
Package ‘forecast’
January 11, 2026

Version 9.0.0

Title Forecasting Functions for Time Series and Linear Models

Description Methods and tools for displaying and analysing
univariate time series forecasts including exponential smoothing
via state space models and automatic ARIMA modelling.

Depends R (>= 4.1.0)

Imports colorspace, fracdiff, generics (>= 0.1.2), ggplot2 (>= 3.4.0),
graphics, lmtest, magrittr, nnet, parallel, Rcpp (>= 0.11.0),
stats, timeDate, tseries, urca, withr, zoo

Suggests forecTheta, knitr, methods, rmarkdown, rticles, scales,
seasonal, testthat (>= 3.3.0), uroot

LinkingTo Rcpp (>= 0.11.0), RcppArmadillo (>= 0.2.35)

LazyData yes

ByteCompile TRUE

BugReports https://github.com/robjhyndman/forecast/issues

License GPL-3

URL https://pkg.robjhyndman.com/forecast/,

https://github.com/robjhyndman/forecast

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation yes

Author Rob Hyndman [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-2140-5352>),

George Athanasopoulos [aut] (ORCID:
<https://orcid.org/0000-0002-5389-2802>),

Christoph Bergmeir [aut] (ORCID:
<https://orcid.org/0000-0002-3665-9021>),

Gabriel Caceres [aut] (ORCID: <https://orcid.org/0000-0002-2947-2023>),

1

https://github.com/robjhyndman/forecast/issues
https://pkg.robjhyndman.com/forecast/
https://github.com/robjhyndman/forecast
https://orcid.org/0000-0002-2140-5352
https://orcid.org/0000-0002-5389-2802
https://orcid.org/0000-0002-3665-9021
https://orcid.org/0000-0002-2947-2023

2 Contents

Leanne Chhay [aut],
Kirill Kuroptev [aut],
Maximilian Mücke [aut] (ORCID: <https://orcid.org/0009-0000-9432-9795>),
Mitchell O'Hara-Wild [aut] (ORCID:

<https://orcid.org/0000-0001-6729-7695>),
Fotios Petropoulos [aut] (ORCID:

<https://orcid.org/0000-0003-3039-4955>),
Slava Razbash [aut],
Earo Wang [aut] (ORCID: <https://orcid.org/0000-0001-6448-5260>),
Farah Yasmeen [aut] (ORCID: <https://orcid.org/0000-0002-1479-5401>),
Federico Garza [ctb],
Daniele Girolimetto [ctb],
Ross Ihaka [ctb, cph],
R Core Team [ctb, cph],
Daniel Reid [ctb],
David Shaub [ctb],
Yuan Tang [ctb] (ORCID: <https://orcid.org/0000-0001-5243-233X>),
Xiaoqian Wang [ctb],
Zhenyu Zhou [ctb]

Maintainer Rob Hyndman <Rob.Hyndman@monash.edu>

Repository CRAN

Date/Publication 2026-01-11 08:40:02 UTC

Contents
accuracy.forecast . 4
Acf . 6
arfima . 9
Arima . 11
arima.errors . 13
arimaorder . 14
auto.arima . 15
autolayer . 18
autolayer.mts . 19
autoplot.acf . 21
autoplot.decomposed.ts . 23
autoplot.mforecast . 24
baggedModel . 26
bats . 27
bizdays . 29
bld.mbb.bootstrap . 30
BoxCox . 31
BoxCox.lambda . 33
checkresiduals . 34
croston_model . 35
CV . 36
CVar . 37

https://orcid.org/0009-0000-9432-9795
https://orcid.org/0000-0001-6729-7695
https://orcid.org/0000-0003-3039-4955
https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-1479-5401
https://orcid.org/0000-0001-5243-233X

Contents 3

dm.test . 38
dshw . 40
easter . 42
ets . 43
findfrequency . 45
fitted.ARFIMA . 46
forecast.baggedModel . 47
forecast.bats . 49
forecast.croston_model . 51
forecast.ets . 53
forecast.fracdiff . 55
forecast.HoltWinters . 58
forecast.lm . 60
forecast.mean_model . 62
forecast.mlm . 64
forecast.modelAR . 66
forecast.mts . 68
forecast.nnetar . 70
forecast.rw_model . 72
forecast.spline_model . 76
forecast.stl . 78
forecast.StructTS . 81
forecast.theta_model . 83
forecast.ts . 85
fourier . 87
gas . 89
getResponse . 90
gghistogram . 91
gglagplot . 92
ggmonthplot . 93
ggseasonplot . 94
ggtsdisplay . 96
gold . 98
is.acf . 98
is.constant . 99
is.forecast . 100
ma . 100
mean_model . 101
modelAR . 103
modeldf . 105
monthdays . 106
mstl . 107
msts . 108
na.interp . 109
ndiffs . 110
nnetar . 111
nsdiffs . 114
ocsb.test . 115

4 accuracy.forecast

plot.Arima . 116
plot.bats . 118
plot.ets . 119
plot.forecast . 120
residuals.forecast . 123
rw_model . 124
seasadj . 126
seasonal . 127
seasonaldummy . 128
ses . 129
simulate.ets . 132
sindexf . 136
spline_model . 137
StatForecast . 138
stlm . 140
subset.ts . 142
taylor . 144
tbats . 144
tbats.components . 146
theta_model . 147
tsclean . 149
tsCV . 150
tslm . 151
tsoutliers . 152
wineind . 153
woolyrnq . 154

Index 155

accuracy.forecast Accuracy measures for a forecast model

Description

Returns range of summary measures of the forecast accuracy. If x is provided, the function measures
test set forecast accuracy based on x - f. If x is not provided, the function only produces training
set accuracy measures of the forecasts based on f["x"] - fitted(f). All measures are defined and
discussed in Hyndman and Koehler (2006).

Usage

S3 method for class 'forecast'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'mforecast'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'fc_model'

accuracy.forecast 5

accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'Arima'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'lm'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'ts'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

S3 method for class 'numeric'
accuracy(object, x, test = NULL, d = NULL, D = NULL, ...)

Arguments

object An object of class forecast, or a numerical vector containing forecasts. It will
also work with Arima, ets and lm objects if x is omitted – in which case training
set accuracy measures are returned.

x An optional numerical vector containing actual values of the same length as
object, or a time series overlapping with the times of f.

test Indicator of which elements of x and f to test. If test is NULL, all elements are
used. Otherwise test is a numeric vector containing the indices of the elements
to use in the test.

d An integer indicating the number of lag-1 differences to be used for the denom-
inator in MASE calculation. Default value is 1 for non-seasonal series and 0 for
seasonal series.

D An integer indicating the number of seasonal differences to be used for the de-
nominator in MASE calculation. Default value is 0 for non-seasonal series and
1 for seasonal series.

... Additional arguments depending on the specific method.

Details

The measures calculated are:

• ME: Mean Error

• RMSE: Root Mean Squared Error

• MAE: Mean Absolute Error

• MPE: Mean Percentage Error

• MAPE: Mean Absolute Percentage Error

• MASE: Mean Absolute Scaled Error

• ACF1: Autocorrelation of errors at lag 1.

By default, the MASE calculation is scaled using MAE of training set naive forecasts for non-
seasonal time series, training set seasonal naive forecasts for seasonal time series and training set

6 Acf

mean forecasts for non-time series data. If f is a numerical vector rather than a forecast object,
the MASE will not be returned as the training data will not be available.

See Hyndman and Koehler (2006) and Hyndman and Athanasopoulos (2014, Section 2.5) for further
details.

Value

Matrix giving forecast accuracy measures.

Author(s)

Rob J Hyndman

References

Hyndman, R.J. and Koehler, A.B. (2006) "Another look at measures of forecast accuracy". Inter-
national Journal of Forecasting, 22(4), 679-688.

Hyndman, R.J. and Athanasopoulos, G. (2018) "Forecasting: principles and practice", 2nd ed.,
OTexts, Melbourne, Australia. Section 3.4 "Evaluating forecast accuracy". https://otexts.com/
fpp2/accuracy.html.

Examples

fit1 <- rwf(EuStockMarkets[1:200, 1], h = 100)
fit2 <- meanf(EuStockMarkets[1:200, 1], h = 100)
accuracy(fit1)
accuracy(fit2)
accuracy(fit1, EuStockMarkets[201:300, 1])
accuracy(fit2, EuStockMarkets[201:300, 1])
plot(fit1)
lines(EuStockMarkets[1:300, 1])

Acf (Partial) Autocorrelation and Cross-Correlation Function Estimation

Description

The function Acf computes (and by default plots) an estimate of the autocorrelation function of a
(possibly multivariate) time series. Function Pacf computes (and by default plots) an estimate of
the partial autocorrelation function of a (possibly multivariate) time series. Function Ccf computes
the cross-correlation or cross-covariance of two univariate series.

https://otexts.com/fpp2/accuracy.html
https://otexts.com/fpp2/accuracy.html

Acf 7

Usage

Acf(
x,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

Pacf(
x,
lag.max = NULL,
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

Ccf(
x,
y,
lag.max = NULL,
type = c("correlation", "covariance"),
plot = TRUE,
na.action = na.contiguous,
...

)

taperedacf(
x,
lag.max = NULL,
type = c("correlation", "partial"),
plot = TRUE,
calc.ci = TRUE,
level = 95,
nsim = 100,
...

)

taperedpacf(x, ...)

Arguments

x A univariate or multivariate (not Ccf) numeric time series object or a numeric
vector or matrix.

lag.max Maximum lag at which to calculate the acf. Default is $10*log10(N/m)$ where

8 Acf

N is the number of observations and m the number of series. Will be auto-
matically limited to one less than the number of observations in the series.

type Character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the resulting acf, pacf or ccf is plotted.

na.action Function to handle missing values. Default is stats::na.contiguous(). Use-
ful alternatives are stats::na.pass() and na.interp().

demean Should covariances be about the sample means?

... Additional arguments passed to the plotting function.

y A univariate numeric time series object or a numeric vector.

calc.ci If TRUE, confidence intervals for the ACF/PACF estimates are calculated.

level Percentage level used for the confidence intervals.

nsim The number of bootstrap samples used in estimating the confidence intervals.

Details

The functions improve the stats::acf(), stats::pacf() and stats::ccf() functions. The
main differences are that Acf does not plot a spike at lag 0 when type = "correlation" (which is
redundant) and the horizontal axes show lags in time units rather than seasonal units.

The tapered versions implement the ACF and PACF estimates and plots described in Hyndman
(2015), based on the banded and tapered estimates of autocovariance proposed by McMurry and
Politis (2010).

Value

The Acf, Pacf and Ccf functions return objects of class "acf" as described in stats::acf() from
the stats package. The taperedacf and taperedpacf functions return objects of class "mpacf".

Author(s)

Rob J Hyndman

References

Hyndman, R.J. (2015). Discussion of “High-dimensional autocovariance matrices and optimal lin-
ear prediction”. Electronic Journal of Statistics, 9, 792-796.

McMurry, T. L., & Politis, D. N. (2010). Banded and tapered estimates for autocovariance matrices
and the linear process bootstrap. Journal of Time Series Analysis, 31(6), 471-482.

See Also

stats::acf(), stats::pacf(), stats::ccf(), tsdisplay()

arfima 9

Examples

Acf(wineind)
Pacf(wineind)
Not run:
taperedacf(wineind, nsim = 50)
taperedpacf(wineind, nsim = 50)

End(Not run)

arfima Fit a fractionally differenced ARFIMA model

Description

An ARFIMA(p,d,q) model is selected and estimated automatically using the Hyndman-Khandakar
(2008) algorithm to select p and q and the Haslett and Raftery (1989) algorithm to estimate the
parameters including d.

Usage

arfima(
y,
drange = c(0, 0.5),
estim = c("mle", "ls"),
model = NULL,
lambda = NULL,
biasadj = FALSE,
xreg = NULL,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

drange Allowable values of d to be considered. Default of c(0, 0.5) ensures a station-
ary model is returned.

estim If estim = "ls", then the ARMA parameters are calculated using the Haslett-
Raftery algorithm. If estim = "mle", then the ARMA parameters are calculated
using full MLE via the stats::arima() function.

model Output from a previous call to arfima. If model is passed, this same model is
fitted to y without re-estimating any parameters.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

10 arfima

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to auto.arima() when selecting p and q.

Details

This function combines fracdiff::fracdiff() and auto.arima() to automatically select and
estimate an ARFIMA model. The fractional differencing parameter is chosen first assuming an
ARFIMA(2,d,0) model. Then the data are fractionally differenced using the estimated d and an
ARMA model is selected for the resulting time series using auto.arima(). Finally, the full
ARFIMA(p,d,q) model is re-estimated using fracdiff::fracdiff(). If estim = "mle", the ARMA
coefficients are refined using stats::arima().

Value

A list object of S3 class fracdiff, which is described in the fracdiff::fracdiff() documen-
tation. A few additional objects are added to the list including x (the original time series), and the
residuals and fitted values.

Author(s)

Rob J Hyndman and Farah Yasmeen

References

J. Haslett and A. E. Raftery (1989) Space-time Modelling with Long-memory Dependence: As-
sessing Ireland’s Wind Power Resource (with discussion); Applied Statistics 38, 1-50.

Hyndman, R.J. and Khandakar, Y. (2008) "Automatic time series forecasting: The forecast package
for R", Journal of Statistical Software, 26(3).

See Also

fracdiff::fracdiff(), auto.arima(), forecast.fracdiff().

Examples

library(fracdiff)
x <- fracdiff.sim(100, ma = -0.4, d = 0.3)$series
fit <- arfima(x)
tsdisplay(residuals(fit))

Arima 11

Arima Fit ARIMA model to univariate time series

Description

Largely a wrapper for the stats::arima() function in the stats package. The main difference is
that this function allows a drift term. It is also possible to take an ARIMA model from a previous
call to Arima and re-apply it to the data y.

Usage

Arima(
y,
order = c(0, 0, 0),
seasonal = c(0, 0, 0),
xreg = NULL,
include.mean = TRUE,
include.drift = FALSE,
include.constant = NULL,
lambda = model$lambda,
biasadj = attr(lambda, "biasadj"),
method = c("CSS-ML", "ML", "CSS"),
model = NULL,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

order a specification of the non-seasonal part of the ARIMA model: the three integer
components (p, d, q) are the AR order, the degree of differencing, and the MA
order.

seasonal a specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This may be a list with components order and
period, or just a numeric vector of length 3 which specifies the seasonal order.
In the latter case the default period is used.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

include.mean Should the ARIMA model include a mean term? The default is TRUE for undif-
ferenced series, FALSE for differenced ones (where a mean would not affect the
fit nor predictions).

include.drift Should the ARIMA model include a linear drift term? (i.e., a linear regression
with ARIMA errors is fitted.) The default is FALSE.

12 Arima

include.constant

If TRUE, then include.mean is set to be TRUE for undifferenced series and
include.drift is set to be TRUE for differenced series. Note that if there is
more than one difference taken, no constant is included regardless of the value
of this argument. This is deliberate as otherwise quadratic and higher order
polynomial trends would be induced.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

method fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

model Output from a previous call to Arima. If model is passed, this same model is
fitted to y without re-estimating any parameters.

x Deprecated. Included for backwards compatibility.

