRTM which allows controlling the parameters to implement
the OEB-FDTW in the FRTM method.

Usage

par.FDTW(
N = 100,
M = 50,
smin = NULL,
smax = NULL,
alpha_vec = c(@, 0.5, 1),
frac_oeob = 0.1,
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eta = 0.5,
iter = 3,
template = "Procrustes”,

grid_tem = NULL,
index_tem = NULL,

iter_tem = 2,
lambda = c(0,

10*seq(-8, -2, by

0.25), 10%5),

threshold = 0.01,

seq_t = seq(0.01, 1, length.out

Arguments

N
M

smin

smax

alpha_vec
frac_oeob

eta

iter

template

grid_tem

index_tem

iter_tem
lambda
threshold

seq_t

100)

The number N; of evenly spaced values along the template domain Dy .

The number M, of evenly spaced values along the functional observation do-
main Dy, .

The minimum values allowed for the first derivative of the warping function h;.
If NULL, in FRTM_Phasel, it is set as 0.001 multiplied by the ratio between the
size of the monitoring and template domains.

The maximum values allowed for the first derivative of the warping function h;.
If NULL, in FRTM_Phasel, it is set as 100 multiplied by the ratio between the
size of the monitoring and template domains.

Grid of values to find the optimal value of «;.
Fraction of Dy and Dx;, to obtain d; s, 0t ¢,04,s and 6 c.

Fraction 7 for updating the constraint bounds to reduce the error associated to
the discretization (Deriso and Boyd, 2022).

Number of iteration in the iterative refinement to reduce the error associated to
the discretization (Deriso and Boyd, 2022).

If "Procrustes”, the Procrustes fitting process is used to select the template func-
tion. If numeric, the discrete observations of the template function.

If template is numeric, a vector of time points where the discrete observations
of the template function are sampled.

If NULL and template="Procrustes”, the function in the training set, whose
domain length is nearest the median domain length, is chosen as initial esti-
mate of the template function. If an integer and template="Procrustes”,
the index_tem function in the training set is chosen as initial estimate of the
template function. If template is numeric, this parameter is not used.

Number of iterations in the Procrustes fitting process.
Grid of smoothing parameters to evaluate the average curve distance (ACD).

The fraction § of the difference between the maximum and the minimum dis-
tance in the selection of the smoothing parameter via the ACD.

Discretized sequence in the template domain Dy-.
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References
Deriso, D. and S. Boyd (2022). A general optimization framework for dynamic time warping.
Optimization and Engineering, 1-22.

See Also

FRTM_Phasel

Examples
library(funcharts)
par.FDTW()
par.mFPCA Setting mixed functional principal component analysis (mFPCA) de-
Sfaults
Description

This is an internal function of package FRTM which allows controlling the parameters used in the
mFPCA in the FRTM method.

Usage

par.mFPCA(perc_pca = 0.9, perc_basis_x_pca = 1, perc_basis_h = 0.2)

Arguments

perc_pca Percentage of the total variability used to select the number L of principal com-
ponents.

perc_basis_x_pca
Multiplied by the maximum number of basis of the registered functions for each

time point in Dy, it is the number of basis functions of the registered functions
in the mFPCA.

perc_basis_h  Multiplied by the mean number of basis of the warping functions for each time
point in Dy, it is the number of basis functions of the warping functions in the

mFPCA.
See Also
FRTM_Phasel
Examples
library(funcharts)

par.mFPCA()
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par.rtr

Setting real-time registration step defaults

Description

This is an internal function of package FRTM which allows controlling the parameters to implement
real-time registration step in the FRTM method.

Usage

par.rtr(

seq_x = NULL,

delta_d = 0.05,
delta_v = 0.03,
delta_c = 0.04,

Delta = 0.1,

length_grid_window = 10,
length_grid_owindow = 20,

eval_seq_der

= seq(0.02, 0.1, length.out = 10),

perc_basis_x_reg = 0.3

Arguments

seq_x
delta_d
delta_v
delta_c
Delta

Discretized sequence in the monitoring domain D,,.

The parameter §4 in the adaptive band constraint calculation.
The parameter 6, in the adaptive band constraint calculation.
The parameter 6. in the adaptive band constraint calculation.

The parameter A in the adaptive band constraint calculation.

length_grid_window

Number of points to be explored in the interval of the band constraint for each
point in D,,, when the adaptive band constraint is considered.

length_grid_owindow

eval_seq_der

Number of points to be explored in the interval of the band constraint for each
point in D,,, when the original band constraint is considered.

If multiplied by the template domain range, the distances from the domain right
boundaries over which are calculated the first derivative to mitigate the effects
of possible estimation errors in the adaptive band constraint calculation.

perc_basis_x_reg

See Also

FRTM_Phasel

Multiplied by the number of observed discrete points, it is the number of basis
functions used in the real-time registration step for each time point. This latter
number cannot be grater than n_basis_xall.
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Examples

pca_mftd

library(funcharts)

par.rtr()

pca_mfd

Multivariate functional principal components analysis

Description

Multivariate functional principal components analysis (MFPCA) performed on an object of class
mfd. It is a wrapper to fda: : pca. fd, providing some additional arguments.

Usage

pca_mfd(mfdobj, scale = TRUE, nharm = 20)

Arguments

mfdobj

scale

nharm

Value

A multivariate functional data object of class mfd.

If TRUE, it scales data before doing MFPCA using scale_mfd. Default is
TRUE.

Number of multivariate functional principal components to be calculated. De-
fault is 20.

Modified pca.fd object, with multivariate functional principal component scores summed over
variables (fda: :pca.fd returns an array of scores when providing a multivariate functional data
object). Moreover, the multivariate functional principal components given in harmonics are con-
verted to the mfd class.

See Also

scale_mfd

Examples

library(funcharts)

mfdobj <- data_sim_mfd()
pca_obj <- pca_mfd(mfdobj)
plot_pca_mfd(pca_obj)
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pca_mfd_real_time Get a list of multivariate functional principal component analysis
models estimated on functional data each evolving up to an interme-
diate domain point.

Description

This function produces a list of objects, each of them contains the result of applying pca_mfd to a
multivariate functional data object evolved up to an intermediate domain point.

Usage

pca_mfd_real_time(mfdobj_list, scale = TRUE, nharm = 20, ncores = 1)

Arguments

mfdobj_list A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional data.

scale See pca_mfd.
nharm See pca_mfd.
ncores If you want parallelization, give the number of cores/threads to be used when

creating objects separately for different instants.

Value

A list of lists each produced by pca_mfd, corresponding to a given instant.

See Also

pca_mfd

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_list <- get_mfd_list_real_time(air[c("CO", "temperature”)],
n_basis = 15,
lambda = 1e-2,
k_seq = seq(@.25, 1, length = 5))
mod_list <- pca_mfd_real_time(mfdobj_list)
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plot.AMFCC_Phasel Plot the results of the Phase I and the Phase Il of the AMFCC

Description
This function provides plots of either the monitoring statistics or the contribution plot for a given
observation.
Usage
## S3 method for class 'AMFCC_Phasel'
plot(x, ...)

## S3 method for class 'AMFCC_PhaseII'

plot(x, ...)
Arguments
X The output of either AMFCC_Phasel or AMFCC_Phasell.
Select the type of plot to produce either the contribution plot "cont’ or the mon-
itoring plot “'mon’. Default is ‘'mon’. Select the combining_function to use
for the monitoring plot either "Fisher’ or ’Tippett’. Default is "Fisher’. Set the
observation index ind_obs for which producing the contribution plot.
Value

No return value, called for side effects.

Examples
library(funcharts)
N <- 10
1 _grid <- 10
p <-2

grid <- seq(@, 1, 1 = 1_grid)

Xall_tra <- funcharts::simulate_mfd(
nobs = N,
p=p,
ngrid = 1_grid,
correlation_type_x = c("Bessel”, "Gaussian"”)
)
X_tra <-
data.frame(
x = c(Xall_tra$X_list[[1]1], Xall_tra$x_list[[2]1]),
timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), 1_grid * p),
var = rep(1:p, each = 1_grid * N)
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)

Xall_II <- funcharts::simulate_mfd(
nobs = N,
p=p,
ngrid = 1_grid,
shift_type_x = list("A", "B"),
d_x = c(10, 10),
correlation_type_x = c("Bessel”, "Gaussian")

)

X_II <-
data.frame(
x = c(Xall_II$X_list[[1]11, Xall_II$X_list[[2]1]),
timeindex = rep(rep(1:1_grid, each = (N)), p),
curve = rep(1:(N), l_grid * p),
var = rep(1:p, each = 1_grid * N)
)

B AMFCC —mmmmmmm oo
print("AMFCC")

mod_phaseI_AMFCC <- AMFCC_PhaseI(
data_tra = X_tra,
data_tun =
NULL,
grid = grid,
ncores = 1

)

mod_phaseII_AMFCC <- AMFCC_PhaselI(data = X_II,
mod_Phase_I = mod_phaseI_AMFCC,
ncores = 1)

plot(mod_phaseII_AMFCC)
plot(mod_phaseII_AMFCC, type='cont',ind_obs=1)

plot.FRTM_Phasel Plot the results of the Phase I and the Phase Il of the FRTM

Description

This function provides plots of the Hotelling’s 72 and SPE control charts.

Usage

## S3 method for class 'FRTM_Phasel'
plot(x, ...)
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## S3 method for class 'FRTM_PhaseIl'

plot(x, ...)
Arguments
X The output of either FRTM_PhaseI or FRTM_PhaseIl.
A variable ind_sel could be provided to select some observations from either
the tuning or monitoring set.
Value

No return value, called for side effects.

Examples

library(funcharts)
data <- simulate_data_FRTM(n_obs = 20)

data_oc <-
simulate_data_FRTM(
n_obs = 2,
scenario = "1",
shift = "0C_h",
severity = 0.5
)

lambda <- 10 * -5

max_x <- max(unlist(data$grid_i))

seq_t_tot <- seq(@, 1, length.out = 30)[-1]
seq_x <- seq(@.1, max_x, length.out = 10)

mod_phaseI_FRTM <- FRTM_PhaseI(
data_tra = data,
control.FDTW = list(
M= 30,
N = 30,
lambda = lambda,
seq_t = seq_t_tot,
iter_tem = 1,
iter =1
),
control.rtr = list(seq_x = seq_x)

)
mod_phaseII_FRTM <- FRTM_PhaselI(data_oc = data_oc , mod_phasel = mod_phasel_FRTM)

plot(mod_phaseI_FRTM)
plot(mod_phaseII_FRTM)
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plot.mfd

Plot multivariate functional data

Description

Plot multivariate functional data

Usage
## S3 method for class 'mfd’
plot(x, y, add = FALSE, common_ylim = TRUE, ...)
Arguments
X An mfd object.
y Ignored.
add Logical; if TRUE, add curves to an existing mfd plot (using matlines) instead

common_ylim

of creating a new one.

Logical; if TRUE, all panels share the same y-limits, otherwise each panel
adapts its own scale.

Graphical arguments passed to matplot (if add=FALSE) or to matlines (if add=TRUE).

plot.mFPCA

Plot the results of the Mixed Functional Principal Component Analysis
(mFPCA)

Description

This function provides plots of the principal components of the mFPCA.

Usage

## S3 method for class 'mFPCA'

plot(x, ...)

Arguments

X

Value

The output of mFPCA.

A variable type could be provided that can assume two values. If type="single",
the principal components are plotted separately. If type="all", the principal
components are plotted together.

No return value, called for side effects.
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Examples

library(funcharts)

data <- simulate_data_FRTM(n_obs = 100)
X <- sapply(1:100, function(ii)
data$x_truel[ii]])
x_fd <-
fda: :smooth.basis(y = X,
argvals = data$grid,
fda::create.bspline.basis(c(@, 1), 30))$fd
H <- sapply(1:100, function(ii)
data$h[[ii]])
h_fd <-
fda: :smooth.basis(y = H,
argvals = data$grid,
fda::create.bspline.basis(c(@, 1), 30))$fd
mod_mFPCA <- mFPCA(x_fd, h_fd, ncom = "ptv", par_ncom = 0.95)
plot(mod_mFPCA)

plot_bifd Plot a Bivariate Functional Data Object.

Description
Plot an object of class bifd using ggplot2 and geom_tile. The object must contain only one single
functional replication.

Usage

plot_bifd(bifd_obj, type_plot = "raster”, phi = 40, theta = 40)

Arguments
bifd_obj A bivariate functional data object of class bifd, containing one single replication.
type_plot a character value If "raster", it plots the bivariate functional data object as a raster
image. If "contour", it produces a contour plot. If "perspective", it produces a
perspective plot. Default value is "raster".
phi If type_plot=="perspective”,itis the phi argument of the function plot3D: : persp3D.
theta If type_plot=="perspective”,itis the theta argument of the function plot3D: : persp3D.
Value

A ggplot with a geom_tile layer providing a plot of the bivariate functional data object as a heat
map.
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Examples

library(funcharts)

mfdobj <- data_sim_mfd(nobs = 1)
tp <- tensor_product_mfd(mfdobj)
plot_bifd(tp)

plot_bootstrap_sof_pc Plot bootstrapped estimates of the scalar-on-function regression coef-
ficient

Description

Plot bootstrapped estimates of the scalar-on-function regression coefficient for empirical uncertainty
quantification. For each iteration, a data set is sampled with replacement from the training data use
to fit the model, and the regression coefficient is estimated.