... Additional arguments to be passed to stats::arima().

Details

The fitted model is a regression with ARIMA(p,d,q) errors

yt = c+ β′xt + zt

where xt is a vector of regressors at time t and zt is an ARMA(p,d,q) error process. If there are no
regressors, and d = 0, then c is an estimate of the mean of yt. For more information, see Hynd-
man & Athanasopoulos (2018). For details of the estimation algorithm, see the stats::arima()
function in the stats package.

Value

See the stats::arima() function in the stats package. The additional objects returned are:

x The time series data

xreg The regressors used in fitting (when relevant).

sigma2 The bias adjusted MLE of the innovations variance.

Author(s)

Rob J Hyndman

References

Hyndman, R.J. and Athanasopoulos, G. (2018) "Forecasting: principles and practice", 2nd ed.,
OTexts, Melbourne, Australia. https://OTexts.com/fpp2/.

https://OTexts.com/fpp2/

arima.errors 13

See Also

auto.arima(), forecast.Arima().

Examples

library(ggplot2)
WWWusage |>

Arima(order = c(3, 1, 0)) |>
forecast(h = 20) |>
autoplot()

Fit model to first few years of AirPassengers data
air.model <- Arima(

window(AirPassengers, end = 1956 + 11 / 12),
order = c(0, 1, 1),
seasonal = list(order = c(0, 1, 1), period = 12),
lambda = 0

)
plot(forecast(air.model, h = 48))
lines(AirPassengers)

Apply fitted model to later data
air.model2 <- Arima(window(AirPassengers, start = 1957), model = air.model)

Forecast accuracy measures on the log scale.
in-sample one-step forecasts.
accuracy(air.model)
out-of-sample one-step forecasts.
accuracy(air.model2)
out-of-sample multi-step forecasts
accuracy(

forecast(air.model, h = 48, lambda = NULL),
log(window(AirPassengers, start = 1957))

)

arima.errors Errors from a regression model with ARIMA errors

Description

Returns time series of the regression residuals from a fitted ARIMA model.

Usage

arima.errors(object)

Arguments

object An object containing a time series model of class Arima.

14 arimaorder

Details

This is a deprecated function which is identical to residuals.Arima(object, type="regression")
Regression residuals are equal to the original data minus the effect of any regression variables. If
there are no regression variables, the errors will be identical to the original series (possibly adjusted
to have zero mean).

Value

A ts object

Author(s)

Rob J Hyndman

See Also

residuals.Arima().

arimaorder Return the order of an ARIMA or ARFIMA model

Description

Returns the order of a univariate ARIMA or ARFIMA model.

Usage

arimaorder(object)

Arguments

object An object of class Arima, ar or fracdiff. Usually the result of a call to
stats::arima(), Arima(), auto.arima(), stats::ar(), arfima() or fracdiff::fracdiff().

Value

A numerical vector giving the values p, d and q of the ARIMA or ARFIMA model. For a seasonal
ARIMA model, the returned vector contains the values p, d, q, P , D, Q and m, where m is the
period of seasonality.

Author(s)

Rob J Hyndman

See Also

stats::ar(), auto.arima, Arima(), stats::arima(), arfima().

auto.arima 15

Examples

WWWusage |> auto.arima() |> arimaorder()

auto.arima Fit best ARIMA model to univariate time series

Description

Returns best ARIMA model according to either AIC, AICc or BIC value. The function conducts a
search over possible model within the order constraints provided.

Usage

auto.arima(
y,
d = NA,
D = NA,
max.p = 5,
max.q = 5,
max.P = 2,
max.Q = 2,
max.order = 5,
max.d = 2,
max.D = 1,
start.p = 2,
start.q = 2,
start.P = 1,
start.Q = 1,
stationary = FALSE,
seasonal = TRUE,
ic = c("aicc", "aic", "bic"),
stepwise = TRUE,
nmodels = 94,
trace = FALSE,
approximation = (length(x) > 150 || frequency(x) > 12),
method = NULL,
truncate = NULL,
xreg = NULL,
test = c("kpss", "adf", "pp"),
test.args = list(),
seasonal.test = c("seas", "ocsb", "hegy", "ch"),
seasonal.test.args = list(),
allowdrift = TRUE,
allowmean = TRUE,
lambda = NULL,
biasadj = FALSE,

16 auto.arima

parallel = FALSE,
num.cores = 2,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

d Order of first-differencing. If missing, will choose a value based on test.

D Order of seasonal-differencing. If missing, will choose a value based on season.test.

max.p Maximum value of p.

max.q Maximum value of q.

max.P Maximum value of P.

max.Q Maximum value of Q.

max.order Maximum value of p+q+P+Q if model selection is not stepwise.

max.d Maximum number of non-seasonal differences.

max.D Maximum number of seasonal differences.

start.p Starting value of p in stepwise procedure.

start.q Starting value of q in stepwise procedure.

start.P Starting value of P in stepwise procedure.

start.Q Starting value of Q in stepwise procedure.

stationary If TRUE, restricts search to stationary models.

seasonal If FALSE, restricts search to non-seasonal models.

ic Information criterion to be used in model selection.

stepwise If TRUE, will do stepwise selection (faster). Otherwise, it searches over all mod-
els. Non-stepwise selection can be very slow, especially for seasonal models.

nmodels Maximum number of models considered in the stepwise search.

trace If TRUE, the list of ARIMA models considered will be reported.

approximation If TRUE, estimation is via conditional sums of squares and the information crite-
ria used for model selection are approximated. The final model is still computed
using maximum likelihood estimation. Approximation should be used for long
time series or a high seasonal period to avoid excessive computation times.

method fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

truncate An integer value indicating how many observations to use in model selection.
The last truncate values of the series are used to select a model when truncate
is not NULL and approximation = TRUE. All observations are used if either truncate
= NULL or approximation = FALSE.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

auto.arima 17

test Type of unit root test to use. See ndiffs() for details.

test.args Additional arguments to be passed to the unit root test.

seasonal.test This determines which method is used to select the number of seasonal differ-
ences. The default method is to use a measure of seasonal strength computed
from an STL decomposition. Other possibilities involve seasonal unit root tests.

seasonal.test.args

Additional arguments to be passed to the seasonal unit root test. See nsdiffs()
for details.

allowdrift If TRUE, models with drift terms are considered.

allowmean If TRUE, models with a non-zero mean are considered.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

parallel If TRUE and stepwise = FALSE, then the specification search is done in parallel
via parallel::mclapply(). This can give a significant speedup on multicore
machines. On Windows, this option always fails because forking is not sup-
ported.

num.cores Allows the user to specify the amount of parallel processes to be used if parallel
= TRUE and stepwise = FALSE. If NULL, then the number of logical cores is au-
tomatically detected and all available cores are used.

x Deprecated. Included for backwards compatibility.

... Additional arguments to be passed to stats::arima().

Details

The default arguments are designed for rapid estimation of models for many time series. If you are
analysing just one time series, and can afford to take some more time, it is recommended that you
set stepwise = FALSE and approximation = FALSE.

Non-stepwise selection can be slow, especially for seasonal data. The stepwise algorithm outlined
in Hyndman & Khandakar (2008) is used except that the default method for selecting seasonal
differences is now based on an estimate of seasonal strength (Wang, Smith & Hyndman, 2006)
rather than the Canova-Hansen test. There are also some other minor variations to the algorithm
described in Hyndman and Khandakar (2008).

Value

Same as for Arima()

Author(s)

Rob J Hyndman

18 autolayer

References

Hyndman, RJ and Khandakar, Y (2008) "Automatic time series forecasting: The forecast package
for R", Journal of Statistical Software, 26(3).

Wang, X, Smith, KA, Hyndman, RJ (2006) "Characteristic-based clustering for time series data",
Data Mining and Knowledge Discovery, 13(3), 335-364.

See Also

Arima()

Examples

fit <- auto.arima(WWWusage)
plot(forecast(fit, h = 20))

autolayer Create a ggplot layer appropriate to a particular data type

Description

autolayer() uses ggplot2 to draw a particular layer for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autolayer(object, ...)

Arguments

object an object, whose class will determine the behaviour of autolayer

... other arguments passed to specific methods

Value

a ggplot layer

See Also

Other plotting automation topics: automatic_plotting, autoplot(), fortify()

autolayer.mts 19

autolayer.mts Automatically create a ggplot for time series objects

Description

autoplot takes an object of type ts or mts and creates a ggplot object suitable for usage with
stat_forecast.

Usage

S3 method for class 'mts'
autolayer(object, colour = TRUE, series = NULL, ...)

S3 method for class 'msts'
autolayer(object, series = NULL, ...)

S3 method for class 'ts'
autolayer(object, colour = TRUE, series = NULL, ...)

S3 method for class 'ts'
autoplot(
object,
series = NULL,
xlab = "Time",
ylab = deparse1(substitute(object)),
main = NULL,
...

)

S3 method for class 'mts'
autoplot(
object,
colour = TRUE,
facets = FALSE,
xlab = "Time",
ylab = deparse1(substitute(object)),
main = NULL,
...

)

S3 method for class 'msts'
autoplot(object, ...)

S3 method for class 'ts'
fortify(model, data, ...)

20 autolayer.mts

Arguments

object Object of class ts or mts.

colour If TRUE, the time series will be assigned a colour aesthetic

series Identifies the time series with a colour, which integrates well with the function-
ality of geom_forecast().

... Other plotting parameters to affect the plot.

xlab X-axis label.

ylab Y-axis label.

main Main title.

facets If TRUE, multiple time series will be faceted (and unless specified, colour is set
to FALSE). If FALSE, each series will be assigned a colour.

model Object of class ts to be converted to data.frame.

data Not used (required for ggplot2::fortify() method)

Details

fortify.ts takes a ts object and converts it into a data frame (for usage with ggplot2).

Value

None. Function produces a ggplot graph.

Author(s)

Mitchell O’Hara-Wild

See Also

stats::plot.ts(), ggplot2::fortify()

Examples

library(ggplot2)
autoplot(USAccDeaths)

lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths)
autoplot(lungDeaths, facets = TRUE)

autoplot.acf 21

autoplot.acf ggplot (Partial) Autocorrelation and Cross-Correlation Function Es-
timation and Plotting

Description

Produces a ggplot object of their equivalent Acf, Pacf, Ccf, taperedacf and taperedpacf functions.

Usage

S3 method for class 'acf'
autoplot(object, ci = 0.95, ...)

ggAcf(
x,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

ggPacf(
x,
lag.max = NULL,
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...

)

ggCcf(
x,
y,
lag.max = NULL,
type = c("correlation", "covariance"),
plot = TRUE,
na.action = na.contiguous,
...

)

S3 method for class 'mpacf'
autoplot(object, ...)

ggtaperedacf(
x,

22 autoplot.acf

lag.max = NULL,
type = c("correlation", "partial"),
plot = TRUE,
calc.ci = TRUE,
level = 95,
nsim = 100,
...

)

ggtaperedpacf(x, ...)

Arguments

object Object of class acf.

ci coverage probability for confidence interval. Plotting of the confidence interval
is suppressed if ci is zero or negative.

... Other plotting parameters to affect the plot.

x a univariate or multivariate (not Ccf) numeric time series object or a numeric
vector or matrix.

lag.max maximum lag at which to calculate the acf.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the resulting ACF, PACF or CCF is plotted.

na.action function to handle missing values. Default is stats::na.contiguous(). Use-
ful alternatives are stats::na.pass() and na.interp().

demean Should covariances be about the sample means?

y a univariate numeric time series object or a numeric vector.

calc.ci If TRUE, confidence intervals for the ACF/PACF estimates are calculated.

level Percentage level used for the confidence intervals.

nsim The number of bootstrap samples used in estimating the confidence intervals.

Details

If autoplot is given an acf or mpacf object, then an appropriate ggplot object will be created.

ggtaperedpacf

Value

A ggplot object.

Author(s)

Mitchell O’Hara-Wild

autoplot.decomposed.ts 23

See Also

stats::plot.acf() Acf(), [stats::acf(), taperedacf()

Examples

library(ggplot2)
ggAcf(wineind)
wineind |> Acf(plot = FALSE) |> autoplot()
Not run:
wineind |> taperedacf(plot = FALSE) |> autoplot()
ggtaperedacf(wineind)
ggtaperedpacf(wineind)

End(Not run)
ggCcf(mdeaths, fdeaths)

autoplot.decomposed.ts

Plot time series decomposition components using ggplot

Description

Produces a ggplot object of seasonally decomposed time series for objects of class stl (created with
stats::stl(), class seas (created with seasonal::seas()), or class decomposed.ts (created
with stats::decompose()).

Usage

S3 method for class 'decomposed.ts'
autoplot(object, labels = NULL, range.bars = NULL, ...)

S3 method for class 'stl'
autoplot(object, labels = NULL, range.bars = TRUE, ...)

S3 method for class 'StructTS'
autoplot(object, labels = NULL, range.bars = TRUE, ...)

S3 method for class 'seas'
autoplot(object, labels = NULL, range.bars = NULL, ...)

S3 method for class 'mstl'
autoplot(object, ...)

24 autoplot.mforecast

Arguments

object Object of class seas, stl, or decomposed.ts.

labels Labels to replace "seasonal", "trend", and "remainder".

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

... Other plotting parameters to affect the plot.

Value

Returns an object of class ggplot.

Author(s)

Mitchell O’Hara-Wild

See Also

seasonal::seas(), stats::stl(), stats::decompose(), stats::StructTS(), stats::plot.stl().

Examples

library(ggplot2)
co2 |>

decompose() |>
autoplot()

nottem |>
stl(s.window = "periodic") |>
autoplot()

Not run:
library(seasonal)
seas(USAccDeaths) |> autoplot()

End(Not run)

autoplot.mforecast Multivariate forecast plot

Description

Plots historical data with multivariate forecasts and prediction intervals.

autoplot.mforecast 25

Usage

S3 method for class 'mforecast'
autoplot(object, PI = TRUE, facets = TRUE, colour = FALSE, ...)

S3 method for class 'mforecast'
autolayer(object, series = NULL, PI = TRUE, ...)

S3 method for class 'mforecast'
plot(x, main = paste("Forecasts from", unique(x$method)), xlab = "time", ...)

Arguments

object Multivariate forecast object of class mforecast. Used for ggplot graphics (S3
method consistency).

PI If FALSE, confidence intervals will not be plotted, giving only the forecast line.

facets If TRUE, multiple time series will be faceted. If FALSE, each series will be as-
signed a colour.

colour If TRUE, the time series will be assigned a colour aesthetic

... additional arguments to each individual plot.

series Matches an unidentified forecast layer with a coloured object on the plot.

x Multivariate forecast object of class mforecast.

main Main title. Default is the forecast method. For autoplot, specify a vector of titles
for each plot.

xlab X-axis label. For autoplot, specify a vector of labels for each plot.

Details

autoplot will produce an equivalent plot as a ggplot object.