Usage

plot_bootstrap_sof_pc(mod, nboot = 25, ncores = 1)

Arguments
mod A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.
nboot Number of bootstrap replicates
ncores If you want estimate the bootstrap replicates in parallel, give the number of
cores/threads.
Value

A ggplot showing several bootstrap replicates of the multivariate functional coefficients estimated
fitting the scalar-on-function linear model. Gray lines indicate the different bootstrap estimates, the
black line indicate the estimate on the entire dataset.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = le-2)
y <- rowMeans(air$N02)

mod <- sof_pc(y, mfdobj_x)

plot_bootstrap_sof_pc(mod, nboot = 5)
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plot_control_charts Plot control charts

Description

This function takes as input a data frame produced with functions such as control_charts_pca
and control_charts_sof_pc and produces a ggplot with the desired control charts, i.e. it plots a
point for each observation in the phase II data set against the corresponding control limits.

Usage

plot_control_charts(cclist, nobsI = @)

Arguments
cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.
nobsI An integer indicating the first observations that are plotted in gray. It is useful
when one wants to plot the phase I data set together with the phase II data. In
that case, one needs to indicate the number of phase I observations included in
cclist. Default is zero.
Details

Out-of-control points are signaled by colouring them in red.

Value

A ggplot with the functional control charts.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)

mfdobj_y <- get_mfd_list(air["N02"],
n_basis = 15,
lambda = 1e-2)

mfdobj_y1 <- mfdobj_y[1:60]

mfdobj_y_tuning <- mfdobj_y[61:90]

mfdobj_y2 <- mfdobj_y[91:100]

mfdobj_x1 <- mfdobj_x[1:60]

mfdobj_x_tuning <- mfdobj_x[61:90]

mfdobj_x2 <- mfdobj_x[91:100]

mod_fof <- fof_pc(mfdobj_y1, mfdobj_x1)
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cclist <- regr_cc_fof(mod_fof,
mfdobj_y_new = mfdobj_y2,
mfdobj_x_new = mfdobj_x2,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL)
plot_control_charts(cclist)

plot_control_charts_real_time
Plot real-time control charts

Description

This function produces a ggplot with the desired real-time control charts. It takes as input a list of

data frames, produced with functions such as regr_cc_fof_real_time and control_charts_sof_pc_real_time,
and the id of the observations for which real-time control charts are desired to be plotted. For each

control chart, the solid line corresponds to the profile of the monitoring statistic and it is compared

against control limits plotted as dashed lines. If a line is outside its limits it is coloured in red.

Usage

plot_control_charts_real_time(cclist, id_num)

Arguments
cclist A list of data frames, produced with functions such as regr_cc_fof_real_time
and control_charts_sof_pc_real_time,
id_num An index number giving the observation in the phase II data set to be plotted,
i.e. 1 for the first observation, 2 for the second, and so on.
Details

If the line, representing the profile of the monitoring statistic over the functional domain, is out-of-
control, then it is coloured in red.

Value

A ggplot with the real-time functional control charts.

See Also

regr_cc_fof_real_time, control_charts_sof_pc_real_time
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Examples

library(funcharts)
data("air")
airl <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_x2_list <- get_mfd_list_real_time(air2[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
y1 <- rowMeans(air1$N02)
y2 <- rowMeans(air23$N02)
mod_list <- sof_pc_real_time(y1, mfdobj_x1_list)
cclist <- regr_cc_sof_real_time(
mod_list = mod_list,
y_new = y2,
mfdobj_x_new = mfdobj_x2_list,
include_covariates = TRUE)
plot_control_charts_real_time(cclist, 1)

plot_mfd Plot a Multivariate Functional Data Object.

Description

Plot an object of class mfd using ggplot2 and patchwork.

Usage

plot_mfd(
mfdobj,
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,
na.rm = TRUE,

orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
type_mfd = "mfd",
y_lim_equal = FALSE,
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Arguments

mfdobj A multivariate functional data object of class mfd.

mapping Set of aesthetic mappings additional to x and y as passed to the function ggplot2: : geom: line.

data A data.frame providing columns to create additional aesthetic mappings. It
must contain a factor column "id" with the replication values as in mfdobj$fdnames[[2]].
If it contains a column "var", this must contain the functional variables as in
mfdobj$fdnames[[3]].

stat See ggplot2: :geom_line.

position See ggplot2::geom_line.

na.rm See ggplot2::geom_line.

orientation See ggplot2::geom_line.

show. legend See ggplot2::geom_line.

inherit.aes See ggplot2: :geom_line.

type_mfd A character value equal to "mfd" or "raw". If "mfd", the smoothed functional
data are plotted, if "raw", the original discrete data are plotted.
y_lim_equal A logical value. If TRUE, the limits of the y-axis are the same for all functional
variables. If FALSE, limits are different for each variable. Default value is FALSE.
See ggplot2: :geom_line.
Value

A plot of the multivariate functional data object.

Examples

library(funcharts)
library(ggplot2)
mfdobj <- data_sim_mfd()
ids <- mfdobj$fdnames[[2]]
df <- data.frame(id = ids, first_two_obs = ids %in% c("rep1"”, "rep2"))
plot_mfd(mapping = aes(colour = first_two_obs),
data = df,
mfdobj = mfdobj)

plot_mon Plot multivariate functional object over the training data set

Description

This function plots selected functions in a phase_II monitoring data set against the corresponding
training data set to be compared.
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Usage

plot_mon(cclist, fd_train, fd_test, plot_title = FALSE, print_id = FALSE)

Arguments
cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.
fd_train An object of class mfd containing the training data set of the functional variables.
They are plotted in gray in the background.
fd_test An object of class mfd containing the phase II data set of the functional variables
to be monitored. They are coloured in black or red on the foreground.
plot_title A logical value. If TRUE, it prints the title with the observation name. Default is
FALSE.
print_id A logical value. If TRUE, and also plot_title is TRUE, it prints also the id of
the observation in the title of the ggplot. Default is FALSE
Value

A ggplot of the multivariate functional data. In particular, the multivariate functional data given
in fd_train are plotted on the background in gray, while the multivariate functional data given in
fd_test are plotted on the foreground, the colour of each curve is black or red depending on if that
curve was signal as anomalous by at least a contribution plot.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(yl, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,
y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)
get_ooc(cclist)
cont_plot(cclist, 3)
plot_mon(cclist, fd_train = mfdobj_x1, fd_test = mfdobj_x2[3]1)
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plot_pca_mfd Plot the harmonics of a pca_mfd object

Description

Plot the harmonics of a pca_mfd object

Usage

plot_pca_mfd(pca, harm = @, scaled = FALSE)

Arguments
pca A fitted multivariate functional principal component analysis (MFPCA) object
of class pca_mfd.
harm A vector of integers with the harmonics to plot. If 0, all harmonics are plotted.
Default is 0.
scaled If TRUE, eigenfunctions are multiplied by the square root of the corresponding
eigenvalues, if FALSE the are not scaled and the all have unit norm. Default is
FALSE
Value

A ggplot of the harmonics/multivariate functional principal components contained in the object pca.

Examples

library(funcharts)

mfdobj <- data_sim_mfd()
pca_obj <- pca_mfd(mfdobj)
plot_pca_mfd(pca_obj)

plus_mfd Add multivariate functional data

Description

Adds two objects of class mfd (elementwise on their coefficient arrays). The two objects must share
the same basis system and number of variables. If one object contains a single replication (i.e., one
observation) and the other contains multiple, the single replication is replicated across observations
before addition.
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Usage

plus_mfd(mfdobj1, mfdobj2)

## S3 method for class 'mfd'
mfdobj1 + mfdobj2

Arguments

mfdobj1, mfdobj2
Objects of class mfd. If mfdobj2 is missing, unary plus is applied.

Details

If mfdobj2 is missing, the function returns mfdobj1 unchanged (i.e., unary plus).
Let the coefficient arrays have dimensions (nbasis, nobs, nvar). The following checks/rules are
enforced:

* Both inputs must be mfd objects; otherwise an error is thrown.

* The basis systems must be identical (checked via identical()).

* The number of variables must match.

* For the number of observations: if both nobs; and nobsy are greater than one, they must be
equal; otherwise, the object with nobs = 1 is replicated to match the other.

Value

An object of class mfd with coefficients equal to the (possibly replicated) sum of the inputs. The
fdnames are taken from the input providing the observation indexing after replication (if any),
otherwise from mfdobj1.

See Also

nobs, nbasis, nvar, mfd

Examples

# Assuming mfdobj_a and mfdobj_b are 'mfd' objects on the same basis:
# mfdobj_a + mfdobj_b
# plus_mfd(mfdobj_a, mfdobj_b)
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predict.pca_mfd Predict from a multivariate functional PCA

Description

Computes either the scores of new observations on selected principal components, or their recon-
struction from the selected components, given a PCA fitted by pca_mfd.

Usage

## S3 method for class 'pca_mfd'
predict(
object,
newdata = NULL,
components = seqg_len(ncol(object$pcscores)),

type = c("scores”, "reconstruction”),
)
Arguments
object An object of class "pca_mfd", typically the output of pca_mfd.
newdata An object of class "mfd"” containing the new multivariate functional data to be
projected. If NULL, the training data used to fit object are used.
components Integer vector specifying the indices of the principal components to use. De-
faults to all available components.
type Character string: either "scores” (default) to return the scores of newdata, or
"reconstruction” to return the data reconstructed from the selected compo-
nents.
Further arguments passed to or from other methods (not used).
Details

This function is an S3 method for objects of class "pca_mfd"”. It is usually called via the generic
predict function.

The new data are first centered and (optionally) scaled using the functional center and scale stored
in the PCA object.
* If type = "scores”, inner products with the selected eigenfunctions are computed and summed
across basis functions.

 If type = "reconstruction”, the predicted functional data are reconstructed from the scores
and harmonics.
Value

* If type = "scores”, a numeric matrix of dimension nobs x length(components).
* If type = "reconstruction”, an object of class "mfd".
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See Also

pca_mfd, scale_mfd

predict_fof_pc Use a function-on-function linear regression model for prediction

Description

Predict new observations of the functional response variable and calculate the corresponding pre-
diction error (and their standardized or studentized version) given new observations of functional
covariates and a fitted function-on-function linear regression model.

Usage

predict_fof_pc(object, mfdobj_y_new, mfdobj_x_new)

Arguments

object A list obtained as output from fof_pc, i.e. a fitted function-on-function linear
regression model.

mfdobj_y_new  An object of class mfd containing new observations of the functional response.

mfdobj_x_new  An object of class mfd containing new observations of the functional covariates.

Value

A list of mfd objects. It contains:

* pred_error: the prediction error of the standardized functional response variable,

* pred_error_original_scale: the prediction error of the functional response variable on the
original scale,

* y_hat_new: the prediction of the functional response observations on the original scale,
* y_z_new: the standardized version of the functional response observations provided in mfdobj_y_new,

* y_hat_z_new: the prediction of the functional response observations on the standardized/studentized
scale.

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3):281-294. doi:10.1080/00401706.2020.1753581
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Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:1@, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = le-2)
mfdobj_y <- get_mfd_list(air[”N0O2"], lambda = 1e-2)
mod <- fof_pc(mfdobj_y, mfdobj_x)
predict_fof_pc(mod,
mfdobj_y_new = mfdobj_y,
mfdobj_x_new = mfdobj_x)

predict_sof_pc Use a scalar-on-function linear regression model for prediction

Description

Predict new observations of the scalar response variable and calculate the corresponding prediction
error, with prediction interval limits, given new observations of functional covariates and a fitted
scalar-on-function linear regression model

Usage

predict_sof_pc(
object,
y_new = NULL,
mfdobj_x_new = NULL,
alpha = 0.05,
newdata

Arguments

object A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.

y_new A numeric vector containing the new observations of the scalar response variable
to be predicted.

mfdobj_x_new  An object of class mfd containing new observations of the functional covariates.
If NULL, it is set as the functional covariates data used for model fitting.

alpha A numeric value indicating the Type I error for the regression control chart and
such that this function returns the 1-alpha prediction interval on the response.
Default is 0.05.

newdata Deprecated, use mfdobj_x_new argument.
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Value

A data.frame with as many rows as the number of functional replications in newdata, with the
following columns:

e fit: the predictions of the response variable corresponding to new_data,

e lwr: lower limit of the 1-alpha prediction interval on the response, based on the assumption
that it is normally distributed.

* upr: upper limit of the 1-alpha prediction interval on the response, based on the assumption
that it is normally distributed.