Author(s)

Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

plot.forecast(), stats::plot.ts()

https://otexts.com/fpp2/

26 baggedModel

Examples

library(ggplot2)

lungDeaths <- cbind(mdeaths, fdeaths)
fit <- tslm(lungDeaths ~ trend + season)
fcast <- forecast(fit, h = 10)
plot(fcast)
autoplot(fcast)

carPower <- as.matrix(mtcars[, c("qsec", "hp")])
carmpg <- mtcars[, "mpg"]
fit <- lm(carPower ~ carmpg)
fcast <- forecast(fit, newdata = data.frame(carmpg = 30))
plot(fcast, xlab = "Year")
autoplot(fcast, xlab = rep("Year", 2))

baggedModel Forecasting using a bagged model

Description

The bagged model forecasting method.

Usage

baggedModel(y, bootstrapped_series = bld.mbb.bootstrap(y, 100), fn = ets, ...)

baggedETS(y, bootstrapped_series = bld.mbb.bootstrap(y, 100), ...)

Arguments

y A numeric vector or univariate time series of class ts.
bootstrapped_series

bootstrapped versions of y.

fn the forecast function to use. Default is ets().

... Other arguments passed to the forecast function.

Details

This function implements the bagged model forecasting method described in Bergmeir et al. By
default, the ets() function is applied to all bootstrapped series. Base models other than ets() can
be given by the parameter fn. Using the default parameters, the function bld.mbb.bootstrap() is
used to calculate the bootstrapped series with the Box-Cox and Loess-based decomposition (BLD)
bootstrap. The function forecast.baggedModel() can then be used to calculate forecasts.

baggedETS is a wrapper for baggedModel, setting fn to "ets". This function is included for back-
wards compatibility only, and may be deprecated in the future.

bats 27

Value

Returns an object of class baggedModel.

The function print is used to obtain and print a summary of the results.

models A list containing the fitted ensemble models.

method The function for producing a forecastable model.

y The original time series.

bootstrapped_series

The bootstrapped series.

modelargs The arguments passed through to fn.

fitted Fitted values (one-step forecasts). The mean of the fitted values is calculated
over the ensemble.

residuals Original values minus fitted values.

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

Examples

fit <- baggedModel(WWWusage)
fcast <- forecast(fit)
plot(fcast)

bats BATS model (Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components)

Description

Fits a BATS model applied to y, as described in De Livera, Hyndman & Snyder (2011). Parallel
processing is used by default to speed up the computations.

28 bats

Usage

bats(
y,
use.box.cox = NULL,
use.trend = NULL,
use.damped.trend = NULL,
seasonal.periods = NULL,
use.arma.errors = TRUE,
use.parallel = length(y) > 1000,
num.cores = 2,
bc.lower = 0,
bc.upper = 1,
biasadj = FALSE,
model = NULL,
...

)

Arguments

y The time series to be forecast. Can be numeric, msts or ts. Only univariate
time series are supported.

use.box.cox TRUE/FALSE indicates whether to use the Box-Cox transformation or not. If NULL
then both are tried and the best fit is selected by AIC.

use.trend TRUE/FALSE indicates whether to include a trend or not. If NULL then both are
tried and the best fit is selected by AIC.

use.damped.trend

TRUE/FALSE indicates whether to include a damping parameter in the trend or
not. If NULL then both are tried and the best fit is selected by AIC.

seasonal.periods

If y is numeric, then seasonal periods can be specified with this parameter.
use.arma.errors

TRUE/FALSE indicates whether to include ARMA errors or not. If TRUE the best
fit is selected by AIC. If FALSE then the selection algorithm does not consider
ARMA errors.

use.parallel TRUE/FALSE indicates whether or not to use parallel processing.

num.cores The number of parallel processes to be used if using parallel processing. If NULL
then the number of logical cores is detected and all available cores are used.

bc.lower The lower limit (inclusive) for the Box-Cox transformation.

bc.upper The upper limit (inclusive) for the Box-Cox transformation.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

model Output from a previous call to bats. If model is passed, this same model is fitted
to y without re-estimating any parameters.

bizdays 29

... Additional arguments to be passed to auto.arima when choose an ARMA(p,
q) model for the errors. (Note that xreg will be ignored, as will any arguments
concerning seasonality and differencing, but arguments controlling the values of
p and q will be used.)

Value

An object of class bats. The generic accessor functions fitted.values and residuals extract
useful features of the value returned by bats and associated functions. The fitted model is des-
ignated BATS(omega, p,q, phi, m1,...mJ) where omega is the Box-Cox parameter and phi is the
damping parameter; the error is modelled as an ARMA(p,q) process and m1,...,mJ list the seasonal
periods used in the model.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

Examples

Not run:
fit <- bats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- bats(taylor)
plot(forecast(taylor.fit))

End(Not run)

bizdays Number of trading days in each season

Description

Returns number of trading days in each month or quarter of the observed time period in a major
financial center.

Usage

bizdays(x, FinCenter = c("New York", "London", "NERC", "Toronto", "Zurich"))

30 bld.mbb.bootstrap

Arguments

x Monthly or quarterly time series.

FinCenter Major financial center.

Details

Useful for trading days length adjustments. More on how to define "business days", please refer to
timeDate::isBizday().

Value

Time series

Author(s)

Earo Wang

See Also

monthdays()

Examples

x <- ts(rnorm(30), start = c(2013, 2), frequency = 12)
bizdays(x, FinCenter = "New York")

bld.mbb.bootstrap Box-Cox and Loess-based decomposition bootstrap.

Description

Generates bootstrapped versions of a time series using the Box-Cox and Loess-based decomposition
bootstrap.

Usage

bld.mbb.bootstrap(x, num, block_size = NULL)

Arguments

x Original time series.

num Number of bootstrapped versions to generate.

block_size Block size for the moving block bootstrap.

BoxCox 31

Details

The procedure is described in Bergmeir et al. Box-Cox decomposition is applied, together with STL
or Loess (for non-seasonal time series), and the remainder is bootstrapped using a moving block
bootstrap.

Value

A list with bootstrapped versions of the series. The first series in the list is the original series.

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

See Also

baggedETS().

Examples

bootstrapped_series <- bld.mbb.bootstrap(WWWusage, 100)

BoxCox Box Cox Transformation

Description

BoxCox() returns a transformation of the input variable using a Box-Cox transformation. InvBox-
Cox() reverses the transformation.

Usage

BoxCox(x, lambda)

InvBoxCox(x, lambda, biasadj = FALSE, fvar = NULL)

32 BoxCox

Arguments

x a numeric vector or time series of class ts.

lambda transformation parameter. If lambda = "auto", then the transformation param-
eter lambda is chosen using BoxCox.lambda (with a lower bound of -0.9)

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

fvar Optional parameter required if biasadj = TRUE. Can either be the forecast vari-
ance, or a list containing the interval level, and the corresponding upper and
lower intervals.

Details

The Box-Cox transformation (as given by Bickel & Doksum 1981) is given by

fλ(x) = (sign(x)|x|λ − 1)/λ

if λ ̸= 0. For λ = 0,

f0(x) = log(x)

.

Value

a numeric vector of the same length as x.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246. Bickel, P.
J. and Doksum K. A. (1981) An Analysis of Transformations Revisited. JASA 76 296-311.

See Also

BoxCox.lambda()

Examples

lambda <- BoxCox.lambda(lynx)
lynx.fit <- ar(BoxCox(lynx, lambda))
plot(forecast(lynx.fit, h = 20, lambda = lambda))

BoxCox.lambda 33

BoxCox.lambda Automatic selection of Box Cox transformation parameter

Description

If method = "guerrero", Guerrero’s (1993) method is used, where lambda minimizes the coeffi-
cient of variation for subseries of x.

Usage

BoxCox.lambda(x, method = c("guerrero", "loglik"), lower = -1, upper = 2)

Arguments

x A numeric vector or time series of class ts.

method Choose method to be used in calculating lambda.

lower Lower limit for possible lambda values.

upper Upper limit for possible lambda values.

Details

If method = "loglik", the value of lambda is chosen to maximize the profile log likelihood of a
linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal data,
a linear time trend with seasonal dummy variables is used.

Value

a number indicating the Box-Cox transformation parameter.

Author(s)

Leanne Chhay and Rob J Hyndman

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of Fore-
casting, 12, 37–48.

See Also

BoxCox()

34 checkresiduals

Examples

lambda <- BoxCox.lambda(AirPassengers, lower = 0)
air.fit <- Arima(

AirPassengers,
order = c(0, 1, 1),
seasonal = list(order = c(0, 1, 1), period = 12),
lambda = lambda

)
plot(forecast(air.fit))

checkresiduals Check that residuals from a time series model look like white noise

Description

If plot = TRUE, produces a time plot of the residuals, the corresponding ACF, and a histogram. If
test is not FALSE, the output from either a Ljung-Box test or Breusch-Godfrey test is printed.

Usage

checkresiduals(object, lag, test, plot = TRUE, ...)

Arguments

object Either a time series model, a forecast object, or a time series (assumed to be
residuals).

lag Number of lags to use in the Ljung-Box or Breusch-Godfrey test. If missing, it
is set to min(10, n/5) for non-seasonal data, and min(2m, n/5) for seasonal
data, where n is the length of the series, and m is the seasonal period of the data.
It is further constrained to be at least df+3 where df is the degrees of freedom
of the model. This ensures there are at least 3 degrees of freedom used in the
chi-squared test.

test Test to use for serial correlation. By default, if object is of class lm, then test
= "BG". Otherwise, test = "LB". Setting test = FALSE will prevent the test
results being printed.

plot Logical. If TRUE, will produce the plot.

... Other arguments are passed to ggtsdisplay().

Value

None

Author(s)

Rob J Hyndman

croston_model 35

See Also

ggtsdisplay(), stats::Box.test(), [lmtest::bgtest()

Examples

fit <- ets(WWWusage)
checkresiduals(fit)

croston_model Croston forecast model

Description

Based on Croston’s (1972) method for intermittent demand forecasting, also described in Shenstone
and Hyndman (2005). Croston’s method involves using simple exponential smoothing (SES) on the
non-zero elements of the time series and a separate application of SES to the times between non-
zero elements of the time series. Returns a model object that can be used to generate forecasts
using Croston’s method for intermittent demand time series. It isn’t a true statistical model in that it
doesn’t describe a data generating process that would lead to the forecasts produced using Croston’s
method.

Usage

croston_model(y, alpha = 0.1, type = c("croston", "sba", "sbj"))

Arguments

y a numeric vector or univariate time series of class ts

alpha Value of alpha. Default value is 0.1.

type Which variant of Croston’s method to use. Defaults to "croston" for Croston’s
method, but can also be set to "sba" for the Syntetos-Boylan approximation,
and "sbj" for the Shale-Boylan-Johnston method.

Details

Note that prediction intervals are not computed as Croston’s method has no underlying stochastic
model.

There are two variant methods available which apply multiplicative correction factors to the fore-
casts that result from the original Croston’s method. For the Syntetos-Boylan approximation (type
= "sba"), this factor is 1 − α/2, and for the Shale-Boylan-Johnston method (type = "sbj"), this
factor is 1− α/(2− α), where α is the smoothing parameter for the interval SES application.

Value

An object of class croston_model

36 CV

Author(s)

Rob J Hyndman

References

Croston, J. (1972) "Forecasting and stock control for intermittent demands", Operational Research
Quarterly, 23(3), 289-303.

Shale, E.A., Boylan, J.E., & Johnston, F.R. (2006). Forecasting for intermittent demand: the esti-
mation of an unbiased average. Journal of the Operational Research Society, 57(5), 588-592.

Shenstone, L., and Hyndman, R.J. (2005) "Stochastic models underlying Croston’s method for
intermittent demand forecasting". Journal of Forecasting, 24, 389-402.

Syntetos A.A., Boylan J.E. (2001). On the bias of intermittent demand estimates. International
Journal of Production Economics, 71, 457–466.

Examples

y <- rpois(20, lambda = 0.3)
fit <- croston_model(y)
forecast(fit) |> autoplot()

CV Cross-validation statistic

Description

Computes the leave-one-out cross-validation statistic (the mean of PRESS – prediction residual sum
of squares), AIC, corrected AIC, BIC and adjusted R^2 values for a linear model.

Usage

CV(obj)

Arguments

obj Output from stats::lm() or tslm().

Value

Numerical vector containing CV, AIC, AICc, BIC and AdjR2 values.

Author(s)

Rob J Hyndman

See Also

stats::AIC()

CVar 37

Examples

y <- ts(rnorm(120, 0, 3) + 20 * sin(2 * pi * (1:120) / 12), frequency = 12)
fit1 <- tslm(y ~ trend + season)
fit2 <- tslm(y ~ season)
CV(fit1)
CV(fit2)

CVar k-fold Cross-Validation applied to an autoregressive model

Description

CVar computes the errors obtained by applying an autoregressive modelling function to subsets of
the time series y using k-fold cross-validation as described in Bergmeir, Hyndman and Koo (2015).
It also applies a Ljung-Box test to the residuals. If this test is significant (see returned pvalue), there
is serial correlation in the residuals and the model can be considered to be underfitting the data. In
this case, the cross-validated errors can underestimate the generalization error and should not be
used.

Usage

CVar(
y,
k = 10,
FUN = nnetar,
cvtrace = FALSE,
blocked = FALSE,
LBlags = 24,
...

)

Arguments

y Univariate time series
k Number of folds to use for cross-validation.
FUN Function to fit an autoregressive model. Currently, it only works with the nnetar()

function.
cvtrace Provide progress information.
blocked choose folds randomly or as blocks?
LBlags lags for the Ljung-Box test, defaults to 24, for yearly series can be set to 20
... Other arguments are passed to FUN.

Value

A list containing information about the model and accuracy for each fold, plus other summary
information computed across folds.

38 dm.test

Author(s)

Gabriel Caceres and Rob J Hyndman

References

Bergmeir, C., Hyndman, R.J., Koo, B. (2018) A note on the validity of cross-validation for eval-
uating time series prediction. Computational Statistics & Data Analysis, 120, 70-83. https:
//robjhyndman.com/publications/cv-time-series/.

See Also

CV(), tsCV().

Examples

modelcv <- CVar(lynx, k = 5, lambda = 0.15)
print(modelcv)
print(modelcv$fold1)

library(ggplot2)
autoplot(lynx, series = "Data") +

autolayer(modelcv$testfit, series = "Fits") +
autolayer(modelcv$residuals, series = "Residuals")

ggAcf(modelcv$residuals)

dm.test Diebold-Mariano test for predictive accuracy

Description

The Diebold-Mariano test compares the forecast accuracy of two forecast methods.

Usage

dm.test(
e1,
e2,
alternative = c("two.sided", "less", "greater"),
h = 1,
power = 2,
varestimator = c("acf", "bartlett")

)

https://robjhyndman.com/publications/cv-time-series/
https://robjhyndman.com/publications/cv-time-series/

dm.test 39

Arguments

e1 Forecast errors from method 1.

e2 Forecast errors from method 2.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

h The forecast horizon used in calculating e1 and e2.

power The power used in the loss function. Usually 1 or 2.

varestimator A character string specifying the long-run variance estimator. Options are "acf"
(default) or "bartlett".

Details

This function implements the modified test proposed by Harvey, Leybourne and Newbold (1997).
The null hypothesis is that the two methods have the same forecast accuracy. For alternative =
"less", the alternative hypothesis is that method 2 is less accurate than method 1. For alternative
= "greater", the alternative hypothesis is that method 2 is more accurate than method 1. For
alternative = "two.sided", the alternative hypothesis is that method 1 and method 2 have dif-
ferent levels of accuracy. The long-run variance estimator can either the auto-correlation estimator
varestimator = "acf", or the estimator based on Bartlett weights varestimator = "bartlett"
which ensures a positive estimate. Both long-run variance estimators are proposed in Diebold and
Mariano (1995).

Value

A list with class htest containing the following components:

statistic the value of the DM-statistic.

parameter the forecast horizon and loss function power used in the test.

alternative a character string describing the alternative hypothesis.

varestimator a character string describing the long-run variance estimator.

p.value the p-value for the test.

method a character string with the value "Diebold-Mariano Test".

data.name a character vector giving the names of the two error series.

Author(s)

George Athanasopoulos and Kirill Kuroptev

References

Diebold, F.X. and Mariano, R.S. (1995) Comparing predictive accuracy. Journal of Business and
Economic Statistics, 13, 253-263.

Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared
errors. International Journal of forecasting, 13(2), 281-291.

40 dshw

Examples

Test on in-sample one-step forecasts
f1 <- ets(WWWusage)
f2 <- auto.arima(WWWusage)
accuracy(f1)
accuracy(f2)
dm.test(residuals(f1), residuals(f2), h = 1)

Test on out-of-sample one-step forecasts
f1 <- ets(WWWusage[1:80])
f2 <- auto.arima(WWWusage[1:80])
f1.out <- ets(WWWusage[81:100], model = f1)
f2.out <- Arima(WWWusage[81:100], model = f2)
accuracy(f1.out)
accuracy(f2.out)
dm.test(residuals(f1.out), residuals(f2.out), h = 1)

dshw Double-Seasonal Holt-Winters Forecasting

Description

Returns forecasts using Taylor’s (2003) Double-Seasonal Holt-Winters method.

Usage

dshw(
y,
period1 = NULL,
period2 = NULL,
h = 2 * max(period1, period2),
alpha = NULL,
beta = NULL,
gamma = NULL,
omega = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
armethod = TRUE,
model = NULL

)

Arguments

y Either an msts() object with two seasonal periods or a numeric vector.

period1 Period of the shorter seasonal period. Only used if y is not an msts() object.

period2 Period of the longer seasonal period. Only used if y is not an msts() object.

dshw 41

h Number of periods for forecasting.

alpha Smoothing parameter for the level. If NULL, the parameter is estimated using
least squares.

beta Smoothing parameter for the slope. If NULL, the parameter is estimated using
least squares.

gamma Smoothing parameter for the first seasonal period. If NULL, the parameter is
estimated using least squares.

omega Smoothing parameter for the second seasonal period. If NULL, the parameter is
estimated using least squares.

phi Autoregressive parameter. If NULL, the parameter is estimated using least squares.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

armethod If TRUE, the forecasts are adjusted using an AR(1) model for the errors.

model If it’s specified, an existing model is applied to a new data set.

Details

Taylor’s (2003) double-seasonal Holt-Winters method uses additive trend and multiplicative sea-
sonality, where there are two seasonal components which are multiplied together. For example,
with a series of half-hourly data, one would set period1 = 48 for the daily period and period2 =
336 for the weekly period. The smoothing parameter notation used here is different from that in
Taylor (2003); instead it matches that used in Hyndman et al (2008) and that used for the ets()
function.

Value

An object of class forecast.

Author(s)

Rob J Hyndman

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag. https://robjhyndman.com/expsmooth/.

See Also

stats::HoltWinters(), ets().

https://robjhyndman.com/expsmooth/

42 easter

Examples

Not run:
fcast <- dshw(taylor)
plot(fcast)

t <- seq(0, 5, by = 1 / 20)
x <- exp(sin(2 * pi * t) + cos(2 * pi * t * 4) + rnorm(length(t), 0, 0.1))
fit <- dshw(x, 20, 5)
plot(fit)

End(Not run)

easter Easter holidays in each season

Description

Returns a vector of 0’s and 1’s or fractional results if Easter spans March and April in the observed
time period. Easter is defined as the days from Good Friday to Easter Sunday inclusively, plus
optionally Easter Monday if easter.mon = TRUE.

Usage

easter(x, easter.mon = FALSE)

Arguments

x Monthly or quarterly time series.

easter.mon If TRUE, the length of Easter holidays includes. Easter Monday.

Details

Useful for adjusting calendar effects.

Value

Time series

Author(s)

Earo Wang

Examples

easter(wineind, easter.mon = TRUE)

ets 43

ets Exponential smoothing state space model

Description

Returns ets model applied to y.

Usage

ets(
y,
model = "ZZZ",
damped = NULL,
alpha = NULL,
beta = NULL,
gamma = NULL,
phi = NULL,
additive.only = FALSE,
lambda = NULL,
biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8),
upper = c(rep(0.9999, 3), 0.98),
opt.crit = c("lik", "amse", "mse", "sigma", "mae"),
nmse = 3,
bounds = c("both", "usual", "admissible"),
ic = c("aicc", "aic", "bic"),
restrict = TRUE,
allow.multiplicative.trend = FALSE,
use.initial.values = FALSE,
...

)

Arguments

y a numeric vector or univariate time series of class ts

model Usually a three-character string identifying method using the framework termi-
nology of Hyndman et al. (2002) and Hyndman et al. (2008). The first letter
denotes the error type ("A", "M" or "Z"); the second letter denotes the trend type
("N","A","M" or "Z"); and the third letter denotes the season type ("N","A","M"
or "Z"). In all cases, "N"=none, "A"=additive, "M"=multiplicative and "Z"=automatically
selected. So, for example, "ANN" is simple exponential smoothing with addi-
tive errors, "MAM" is multiplicative Holt-Winters’ method with multiplicative
errors, and so on.
It is also possible for the model to be of class ets, and equal to the output
from a previous call to ets. In this case, the same model is fitted to y without
re-estimating any smoothing parameters. See also the use.initial.values
argument.

44 ets

damped If TRUE, use a damped trend (either additive or multiplicative). If NULL, both
damped and non-damped trends will be tried and the best model (according to
the information criterion ic) returned.

alpha Value of alpha. If NULL, it is estimated.
beta Value of beta. If NULL, it is estimated.
gamma Value of gamma. If NULL, it is estimated.
phi Value of phi. If NULL, it is estimated.
additive.only If TRUE, will only consider additive models. Default is FALSE. When lambda is

specified, additive.only is set to TRUE.
lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation

is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

lower Lower bounds for the parameters (alpha, beta, gamma, phi). Ignored if bounds
= "admissible".

upper Upper bounds for the parameters (alpha, beta, gamma, phi). Ignored if bounds
= "admissible".

opt.crit Optimization criterion. One of "mse" (Mean Square Error), "amse" (Average
MSE over first nmse forecast horizons), "sigma" (Standard deviation of residu-
als), "mae" (Mean of absolute residuals), or "lik" (Log-likelihood, the default).

nmse Number of steps for average multistep MSE (1<=nmse<=30).
bounds Type of parameter space to impose: "usual" indicates all parameters must lie

between specified lower and upper bounds; "admissible" indicates parameters
must lie in the admissible space; "both" (default) takes the intersection of these
regions.

ic Information criterion to be used in model selection.
restrict If TRUE (default), the models with infinite variance will not be allowed.
allow.multiplicative.trend

If TRUE, models with multiplicative trend are allowed when searching for a
model. Otherwise, the model space excludes them. This argument is ignored if
a multiplicative trend model is explicitly requested (e.g., using model = "MMN").

use.initial.values

If TRUE and model is of class "ets", then the initial values in the model are also
not re-estimated.

... Other arguments are ignored.

Details

Based on the classification of methods as described in Hyndman et al (2008).

The methodology is fully automatic. The only required argument for ets is the time series. The
model is chosen automatically if not specified. This methodology performed extremely well on the
M3-competition data. (See Hyndman, et al, 2002, below.)

findfrequency 45

Value

An object of class ets.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by ets and associated functions.

Author(s)

Rob J Hyndman

References

Hyndman, R.J., Koehler, A.B., Snyder, R.D., and Grose, S. (2002) "A state space framework for
automatic forecasting using exponential smoothing methods", International J. Forecasting, 18(3),
439–454.

Hyndman, R.J., Akram, Md., and Archibald, B. (2008) "The admissible parameter space for expo-
nential smoothing models". Annals of Statistical Mathematics, 60(2), 407–426.

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag. https://robjhyndman.com/expsmooth/.

See Also

stats::HoltWinters(), rwf(), Arima().

Examples

fit <- ets(USAccDeaths)
plot(forecast(fit))

findfrequency Find dominant frequency of a time series

Description

findfrequency returns the period of the dominant frequency of a time series. For seasonal data, it
will return the seasonal period. For cyclic data, it will return the average cycle length.

Usage

findfrequency(x)

Arguments

x a numeric vector or time series of class ts

https://robjhyndman.com/expsmooth/

46 fitted.ARFIMA

Details

The dominant frequency is determined from a spectral analysis of the time series. First, a linear
trend is removed, then the spectral density function is estimated from the best fitting autoregressive
model (based on the AIC). If there is a large (possibly local) maximum in the spectral density
function at frequency f , then the function will return the period 1/f (rounded to the nearest integer).
If no such dominant frequency can be found, the function will return 1.

Value

an integer value

Author(s)

Rob J Hyndman

Examples

findfrequency(USAccDeaths) # Monthly data
findfrequency(taylor) # Half-hourly data
findfrequency(lynx) # Annual data

fitted.ARFIMA h-step in-sample forecasts for time series models.

Description

Returns h-step forecasts for the data used in fitting the model.

Usage

S3 method for class 'ARFIMA'
fitted(object, h = 1, ...)

S3 method for class 'Arima'
fitted(object, h = 1, ...)

S3 method for class 'ar'
fitted(object, ...)

S3 method for class 'bats'
fitted(object, h = 1, ...)

S3 method for class 'ets'
fitted(object, h = 1, ...)

S3 method for class 'modelAR'

forecast.baggedModel 47

fitted(object, h = 1, ...)

S3 method for class 'nnetar'
fitted(object, h = 1, ...)

S3 method for class 'tbats'
fitted(object, h = 1, ...)

Arguments

object An object of class Arima, bats, tbats, ets or nnetar.

h The number of steps to forecast ahead.

... Other arguments.

Value

A time series of the h-step forecasts.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

forecast.Arima(), forecast.bats(), forecast.tbats(), forecast.ets(), forecast.nnetar(),
residuals.Arima(), residuals.bats() residuals.tbats(), residuals.ets(), residuals.nnetar().

Examples

fit <- ets(WWWusage)
plot(WWWusage)
lines(fitted(fit), col = "red")
lines(fitted(fit, h = 2), col = "green")
lines(fitted(fit, h = 3), col = "blue")
legend("topleft", legend = paste("h =", 1:3), col = 2:4, lty = 1)

forecast.baggedModel Forecasting using a bagged model

Description

Returns forecasts and other information for bagged models.

48 forecast.baggedModel

Usage

S3 method for class 'baggedModel'
forecast(
object,
h = if (frequency(object$y) > 1) 2 * frequency(object$y) else 10,
...

)

Arguments

object An object of class baggedModel resulting from a call to baggedModel().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

... Other arguments, passed on to the forecast() function of the original method

Details

Intervals are calculated as min and max values over the point forecasts from the models in the
ensemble. I.e., the intervals are not prediction intervals, but give an indication of how different the
forecasts within the ensemble are.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

forecast.bats 49

Author(s)

Christoph Bergmeir, Fotios Petropoulos

References

Bergmeir, C., R. J. Hyndman, and J. M. Benitez (2016). Bagging Exponential Smoothing Methods
using STL Decomposition and Box-Cox Transformation. International Journal of Forecasting 32,
303-312.

See Also

baggedModel().

Examples

fit <- baggedModel(WWWusage)
fcast <- forecast(fit)
plot(fcast)

Not run:
fit2 <- baggedModel(WWWusage, fn = "auto.arima")
fcast2 <- forecast(fit2)
plot(fcast2)
accuracy(fcast2)

End(Not run)

forecast.bats Forecasting using BATS and TBATS models

Description

Forecasts h steps ahead with a BATS model. Prediction intervals are also produced.

Usage

S3 method for class 'bats'
forecast(object, h, level = c(80, 95), fan = FALSE, biasadj = NULL, ...)

S3 method for class 'tbats'
forecast(
object,
h,
level = c(80, 95),
fan = FALSE,
simulate = FALSE,
bootstrap = FALSE,

50 forecast.bats

innov = NULL,
npaths = 5000,
biasadj = NULL,
...

)

Arguments

object An object of class bats. Usually the result of a call to bats().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments are ignored.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

innov Optional matrix of future innovations to be used in simulations. Ignored if
simulate = FALSE. If provided, this overrides the bootstrap argument. The
matrix should have h rows and npaths columns.

npaths Number of sample paths used in computing simulated prediction intervals.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

forecast.croston_model 51

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

bats(), tbats(), forecast.ets().

Examples

Not run:
fit <- bats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- bats(taylor)
plot(forecast(taylor.fit))

End(Not run)

forecast.croston_model

Forecasts for intermittent demand using Croston’s method

Description

Returns forecasts and other information for Croston’s forecasts applied to y.

Usage

S3 method for class 'croston_model'
forecast(object, h = 10, ...)

croston(y, h = 10, alpha = 0.1, type = c("croston", "sba", "sbj"), x = y)

52 forecast.croston_model

Arguments

object An object of class croston_model as returned by croston_model().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

... Additional arguments affecting the forecasts produced. If model = NULL, forecast.ts
passes these to ets() or stlf() depending on the frequency of the time series.
If model is not NULL, the arguments are passed to the relevant modelling func-
tion.

y a numeric vector or univariate time series of class ts

alpha Value of alpha. Default value is 0.1.

type Which variant of Croston’s method to use. Defaults to "croston" for Croston’s
method, but can also be set to "sba" for the Syntetos-Boylan approximation,
and "sbj" for the Shale-Boylan-Johnston method.

x Deprecated. Included for backwards compatibility.

Details

Based on Croston’s (1972) method for intermittent demand forecasting, also described in Shenstone
and Hyndman (2005). Croston’s method involves using simple exponential smoothing (SES) on the
non-zero elements of the time series and a separate application of SES to the times between non-
zero elements of the time series. The smoothing parameters of the two applications of SES are
assumed to be equal and are denoted by alpha.

Note that prediction intervals are not computed as Croston’s method has no underlying stochastic
model.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

forecast.ets 53

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

References

Croston, J. (1972) "Forecasting and stock control for intermittent demands", Operational Research
Quarterly, 23(3), 289-303.

Shale, E.A., Boylan, J.E., & Johnston, F.R. (2006). Forecasting for intermittent demand: the esti-
mation of an unbiased average. Journal of the Operational Research Society, 57(5), 588-592.