¢ res: the residuals obtained as the values of y_new minus their fitted values. If the scalar-on-
function model has been fitted with type_residual == "studentized”, then the studentized
residuals are calculated.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:1@, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
y <- rowMeans(air$N02)

mod <- sof_pc(y, mfdobj_x)

predict_sof_pc(mod)

rbind_mfd Bind replications of two Multivariate Functional Data Objects

Description

Bind replications of two Multivariate Functional Data Objects

Usage
rbind_mfd(mfdobj1, mfdobj2)

Arguments
mfdob3j1 An object of class mfd, with the same variables of mfdobj2 and different repli-
cation names with respect to mfdobj2.
mfdobj2 An object of class mfd, with the same variables of mfdobjl, and different repli-
cation names with respect to mfdobj1.
Value

An object of class mfd, whose variables are the same of mfdobjl and mfdobj2 and whose replica-
tions are the union of the replications in mfdobj1 and mfdobj2.



regr_cc_fof 95

Examples
library(funcharts)
mfdobj1 <- data_sim_mfd(nvar = 3, nobs = 4)
mfdobj2 <- data_sim_mfd(nvar = 3, nobs = 5)

dimnames(mfdobj2$coefs)[[2]]
mfdobj2$fdnames[[2]] <-
c("rep11”, "repl12"”, "repl13", "repl4", "rep15")
mfdobj_rbind <- rbind_mfd(mfdobj1, mfdobj2)
plot_mfd(mfdobj_rbind)

A

regr_cc_fof Functional Regression Control Chart

Description

It builds a data frame needed to plot the Functional Regression Control Chart introduced in Cento-
fanti et al. (2021), for monitoring a functional quality characteristic adjusted for by the effect of
multivariate functional covariates, based on a fitted function-on-function linear regression model.
The training data have already been used to fit the model. An optional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the control charts. It also allows to jointly monitor the multivariate functional
covariates.

Usage

regr_cc_fof(
object,
mfdobj_y_new,
mfdobj_x_new,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL,
alpha = 0.05,
include_covariates = FALSE,
absolute_error = FALSE

Arguments

object A list obtained as output from fof_pc, i.e. a fitted function-on-function linear
regression model.

mfdobj_y_new  An object of class mfd containing the phase II data set of the functional response
observations to be monitored.

mfdobj_x_new  An object of class mfd containing the phase II data set of the functional covari-
ates observations to be monitored.
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mfdobj_y_tuning
An object of class mfd containing the tuning data set of the functional response
observations, used to estimate the control chart limits. If NULL, the training
data, i.e. the data used to fit the function-on-function linear regression model, are
also used as the tuning data set, i.e. mfdobj_y_tuning=object$pca_y$data.
Default is NULL.

mfdobj_x_tuning
An object of class mfd containing the tuning data set of the functional covariates
observations, used to estimate the control chart limits. If NULL, the training
data, i.e. the data used to fit the function-on-function linear regression model, are
also used as the tuning data set, i.e. mfdobj_x_tuning=object$pca_x$data.
Default is NULL.

alpha If it is a number between 0 and 1, it defines the overall type-I error probability.
By default, it is equal to 0.05 and the Bonferroni correction is applied by setting
the type-I error probabilities equal to alpha/2 in the Hotelling’s T2 and SPE
control charts. If include_covariates is TRUE, i.e., the Hotelling’s T2 and
SPE control charts are built also on the multivariate functional covariates, then
the Bonferroni correction is applied by setting the type-I error probability in the
four control charts equal to alpha/4. If you want to set manually the Type-I
error probabilities, then the argument alpha must be a named list with elements
named as T2, spe, T2_x and, spe_x, respectively, containing the desired Type
I error probability of the T2 and SPE control charts for the functional response
and the multivariate functional covariates, respectively.

include_covariates
If TRUE, also functional covariates are monitored through control_charts_pca,.
If FALSE, only the functional response, conditionally on the covariates, is mon-
itored.

absolute_error Alogical value that, if include_covariatesis TRUE, is passed to control_charts_pca.

Value
A data. frame containing the output of the function control_charts_pca applied to the prediction
errors.

References
Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3):281-294. doi:10.1080/00401706.2020.1753581

See Also

control_charts_pca

Examples

library(funcharts)

data("air")

air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("C0", "temperature")
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mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

mfdobj_y <- get_mfd_list(air["N02"],

n_basis = 15,
lambda = 1e-2)

mfdobj_y1 <- mfdobj_y[1:60]
mfdobj_y_tuning <- mfdobj_y[61:90]
mfdobj_y2 <- mfdobj_y[91:100]

mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]

mod_fof <- fof_pc(mfdobj_y1, mfdobj_x1)
cclist <- regr_cc_fof(mod_fof,

mfdobj_y_new = mfdobj_y2,
mfdobj_x_new = mfdobj_x2,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL)

plot_control_charts(cclist)
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regr_cc_fof_real_time Real-time functional regression control chart

Description

This function produces a list of data frames, each of them is produced by regr_cc_fof and is
needed to plot control charts for monitoring in real time a functional quality characteristic adjusted

for by the effect of multivariate functional covariates.

Usage

regr_cc_fof_real_time(

mod_list,

mfdobj_y_new_list,
mfdobj_x_new_list,

mfdobj_y_tuning_list

NULL,

mfdobj_x_tuning_list = NULL,

alpha = 0.05,

include_covariates = FALSE,
absolute_error = FALSE,

ncores = 1

Arguments

mod_list

A list of lists produced by fof_pc_real_time, containing a list of function-on-
function linear regression models estimated on functional data each evolving up

to an intermediate domain point.
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mfdobj_y_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the functional
response variable The length of this list and mod_list must be equal, and their
elements in the same position in the list must correspond to the same intermedi-
ate domain point.

mfdobj_x_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

mfdobj_y_tuning_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the functional response variable. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional response in mod_list, is also used as the tuning data set.
Default is NULL.

mfdobj_x_tuning_list

alpha

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

See regr_cc_fof.

include_covariates

See regr_cc_fof.

absolute_error See regr_cc_fof.

ncores

Value

If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

A list of data. frames each produced by regr_cc_fof, corresponding to a given instant.

See Also

fof_pc_real_time, regr_cc_fof



regr_cc_sof 99

Examples

library(funcharts)
data("air")
airl <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("C0", "temperature”)],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_x2_list <- get_mfd_list_real_time(air2[c("C0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_y1_list <- get_mfd_list_real_time(air1["NO2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_y2_list <- get_mfd_list_real_time(air2[”"N02"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mod_list <- fof_pc_real_time(mfdobj_y1_list, mfdobj_x1_list)
cclist <- regr_cc_fof_real_time(
mod_list = mod_list,
mfdobj_y_new_list = mfdobj_y2_list,
mfdobj_x_new_list = mfdobj_x2_list)
plot_control_charts_real_time(cclist, 1)

regr_cc_sof Scalar-on-Function Regression Control Chart

Description

This function is deprecated. Use regr_cc_sof. This function builds a data frame needed to plot
the scalar-on-function regression control chart, based on a fitted function-on-function linear regres-
sion model and proposed in Capezza et al. (2020). If include_covariates is TRUE, it also plots
the Hotelling’s T2 and squared prediction error control charts built on the multivariate functional
covariates.

Usage

regr_cc_sof(
object,
y_new,
mfdobj_x_new,
y_tuning = NULL,
mfdobj_x_tuning = NULL,
alpha = 0.05,
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parametric_limits = FALSE,
include_covariates = FALSE,
absolute_error = FALSE

)
Arguments
object A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.
y_new A numeric vector containing the observations of the scalar response variable in

the phase II data set.

mfdobj_x_new  An object of class mfd containing the phase II data set of the functional covari-
ates observations.

y_tuning A numeric vector containing the observations of the scalar response variable in
the tuning data set. If NULL, the training data, i.e. the data used to fit the scalar-
on-function regression model, are also used as the tuning data set. Default is
NULL.

mfdobj_x_tuning
An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the control chart limits. If NULL, the training data, i.e.
the data used to fit the scalar-on-function regression model, are also used as the
tuning data set. Default is NULL.

alpha If it is a number between 0 and 1, it defines the overall type-I error probability.
If include_covariates is TRUE, i.e., also the Hotelling’s T2 and SPE control
charts are built on the functional covariates, then the Bonferroni correction is
applied by setting the type-I error probability in the three control charts equal to
alpha/3. In this last case, if you want to set manually the Type-I error probabil-
ities, then the argument alpha must be a named list with three elements, named
T2, spe and y, respectively, each containing the desired Type I error probability
of the corresponding control chart, where y refers to the regression control chart.
Default value is 0.05.

parametric_limits
If TRUE, the limits are calculated based on the normal distribution assumption
on the response variable, as in Capezza et al. (2020). If FALSE, the limits are
calculated nonparametrically as empirical quantiles of the distribution of the
residuals calculated on the tuning data set. The default value is FALSE.

include_covariates
If TRUE, also functional covariates are monitored through control_charts_pca,.
If FALSE, only the scalar response, conditionally on the covariates, is moni-
tored.

absolute_error A logical value that, if include_covariatesis TRUE, is passed to control_charts_pca.

Details

The training data have already been used to fit the model. An additional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the built control charts.



regr_cc_sof_real_time 101

Value

A data. frame with as many rows as the number of functional replications in mfdobj_x_new, with
the following columns:

* y_hat: the predictions of the response variable corresponding to mfdobj_x_new,

* y: the same as the argument y_new given as input to this function,

* lwr: lower limit of the 1-alpha prediction interval on the response,

* pred_err: prediction error calculated as y-y_hat,

* pred_err_sup: upper limit of the 1-alpha prediction interval on the prediction error,

* pred_err_inf: lower limit of the 1-alpha prediction interval on the prediction error.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477-500. doi:10.1002/asmb.2507

Examples
library(funcharts)
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$N02)
y1 <- y[1:80]
y2 <- y[81:100]
mfdobj_x1 <- mfdobj_x[1:80]
mfdobj_x2 <- mfdobj_x[81:100]
mod <- sof_pc(y1l, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,
y_new = y2,
mfdobj_x_new = mfdobj_x2)
plot_control_charts(cclist)

regr_cc_sof_real_time Real-time Scalar-on-Function Regression Control Chart

Description

This function builds a list of data frames, each of them is produced by regr_cc_sof and is needed
to plot control charts for monitoring in real time a scalar quality characteristic adjusted for by the
effect of multivariate functional covariates. The training data have already been used to fit the
model. An additional tuning data set can be provided that is used to estimate the control chart
limits. A phase II data set contains the observations to be monitored with the built control charts.
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Usage

regr_cc_sof_real_time(
mod_list,
y_new,
mfdobj_x_new_list,
y_tuning = NULL,
mfdobj_x_tuning_list = NULL,
alpha = 0.05,
parametric_limits = TRUE,
include_covariates = FALSE,
absolute_error = FALSE,

ncores = 1
)
Arguments
mod_list A list of lists produced by sof_pc_real_time, containing a list of scalar-on-
function linear regression models estimated on functional data each evolving up
to an intermediate domain point.
y_new A numeric vector containing the observations of the scalar response variable in

the phase II monitoring data set.
mfdobj_x_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

y_tuning An optional numeric vector containing the observations of the scalar response
variable in the tuning data set. If NULL, the training data, i.e. the scalar response
in mod_list, is also used as the tuning data set. Default is NULL.

mfdobj_x_tuning_list
A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

alpha See regr_cc_sof.
parametric_limits

See regr_cc_sof
include_covariates

See regr_cc_sof

absolute_error See regr_cc_sof.
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ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data. frames each produced by regr_cc_sof, corresponding to a given instant.