Shenstone, L., and Hyndman, R.J. (2005) "Stochastic models underlying Croston’s method for
intermittent demand forecasting". Journal of Forecasting, 24, 389-402.

Syntetos A.A., Boylan J.E. (2001). On the bias of intermittent demand estimates. International
Journal of Production Economics, 71, 457–466.

See Also

ses().

Examples

y <- rpois(20, lambda = 0.3)
fcast <- croston(y)
autoplot(fcast)

forecast.ets Forecasting using ETS models

Description

Returns forecasts and other information for univariate ETS models.

Usage

S3 method for class 'ets'
forecast(
object,
h = if (object$m > 1) 2 * object$m else 10,
level = c(80, 95),
fan = FALSE,
simulate = FALSE,

54 forecast.ets

bootstrap = FALSE,
innov = NULL,
npaths = 5000,
PI = TRUE,
lambda = object$lambda,
biasadj = NULL,
...

)

Arguments

object An object of class ets. Usually the result of a call to ets().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

innov Optional matrix of future innovations to be used in simulations. Ignored if
simulate = FALSE. If provided, this overrides the bootstrap argument. The
matrix should have h rows and npaths columns.

npaths Number of sample paths used in computing simulated prediction intervals.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, simulate, bootstrap and npaths
are all ignored.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments are ignored.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

forecast.fracdiff 55

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

ets(), ses(), holt(), hw().

Examples

fit <- ets(USAccDeaths)
plot(forecast(fit, h = 48))

forecast.fracdiff Forecasting using ARIMA or ARFIMA models

Description

Returns forecasts and other information for univariate ARIMA models.

Usage

S3 method for class 'fracdiff'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
simulate = FALSE,
bootstrap = FALSE,
innov = NULL,

56 forecast.fracdiff

npaths = 5000,
lambda = object$lambda,
biasadj = attr(lambda, "biasadj"),
...

)

S3 method for class 'Arima'
forecast(
object,
h = if (object$arma[5] > 1) 2 * object$arma[5] else 10,
level = c(80, 95),
fan = FALSE,
xreg = NULL,
simulate = FALSE,
bootstrap = FALSE,
innov = NULL,
npaths = 5000,
lambda = object$lambda,
biasadj = attr(lambda, "biasadj"),
...

)

S3 method for class 'ar'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
simulate = FALSE,
bootstrap = FALSE,
innov = NULL,
npaths = 5000,
lambda = NULL,
biasadj = FALSE,
...

)

Arguments

object An object of class Arima, ar or fracdiff. Usually the result of a call to
stats::arima(), auto.arima(), stats::ar(), arfima() or fracdiff::fracdiff().

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

forecast.fracdiff 57

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

innov Optional matrix of future innovations to be used in simulations. Ignored if
simulate = FALSE. If provided, this overrides the bootstrap argument. The
matrix should have h rows and npaths columns.

npaths Number of sample paths used in computing simulated prediction intervals.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments are ignored.

xreg Future values of any regression variables. A numerical vector or matrix of ex-
ternal regressors; it should not be a data frame.

Details

For Arima or ar objects, the function calls stats::predict.Arima() or stats::predict.ar and con-
structs an object of class forecast from the results. For fracdiff objects, the calculations are all
done within fracdiff::fracdiff() using the equations given by Peiris and Perera (1988).

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

58 forecast.HoltWinters

Author(s)

Rob J Hyndman

References

Peiris, M. & Perera, B. (1988), On prediction with fractionally differenced ARIMA models, Journal
of Time Series Analysis, 9(3), 215-220.

See Also

stats::predict.Arima(), stats::predict.ar(), auto.arima(), Arima(), stats::arima(),
stats::ar(), arfima().

Examples

fit <- Arima(WWWusage, c(3, 1, 0))
plot(forecast(fit))

library(fracdiff)
x <- fracdiff.sim(100, ma = -0.4, d = 0.3)$series
fit <- arfima(x)
plot(forecast(fit, h = 30))

forecast.HoltWinters Forecasting using Holt-Winters objects

Description

Returns forecasts and other information for univariate Holt-Winters time series models.

Usage

S3 method for class 'HoltWinters'
forecast(
object,
h = if (frequency(object$x) > 1) 2 * frequency(object$x) else 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...

)

forecast.HoltWinters 59

Arguments

object An object of class HoltWinters. Usually the result of a call to stats::HoltWinters().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments are ignored.

Details

This function calls stats::predict.HoltWinters() and constructs an object of class forecast
from the results.

It is included for completeness, but the ets() is recommended for use instead of stats::HoltWinters.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

60 forecast.lm

Author(s)

Rob J Hyndman

See Also

stats::predict.HoltWinters, stats::HoltWinters().

Examples

fit <- HoltWinters(WWWusage, gamma = FALSE)
plot(forecast(fit))

forecast.lm Forecast a linear model with possible time series components

Description

forecast.lm is used to predict linear models, especially those involving trend and seasonality
components.

Usage

S3 method for class 'lm'
forecast(
object,
newdata,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = attr(lambda, "biasadj"),
ts = TRUE,
...

)

Arguments

object Object of class "lm", usually the result of a call to stats::lm() or tslm().

newdata An optional data frame in which to look for variables with which to predict.
If omitted, it is assumed that the only variables are trend and season, and h
forecasts are produced.

h Number of periods for forecasting. Ignored if newdata present.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

forecast.lm 61

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

ts If TRUE, the forecasts will be treated as time series provided the original data is
a time series; the newdata will be interpreted as related to the subsequent time
periods. If FALSE, any time series attributes of the original data will be ignored.

... Other arguments passed to stats::predict.lm().

Details

forecast.lm is largely a wrapper for stats::predict.lm() except that it allows variables "trend"
and "season" which are created on the fly from the time series characteristics of the data. Also, the
output is reformatted into a forecast object.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

62 forecast.mean_model

See Also

tslm(), stats::lm().

Examples

y <- ts(rnorm(120, 0, 3) + 1:120 + 20 * sin(2 * pi * (1:120) / 12), frequency = 12)
fit <- tslm(y ~ trend + season)
plot(forecast(fit, h = 20))

forecast.mean_model Mean Forecast

Description

Returns forecasts and prediction intervals for a Gaussian iid model. meanf() is a convenience
function that combines mean_model() and forecast().

Usage

S3 method for class 'mean_model'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = attr(object$lambda, "biasadj"),
bootstrap = FALSE,
npaths = 5000,
...

)

meanf(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
bootstrap = FALSE,
npaths = 5000,
x = y

)

forecast.mean_model 63

Arguments

object An object of class mean_model as returned by mean_model().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

npaths Number of sample paths used in computing simulated prediction intervals.

... Additional arguments not used.

y a numeric vector or univariate time series of class ts

x Deprecated. Included for backwards compatibility.

Details

The model assumes that the data are independent and identically distributed

Yt ∼ N(µ, σ2)

Forecasts are given by

Yn+h|n = µ

where µ is estimated by the sample mean.

The function summary() is used to obtain and print a summary of the results, while the func-
tion plot() produces a plot of the forecasts and prediction intervals. The generic accessor func-
tions stats::fitted() and stats::residuals() extract useful features of the object returned by
mean_model().

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

64 forecast.mlm

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

mean_model()

Examples

fit_nile <- mean_model(Nile)
fit_nile |> forecast(h = 10) |> autoplot()
nile.fcast <- meanf(Nile, h = 10)

forecast.mlm Forecast a multiple linear model with possible time series components

Description

forecast.mlm is used to predict multiple linear models, especially those involving trend and sea-
sonality components.

Usage

S3 method for class 'mlm'
forecast(
object,
newdata,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = attr(object$lambda, "biasadj"),
ts = TRUE,
...

)

forecast.mlm 65

Arguments

object Object of class "mlm", usually the result of a call to stats::lm() or tslm().

newdata An optional data frame in which to look for variables with which to predict.
If omitted, it is assumed that the only variables are trend and season, and h
forecasts are produced.

h Number of periods for forecasting. Ignored if newdata present.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

ts If TRUE, the forecasts will be treated as time series provided the original data is
a time series; the newdata will be interpreted as related to the subsequent time
periods. If FALSE, any time series attributes of the original data will be ignored.

... Other arguments passed to forecast.lm().

Details

forecast.mlm is largely a wrapper for forecast.lm() except that it allows forecasts to be gener-
ated on multiple series. Also, the output is reformatted into a mforecast object.

Value

An object of class mforecast.

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by forecast.lm.

An object of class mforecast is a list containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a multivariate time series

lower Lower limits for prediction intervals of each series

upper Upper limits for prediction intervals of each series

level The confidence values associated with the prediction intervals

x The historical data for the response variable.

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values

66 forecast.modelAR

Author(s)

Mitchell O’Hara-Wild

See Also

tslm(), forecast.lm(), stats::lm().

Examples

lungDeaths <- cbind(mdeaths, fdeaths)
fit <- tslm(lungDeaths ~ trend + season)
fcast <- forecast(fit, h = 10)

carPower <- as.matrix(mtcars[, c("qsec", "hp")])
carmpg <- mtcars[, "mpg"]
fit <- lm(carPower ~ carmpg)
fcast <- forecast(fit, newdata = data.frame(carmpg = 30))

forecast.modelAR Forecasting using user-defined model

Description

Returns forecasts and other information for user-defined models.

Usage

S3 method for class 'modelAR'
forecast(
object,
h = if (object$m > 1) 2 * object$m else 10,
PI = FALSE,
level = c(80, 95),
fan = FALSE,
xreg = NULL,
lambda = object$lambda,
bootstrap = FALSE,
innov = NULL,
npaths = 1000,
...

)

forecast.modelAR 67

Arguments

object An object of class modelAR resulting from a call to modelAR().

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all
ignored.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

xreg Future values of any regression variables. A numerical vector or matrix of ex-
ternal regressors; it should not be a data frame.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

innov Values to use as innovations for prediction intervals. Must be a matrix with
h rows and npaths columns (vectors are coerced into a matrix). If present,
bootstrap is ignored.

npaths Number of sample paths used in computing simulated prediction intervals.

... Additional arguments passed to simulate.nnetar().

Details

Prediction intervals are calculated through simulations and can be slow. Note that if the model is too
complex and overfits the data, the residuals can be arbitrarily small; if used for prediction interval
calculations, they could lead to misleadingly small values.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

68 forecast.mts

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman and Gabriel Caceres

See Also

nnetar().

forecast.mts Forecasting time series

Description

mforecast is a class of objects for forecasting from multivariate time series or multivariate time
series models. The function invokes particular methods which depend on the class of the first
argument.

Usage

S3 method for class 'mts'
forecast(
object,
h = if (frequency(object) > 1) 2 * frequency(object) else 10,
level = c(80, 95),
fan = FALSE,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
find.frequency = FALSE,
allow.multiplicative.trend = FALSE,
...

)

Arguments

object a multivariate time series or multivariate time series model for which forecasts
are required

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

forecast.mts 69

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

robust If TRUE, the function is robust to missing values and outliers in object. This
argument is only valid when object is of class mts.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

find.frequency If TRUE, the function determines the appropriate period, if the data is of unknown
period.

allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

... Additional arguments affecting the forecasts produced.

Details

For example, the function forecast.mlm() makes multivariate forecasts based on the results pro-
duced by tslm().

Value

An object of class mforecast.

The function summary is used to obtain and print a summary of the results, while the function plot
produces a plot of the multivariate forecasts and prediction intervals.

The generic accessors functions fitted.values and residuals extract various useful features of
the value returned by forecast$model.

An object of class mforecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series (either object itself or the time series used to create the
model stored as object).

residuals Residuals from the fitted model. For models with additive errors, the residuals
will be x minus the fitted values.

fitted Fitted values (one-step forecasts)

70 forecast.nnetar

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

Other functions which return objects of class mforecast are forecast.mlm(), forecast.varest().

forecast.nnetar Forecasting using neural network models

Description

Returns forecasts and other information for univariate neural network models.

Usage

S3 method for class 'nnetar'
forecast(
object,
h = if (object$m > 1) 2 * object$m else 10,
PI = FALSE,
level = c(80, 95),
fan = FALSE,
xreg = NULL,
lambda = object$lambda,
bootstrap = FALSE,
npaths = 1000,
innov = NULL,
...

)

Arguments

object An object of class nnetar resulting from a call to nnetar().

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

PI If TRUE, prediction intervals are produced, otherwise only point forecasts are
calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all
ignored.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

xreg Future values of any regression variables. A numerical vector or matrix of ex-
ternal regressors; it should not be a data frame.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

forecast.nnetar 71

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

npaths Number of sample paths used in computing simulated prediction intervals.

innov Values to use as innovations for prediction intervals. Must be a matrix with
h rows and npaths columns (vectors are coerced into a matrix). If present,
bootstrap is ignored.

... Additional arguments passed to simulate.nnetar().

Details

Prediction intervals are calculated through simulations and can be slow. Note that if the network
is too complex and overfits the data, the residuals can be arbitrarily small; if used for prediction
interval calculations, they could lead to misleadingly small values. It is possible to use out-of-
sample residuals to ameliorate this, see examples.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman and Gabriel Caceres

See Also

nnetar().

72 forecast.rw_model

Examples

Fit & forecast model
fit <- nnetar(USAccDeaths, size = 2)
fcast <- forecast(fit, h = 20)
plot(fcast)

Not run:
Include prediction intervals in forecast
fcast2 <- forecast(fit, h = 20, PI = TRUE, npaths = 100)
plot(fcast2)

Set up out-of-sample innovations using cross-validation
fit_cv <- CVar(USAccDeaths, size = 2)
res_sd <- sd(fit_cv$residuals, na.rm = TRUE)
myinnovs <- rnorm(20 * 100, mean = 0, sd = res_sd)
Forecast using new innovations
fcast3 <- forecast(fit, h = 20, PI = TRUE, npaths = 100, innov = myinnovs)
plot(fcast3)

End(Not run)

forecast.rw_model Naive and Random Walk Forecasts

Description

Returns forecasts and prediction intervals for a generalized random walk model. rwf() is a con-
venience function that combines rw_model() and forecast(). naive() is a wrapper to rwf()
with drift=FALSE and lag=1, while snaive() is a wrapper to rwf() with drift=FALSE and
lag=frequency(y).

Usage

S3 method for class 'rw_model'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
simulate = FALSE,
bootstrap = FALSE,
npaths = 5000,
innov = NULL,
lambda = object$lambda,
biasadj = FALSE,
...

)

forecast.rw_model 73

rwf(
y,
h = 10,
drift = FALSE,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
lag = 1,
...,
x = y

)

naive(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y

)

snaive(
y,
h = 2 * frequency(x),
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y

)

Arguments

object An object of class rw_model returned by rw_model().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

74 forecast.rw_model

npaths Number of sample paths used in computing simulated prediction intervals.

innov Optional matrix of future innovations to be used in simulations. Ignored if
simulate = FALSE. If provided, this overrides the bootstrap argument. The
matrix should have h rows and npaths columns.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Additional arguments not used.

y a numeric vector or univariate time series of class ts

drift Logical flag. If TRUE, fits a random walk with drift model.

lag Lag parameter. lag = 1 corresponds to a standard random walk (giving naive
forecasts if drift = FALSE or drift forecasts if drift = TRUE), while lag = m
corresponds to a seasonal random walk where m is the seasonal period (giving
seasonal naive forecasts if drift = FALSE).

x Deprecated. Included for backwards compatibility.

Details

The model assumes that

Yt = Yt−p + c+ εt

where p is the lag parameter, c is the drift parameter, and εt ∼ N(0, σ2) are iid.

The model without drift has c = 0. In the model with drift, c is estimated by the sample mean of
the differences Yt − Yt−p.

If p = 1, this is equivalent to an ARIMA(0,1,0) model with an optional drift coefficient. For p > 1,
it is equivalent to an ARIMA(0,0,0)(0,1,0)p model.

The forecasts are given by

YT+h|T = YT+h−p(k+1) + ch

where k is the integer part of (h−1)/p. For a regular random walk, p = 1 and c = 0, so all forecasts
are equal to the last observation. Forecast standard errors allow for uncertainty in estimating the
drift parameter (unlike the corresponding forecasts obtained by fitting an ARIMA model directly).

The generic accessor functions stats::fitted() and stats::residuals() extract useful fea-
tures of the object returned.

Value

An object of class forecast.

forecast.rw_model 75

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

rw_model(), Arima()

Examples

Three ways to do the same thing
gold_model <- rw_model(gold)
gold_fc1 <- forecast(gold_model, h = 50)
gold_fc2 <- rwf(gold, h = 50)
gold_fc3 <- naive(gold, h = 50)

Plot the forecasts
autoplot(gold_fc1)

Drift forecasts
rwf(gold, drift = TRUE) |> autoplot()

Seasonal naive forecasts
snaive(wineind) |> autoplot()

76 forecast.spline_model

forecast.spline_model Returns local linear forecasts and prediction intervals using cubic
smoothing splines estimated with spline_model().

Description

The cubic smoothing spline model is equivalent to an ARIMA(0,2,2) model but with a restricted
parameter space. The advantage of the spline model over the full ARIMA model is that it provides
a smooth historical trend as well as a linear forecast function. Hyndman, King, Pitrun, and Bil-
lah (2002) show that the forecast performance of the method is hardly affected by the restricted
parameter space.

Usage

S3 method for class 'spline_model'
forecast(
object,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = attr(lambda, "biasadj"),
simulate = FALSE,
bootstrap = FALSE,
innov = NULL,
npaths = 5000,
...

)

splinef(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
method = c("gcv", "mle"),
x = y

)

Arguments

object An object of class spline_model, produced using spline_model().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

forecast.spline_model 77

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.
lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation

is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae. Errors are assumed to be normally distributed.

bootstrap If TRUE, then prediction intervals are produced by simulation using resampled
errors (rather than normally distributed errors). Ignored if innov is not NULL.

innov Optional matrix of future innovations to be used in simulations. Ignored if
simulate = FALSE. If provided, this overrides the bootstrap argument. The
matrix should have h rows and npaths columns.

npaths Number of sample paths used in computing simulated prediction intervals.
... Other arguments are ignored.
y a numeric vector or univariate time series of class ts
method fitting method: maximum likelihood or minimize conditional sum-of-squares.

The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

x Deprecated. Included for backwards compatibility.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model
method The name of the forecasting method as a character string
mean Point forecasts as a time series
lower Lower limits for prediction intervals
upper Upper limits for prediction intervals
level The confidence values associated with the prediction intervals
x The original time series.
residuals Residuals from the fitted model. For models with additive errors, the residuals will be x

minus the fitted values.
fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

78 forecast.stl

Author(s)

Rob J Hyndman

References

Hyndman, King, Pitrun and Billah (2005) Local linear forecasts using cubic smoothing splines.
Australian and New Zealand Journal of Statistics, 47(1), 87-99. https://robjhyndman.com/
publications/splinefcast/.

See Also

spline_model()

Examples

fit <- spline_model(uspop)
fcast <- forecast(fit)
autoplot(fcast)
summary(fcast)

forecast.stl Forecasting using stl objects

Description

Forecasts of STL objects are obtained by applying a non-seasonal forecasting method to the sea-
sonally adjusted data and re-seasonalizing using the last year of the seasonal component.

Usage

S3 method for class 'stl'
forecast(
object,
method = c("ets", "arima", "naive", "rwdrift"),
etsmodel = "ZZN",
forecastfunction = NULL,
h = frequency(object$time.series) * 2,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
xreg = NULL,
newxreg = NULL,
allow.multiplicative.trend = FALSE,
...

)

https://robjhyndman.com/publications/splinefcast/
https://robjhyndman.com/publications/splinefcast/

forecast.stl 79

S3 method for class 'stlm'
forecast(
object,
h = 2 * object$m,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = attr(lambda, "biasadj"),
newxreg = NULL,
allow.multiplicative.trend = FALSE,
...

)

stlf(
y,
h = frequency(x) * 2,
s.window = 7 + 4 * seq(6),
t.window = NULL,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

Arguments

object An object of class stl or stlm. Usually the result of a call to stats::stl() or
stlm.

method Method to use for forecasting the seasonally adjusted series.

etsmodel The ets model specification passed to ets(). By default it allows any non-
seasonal model. If method != "ets", this argument is ignored.

forecastfunction

An alternative way of specifying the function for forecasting the seasonally ad-
justed series. If forecastfunction is not NULL, then method is ignored. Other-
wise method is used to specify the forecasting method to be used.

h Number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-

80 forecast.stl

formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

xreg Historical regressors to be used in auto.arima() when method = "arima".

newxreg Future regressors to be used in forecast.Arima().
allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

... Other arguments passed to forecast.stl, modelfunction or forecastfunction.

y a numeric vector or univariate time series of class ts

s.window Either the character string "periodic" or the span (in lags) of the loess window
for seasonal extraction.

t.window A number to control the smoothness of the trend. See stats::stl() for details.

robust If TRUE, robust fitting will used in the loess procedure within stats::stl().

x Deprecated. Included for backwards compatibility.

Details

forecast.stlm forecasts the seasonally adjusted data, then re-seasonalizes the results by adding
back the last year of the estimated seasonal component.

stlf combines stlm() and forecast.stlm. It takes a ts argument, applies an STL decomposition,
models the seasonally adjusted data, reseasonalizes, and returns the forecasts. However, it allows
more general forecasting methods to be specified via forecastfunction.

forecast.stl is similar to stlf except that it takes the STL decomposition as the first argument,
instead of the time series.

Note that the prediction intervals ignore the uncertainty associated with the seasonal component.
They are computed using the prediction intervals from the seasonally adjusted series, which are
then reseasonalized using the last year of the seasonal component. The uncertainty in the seasonal
component is ignored.

The forecasting method for the seasonally adjusted data can be specified in stlf and forecast.stl
using either method or forecastfunction. The method argument provides a shorthand way of
specifying forecastfunction for a few special cases. More generally, forecastfunction can
be any function with first argument a ts object, and other h and level, which returns an object
of class forecast(). For example, forecastfunction = thetaf uses the thetaf() function for
forecasting the seasonally adjusted series.

Value

stlm returns an object of class stlm. The other functions return objects of class forecast.

There are many methods for working with forecast() objects including summary to obtain and
print a summary of the results, while plot produces a plot of the forecasts and prediction intervals.
The generic accessor functions fitted.values and residuals extract useful features.

Author(s)

Rob J Hyndman

forecast.StructTS 81

See Also

stats::stl(), forecast.ets(), forecast.Arima().

Examples

tsmod <- stlm(USAccDeaths, modelfunction = ar)
plot(forecast(tsmod, h = 36))

decomp <- stl(USAccDeaths, s.window = "periodic")
plot(forecast(decomp))

plot(stlf(AirPassengers, lambda = 0))

forecast.StructTS Forecasting using Structural Time Series models

Description

Returns forecasts and other information for univariate structural time series models.

Usage

S3 method for class 'StructTS'
forecast(
object,
h = if (object$coef["epsilon"] > 1e-10) 2 * object$xtsp[3] else 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...

)

Arguments

object An object of class StructTS. Usually the result of a call to stats::StructTS().
h Number of periods for forecasting. Default value is twice the largest seasonal

period (for seasonal data) or ten (for non-seasonal data).
level Confidence levels for prediction intervals.
fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.
lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation

is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments are ignored.

82 forecast.StructTS

Details

This function calls predict.StructTS and constructs an object of class forecast from the results.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

stats::StructTS().

Examples

fit <- StructTS(WWWusage, "level")
plot(forecast(fit))

forecast.theta_model 83

forecast.theta_model Theta method forecasts.

Description

Returns forecasts and prediction intervals for a theta method forecast. thetaf() is a convenience
function that combines theta_model() and forecast.theta_model(). The theta method of As-
simakopoulos and Nikolopoulos (2000) is equivalent to simple exponential smoothing with drift
(Hyndman and Billah, 2003). The series is tested for seasonality using the test outlined in A&N.
If deemed seasonal, the series is seasonally adjusted using a classical multiplicative decomposi-
tion before applying the theta method. The resulting forecasts are then reseasonalized. Prediction
intervals are computed using the underlying state space model.

Usage

S3 method for class 'theta_model'
forecast(
object,
h = if (frequency(object$y) > 1) 2 * frequency(object$y) else 10,
level = c(80, 95),
fan = FALSE,
lambda = object$lambda,
biasadj = FALSE,
...

)

thetaf(
y,
h = if (frequency(y) > 1) 2 * frequency(y) else 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

Arguments

object An object of class theta_model created by theta_model().

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

84 forecast.theta_model

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments passed to forecast.ets.

y a numeric vector or univariate time series of class ts

x Deprecated. Included for backwards compatibility.

Details

More general theta methods are available in the forecTheta package.

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

https://CRAN.R-project.org/package=forecTheta

forecast.ts 85

References

Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model: a decomposition approach to
forecasting. International Journal of Forecasting 16, 521-530.

Hyndman, R.J., and Billah, B. (2003) Unmasking the Theta method. International J. Forecasting,
19, 287-290.

See Also

stats::arima(), meanf(), rwf(), ses()

Examples

nile_fit <- theta_model(Nile)
forecast(nile_fit) |> autoplot()

forecast.ts Forecasting time series

Description

forecast is a generic function for forecasting from time series or time series models. The function
invokes particular methods which depend on the class of the first argument.

Usage

S3 method for class 'ts'
forecast(
object,
h = if (frequency(object) > 1) 2 * frequency(object) else 10,
level = c(80, 95),
fan = FALSE,
robust = FALSE,
lambda = NULL,
biasadj = FALSE,
find.frequency = FALSE,
allow.multiplicative.trend = FALSE,
model = NULL,
...

)

Default S3 method:
forecast(object, ...)

S3 method for class 'forecast'
print(x, ...)

86 forecast.ts

Arguments

object a time series or time series model for which forecasts are required.

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

robust If TRUE, the function is robust to missing values and outliers in object. This
argument is only valid when object is of class ts.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

find.frequency If TRUE, the function determines the appropriate period, if the data is of unknown
period.

allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

model An object describing a time series model; e.g., one of of class ets, Arima, bats,
bats, or nnetar.

... Additional arguments affecting the forecasts produced. If model = NULL, forecast.ts
passes these to ets() or stlf() depending on the frequency of the time series.
If model is not NULL, the arguments are passed to the relevant modelling func-
tion.

x a numeric vector or time series of class ts.

Details

For example, the function forecast.Arima() makes forecasts based on the results produced by
stats::arima().

If model = NULL,the function forecast.ts() makes forecasts using ets() models (if the data are
non-seasonal or the seasonal period is 12 or less) or stlf() (if the seasonal period is 13 or more).

If model is not NULL, forecast.ts will apply the model to the object time series, and then generate
forecasts accordingly.

Value

An object of class forecast.

fourier 87

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

Other functions which return objects of class forecast are forecast.ets(), forecast.Arima(),
forecast.HoltWinters(), forecast.StructTS(), meanf(), rwf(), splinef(), thetaf(), croston(),
ses(), holt(), hw().

Examples

WWWusage |> forecast() |> plot()
fit <- ets(window(WWWusage, end = 60))
fc <- forecast(WWWusage, model = fit)

fourier Fourier terms for modelling seasonality

Description

fourier returns a matrix containing terms from a Fourier series, up to order K, suitable for use in
Arima(), auto.arima(), or tslm().

88 fourier

Usage

fourier(x, K, h = NULL)

fourierf(x, K, h)

Arguments

x Seasonal time series: a ts or a msts object

K Maximum order(s) of Fourier terms

h Number of periods ahead to forecast (optional)

Details

fourierf is deprecated, instead use the h argument in fourier.

The period of the Fourier terms is determined from the time series characteristics of x. When h is
missing, the length of x also determines the number of rows for the matrix returned by fourier.
Otherwise, the value of h determines the number of rows for the matrix returned by fourier,
typically used for forecasting. The values within x are not used.

Typical use would omit h when generating Fourier terms for training a model and include h when
generating Fourier terms for forecasting.

When x is a ts object, the value of K should be an integer and specifies the number of sine and
cosine terms to return. Thus, the matrix returned has 2*K columns.

When x is a msts object, then K should be a vector of integers specifying the number of sine
and cosine terms for each of the seasonal periods. Then the matrix returned will have 2*sum(K)
columns.

Value

Numerical matrix.

Author(s)

Rob J Hyndman

See Also

seasonaldummy()

Examples

library(ggplot2)

Using Fourier series for a "ts" object
K is chosen to minimize the AICc
deaths.model <- auto.arima(

USAccDeaths,
xreg = fourier(USAccDeaths, K = 5),
seasonal = FALSE

gas 89

)
deaths.fcast <- forecast(

deaths.model,
xreg = fourier(USAccDeaths, K = 5, h = 36)

)
autoplot(deaths.fcast) + xlab("Year")

Using Fourier series for a "msts" object
taylor.lm <- tslm(taylor ~ fourier(taylor, K = c(3, 3)))
taylor.fcast <- forecast(

taylor.lm,
data.frame(fourier(taylor, K = c(3, 3), h = 270))

)
autoplot(taylor.fcast)

gas Australian monthly gas production

Description

Australian monthly gas production: 1956–1995.

Usage

gas

Format

Time series data

Source

Australian Bureau of Statistics.

Examples

plot(gas)
seasonplot(gas)
tsdisplay(gas)

90 getResponse

getResponse Get response variable from time series model.

Description

getResponse is a generic function for extracting the historical data from a time series model (in-
cluding Arima, ets, ar, fracdiff), a linear model of class lm, or a forecast object. The function
invokes particular methods which depend on the class of the first argument.

Usage

getResponse(object, ...)

Default S3 method:
getResponse(object, ...)

S3 method for class 'lm'
getResponse(object, ...)

S3 method for class 'Arima'
getResponse(object, ...)

S3 method for class 'fracdiff'
getResponse(object, ...)

S3 method for class 'ar'
getResponse(object, ...)

S3 method for class 'tbats'
getResponse(object, ...)

S3 method for class 'bats'
getResponse(object, ...)

S3 method for class 'mforecast'
getResponse(object, ...)