See Also

sof_pc_real_time, regr_cc_sof

Examples

library(funcharts)
data("air")
airl <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO0", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_x2_list <- get_mfd_list_real_time(air2[c("C0", "temperature”)],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_y1_list <- get_mfd_list_real_time(air1["N0O2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mfdobj_y2_list <- get_mfd_list_real_time(air2["N0O2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))
mod_list <- fof_pc_real_time(mfdobj_y1_list, mfdobj_x1_list)
cclist <- regr_cc_fof_real_time(
mod_list = mod_list,
mfdobj_y_new_list = mfdobj_y2_list,
mfdobj_x_new_list = mfdobj_x2_list)
plot_control_charts_real_time(cclist, 1)

ROAMFEWMA_Phasel Robust Adaptive Multivariate Functional EWMA Control Chart -
Phase I

Description

It performs Phase I of the Robust Adaptive Multivariate Functional EWMA control chart (RoAM-
FEWMA). The procedure combines:
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1. Functional cellwise outlier detection via functional_filter,
2. Robust Multivariate Functional Data Imputation (RoMFDI) via RoMFDI,

3. Casewise outliers detection via ROMFCC (RoMFCC_Phasel_casewise and RoMFCC_PhaseII_casewise),
on the imputed Phase I data,

4. AMFEWMA Phase I calibration (AMFEWMA_PhaseI) on cellwise and casewise clean data.

The resulting object can be directly used as mod_1 argument in AMFEWMA_PhaseIl

Usage

ROAMFEWMA_PhaseI (
mfdobj,
mfdobj_tuning,
functional_filter_par = list(filter = TRUE),
imputation_par = list(method_imputation = "RoMFDI", n_dataset = 1),
verbose = FALSE

Arguments

mfdobj A multivariate functional data object of class mfd. This dataset is used as the
Phase I training set. A functional filter is first applied to detect functional cell-
wise outliers; the flagged components are then imputed through a robust mul-
tivariate functional imputation procedure. The imputed data are subsequently
processed by the Robust Multivariate Functional Control Chart to detect and
remove functional casewise outliers. The resulting clean dataset (free of both
cellwise and casewise outliers) is then used as the training set in the Phase I of
the Adaptive Multivariate Functional EWMA control chart.

mfdobj_tuning A multivariate functional data object of class mfd representing the Phase I tun-
ing set. This dataset undergoes the same functional filtering and robust impu-
tation steps applied to mfdobj. The filtered and imputed data are used within
the Robust Multivariate Functional Control Chart to estimate tuning quantities
and control limits. After casewise cleaning, the resulting clean tuning set is em-
ployed in the Phase I calibration of the Adaptive Multivariate Functional EWMA
control chart.

functional_filter_par
A list with an argument filter that can be TRUE or FALSE depending on if
the functional filter step must be performed or not. All the other arguments
of this list are passed as arguments to the function functional_filter in the
filtering step. All the arguments that are not passed take their default values. See
functional_filter for all the arguments and their default values. Default is
list(filter = TRUE).

imputation_par A list with an argument method_imputation that can be "RoMFDI"” or "mean”
depending on if the imputation step must be done by means of ROMFDI or by just
using the mean of each functional variable. If method_imputation = "RoMFDI",
all the other arguments of this list are passed as arguments to the function RoMFDI
in the imputation step. All the arguments that are not passed take their default
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values. See RoMFDI for all the arguments and their default values. Default value
is list(method_imputation = "RoMFDI").

verbose If TRUE, it prints messages about the steps of the algorithm. Default is FALSE.

Details

Among the multiple imputed datasets, the first one is used to build the cleaned training and tuning
sets for AMFEWMA.

Value
A list of the following elements:
* mod_1 object returned by AMFEWMA_PhaselI, see the value of AMFEWMA_PhaseI for a full de-
scription of its component;

* mfd_clean_training training data after complete cleaning, containing no outliers at either
cellwise or casewise;

» mfd_clean_tuning tuning data after complete cleaning, containing no outliers at either cell-
wise or casewise;

* mfd_all_clean full Phase I clean data (training + tuning);

* idx_casewise_outliers indices of observations indetified as casewise outliers by ROMFCC
Phase II;

» ff_training training set after the functional filter;

* ff_tuning tuning set after the functional filter;

* X_imp_training_1 first imputation of the training set after RoOMFDI

e X_imp_tuning_1 first imputation of the tuning set after RoMFDI

* X_all_imputed training + tuning data after robust multivariate functional imputation;

* mod_RoMFCC_phasel_casewise object returned by ROMFCC_Phasel, see the value of ROMFCC_PhaseI_casewise
for a full description of its component;

* mod_RoMFCC_phaselI_casewise object returned by ROMFCC_Phasell, see the value of RoMFCC_PhaseIl_casewise
for a full description of its component;

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate
Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1-15, doi:https://doi.org/10.1080/00224065.2024.23

Examples

## Not run:

set.seed(0)

dat_phasel <- simulate_data_RoMFCC(p_cellwise = 0.05,
p_casewise = 0.05,
outlier = "outlier_E",
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M_outlier_cell = 0.03,
M_outlier_case = 0.01,
max_n_cellwise = 10)
dat_phaselIl <- simulate_data_RoMFCC(OC = "OC_E",
M_OC = 0.01,
which_0C = 5)
mfdobj_phasel <- get_mfd_list(dat_phaseI$X_mat_list, n_basis = 5)
mfdobj_phasell <- get_mfd_list(dat_phaseII$X_mat_list, n_basis = 5)
mfdobj_training_phasel <- mfdobj_phaseI[1:333, ]
mfdobj_tuning_phasel <- mfdobj_phaseI[334:1000, ]
out_phasel <- RoAMFEWMA_PhaseI(mfdobj = mfdobj_training_phaselI,
mfdobj_tuning = mfdobj_tuning_phasel)
out_phaselIl <- RoAMFEWMA_PhaselII(mfdobj_2 = mfdobj_phasell,
mod_1 = out_phasel)
plot_control_charts(out_phaseII$cc)

## End(Not run)

ROAMFEWMA_Phasell Robust Adaptive Multivariate Functional EWMA Control Chart -
Phase Il

Description
This function performs Phase II of the Robust Adaptive Multivariate Functional EWMA (RoAM-
FEWMA) control chart.

Usage
ROAMFEWMA_PhaselII(mfdobj_2, mod_1, n_seq_2 = 1, 1_seq_2 = 2000)

Arguments
mfdobj_2 An object of class mfd containing the Phase II multivariate functional data set,
to be monitored with the ROAMFEWMA control chart.
mod_1 The output of the Phase I achieved through the ROAMFEWMA_PhaselI function.
n_seq._2 Ifitis 1, the Phase II monitoring statistic is calculated on the data sequence. If it
is an integer number larger than 1, a number n_seq_2 of bootstrap sequences are
sampled with replacement from mfdobj_2 to allow uncertainty quantification on
the estimation of the run length. Default value is 1.
1_seq_2 If n_seq_2 is larger than 1, this parameter sets the length of each bootstrap
sequence to be generated. Default value is 2000.
Details

This function is conceptually similar to AMFEWMA_Phasell, proposed by Capezza et al. (2024), but
adapted to the ROAMFEWMA framework. In Phase II, monitoring relies on the ROAMFEWMA
model calibrated in Phase I on data cleaned from both cellwise and casewise outliers. The moni-
toring statistic, control limit, and bootstrap-based ARL estimation remain unchanged, but the input
model must be the robust one obtained through ROAMFEWMA_Phasel.
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Value

A list with the following elements.

* ARL_2: the average run length estimated over the bootstrap sequences. If n_seq_2 is 1, it is
simply the run length observed over the Phase II sequence, i.e., the number of observations up
to the first alarm,

* RL: the run length observed over the Phase II sequence, i.e., the number of observations up to
the first alarm,

e V2: alist with length n_seq_2, containing the AMFEWMA monitoring statistic in Equation
(8) of Capezza et al. (2024), calculated in each bootstrap sequence, until the first alarm.

* cc: a data frame with the information needed to plot the AMFEWMA control chart in Phase
I, with the following columns. id contains the id of each multivariate functional observation,
amfewma_monitoring_statistic contains the AMFEWMA monitoring statistic values cal-
culated on the Phase II sequence, amfewma_monitoring_statistic_limis the upper control
limit.

References

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate
Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1-15, doi:https://doi.org/10.1080/00224065.2024.23

Examples

## Not run:
set.seed(0)
dat_phasel <- simulate_data_RoMFCC(p_cellwise = 0.05,

p_casewise = 0.05,

outlier = "outlier_E",

M_outlier_cell = 0.03,

M_outlier_case = 0.01,

max_n_cellwise = 10)
dat_phasell <- simulate_data_RoMFCC(OC = "OC_E",

M_OC = 9.01,
which_0C = 5)
mfdobj_phasel <- get_mfd_list(dat_phaseI$X_mat_list, n_basis = 5)
mfdobj_phasell <- get_mfd_list(dat_phaseII$X_mat_list, n_basis = 5)
mfdobj_training_phasel <- mfdobj_phaseI[1:333, ]
mfdobj_tuning_phasel <- mfdobj_phaseI[334:1000, ]
out_phasel <- RoAMFEWMA_PhaseI(mfdobj = mfdobj_training_phasel,
mfdobj_tuning = mfdobj_tuning_phasel)
out_phaselIl <- RoAMFEWMA_PhaselII(mfdobj_2 = mfdobj_phasell,
mod_1 = out_phasel)

plot_control_charts(out_phaselI$cc)

## End(Not run)
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RoMFCC_Phasel

Robust Multivariate Functional Control Charts - Phase 1

Description

It performs Phase I of the Robust Multivariate Functional Control Chart (RoMFCC) as proposed by
Capezza et al. (2024).

Usage

RoMFCC_PhaseI(
mfdobj,

mfdobj_tuning = NULL,
functional_filter_par = list(filter = TRUE),
imputation_par = list(method_imputation = "RoMFDI"),

pca_par = list(fev = 0.7),
alpha = 0.05,
verbose = FALSE
)
Arguments
mfdobj A multivariate functional data object of class mfd. A functional filter is applied

mfdobj_tuning

to this data set, then flagged functional componentwise outliers are imputed in
the robust imputation step. Finally robust multivariate functional principal com-
ponent analysis is applied to the imputed data set for dimension reduction.

An additional functional data object of class mfd. After applying the filter and
imputation steps on this data set, it is used to robustly estimate the distribution
of the Hotelling’s T2 and SPE statistics in order to calculate control limits to
prevent overfitting issues that could reduce the monitoring performance of the
RoMFCC. Default is NULL, but it is strongly recommended to use a tuning data
set.

functional_filter_par

imputation_par

A list with an argument filter that can be TRUE or FALSE depending on if
the functional filter step must be performed or not. All the other arguments
of this list are passed as arguments to the function functional_filter in the
filtering step. All the arguments that are not passed take their default values. See
functional_filter for all the arguments and their default values. Default is
list(filter = TRUE).

A list with an argument method_imputation that can be "RoMFDI" or "mean”
depending on if the imputation step must be done by means of RoMFDI or by just
using the mean of each functional variable. If method_imputation = "RoMFDI",
all the other arguments of this list are passed as arguments to the function RoMFDI
in the imputation step. All the arguments that are not passed take their default
values. See RoMFDI for all the arguments and their default values. Default value
is list(method_imputation = "RoMFDI").
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pca_par A list with an argument fev, indicating a number between 0 and 1 denoting the
fraction of variability that must be explained by the principal components to be
selected in the ROMFPCA step. All the other arguments of this list are passed as
arguments to the function rpca_mfd in the ROMFPCA step. All the arguments
that are not passed take their default values. See rpca_mfd for all the arguments
and their default values. Default value is 1ist(fev=20.7).

alpha The overall nominal type-I error probability used to set control chart limits. De-
fault value is 0.05.
verbose If TRUE, it prints messages about the steps of the algorithm. Default is FALSE.
Value

A list of the following elements that are needed in Phase II:

* T2 the Hotelling’s T2 statistic values for the Phase I data set,

¢ SPE the SPE statistic values for the Phase I data set,

* T2_tun the Hotelling’s T2 statistic values for the tuning data set,

* SPE_tun the SPE statistic values for the tuning data set,

e T2_lim the Phase II control limit of the Hotelling’s T2 control chart,
¢ spe_lim the Phase II control limit of the SPE control chart,

* tuning TRUE if the tuning data set is provided, FALSE otherwise,
¢ mod_pca the final ROMFPCA model fitted on the Phase I data set,

* K =K the number of selected principal components,

e T_T2_inv if a tuning data set is provided, it returns the inverse of the covariance matrix of the
first K scores, needed to calculate the Hotelling’s T2 statistic for the Phase II observations.

* mean_scores_tuning_rob_mean if a tuning data set is provided, it returns the robust location
estimate of the scores, needed to calculate the Hotelling’s T2 and SPE statistics for the Phase
II observations.

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Examples

library(funcharts)

mfdobj <- get_mfd_list(air, n_basis = 5)

nobs <- dim(mfdobj$coefs)[2]

set.seed(0)

ids <- sample(1:nobs)

mfdobj1 <- mfdobjl[ids[1:100]]

mfdobj_tuning <- mfdobj[ids[101:300]1]

mfdobj2 <- mfdobjlids[-(1:300)]1]

mod_phasel <- RoMFCC_PhaseI(mfdobj = mfdobj1,
mfdobj_tuning = mfdobj_tuning,
functional_filter_par = list(filter = FALSE))
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phase2 <- RoMFCC_PhaseIl(mfdobj_new = mfdobj2,
mod_phasel = mod_phasel)
plot_control_charts(phase2)

RoMFCC_PhaselIl Robust Multivariate Functional Control Charts - Phase 11

Description

It calculates the Hotelling’s and SPE monitoring statistics needed to plot the Robust Multivariate
Functional Control Chart in Phase II.