S3 method for class 'baggedModel'
getResponse(object, ...)

Arguments

object a time series model or forecast object.
... Additional arguments that are ignored.

Value

A numerical vector or a time series object of class ts.

gghistogram 91

Author(s)

Rob J Hyndman

gghistogram Histogram with optional normal and kernel density functions

Description

Plots a histogram and density estimates using ggplot.

Usage

gghistogram(
x,
add.normal = FALSE,
add.kde = FALSE,
add.rug = TRUE,
bins,
boundary = 0

)

Arguments

x a numerical vector.
add.normal Add a normal density function for comparison
add.kde Add a kernel density estimate for comparison
add.rug Add a rug plot on the horizontal axis
bins The number of bins to use for the histogram. Selected by default using the

Friedman-Diaconis rule given by grDevices::nclass.FD()

boundary A boundary between two bins.

Value

None.

Author(s)

Rob J Hyndman

See Also

graphics::hist(), ggplot2::geom_histogram()

Examples

gghistogram(lynx, add.kde = TRUE)

92 gglagplot

gglagplot Time series lag ggplots

Description

Plots a lag plot using ggplot.

Usage

gglagplot(
x,
lags = if (frequency(x) > 9) 16 else 9,
set.lags = 1:lags,
diag = TRUE,
diag.col = "gray",
do.lines = TRUE,
colour = TRUE,
continuous = frequency(x) > 12,
labels = FALSE,
seasonal = TRUE,
...

)

gglagchull(
x,
lags = if (frequency(x) > 1) min(12, frequency(x)) else 4,
set.lags = 1:lags,
diag = TRUE,
diag.col = "gray",
...

)

Arguments

x a time series object (type ts).
lags number of lag plots desired, see arg set.lags.
set.lags vector of positive integers specifying which lags to use.
diag logical indicating if the x=y diagonal should be drawn.
diag.col color to be used for the diagonal if(diag).
do.lines if TRUE, lines will be drawn, otherwise points will be drawn.
colour logical indicating if lines should be coloured.
continuous Should the colour scheme for years be continuous or discrete?
labels logical indicating if labels should be used.
seasonal Should the line colour be based on seasonal characteristics (TRUE), or sequential

(FALSE).
... Not used (for consistency with lag.plot)

ggmonthplot 93

Details

"gglagplot" will plot time series against lagged versions of themselves. Helps visualising ’auto-
dependence’ even when auto-correlations vanish.

"gglagchull" will layer convex hulls of the lags, layered on a single plot. This helps visualise the
change in ’auto-dependence’ as lags increase.

Value

None.

Author(s)

Mitchell O’Hara-Wild

See Also

stats::lag.plot()

Examples

gglagplot(woolyrnq)
gglagplot(woolyrnq, seasonal = FALSE)

lungDeaths <- cbind(mdeaths, fdeaths)
gglagplot(lungDeaths, lags = 2)
gglagchull(lungDeaths, lags = 6)

gglagchull(woolyrnq)

ggmonthplot Create a seasonal subseries ggplot

Description

Plots a subseries plot using ggplot. Each season is plotted as a separate mini time series. The blue
lines represent the mean of the observations within each season.

Usage

ggmonthplot(x, labels = NULL, times = time(x), phase = cycle(x), ...)

ggsubseriesplot(x, labels = NULL, times = time(x), phase = cycle(x), ...)

94 ggseasonplot

Arguments

x a time series object (type ts).

labels A vector of labels to use for each ’season’

times A vector of times for each observation

phase A vector of seasonal components

... Not used (for consistency with monthplot)

Details

The ggmonthplot function is simply a wrapper for ggsubseriesplot as a convenience for users
familiar with stats::monthplot().

Value

Returns an object of class ggplot.

Author(s)

Mitchell O’Hara-Wild

See Also

stats::monthplot()

Examples

ggsubseriesplot(AirPassengers)
ggsubseriesplot(woolyrnq)

ggseasonplot Seasonal plot

Description

Plots a seasonal plot as described in Hyndman and Athanasopoulos (2014, chapter 2). This is like a
time plot except that the data are plotted against the seasons in separate years.

Usage

ggseasonplot(
x,
season.labels = NULL,
year.labels = FALSE,
year.labels.left = FALSE,
type = NULL,

ggseasonplot 95

col = NULL,
continuous = FALSE,
polar = FALSE,
labelgap = 0.04,
...

)

seasonplot(
x,
s,
season.labels = NULL,
year.labels = FALSE,
year.labels.left = FALSE,
type = "o",
main,
xlab = NULL,
ylab = "",
col = 1,
labelgap = 0.1,
...

)

Arguments

x a numeric vector or time series of class ts.

season.labels Labels for each season in the "year".

year.labels Logical flag indicating whether labels for each year of data should be plotted on
the right.

year.labels.left

Logical flag indicating whether labels for each year of data should be plotted on
the left.

type plot type (as for graphics::plot()). Not yet supported for ggseasonplot.

col Colour

continuous Should the colour scheme for years be continuous or discrete?

polar Plot the graph on seasonal coordinates

labelgap Distance between year labels and plotted lines

... additional arguments to graphics::plot().

s seasonal frequency of x.

main Main title.

xlab X-axis label.

ylab Y-axis label.

Value

None.

96 ggtsdisplay

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

stats::monthplot()

Examples

ggseasonplot(AirPassengers, col = rainbow(12), year.labels = TRUE)
ggseasonplot(AirPassengers, year.labels = TRUE, continuous = TRUE)

seasonplot(AirPassengers, col = rainbow(12), year.labels = TRUE)

ggtsdisplay Time series display

Description

Plots a time series along with its acf and either its pacf, lagged scatterplot or spectrum.

Usage

ggtsdisplay(
x,
plot.type = c("partial", "histogram", "scatter", "spectrum"),
points = TRUE,
smooth = FALSE,
lag.max,
na.action = na.contiguous,
theme = NULL,
...

)

tsdisplay(
x,
plot.type = c("partial", "histogram", "scatter", "spectrum"),
points = TRUE,
ci.type = c("white", "ma"),
lag.max,
na.action = na.contiguous,

https://otexts.com/fpp2/

ggtsdisplay 97

main = NULL,
xlab = "",
ylab = "",
pch = 1,
cex = 0.5,
...

)

Arguments

x a numeric vector or time series of class ts.
plot.type type of plot to include in lower right corner.
points logical flag indicating whether to show the individual points or not in the time

plot.
smooth logical flag indicating whether to show a smooth loess curve superimposed on

the time plot.
lag.max the maximum lag to plot for the acf and pacf. A suitable value is selected by

default if the argument is missing.
na.action function to handle missing values in acf, pacf and spectrum calculations. The de-

fault is stats::na.contiguous(). Useful alternatives are stats::na.pass()
and na.interp().

theme Adds a ggplot element to each plot, typically a theme.
... additional arguments to stats::acf().
ci.type type of confidence limits for ACF that is passed to stats::acf(). Should the

confidence limits assume a white noise input or for lag k an MA(k − 1) input?
main Main title.
xlab X-axis label.
ylab Y-axis label.
pch Plotting character.
cex Character size.

Details

ggtsdisplay will produce the equivalent plot using ggplot graphics.

Value

None.

Author(s)

Rob J Hyndman

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

https://otexts.com/fpp2/

98 is.acf

See Also

stats::plot.ts(), Acf(), stats::spec.ar()

Examples

library(ggplot2)
ggtsdisplay(USAccDeaths, plot.type = "scatter", theme = theme_bw())

tsdisplay(diff(WWWusage))
ggtsdisplay(USAccDeaths, plot.type = "scatter")

gold Daily morning gold prices

Description

Daily morning gold prices in US dollars. 1 January 1985 – 31 March 1989.

Usage

gold

Format

Time series data

Examples

tsdisplay(gold)

is.acf Is an object a particular model type?

Description

Returns true if the model object is of a particular type

is.constant 99

Usage

is.acf(x)

is.Arima(x)

is.baggedModel(x)

is.bats(x)

is.ets(x)

is.modelAR(x)

is.stlm(x)

is.nnetar(x)

is.nnetarmodels(x)

Arguments

x object to be tested

is.constant Is an object constant?

Description

Returns true if the object’s numerical values do not vary.

Usage

is.constant(x)

Arguments

x Object to be tested.

100 ma

is.forecast Is an object a particular forecast type?

Description

Returns true if the forecast object is of a particular type

Usage

is.forecast(x)

is.mforecast(x)

is.splineforecast(x)

Arguments

x object to be tested

ma Moving-average smoothing

Description

ma computes a simple moving average smoother of a given time series.

Usage

ma(x, order, centre = TRUE)

Arguments

x Univariate time series

order Order of moving average smoother

centre If TRUE, then the moving average is centred for even orders.

Details

The moving average smoother averages the nearest order periods of each observation. As neigh-
bouring observations of a time series are likely to be similar in value, averaging eliminates some of
the randomness in the data, leaving a smooth trend-cycle component.

T̂t =
1

m

k∑
j=−k

yt+j

mean_model 101

where k = m−1
2 .

When an even order is specified, the observations averaged will include one more observation from
the future than the past (k is rounded up). If centre is TRUE, the value from two moving averages
(where k is rounded up and down respectively) are averaged, centering the moving average.

Value

Numerical time series object containing the simple moving average smoothed values.

Author(s)

Rob J Hyndman

See Also

stats::decompose()

Examples

plot(wineind)
sm <- ma(wineind, order = 12)
lines(sm, col = "red")

mean_model Mean Forecast Model

Description

Fits a Gaussian iid model to a univariate time series.

Usage

mean_model(y, lambda = NULL, biasadj = FALSE)

Arguments

y a numeric vector or univariate time series of class ts

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

102 mean_model

Details

The model assumes that the data are independent and identically distributed

Yt ∼ N(µ, σ2)

Forecasts are given by

Yn+h|n = µ

where µ is estimated by the sample mean.

The function summary() is used to obtain and print a summary of the results, while the func-
tion plot() produces a plot of the forecasts and prediction intervals. The generic accessor func-
tions stats::fitted() and stats::residuals() extract useful features of the object returned by
mean_model().

Value

An object of class mean_model.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

See Also

forecast.mean_model(), meanf()

modelAR 103

Examples

fit_nile <- mean_model(Nile)
fit_nile |> forecast(h = 10) |> autoplot()

modelAR Time Series Forecasts with a user-defined model

Description

Experimental function to forecast univariate time series with a user-defined model

Usage

modelAR(
y,
p,
P = 1,
FUN,
predict.FUN,
xreg = NULL,
lambda = NULL,
model = NULL,
subset = NULL,
scale.inputs = FALSE,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

p Embedding dimension for non-seasonal time series. Number of non-seasonal
lags used as inputs. For non-seasonal time series, the default is the optimal
number of lags (according to the AIC) for a linear AR(p) model. For seasonal
time series, the same method is used but applied to seasonally adjusted data
(from an stl decomposition).

P Number of seasonal lags used as inputs.

FUN Function used for model fitting. Must accept argument x and y for the predictors
and response, respectively (formula object not currently supported).

predict.FUN Prediction function used to apply FUN to new data. Must accept an object of
class FUN as its first argument, and a data frame or matrix of new data for its
second argument. Additionally, it should return fitted values when new data is
omitted.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

104 modelAR

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

model Output from a previous call to nnetar. If model is passed, this same model is
fitted to y without re-estimating any parameters.

subset Optional vector specifying a subset of observations to be used in the fit. Can be
an integer index vector or a logical vector the same length as y. All observations
are used by default.

scale.inputs If TRUE, inputs are scaled by subtracting the column means and dividing by their
respective standard deviations. If lambda is not NULL, scaling is applied after
Box-Cox transformation.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to FUN for modelAR.

Details

This is an experimental function and only recommended for advanced users. The selected model is
fitted with lagged values of y as inputs. The inputs are for lags 1 to p, and lags mtomPwherem
= frequency(y). If xregis provided, its columns are also used as inputs. If there are missing values inyorxreg‘,
the corresponding rows (and any others which depend on them as lags) are omitted from the fit. The
model is trained for one-step forecasting. Multi-step forecasts are computed recursively.

Value

Returns an object of class modelAR.

The function summary is used to obtain and print a summary of the results.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by modelAR.

model A list containing information about the fitted model

method The name of the forecasting method as a character string

x The original time series.

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

modeldf 105

Examples

Set up functions
my_lm <- function(x, y) {
structure(lsfit(x,y), class = "lsfit")

}
predict.lsfit <- function(object, newdata = NULL) {

n <- length(objectqrqt)
if(is.null(newdata)) {
z <- numeric(n)
z[seq_len(objectqrrank)] <- objectqrqt[seq_len(objectqrrank)]
as.numeric(qr.qy(object$qr, z))

} else {
sum(object$coefficients * c(1, newdata))

}
}
Fit an AR(2) model
fit <- modelAR(

y = lynx,
p = 2,
FUN = my_lm,
predict.FUN = predict.lsfit,
lambda = 0.5,
scale.inputs = TRUE

)
forecast(fit, h = 20) |> autoplot()

modeldf Compute model degrees of freedom

Description

Compute model degrees of freedom

Usage

modeldf(object, ...)

Arguments

object A time series model.

... Other arguments currently ignored.

106 monthdays

monthdays Number of days in each season

Description

Returns number of days in each month or quarter of the observed time period.

Usage

monthdays(x)

Arguments

x time series

Details

Useful for month length adjustments

Value

Time series

Author(s)

Rob J Hyndman

See Also

bizdays()

Examples

par(mfrow = c(2, 1))
plot(

ldeaths,
xlab = "Year",
ylab = "pounds",
main = "Monthly deaths from lung disease (UK)"

)
ldeaths.adj <- ldeaths / monthdays(ldeaths) * 365.25 / 12
plot(

ldeaths.adj,
xlab = "Year",
ylab = "pounds",
main = "Adjusted monthly deaths from lung disease (UK)"

)

mstl 107

mstl Multiple seasonal decomposition

Description

Decompose a time series into seasonal, trend and remainder components. Seasonal components
are estimated iteratively using STL. Multiple seasonal periods are allowed. The trend component
is computed for the last iteration of STL. Non-seasonal time series are decomposed into trend and
remainder only. In this case, stats::supsmu() is used to estimate the trend. Optionally, the
time series may be Box-Cox transformed before decomposition. Unlike stats::stl(), mstl is
completely automated.

Usage

mstl(
x,
lambda = NULL,
biasadj = FALSE,
iterate = 2,
s.window = 7 + 4 * seq(6),
...

)

Arguments

x Univariate time series of class msts or ts.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

iterate Number of iterations to use to refine the seasonal component.

s.window Seasonal windows to be used in the decompositions. If scalar, the same value is
used for all seasonal components. Otherwise, it should be a vector of the same
length as the number of seasonal components (or longer).

... Other arguments are passed to stats::stl().

See Also

stats::stl(), stats::supsmu()

108 msts

Examples

library(ggplot2)
mstl(taylor) |> autoplot()
mstl(AirPassengers, lambda = "auto") |> autoplot()

msts Multi-Seasonal Time Series

Description

msts is an S3 class for multi seasonal time series objects, intended to be used for models that
support multiple seasonal periods. The msts class inherits from the ts class and has an additional
"msts" attribute which contains the vector of seasonal periods. All methods that work on a ts class,
should also work on a msts class.