Usage

RoMFCC_PhaseII(mfdobj_new, mod_phasel)

Arguments
mfdobj_new A multivariate functional data object of class mfd, containing the Phase II ob-
servations to be monitored.
mod_phase1 Output obtained by applying the function RoMFCC_Phasel to perform Phase I.
See RoMFCC_Phasel.
Value

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

* one id column identifying the multivariate functional observation in the phase II data set,

* one T2 column containing the Hotelling T2 statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the T2 statistic,

* one spe column containing the SPE statistic calculated for all observations,

e T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

* spe_lim gives the upper control limit of the SPE control chart

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.
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Examples

library(funcharts)

mfdobj <- get_mfd_list(air, n_basis = 5)

nobs <- dim(mfdobj$coefs)[2]

set.seed(0)

ids <- sample(1:nobs)

mfdobj1 <- mfdobj[ids[1:100]]

mfdobj_tuning <- mfdobj[ids[101:300]]

mfdobj2 <- mfdobj[ids[-(1:300)]1]

mod_phasel <- RoMFCC_PhaseI(mfdobj = mfdobj1,
mfdobj_tuning = mfdobj_tuning,
functional_filter_par = list(filter = FALSE))

phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,

mod_phasel = mod_phasel)
plot_control_charts(phase2)

RoMFCC_PhaselII_casewise
Robust Multivariate Functional Control Charts - Phase II (casewise
version)

Description

It performs Phase II of the Robust Multivariate Functional Control Chart (RoMFCC) for casewise
outlier detection, computing Hotelling’s T2 and SPE monitoring statistics according to the method-
ology proposed by Capezza et al. (2024).

Usage

RoOMFCC_PhaseIl_casewise(mfdobj_all_imp, mod_phasel_casewise)

Arguments

mfdobj_all_imp A multivariate functional data object of class mfd, containing the concatenation
of the fully imputed training and tuning sets to be monitored for casewise out-
liers.

mod_phasel_casewise
Output obtained by applying the function RoMFCC_PhaseI_casewise to per-
form Phase I. See RoMFCC_PhaseI_casewise

Value

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

* one id column identifying the multivariate functional observation in the phase II data set,
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* one T2 column containing the Hotelling T2 statistic calculated for all observations,

* one column per each functional variable, containing its contribution to the T2 statistic,
* one SPE column containing the SPE statistic calculated for all observations,

» T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

* SPE_lim gives the upper control limit of the SPE control chart

References

Capezza, C., Centofanti, F.,, Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Examples

## Not run:
library(funcharts)
set.seed(0)
dat <- simulate_data_RoMFCC(p_cellwise = 0.05,
p_casewise = 0.05,
outlier = "outlier_E",
M_outlier_cell = 0.03,
M_outlier_case = 0.01,
max_n_cellwise = 10)
mfdobj <- get_mfd_list(dat$X_mat_list, n_basis = 5)
mfdobj_training <- mfdobj[1:333, ]
mfdobj_tuning <- mfdobj[334:1000, ]
ff_training <- functional_filter(mfdobj = mfdobj_training)
ff_tuning <- functional_filter(mfdobj = mfdobj_tuning)
x_imp_training <- RoMFDI(mfdobj = ff_training$mfdobj)
X_imp_tuning <- RoMFDI(mfdobj = ff_tuning$mfdobj)
X_imp_training <- x_imp_training[[1]]
X_imp_tuning <- x_imp_tuning[[1]]
out_phasel_casewise <- RoMFCC_Phasel_casewise(
mfdobj_imp = X_imp_training,
mfdobj_imp_tuning,X_imp_tuning
)
mfd_all_imputed <- rbind_mfd(X_imp_training, X_imp_tuning)
out_phase2_casewise <- RoMFCC_Phasell_casewise(
mfdobj_all_imp = mfdobj_all_imputed,
mod_phasel_casewise = out_phasel_casewise
)

plot_control_charts(out_phase2_casewise)

## End(Not run)
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RoMFCC_Phasel_casewise
Robust Multivariate Functional Control Charts - Phase I (casewise
version)

Description

It performs Phase I of the Robust Multivariate Functional Control Chart (RoMFCC), proposed by
Capezza et al. (2024), applied to casewise outlier detection.

Usage

RoMFCC_PhaselI_casewise(
mfdobj_imp,
mfdobj_imp_tuning,
pca_par = list(fev = 0.7),
alpha_casewise = 0.0027,
verbose = FALSE

Arguments

mfdobj_imp A multivariate functional data object of class mfd, already imputed and filtered,
so with no cellwise outliers. A robust multivariate principal component func-
tional analysis is applied to the imputed dataset for dimension reduction.

mfdobj_imp_tuning
An additional functional data object of class mfd, already imputed and filtered,
so with no cellwise outliers. It is used to robustly estimate the distribution of the
Hotelling’s T2 and SPE statistics in order to calculate control limits to prevent
overfitting issues that could reduce the monitoring performance of the RoMFCC.

pca_par A list with an argument fev, indicating a number between 0 and 1 denoting the
fraction of variability that must be explained by the principal components to be
selected in the ROMFPCA step. All the other arguments of this list are passed as
arguments to the function rpca_mfd in the ROMFPCA step. All the arguments
that are not passed take their default values. See rpca_mfd for all the arguments
and their default values. Default value is list(fev=20.7).

alpha_casewise The overall nominal type-I error probability used to set control chart limits and
to identify functional casewise outliers Default value is 0.0027.

verbose If TRUE, it prints messages about the steps of the algorithm. Default is FALSE.

Details
Unlike the original ROMFCC implementation, this version assumes that:

* functional filter

* robust multivariate functional imputation have already been applied to the training and tuning
datasets. Therefore, the input data are expected to be multivariate functional data free of
cellwise outliers (casewise outliers may still be present).
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Value
A list of the following elements that are needed in Phase II:

T2 the Hotelling’s T2 statistic values for the Phase I data set,

¢ SPE the SPE statistic values for the Phase I data set,

* T2_tun the Hotelling’s T2 statistic values for the tuning data set,

* SPE_tun the SPE statistic values for the tuning data set,

e T2_lim the Phase II control limit of the Hotelling’s T2 control chart,
¢ spe_lim the Phase II control limit of the SPE control chart,

* mod_pca the final ROMFPCA model fitted on the Phase I data set,

* K =K the number of selected principal components,

e T_T2_inv if a tuning data set is provided, it returns the inverse of the covariance matrix of the
first K scores, needed to calculate the Hotelling’s T2 statistic for the Phase II observations.

* mean_scores_tuning_rob_mean if a tuning data set is provided, it returns the robust location
estimate of the scores, needed to calculate the Hotelling’s T2 and SPE statistics for the Phase
II observations.

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Examples

## Not run:

library(funcharts)

set.seed(0)

dat <- simulate_data_RoMFCC(p_cellwise = 0.05,
p_casewise = 0.05,
outlier = "outlier_E",
M_outlier_cell = 0.03,
M_outlier_case = 0.01,
max_n_cellwise = 10)

mfdobj <- get_mfd_list(dat$X_mat_list, n_basis = 5)

mfdobj_training <- mfdobj[1:333, ]

mfdobj_tuning <- mfdobj[334:1000, ]

ff_training <- functional_filter(mfdobj = mfdobj_training)

ff_tuning <- functional_filter(mfdobj = mfdobj_tuning)

X_imp_training <- RoMFDI(mfdobj = ff_training$mfdobj)

X_imp_tuning <- RoMFDI(mfdobj = ff_tuning$mfdobj)

X_imp_training <- x_imp_training[[1]]

X_imp_tuning <- x_imp_tuning[[1]]

out_phasel_casewise <- RoMFCC_Phasel_casewise(

mfdobj_imp = X_imp_training,
mfdobj_imp_tuning = X_imp_tuning

)

mfd_all_imputed <- rbind_mfd(X_imp_training, X_imp_tuning)

out_phase2_casewise <- RoMFCC_Phasell_casewise(
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mfdobj_all_imp = mfdobj_all_imputed,
mod_phasel_casewise = out_phasel_casewise

)

plot_control_charts(out_phase2_casewise)

## End(Not run)

RoMFDI Robust Multivariate Functional Data Imputation (RoMFDI)

Description

It performs Robust Multivariate Functional Data Imputation (RoMFDI) as in Capezza et al. (2024).

Usage
ROMFDI (
mfdobj,
method_pca = "ROBPCA",
fev = 0.999,

n_dataset = 3,
update = TRUE,
niter_update = 10,

alpha = 0.8
)
Arguments

mfdobj A multivariate functional data object of class mfd.

method_pca The method used in rpca_mfd to perform robust multivariate functional princi-
pal component analysis (ROMFPCA). See rpca_mfd. Default is "ROBPCA".

fev Number between 0 and 1 denoting the proportion of variability that must be
explained by the principal components to be selected for dimension reduction
after applying RoOMFPCA on the observed components to impute the missing
ones. Default is 0.999.

n_dataset To take into account the increased noise due to single imputation, the proposed

RoMFDI allows multiple imputation. Due to the presence of the stochastic com-
ponent in the imputation, it is worth explicitly noting that the imputed data set
is not deterministically assigned. Therefore, by performing several times the
RoMFDI in the imputation step of the ROMFCC implementation, the corre-
sponding multiple estimated RoOMFPCA models could be combined by aver-
aging the robustly estimated covariance functions, thus performing a multiple
imputation strategy as suggested by Van Ginkel et al. (2007). Default is 3.
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update The RoMFDI performs sequential imputation of missing functional components.
If TRUE, Robust Multivariate Functional Principal Component Analysis (RoMF-
PCA) niter_update is updated times during the algorithm. If FALSE, the
RoMFPCA used for imputation is always the same, i.e., the one performed on
the original data sets containing only the observations with no missing func-
tional components. Default is TRUE.

niter_update The number of times the ROMFPCA is updated during the algorithm. It applies
only if update is TRUE. Default value is 10.

alpha This parameter measures the fraction of outliers the ROMFPCA algorithm should
resist and is used only if method_pca is "ROBPCA". Default is 0.8.

Value

A list with n_dataset elements. Each element is an mfd object containing mfdobj with stochastic
imputation of the missing components.

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Van Ginkel, J. R., Van der Ark, L. A., Sijtsma, K., and Vermunt, J. K. (2007). Two-way imputa-
tion: a Bayesian method for estimating missing scores in tests and questionnaires, and an accurate
approximation. Computational Statistics & Data Analysis, 51(8):4013—4027.

Examples

library(funcharts)

mfdobj <- get_mfd_list(air[1:3], grid = 1:24, n_basis = 13, lambda = 1e-2)
out <- functional_filter(mfdobj, bivariate = FALSE)

mfdobj_imp <- RoMFDI(out$mfdobj, n_dataset = 1, update = FALSE)

rpca_mfd Robust multivariate functional principal components analysis

Description

It performs robust MFPCA as described in Capezza et al. (2024).

Usage
rpca_mfd(
mfdobj,
center = "fusem”,
scale = "funmad”,

nharm = 20,
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method = "ROBPCA",

alpha = 0.8
)
Arguments

mfdobj A multivariate functional data object of class mfd.

center If TRUE, it centers the data before doing MFPCA with respect to the functional
mean of the input data. If "fusem", it uses the functional M-estimator of location
proposed by Centofanti et al. (2023) to center the data. Default is "fusem”.

scale If "funmad"”, it scales the data before doing MFPCA using the functional nor-
malized median absolute deviation estimator proposed by Centofanti et al. (2023).
If TRUE, it scales data using scale_mfd. Default is "funmad".

nharm Number of multivariate functional principal components to be calculated. De-
fault is 20.

method If "ROBPCA", MFPCA uses ROBPCA of Hubert et al. (2005), as described in
Capezza et al. (2024). If "Locantore"”, MFPCA uses the Spherical Princi-
pal Components procedure proposed by Locantore et al. (1999). If "Proj”,
MFPCA uses the Robust Principal Components based on Projection Pursuit al-
gorithm of Croux and Ruiz-Gazen (2005). method If "normal”, it uses pca_mfd
on mfdobj. Default is "ROBPCA".

alpha This parameter measures the fraction of outliers the algorithm should resist and
is used only if method is "ROBPCA". Default is 0.8.

Value

An object of pca_mfd class, as returned by the pca_mfd function when performing non robust
multivariate functional principal component analysis.

References

Capezza, C., Centofanti, F.,, Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Centofanti, F., Colosimo, B.M., Grasso, M.L., Menafoglio, A., Palumbo, B., Vantini, S. (2023) Ro-
bust functional ANOVA with application to additive manufacturing. Journal of the Royal Statistical
Society Series C: Applied Statistics 72(5), 1210-1234 doi:10.1093/jrsssc/qlade74

Croux, C., Ruiz-Gazen, A. (2005). High breakdown estimators for principal components: The
projection-pursuit approach revisited. Journal of Multivariate Analysis, 95, 206-226, doi:10.
1016/j.jmva.2004.08.002.

Hubert, M., Rousseeuw, P.J., Branden, K. V. (2005) ROBPCA: A New Approach to Robust Principal
Component Analysis, Technometrics 47(1), 64—79, doi:10.1198/004017004000000563

Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen K., K. (1999), Robust princi-
pal components for functional data. Test, 8, 1-28. doi:10.1007/BF02595862


doi:10.1080/00401706.2024.2327346
doi:10.1093/jrsssc/qlad074
doi:10.1016/j.jmva.2004.08.002
doi:10.1016/j.jmva.2004.08.002
doi:10.1198/004017004000000563
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Examples

library(funcharts)
dat <- simulate_mfd(nobs = 20, p = 1, correlation_type_x = "Bessel”)
mfdobj <- get_mfd_list(dat$X_list, n_basis = 5)

# contaminate first observation
mfdobj$coefs[, 1, 1 <- mfdobj$coefs[, 1, 1 + 0.05

# plot_mfd(mfdobj) # plot functions to see the outlier

# pca <- pca_mfd(mfdobj) # non robust MFPCA

rpca <- rpca_mfd(mfdobj) # robust MFPCA

# plot_pca_mfd(pca, harm = 1) # plot first eigenfunction, affected by outlier
# plot_pca_mfd(rpca, harm = 1) # plot first eigenfunction in robust case

scale_mfd Standardize Multivariate Functional Data.

Description

Scale multivariate functional data contained in an object of class mfd by subtracting the mean func-
tion and dividing by the standard deviation function.

Usage

scale_mfd(mfdobj, center = TRUE, scale = TRUE)

Arguments
mfdobj A multivariate functional data object of class mfd.
center A logical value, or a fd object. When providing a logical value, if TRUE,
mfdobj is centered, i.e. the functional mean function is calculated and sub-
tracted from all observations in mfdobj, if FALSE, mfdobj is not centered. If
center is a fd object, then this function is used as functional mean for centering.
scale A logical value, or a fd object. When providing a logical value, if TRUE,
mfdobj is scaled after possible centering, i.e. the functional standard deviation
is calculated from all functional observations in mfdobj and then the observa-
tions are divided by this calculated standard deviation, if FALSE, mfdobj is not
scaled. If scale is a fd object, then this function is used as standard deviation
function for scaling.
Details

This function has been written to work similarly as the function scale for matrices. When calcu-
lated, attributes center and scale are of class fd and have the same structure you get when you
use fda: :mean.fd and fda: :sd. fd.
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Value

A standardized object of class mfd, with two attributes, if calculated, center and scale, storing the
mean and standard deviation functions used for standardization.

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
mfdobj_scaled <- scale_mfd(mfdobj)

simulate_data_fmrcc Simulate Data for Functional Mixture Regression Control Chart (FM-
RCC)

Description

# @description Generates synthetic in-control and out-of-control functional data for testing the
Functional Mixture Regression Control Chart (FMRCC) framework. The function simulates a
functional response Y influenced by a functional covariate X through a mixture of functional linear
models (FLMs) with three distinct regression structures, as described in Section 3.1 of Capezza et
al. (2025).

Usage

simulate_data_fmrcc(
n_obs = 3000,
mixing_prop = c(1/3, 1/3, 1/3),
len_grid = 500,
SNR = 4,
shift_coef = c(0, o, 0, 0),
severity = 0,
ncompx = 20,

delta_1,
delta_2,
measurement_noise_sigma = 0,
fun_noise = "normal”,
df = 3,
alphasn = 4
)
Arguments
n_obs Integer. Total number of observations to generate. Default is 3000.
mixing_prop Numeric vector of length 3. Mixing proportions for the three clusters (must sum
to 1). Default is ¢(1/3, 1/3, 1/3).
len_grid Integer. Number of grid points for evaluating functional data on domain [0,1].

Default is 500.
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SNR Numeric. Signal-to-noise ratio controlling the variance of the error term. De-
fault is 4.
shift_coef Numeric vector of length 4 or character string. Controls the type and shape of

the mean shift:
 Numeric vector: Coefficients c(a3, a2, al, a0) for polynomial shift: Shift(t) =
severity x (azt® + ast? + ayt + ag)
* ’low’: Applies a "low" shift pattern based on RSW dynamic resistance
curves
* ’high’: Applies a "high" shift pattern based on RSW dynamic resistance
curves
Default is ¢(0,0,0,0) (no shift).

severity Numeric. Multiplier controlling the magnitude of the shift. Higher values pro-
duce larger shifts. This corresponds to the "Severity Level (SL)" in the simula-
tion study. Default is O (no shift).

ncompx Integer. Number of functional principal components used to generate the func-
tional covariate X. Default is 20.

delta_1 Numeric in [0,1]. Controls dissimilarity between clusters in regression coeffi-
cient functions and functional intercepts (analogous to delta_1 in simulate_data_fmrcc).
Required parameter with no default.

delta_2 Numeric in [0,1]. Controls the relative contribution of functional intercept vs.
regression coefficient function (analogous to delta_2 in simulate_data_fmrcc).
Required parameter with no default.

measurement_noise_sigma
Numeric. Standard deviation of Gaussian measurement error added to both X
and Y. Default is O (no measurement error).

fun_noise Character. Distribution for functional error term. Options:

¢ 'normal': Gaussian errors (default)
e 't': Student’s t-distribution errors with df degrees of freedom
* 'skewnormal': Skew-normal distribution with skewness parameter alphasn

df Numeric. Degrees of freedom for Student’s t-distribution when fun_noise =
't'. Default is 3.

alphasn Numeric. Skewness parameter for skew-normal distribution when fun_noise =
'skewnormal'. Default is 4.

Details

The data generation follows Equation (18) in the paper:
V()= (1= )30 + [ Ba(5(s,)T X (s)ds + <(0)
s

The three clusters are characterized by:

« Different functional intercepts 39 (¢) (inspired by dynamic resistance curves in RSW pro-
cesses)
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» Different bivariate regression coefficient functions 3; (s, t)

* Functional errors with variance adjusted to achieve the specified SNR
Moreover, when when severity !=9, it applies a controlled shift to the functional response Y to
simulate out-of-control conditions. The shift types include:

Polynomial shifts: When shift_coef is numeric, a polynomial of degree 3 is applied: Shift(t) =
severity X (ast® + ast? + a1t + ag)

Linear shift example: shift_coef =c(0, @, 1, @) produces a linear shift
Quadratic shift example: shift_coef =c (@, 1, 9, @) produces a quadratic shift

RSW-specific shifts: When shift_coef = 'low' or 'high', the function applies shifts based on
modifications to the dynamic resistance curve (DRC) parameters, simulating realistic fault patterns
in resistance spot welding processes. The functional covariate X is generated using functional
principal component analysis with standardized magnitudes (scaled by 1/5).

Value

A list containing:

X Matrix (len_grid x n_obs) of functional covariate observations.

Y Matrix (len_grid x n_obs) of shifted functional response observations.
Eps_1,Eps_2, Eps_3

Matrices of functional error terms for each cluster.
beta_matrix_1, beta_matrix_2, beta_matrix_3

Matrices (len_grid x len_grid) containing the bivariate regression coefficient

functions B¢ (s, t) for k=1,2,3.
References

Capezza, C., Centofanti, F., Forcina, D., Lepore, A., and Palumbo, B. (2025). Functional Mixture
Regression Control Chart. Annals of Applied Statistics.

Examples

# Generate in-control data with three equally-sized clusters, maximum dissimilarity
data <- simulate_data_fmrcc(n_obs = 300, delta_1 = 1, delta_2 = 0.5, severity = @)

# In-control single cluster case (delta_1 = @)
data_single <- simulate_data_fmrcc(n_obs = 300, delta_1 = 0, delta_2 = 0.5, severity = 0)

# In-control clusters differing only in regression coefficients
data_beta_only <- simulate_data_fmrcc(n_obs = 300, delta_1 =1, delta_2 = 1, severity

o)

# Add measurement noise and use t-distributed errors

data_t_noise <- simulate_data_fmrcc(n_obs = 300, delta_1 = 1, delta_2 = 0.5, severity = 0,
measurement_noise_sigma = 0.01,
fun_noise = 't', df = 5)

# Generate out-of-control data with linear shift
data_oc <- simulate_data_fmrcc(n_obs = 300,
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shift_coef = c(0, 0, 1, 0),
severity = 2,

delta_1 =1,

delta_2 = 0.5)

# Generate OC data with quadratic shift
data_quad <- simulate_data_fmrcc(n_obs = 300,
shift_coef = c(0, 1, 0, 0),
severity = 3,
delta_1 =1,
delta_2 = 0.5)

# Generate OC data with RSW-specific "low” shift pattern
data_rsw_low <- simulate_data_fmrcc(n_obs = 300,

shift_coef = 'low',
severity = 1.5,
delta_1 =1,
delta_2 = 0.5)

# Generate OC data with RSW-specific "high” shift pattern

data_rsw_high <- simulate_data_fmrcc(n_obs = 300,
shift_coef = 'high',
severity = 2,
delta_1 = 0.66,
delta_2 = 0.5)

simulate_data_FRTM Simulate data for real-time monitoring of univariate functional data

Description

Generate synthetic data as in the simulation study of Centofanti et al. (2024).

Usage

simulate_data_FRTM(
n_obs = 100,
scenario = "1",
shift = "I1C",
alignemnt_level = "M1",
t_out_type = "0.3",
severity = 0.5,
grid = seq(@, 1, length.out = 100)
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Arguments

n_obs
scenario

shift

alignemnt_level

t_out_type

severity

grid

Value

123

Number of curves generated.
A character string indicating the scenario considered. It could be "1", and "2".

A character string indicating the shift considered. It could be "IC", in-control
data, "OC_h", Shift A (Phase),"OC_x", Shift B (Amplitude) and "OC_xh", Shift
C (Amplitude and Phase).

A character string indicating the alignment level considered. It could be "M1",
"M2", and "M3".

If "0.3", change point at the 30% of the process. If "0.6", change point at the
60% of the process.

Severity level.

Grid of evaluation points.

A list containing the following arguments:

x_err: A list containing the discrete observations for each curve.

grid_i: A list of vector of time points where the curves are sampled.

h: A list containing the discrete observations of the warping function for each curve.

template: The discrete observations of the true template function.

grid_template: Time points where the template is sampled.

x_true: A list containing the discrete observations of the amplitude function for each curve.

grid: Grid of evaluation points.

out_control_t: Time of the change point.

References

Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of func-

tional data. Journal of Quality Technology, 57(2):135-152, doi:https://doi.org/10.1080/00224065.2024.2430978.

Examples

library(funcharts)
data<-simulate_data_FRTM(n_obs=20)
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simulate_data_RoMFCC  Simulate multivariate functional data with casewise and component-

wise contamination

Description

Generate multivariate functional data under different contamination models (casewise, componen-
twise, or both) for use in simulation studies of the Robust Multivariate Functional Control Chart
(RoMFCC) as described in Capezza, Centofanti, Lepore, and Palumbo (2024).

Usage

simulate_data_RoMFCC(

nobs = 1000,
p =3,
p_cellwise
p_casewise =
sd_e = 0.005,
sd = 0.002,
T_exp = 0.6,

n

outlier = "no

9,
o,

n
’

M_outlier_case = 0,
M_outlier_cell = 0,

oC = "no",
M_0C = 0,
P =100,
max_n_cellwise = Inf,
correlation = "decreasing”,
k=1,
which_OC = 5
)
Arguments
nobs Integer. Number of observations to simulate (default 1000).
p Integer. Number of functional components (variables) (default 3).
p_cellwise Numeric in [0, 1]. Probability of cellwise contamination (componentwise out-
liers) for each component (default 0).
p_casewise Numeric in [0,1]. Probability of casewise contamination (entire observation
contaminated) (default 0).
sd_e Numeric. Standard deviation of the additive measurement noise (default 0.005).
sd Numeric. Standard deviation scaling of the functional part (default 0.002).
T_exp Numeric in (0, 1). Expansion parameter for phase outliers (default 0.6).
outlier Character. Type of contamination in Phase I sample: "no"” (no contamination),

"outlier_M" (mean shift), "outlier_E" (exponential shift), "outlier_P" (phase
shift). Default "no".
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M_outlier_case Numeric. Magnitude of casewise outlier contamination (default 0).

M_outlier_cell Numeric. Magnitude of cellwise outlier contamination (default 0).

oC Character. Out-of-control model in Phase II data: "no” (in control), "0C_M"
(mean shift), "OC_E" (exponential shift), "OC_P" (phase shift). Default "no".

M_0C Numeric. Magnitude of out-of-control shift (default 0).

P Integer. Number of grid points in each functional profile (default 100).

max_n_cellwise Integer. Maximum number of components per observation allowed to be cell-
wise contaminated (default Inf).

correlation Character. Correlation structure among components: typically "decreasing”
(default).
k Integer. Correlation parameter (default 1).
which_0C Integer vector. Indices of components subject to out-of-control shifts in Phase II
(default 5).
Details

The generated data mimic dynamic resistance curves (DRCs) in resistance spot welding processes
and allow for controlled introduction of casewise and/or componentwise outliers, as in the Monte
Carlo study presented in the ROMFCC paper.

The function generates nobs realizations of a p-variate functional quality characteristic observed on
an equally spaced grid of size P. The underlying process is simulated through a Karhunen-Lo¢ve
expansion with eigenfunctions and eigenvalues derived from a specified correlation structure. Out-
liers can be introduced at cellwise level (single components), casewise level (entire observation), or
both, using probability parameters p_cellwise and p_casewise and magnitudes M_outlier_cell,
M_outlier_case. Out-of-control shifts in Phase II can be introduced via the OC argument.

This setup mirrors the simulation design in Section 4 of Capezza et al. (2024) where ROMFCC was
benchmarked against competing control charts under various contamination scenarios.

Value

A list with two elements:

X_mat_list A list of length p, each element a matrix of dimension nobs x P with the simulated
functional observations.

ind_out A list of length p, each element containing the indices of observations contaminated in
that component.

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Chart. Technometrics, 66(4):531-547, doi:10.1080/00401706.2024.2327346.

Examples

# Simulate uncontaminated data (Phase I)
sim <- simulate_data_RoMFCC(nobs = 200, p = 3, outlier = "no”, OC = "no")
str(sim$X_mat_list)

# Simulate with componentwise outliers in Phase I
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sim2 <- simulate_data_RoMFCC(nobs = 200, p = 3,
p_cellwise = 0.05, M_outlier_cell = 0.03,
outlier = "outlier_E")

# Simulate Phase II with a mean shift in one component
sim3 <- simulate_data_RoMFCC(nobs = 200, p = 3,
0C = "0C_M", M_OC = 0.04, which_0C = 2)

simulate_mfd Simulate a data set for funcharts

Description

Function used to simulate a data set to illustrate the use of funcharts. By default, it creates a
data set with three functional covariates, a functional response generated as a function of the three
functional covariates through a function-on-function linear model, and a scalar response generated
as a function of the three functional covariates through a scalar-on-function linear model. This
function covers the simulation study in Centofanti et al. (2021) for the function-on-function case
and also simulates data in a similar way for the scalar response case. It is possible to select the
number of functional covariates, the correlation function type for each functional covariate and the
functional response, moreover it is possible to provide manually the mean and variance functions
for both functional covariates and the response. In the default case, the function generates in-control
data. Additional arguments can be used to generate additional data that are out of control, with mean
shifts according to the scenarios proposed by Centofanti et al. (2021). Each simulated observation
of a functional variable consists of a vector of discrete points equally spaced between 0 and 1 (by
default 150 points), generated with noise.

Usage

simulate_mfd(
nobs = 1000,
p =3,
R2 = 0.97,
shift_type_y = "0",
shift_type_x = c("0", "0", "@"),

correlation_type_y = "Bessel”,
correlation_type_x = c("Bessel”, "Gaussian”, "Exponential”),
d_y = 0,

d_y_scalar = 0,
d_x = c(0, 0, 9),
n_comp_y = 10,
n_comp_x = 50,

P = 500,

ngrid = 150,
save_beta = FALSE,
mean_y = NULL,
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mean_x = NULL,
variance_y = NULL,
variance_x = NULL,

sd_y = 0.3,
sd_x = c(0.3, 0.05, 0.3),
seed
)
Arguments
nobs The number of observation to simulate
p The number of functional covariates to simulate. Default value is 3.
R2 The desired coefficient of determination in the regression in both the scalar and

functional response cases, Default is 0.97.

shift_type_y  The shift type for the functional response. There are five possibilities: "0" if
there is no shift, "A", "B", "C" or "D" for the corresponding shift types shown
in Centofanti et al. (2021). Default is "0".

shift_type_x A list of length p, indicating, for each functional covariate, the shift type. For
each element of the list, there are five possibilities: "0" if there is no shift, "A",
"B", "C" or "D" for the corresponding shift types shown in Centofanti et al.
(2021). By default, shift is not applied to any functional covariate.

correlation_type_y
A character vector indicating the type of correlation function for the functional
response. See Centofanti et al. (2021) for more details. Three possible values are
available, namely "Bessel”, "Gaussian” and "Exponential”. Default value
is "Bessel”.

correlation_type_x
A list of p character vectors indicating the type of correlation function for each
functional covariate. See Centofanti et al. (2021) for more details. For each ele-
ment of the list, three possible values are available, namely "Bessel”, "Gaussian”
and "Exponential”. Default valueis c("Bessel”, "Gaussian”, "Exponential”).

d_y A number indicating the severity of the shift type for the functional response.
Default is 0.

d_y_scalar A number indicating the severity of the shift type for the scalar response. Default
is 0.

d_x A list of p numbers, each indicating the severity of the shift type for the cor-

responding functional covariate. By default, the severity is set to zero for all
functional covariates.

n_comp_y A positive integer number indicating how many principal components obtained
after the eigendecomposiiton of the covariance function of the functional re-
sponse variable to retain. Default value is 10.

n_comp_x A positive integer number indicating how many principal components obtained
after the eigendecomposiiton of the covariance function of the multivariate func-
tional covariates variable to retain. Default value is 50.

P A positive integer number indicating the number of equally spaced grid points
over which the covariance functions are discretized. Default value is 500.
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ngrid

save_beta

mean_y

mean_Xx

variance_y

variance_x

sd_y

sd_x

seed

Value

simulate_mfd

A positive integer number indicating the number of equally spaced grid points
between zero and one over which all functional observations are discretized be-
fore adding noise. Default value is 150.

If TRUE, the true regression coefficients of both the function-on-function and
the scalar-on-function models are saved. Default is FALSE.

The mean function of the functional response can be set manually through this
argument. If not NULL, it must be a vector of length equal to ngrid, provid-
ing the values of the mean function of the functional response discretized on
seq(@,1,1=ngrid). If NULL, the mean function is generated as done in the
simulation study of Centofanti et al. (2021). Default is NULL.

The mean function of the functional covariates can be set manually through this
argument. If not NULL, it must be a list of vectors, each with length equal to
ngrid, providing the values of the mean function of each functional covariate
discretized on seq(@,1,1=ngrid). If NULL, the mean function is generated as
done in the simulation study of Centofanti et al. (2021). Default is NULL.

The variance function of the functional response can be set manually through
this argument. If not NULL, it must be a vector of length equal to ngrid, pro-
viding the values of the variance function of the functional response discretized
on seq(@,1,1=ngrid). If NULL, the variance function is generated as done in
the simulation study of Centofanti et al. (2021). Default is NULL.

The variance function of the functional covariates can be set manually through
this argument. If not NULL, it must be a list of vectors, each with length equal to
ngrid, providing the values of the variance function of each functional covariate
discretized on seq(@,1,1=ngrid). If NULL, the variance function is generated
as done in the simulation study of Centofanti et al. (2021). Default is NULL.

A positive number indicating the standard deviation of the generated noise with
which the functional response discretized values are observed. Default value is
0.3

A vector of p positive numbers indicating the standard deviation of the gener-
ated noise with which the functional covariates discretized values are observed.
Default value is c(0.3, 0.05, 0.3).

Deprecated: use set.seed() before calling the function for reproducibility.

A list with the following elements:

e X_list is a list of p matrices, each with dimension nobsxngrid, containing the simulated
observations of the multivariate functional covariate

* Y is a nobsxngrid matrix with the simulated observations of the functional response

* y_scalar is a vector of length nobs with the simulated observations of the scalar response

e beta_fof, if save_beta = TRUE, is a list of p matrices, each with dimension PxP with the
discretized functional coefficients of the function-on-function regression

* beta_sof, if save_beta = TRUE, is a list of p vectors, each with length P, with the discretized
functional coefficients of the scalar-on-function regression
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References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3):281-294. doi:10.1080/00401706.2020.1753581

sim_funcharts Simulate example data for funcharts

Description

Function used to simulate three data sets to illustrate the use of funcharts. It uses the function
simulate_mfd, which creates a data set with three functional covariates, a functional response
generated as a function of the three functional covariates, and a scalar response generated as a
function of the three functional covariates. This function generates three data sets, one for phase I,
one for tuning, i.e., to estimate the control chart limits, and one for phase II monitoring. see also
simulate_mfd.

Usage

sim_funcharts(nobs1 = 1000, nobs_tun = 1000, nobs2 = 60)

Arguments
nobs1 The number of observation to simulate in phase I. Default is 1000.
nobs_tun The number of observation to simulate the tuning data set. Default is 1000.
nobs?2 The number of observation to simulate in phase II. Default is 60.

Value

A list with three objects, datI contains the phase I data, datI_tun contains the tuning data, datII
contains the phase II data. In the phase II data, the first group of observations are in control, the
second group of observations contains a moderate mean shift, while the third group of observations
contains a severe mean shift. The shift types are described in the paper from Capezza et al. (2023).

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3):281-294. doi:10.1080/00401706.2020.1753581

Capezza, C., Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., & Vantini, S. (2023). fun-
charts: Control charts for multivariate functional data in R. Journal of Quality Technology, 55(5),
566-583. doi:10.1080/00224065.2023.2219012
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doi:10.1080/00401706.2020.1753581
doi:10.1080/00224065.2023.2219012
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sof_pc

sof_pc

Scalar-on-function linear regression based on principal components

Description

Scalar-on-function linear regression based on principal components. This function performs multi-
variate functional principal component analysis (MFPCA) to extract multivariate functional princi-
pal components from the multivariate functional covariates, then it builds a linear regression model
of a scalar response variable on the covariate scores. Functional covariates are standardized before
the regression. See Capezza et al. (2020) for additional details.

Usage

sof_pc(

Y,
mfdobj_x,

tot_variance_explained = 0.9,
selection = "variance”,
single_min_variance_explained = 0,

components

Arguments

y
mfdobj_x

NULL

A numeric vector containing the observations of the scalar response variable.

A multivariate functional data object of class mfd denoting the functional co-
variates.

tot_variance_explained

selection

The minimum fraction of variance that has to be explained by the set of multi-
variate functional principal components retained into the MFPCA model fitted
on the functional covariates. Default is 0.9.

A character value with one of three possible values:

if "variance", the first M multivariate functional principal components are re-
tained into the MFPCA model such that together they explain a fraction of vari-
ance greater than tot_variance_explained,

if "PRESS", each j-th functional principal component is retained into the MF-
PCA model if, by adding it to the set of the first j-1 functional principal com-
ponents, then the predicted residual error sum of squares (PRESS) statistic de-
creases, and at the same time the fraction of variance explained by that single
component is greater than single_min_variance_explained. This criterion is
used in Capezza et al. (2020).

if "gev", the criterion is equal as in the previous "PRESS" case, but the "PRESS"
statistic is substituted by the generalized cross-validation (GCV) score.

Default value is "variance".
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single_min_variance_explained
The minimum fraction of variance that has to be explained by each multivariate
functional principal component into the MFPCA model fitted on the functional
covariates such that it is retained into the MFPCA model. Default is 0.

components A vector of integers with the components over which to project the functional
covariates. If this is not NULL, the criteria to select components are ignored. If
NULL, components are selected according to the criterion defined by selection.
Default is NULL.

Value

a list containing the following arguments:
* mod: an object of class 1m that is a linear regression model where the scalar response variable
is y and the covariates are the MFPCA scores of the functional covariates,

* mod$coefficients contains the matrix of coefficients of the functional regression basis func-
tions,

* pca: an object of class pca_mfd obtained by doing MFPCA on the functional covariates,

* beta_fd: an object of class mfd object containing the functional regression coefficient 3(t)
estimated with the scalar-on-function linear regression model,

* components: a vector of integers with the components selected in the pca model,
* selection: the same as the provided argument

* single_min_variance_explained: the same as the provided argument

* tot_variance_explained: the same as the provided argument

* gcv: a vector whose j-th element is the GCV score obtained when retaining the first j compo-
nents in the MFPCA model.

* PRESS: a vector whose j-th element is the PRESS statistic obtained when retaining the first j
components in the MFPCA model.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477-500. doi:10.1002/asmb.2507

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = le-2)
y <- rowMeans(air$N02)
mod <- sof_pc(y, mfdobj_x)


doi:10.1002/asmb.2507
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sof_pc_real_time Get a list of scalar-on-function linear regression models estimated on
functional data each evolving up to an intermediate domain point.

Description

This function produces a list of objects, each of them contains the result of applying sof_pc to a
scalar response variable and multivariate functional covariates evolved up to an intermediate domain
point. See Capezza et al. (2020) for additional details on real-time monitoring.

Usage

sof_pc_real_time(
Y,
mfd_real_time_list,
single_min_variance_explained = 0,
tot_variance_explained = 0.9,
selection = "PRESS",
components = NULL,
ncores = 1

Arguments

y A numeric vector containing the observations of the scalar response variable.
mfd_real_time_list
A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional covariates.
single_min_variance_explained

See sof_pc.
tot_variance_explained
See sof _pc.
selection See sof _pc.
components See sof _pc.
ncores If you want parallelization, give the number of cores/threads to be used when

creating objects separately for different instants.

Value

A list of lists each produced by sof_pc, corresponding to a given instant.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477-500. doi:10.1002/asmb.2507


doi:10.1002/asmb.2507
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See Also

sof_pc, get_mfd_df_real_time, get_mfd_list_real_time

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_list <- get_mfd_list_real_time(air[c("CO", "temperature”)],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, .75, 1))
y <- rowMeans(air$N02)
mod_list <- sof_pc_real_time(y, mfdobj_list)

tensor_product_mfd Tensor product of two Multivariate Functional Data objects

Description

This function returns the tensor product of two Multivariate Functional Data objects. Each object
must contain only one replication.

Usage

tensor_product_mfd(mfdobj1, mfdobj2 = NULL)

Arguments
mfdobj1 A multivariate functional data object, of class mfd, having only one functional
observation.
mfdobj2 A multivariate functional data object, of class mfd, having only one functional
observation. If NULL, it is set equal to mfdobj1. Default is NULL.
Value

An object of class bifd. If we denote with x(s)=(x_1(s),...,x_p(s)) the vector of p functions rep-
resented by mfdobj1 and with y(t)=(y_1(t),...,y_q(t)) the vector of q functions represented by
mfdob3j2, the output is the vector of pq bivariate functions

f(s,)=(x_1(s)y_L(t),. .., x_1(s)y_q(t), ...,.x_p(s)y_1(1),. ... x_p(s)y_q(t)).
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Examples

library(funcharts)

mfdobj1 <- data_sim_mfd(nobs
mfdobj2 <- data_sim_mfd(nobs
tensor_product_mfd(mfdobj1)
tensor_product_mfd(mfdobj1, mfdobj2)

1, nvar = 3)
1, nvar = 2)

times_mfd Pointwise product of multivariate functional data (and scalar multipli-
cation)

Description

Computes the elementwise (pointwise) product of two objects of class mfd, returning an mfd on
the same basis. If one object contains a single replication (one observation) and the other contains
multiple, the single replication is recycled across observations before multiplication.

Usage
times_mfd(mfdobj1, mfdobj2)

## S3 method for class 'mfd'
mfdobj1 * mfdobj2

Arguments

mfdobj1, mfdobj2
Objects of class mfd defined on the same basis.

Details

Alternatively, it also compute the product of an mfd object with a numeric scalar.

Let coefficient arrays have dimensions (nbasis, nobs, nvar). The function:

* requires both inputs to be mfd objects;

* requires identical basis systems (checked with identical());

* requires the same number of variables;

* for observations: if both nobs; and nobss are greater than one, they must be equal; otherwise,
the object with nobs = 1 is replicated to match the other.

Internally, coefficient arrays are converted to fd objects and multiplied via times. fd, with basisobj
set to the common basis so that the result is re-expanded on the same basis.

Value

An object of class mfd whose coefficients are the pointwise product of the inputs (with recycling
if needed). The basis is the common input basis. The fdnames are inherited from the input that
supplies the observation indexing after any replication.
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See Also

plus_mfd, minus_mfd, nobs, nvar, nbasis, times. fd, mfd

Examples

# Assuming mfdobj_a and mfdobj_b are 'mfd' objects on the same basis:
# mfdobj_a * mfdobj_b # elementwise product

# 2 * mfdobj_a # scalar multiplication
# mfdobj_a * 0.5 # scalar multiplication
which_ooc Get the index of the out of control observations from control charts
Description

This function returns a list for each control chart and returns the id of all observations that are out
of control in that control chart.

Usage

which_ooc(cclist)

Arguments

cclist A data. frame produced by control_charts_sof_pc.

Value

A list of as many data.frame objects as the control charts in cclist. Each data frame has two
columns, the n contains an index number giving the observation in the phase II data set, i.e. 1
for the first observation, 2 for the second, and so on, while the id column contains the id of the
observation, which can be general and depends on the specific data set.

Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("C0", "temperature")

mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$N02)

y1 <- y[1:60]

y_tuning <- y[61:90]

y2 <- y[91:100]

mfdobj_x1 <- mfdobj_x[1:60]

mfdobj_x_tuning <- mfdobj_x[61:90]



136

[.mfd

mfdobj_x2 <- mfdobj_x[91:100]

mod <- sof_pc(y1,

mfdobj_x1)

cclist <- regr_cc_sof(object = mod,

which_ooc(cclist)

y_new = y2,

mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)

[.mfd

Extract observations and/or variables from mfd objects.

Description

Extract observations and/or variables from mfd objects.

Usage

## S3 method for class 'mfd'

mfdobj[i = TRUE

Arguments

mfdob
i

Details

, j = TRUE]

An object of class mfd.

Index specifying functional observations to extract or replace. They can be nu-
meric, character, or logical vectors or empty (missing) or NULL. Numeric val-
ues are coerced to integer as by as.integer (and hence truncated towards zero).
The can also be negative integers, indicating functional observations to leave out
of the selection. Logical vectors indicate TRUE for the observations to select.
Character vectors will be matched to the argument fdnames[[2]] of mfdobj,
i.e. to functional observations’ names.

Index specifying functional variables to extract or replace. They can be numeric,
logical, or character vectors or empty (missing) or NULL. Numeric values are
coerced to integer as by as.integer (and hence truncated towards zero). The can
also be negative integers, indicating functional variables to leave out of the se-
lection. Logical vectors indicate TRUE for the variables to select. Character
vectors will be matched to the argument fdnames[[3]] of mfdobj, i.e. to func-
tional variables’ names.

This function adapts the fda::"[.fd"” function to be more robust and suitable for the mfd class.
In fact, whatever the number of observations or variables you want to extract, it always returns a
mfd object with a three-dimensional coef array. In other words, it behaves as you would always
use the argument drop=FALSE. Moreover, you can extract observations and variables both by index
numbers and by names, as you would normally do when using ~ [~ with standard vector/matrices.



[.mfd 137

Value

amfd object with selected observations and variables.

Examples

library(funcharts)
library(fda)

# In the following, we extract the first one/two observations/variables
# to see the difference with “[.fd".

mfdobj <- data_sim_mfd()

fdobj <- fd(mfdobj$coefs, mfdobj$basis, mfdobj$fdnames)

# The argument ~coef” in ~fd"

# objects is converted to a matrix when possible.
dim(fdobj[1, 1]$coef)

# Not clear what is the second dimension:

# the number of replications or the number of variables?
dim(fdobj[1, 1:2]$coef)

dim(fdobj[1:2, 1]1$coef)

# The argument “coef” in “mfd™ objects is always a three-dimensional array.
dim(mfdobj[1, 1]$coef)

dim(mfdobj[1, 1:2]$coef)

dim(mfdobj[1:2, 1]1$coef)

# Actually, “[.mfd> works as “[.fd> when passing also “drop = FALSE"
dim(fdobj[1, 1, drop = FALSE]$coef)

dim(fdobj[1, 1:2, drop = FALSE]$coef)

dim(fdobj[1:2, 1, drop = FALSE]$coef)



Index

* datasets

air, 5
.mfd (times_mfd), 134
.mfd (plus_mfd), 89
.mfd (minus_mfd), 66
[.mfd, 136

+ %

abline, 4

abline_mfd, 4, 60

air, 5

AMFCC_Phasel, 6
AMFCC_Phasell, 8

AMFEWMA _Phasel, 11, 14, 104, 105
AMFEWMA_Phasell, 14, 104

cbind_mfd, 16

cont_plot, 26

control_charts_pca, 17, 20, 21, 23, 26, 55,
84, 88, 96, 100

control_charts_pca_mfd_real_time, 19

control_charts_sof_pc, 21, 24-26, 55, 84,
88, 135

control_charts_sof_pc_real_time, 24, 85

cor_mfd, 27

cov_mfd, 28, 28

data_sim_mfd, 29
estimate_mixture, 30

fd, 63, 134

FMRCC_Phasel, 31, 34
FMRCC_Phasell, 33, 33
fof_pc, 35, 38, 39
fof_pc_real_time, 38, 97, 98
FPCA, 31-33
FRTM_Phasel, 39, 41, 74, 75
FRTM_Phasell, 42
functional_filter, 43, 104, 108

geom_line, 87

138

get_mfd_array, 45, 46, 47, 53
get_mfd_array_real_time, 46
get_mfd_df, 46, 47, 50, 51, 55
get_mfd_df_real_time, 20, 25, 38, 39, 50,
77,98, 102, 132, 133
get_mfd_fd, 51
get_mfd_list, 45, 46, 49, 52, 53-55
get_mfd_list_real_time, 39, 54, 133
get_ooc, 55
get_outliers_mfd, 56
get_sof_pc_outliers, 57

inprod_mfd, 58
inprod_mfd_diag, 59
is.mfd, 60

lines.mfd, 60
lines_mfd, 61

mean. fd, 118

mean.mfd, 62

mfd, 53, 62, 63, 66, 90, 135
mFPCA, 64
minus_mfd, 66, 135
mixregfit_multivariate, 67

nbasis, 66, 68, 90, 135
nobs, 66, 90, 135
nobs.mfd, 68
norm.mfd, 69
nvar, 66, 69, 90, 135

OEBFDTW, 70

par.FDTW, 72

par.mFPCA, 74

par.rtr, 75

pca.fd, 76
pca_mfd, 20, 31,76, 77, 91, 92
pca_mfd_real_time, 20, 21,77
plot.AMFCC_Phasel, 78



INDEX

plot.AMFCC_Phasell (plot.AMFCC_Phasel),
78

plot.FRTM_Phasel, 79

plot.FRTM_Phasell (plot.FRTM_Phasel), 79

plot.mfd, 4, 60, 62, 81

plot.mFPCA, 81

plot_bifd, 82

plot_bootstrap_sof_pc, 83

plot_control_charts, 84

plot_control_charts_real_time, 85

plot_mfd, 61, 86

plot_mon, 87

plot_pca_mfd, 89

plus_mfd, 66, 89, 135

predict, 91

predict.pca_mfd, 91

predict_fof_pc, 92

predict_sof_pc, 93

rbind_mfd, 94
regr_cc_fof, 19, 26, 55, 84, 88, 95, 97, 98
regr_cc_fof_real_time, 85, 97
regr_cc_sof, 22, 23, 26, 55, 84, 88, 99, 99,
101-103
regr_cc_sof_real_time, 24, 101
RoAMFEWMA_PhaselI, 103, 106
RoOAMFEWMA_PhaselIlI, 106
RoMFCC_Phasel, 108, /110
RoMFCC_PhaselI_casewise, 104, 105, 111,
113
RoMFCC_PhaselIl, 110
RoMFCC_PhaseII_casewise, 104, 105, 111
RoMFDI, 104, 105, 108, 115
rpca_mfd, 44, 109, 113, 115, 116

scale, 118
scale_mfd, 28, 76, 92, 118

sd.fd, 118

sim_funcharts, 129
simulate_data_fmrcc, 119
simulate_data_FRTM, 122
simulate_data_RoMFCC, 124
simulate_mfd, 126, 129
sof_pc, 83, 130, 132, 133
sof_pc_real_time, 25, 102, 103, 132

tensor_product_mfd, 133
times.fd, 134, 135
times_mfd, 134

which_ooc, 135

139



	abline_mfd
	air
	AMFCC_PhaseI
	AMFCC_PhaseII
	AMFEWMA_PhaseI
	AMFEWMA_PhaseII
	cbind_mfd
	control_charts_pca
	control_charts_pca_mfd_real_time
	control_charts_sof_pc
	control_charts_sof_pc_real_time
	cont_plot
	cor_mfd
	cov_mfd
	data_sim_mfd
	estimate_mixture
	FMRCC_PhaseI
	FMRCC_PhaseII
	fof_pc
	fof_pc_real_time
	FRTM_PhaseI
	FRTM_PhaseII
	functional_filter
	get_mfd_array
	get_mfd_array_real_time
	get_mfd_df
	get_mfd_df_real_time
	get_mfd_fd
	get_mfd_list
	get_mfd_list_real_time
	get_ooc
	get_outliers_mfd
	get_sof_pc_outliers
	inprod_mfd
	inprod_mfd_diag
	is.mfd
	lines.mfd
	lines_mfd
	mean.mfd
	mfd
	mFPCA
	minus_mfd
	mixregfit_multivariate
	nbasis
	nobs.mfd
	norm.mfd
	nvar
	OEBFDTW
	par.FDTW
	par.mFPCA
	par.rtr
	pca_mfd
	pca_mfd_real_time
	plot.AMFCC_PhaseI
	plot.FRTM_PhaseI
	plot.mfd
	plot.mFPCA
	plot_bifd
	plot_bootstrap_sof_pc
	plot_control_charts
	plot_control_charts_real_time
	plot_mfd
	plot_mon
	plot_pca_mfd
	plus_mfd
	predict.pca_mfd
	predict_fof_pc
	predict_sof_pc
	rbind_mfd
	regr_cc_fof
	regr_cc_fof_real_time
	regr_cc_sof
	regr_cc_sof_real_time
	RoAMFEWMA_PhaseI
	RoAMFEWMA_PhaseII
	RoMFCC_PhaseI
	RoMFCC_PhaseII
	RoMFCC_PhaseII_casewise
	RoMFCC_PhaseI_casewise
	RoMFDI
	rpca_mfd
	scale_mfd
	simulate_data_fmrcc
	simulate_data_FRTM
	simulate_data_RoMFCC
	simulate_mfd
	sim_funcharts
	sof_pc
	sof_pc_real_time
	tensor_product_mfd
	times_mfd
	which_ooc
	[.mfd
	Index