Usage

msts(data, seasonal.periods, ts.frequency = floor(max(seasonal.periods)), ...)

Arguments

data A numeric vector, ts object, matrix or data frame. It is intended that the time
series data is univariate, otherwise treated the same as ts().

seasonal.periods

A vector of the seasonal periods of the msts.

ts.frequency The seasonal period that should be used as frequency of the underlying ts object.
The default value is max(seasonal.periods).

... Arguments to be passed to the underlying call to ts(). For example start=c(1987,
5).

Value

An object of class c("msts", "ts"). If there is only one seasonal period (i.e., length(seasonal.periods)
== 1), then the object is of class ts.

Author(s)

Slava Razbash and Rob J Hyndman

Examples

x <- msts(taylor, seasonal.periods = c(2 * 24, 2 * 24 * 7, 2 * 24 * 365), start = 2000 + 22 / 52)
y <- msts(USAccDeaths, seasonal.periods = 12, start = 1949)

na.interp 109

na.interp Interpolate missing values in a time series

Description

By default, uses linear interpolation for non-seasonal series. For seasonal series, a robust STL
decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted
data, and the seasonal component is added back.

Usage

na.interp(
x,
lambda = NULL,
linear = (frequency(x) <= 1 || sum(!is.na(x)) <= 2 * frequency(x))

)

Arguments

x Time series.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

linear Should a linear interpolation be used.

Details

A more general and flexible approach is available using na.approx in the zoo package.

Value

Time series

Author(s)

Rob J Hyndman

See Also

tsoutliers()

Examples

data(gold)
plot(na.interp(gold))

https://CRAN.R-project.org/package=zoo

110 ndiffs

ndiffs Number of differences required for a stationary series

Description

Functions to estimate the number of differences required to make a given time series stationary.
ndiffs estimates the number of first differences necessary.

Usage

ndiffs(
x,
alpha = 0.05,
test = c("kpss", "adf", "pp"),
type = c("level", "trend"),
max.d = 2,
...

)

Arguments

x A univariate time series

alpha Level of the test, possible values range from 0.01 to 0.1.

test Type of unit root test to use

type Specification of the deterministic component in the regression

max.d Maximum number of non-seasonal differences allowed

... Additional arguments to be passed on to the unit root test

Details

ndiffs uses a unit root test to determine the number of differences required for time series x to
be made stationary. If test = "kpss", the KPSS test is used with the null hypothesis that x has a
stationary root against a unit-root alternative. Then the test returns the least number of differences
required to pass the test at the level alpha. If test = "adf", the Augmented Dickey-Fuller test is
used and if test = "pp" the Phillips-Perron test is used. In both of these cases, the null hypothesis
is that x has a unit root against a stationary root alternative. Then the test returns the least number
of differences required to fail the test at the level alpha.

Value

An integer indicating the number of differences required for stationarity.

Author(s)

Rob J Hyndman, Slava Razbash & Mitchell O’Hara-Wild

nnetar 111

References

Dickey DA and Fuller WA (1979), "Distribution of the Estimators for Autoregressive Time Series
with a Unit Root", Journal of the American Statistical Association 74:427-431.

Kwiatkowski D, Phillips PCB, Schmidt P and Shin Y (1992) "Testing the Null Hypothesis of Sta-
tionarity against the Alternative of a Unit Root", Journal of Econometrics 54:159-178.

Osborn, D.R. (1990) "A survey of seasonality in UK macroeconomic variables", International Jour-
nal of Forecasting, 6:327-336.

Phillips, P.C.B. and Perron, P. (1988) "Testing for a unit root in time series regression", Biometrika,
72(2), 335-346.

Said E and Dickey DA (1984), "Testing for Unit Roots in Autoregressive Moving Average Models
of Unknown Order", Biometrika 71:599-607.

See Also

auto.arima() and ndiffs()

Examples

ndiffs(WWWusage)
ndiffs(diff(log(AirPassengers), 12))

nnetar Neural Network Time Series Forecasts

Description

Feed-forward neural networks with a single hidden layer and lagged inputs for forecasting univariate
time series.

Usage

nnetar(
y,
p,
P = 1,
size = NULL,
repeats = 20,
xreg = NULL,
lambda = NULL,
model = NULL,
subset = NULL,
scale.inputs = TRUE,
parallel = FALSE,
num.cores = 2,
x = y,
...

)

112 nnetar

Arguments

y a numeric vector or univariate time series of class ts

p Embedding dimension for non-seasonal time series. Number of non-seasonal
lags used as inputs. For non-seasonal time series, the default is the optimal
number of lags (according to the AIC) for a linear AR(p) model. For seasonal
time series, the same method is used but applied to seasonally adjusted data
(from an stl decomposition). If set to zero to indicate that no non-seasonal lags
should be included, then P must be at least 1 and a model with only seasonal
lags will be fit.

P Number of seasonal lags used as inputs.

size Number of nodes in the hidden layer. Default is half of the number of input
nodes (including external regressors, if given) plus 1.

repeats Number of networks to fit with different random starting weights. These are
then averaged when producing forecasts.

xreg Optionally, a numerical vector or matrix of external regressors, which must have
the same number of rows as y. It should not be a data frame.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

model Output from a previous call to nnetar. If model is passed, this same model is
fitted to y without re-estimating any parameters.

subset Optional vector specifying a subset of observations to be used in the fit. Can be
an integer index vector or a logical vector the same length as y. All observations
are used by default.

scale.inputs If TRUE, inputs are scaled by subtracting the column means and dividing by their
respective standard deviations. If lambda is not NULL, scaling is applied after
Box-Cox transformation.

parallel If TRUE, then the specification search is done in parallel via parallel::parLapply().
This can give a significant speedup on multicore machines.

num.cores Allows the user to specify the amount of parallel processes to be used if parallel
= TRUE. If NULL, then the number of logical cores is automatically detected and
all available cores are used.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to nnet::nnet() for nnetar.

Details

A feed-forward neural network is fitted with lagged values of y as inputs and a single hidden layer
with size nodes. The inputs are for lags 1 to p, and lags m to mP where m = frequency(y). If
xreg is provided, its columns are also used as inputs. If there are missing values in y or xreg, the
corresponding rows (and any others which depend on them as lags) are omitted from the fit. A
total of repeats networks are fitted, each with random starting weights. These are then averaged
when computing forecasts. The network is trained for one-step forecasting. Multi-step forecasts are
computed recursively.

nnetar 113

For non-seasonal data, the fitted model is denoted as an NNAR(p,k) model, where k is the num-
ber of hidden nodes. This is analogous to an AR(p) model but with nonlinear functions. For
seasonal data, the fitted model is called an NNAR(p,P,k)[m] model, which is analogous to an
ARIMA(p,0,0)(P,0,0)[m] model but with nonlinear functions.

Value

Returns an object of class nnetar.

The function summary is used to obtain and print a summary of the results.

The generic accessor functions fitted.values and residuals extract useful features of the value
returned by nnetar.

model A list containing information about the fitted model

method The name of the forecasting method as a character string

x The original time series.

xreg The external regressors used in fitting (if given).

residuals Residuals from the fitted model. That is x minus fitted values.

fitted Fitted values (one-step forecasts)

... Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

Examples

fit <- nnetar(lynx)
fcast <- forecast(fit)
plot(fcast)

Arguments can be passed to nnet()
fit <- nnetar(lynx, decay = 0.5, maxit = 150)
plot(forecast(fit))
lines(lynx)

Fit model to first 100 years of lynx data
fit <- nnetar(window(lynx, end = 1920), decay = 0.5, maxit = 150)
plot(forecast(fit, h = 14))
lines(lynx)

Apply fitted model to later data, including all optional arguments
fit2 <- nnetar(window(lynx, start = 1921), model = fit)

114 nsdiffs

nsdiffs Number of differences required for a seasonally stationary series

Description

Functions to estimate the number of differences required to make a given time series stationary.
nsdiffs estimates the number of seasonal differences necessary.

Usage

nsdiffs(
x,
alpha = 0.05,
m = frequency(x),
test = c("seas", "ocsb", "hegy", "ch"),
max.D = 1,
...

)

Arguments

x A univariate time series

alpha Level of the test, possible values range from 0.01 to 0.1.

m Deprecated. Length of seasonal period

test Type of unit root test to use

max.D Maximum number of seasonal differences allowed

... Additional arguments to be passed on to the unit root test

Details

nsdiffs uses seasonal unit root tests to determine the number of seasonal differences required for
time series x to be made stationary (possibly with some lag-one differencing as well).

Several different tests are available:

• If test = "seas" (default), a measure of seasonal strength is used, where differencing is se-
lected if the seasonal strength (Wang, Smith & Hyndman, 2006) exceeds 0.64 (based on min-
imizing MASE when forecasting using auto.arima on M3 and M4 data).

• If test = "ch", the Canova-Hansen (1995) test is used (with null hypothesis of deterministic
seasonality)

• If test = "hegy", the Hylleberg, Engle, Granger & Yoo (1990) test is used.

• If test = "ocsb", the Osborn-Chui-Smith-Birchenhall (1988) test is used (with null hypothe-
sis that a seasonal unit root exists).

Value

An integer indicating the number of differences required for stationarity.

ocsb.test 115

Author(s)

Rob J Hyndman, Slava Razbash and Mitchell O’Hara-Wild

References

Wang, X, Smith, KA, Hyndman, RJ (2006) "Characteristic-based clustering for time series data",
Data Mining and Knowledge Discovery, 13(3), 335-364.

Osborn DR, Chui APL, Smith J, and Birchenhall CR (1988) "Seasonality and the order of integra-
tion for consumption", Oxford Bulletin of Economics and Statistics 50(4):361-377.

Canova F and Hansen BE (1995) "Are Seasonal Patterns Constant over Time? A Test for Seasonal
Stability", Journal of Business and Economic Statistics 13(3):237-252.

Hylleberg S, Engle R, Granger C and Yoo B (1990) "Seasonal integration and cointegration.", Jour-
nal of Econometrics 44(1), pp. 215-238.

See Also

auto.arima(), ndiffs(), ocsb.test(), uroot::hegy.test(), and uroot::ch.test()

Examples

nsdiffs(AirPassengers)

ocsb.test Osborn, Chui, Smith, and Birchenhall Test for Seasonal Unit Roots

Description

An implementation of the Osborn, Chui, Smith, and Birchenhall (OCSB) test.

Usage

ocsb.test(x, lag.method = c("fixed", "AIC", "BIC", "AICc"), maxlag = 0)

Arguments

x a univariate seasonal time series.
lag.method a character specifying the lag order selection method.
maxlag the maximum lag order to be considered by lag.method.

Details

The regression equation may include lags of the dependent variable. When lag.method = "fixed",
the lag order is fixed to maxlag; otherwise, maxlag is the maximum number of lags considered
in a lag selection procedure that minimises the lag.method criterion, which can be AIC or BIC or
corrected AIC, AICc, obtained as AIC + (2k(k+1))/(n-k-1), where k is the number of parameters
and n is the number of available observations in the model.

Critical values for the test are based on simulations, which has been smoothed over to produce
critical values for all seasonal periods.

116 plot.Arima

Value

ocsb.test returns a list of class "OCSBtest" with the following components:

• statistics the value of the test statistics.

• pvalues the p-values for each test statistics.

• method a character string describing the type of test.

• data.name a character string giving the name of the data.

• fitted.model the fitted regression model.

References

Osborn DR, Chui APL, Smith J, and Birchenhall CR (1988) "Seasonality and the order of integra-
tion for consumption", Oxford Bulletin of Economics and Statistics 50(4):361-377.

See Also

nsdiffs()

Examples

ocsb.test(AirPassengers)

plot.Arima Plot characteristic roots from ARIMA model

Description

Produces a plot of the inverse AR and MA roots of an ARIMA model. Inverse roots outside the unit
circle are shown in red.

Usage

S3 method for class 'Arima'
plot(
x,
type = c("both", "ar", "ma"),
main,
xlab = "Real",
ylab = "Imaginary",
...

)

S3 method for class 'ar'
plot(x, main, xlab = "Real", ylab = "Imaginary", ...)

S3 method for class 'Arima'

plot.Arima 117

autoplot(object, type = c("both", "ar", "ma"), ...)

S3 method for class 'ar'
autoplot(object, ...)

Arguments

x Object of class “Arima” or “ar”.

type Determines if both AR and MA roots are plotted, of if just one set is plotted.

main Main title. Default is "Inverse AR roots" or "Inverse MA roots".

xlab X-axis label.

ylab Y-axis label.

... Other plotting parameters passed to graphics::par().

object Object of class “Arima” or “ar”. Used for ggplot graphics (S3 method consis-
tency).

Details

autoplot will produce an equivalent plot as a ggplot object.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

Arima(), stats::ar()

Examples

library(ggplot2)

fit <- Arima(WWWusage, order = c(3, 1, 0))
plot(fit)
autoplot(fit)

fit <- Arima(woolyrnq, order = c(2, 0, 0), seasonal = c(2, 1, 1))
plot(fit)
autoplot(fit)

plot(ar.ols(gold[1:61]))
autoplot(ar.ols(gold[1:61]))

118 plot.bats

plot.bats Plot components from BATS model

Description

Produces a plot of the level, slope and seasonal components from a BATS or TBATS model. The
plotted components are Box-Cox transformed using the estimated transformation parameter.

Usage

S3 method for class 'bats'
plot(x, main = "Decomposition by BATS model", ...)

S3 method for class 'tbats'
autoplot(object, range.bars = FALSE, ...)

S3 method for class 'bats'
autoplot(object, range.bars = FALSE, ...)

S3 method for class 'tbats'
plot(x, main = "Decomposition by TBATS model", ...)

Arguments

x Object of class “bats/tbats”.

main Main title for plot.

... Other plotting parameters passed to graphics::par().

object Object of class “bats/tbats”.

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman

See Also

bats()], tbats()

plot.ets 119

Examples

Not run:
fit <- tbats(USAccDeaths)
plot(fit)
autoplot(fit, range.bars = TRUE)

End(Not run)

plot.ets Plot components from ETS model

Description

Produces a plot of the level, slope and seasonal components from an ETS model.

Usage

S3 method for class 'ets'
plot(x, ...)

S3 method for class 'ets'
autoplot(object, range.bars = NULL, ...)

Arguments

x Object of class “ets”.

... Other plotting parameters to affect the plot.

object Object of class “ets”. Used for ggplot graphics (S3 method consistency).

range.bars Logical indicating if each plot should have a bar at its right side representing
relative size. If NULL, automatic selection takes place.

Details

autoplot will produce an equivalent plot as a ggplot object.

Value

None. Function produces a plot

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

See Also

ets()

120 plot.forecast

Examples

fit <- ets(USAccDeaths)
plot(fit)
plot(fit, plot.type = "single", ylab = "", col = 1:3)

library(ggplot2)
autoplot(fit)

plot.forecast Forecast plot

Description

Plots historical data with forecasts and prediction intervals.

Usage

S3 method for class 'forecast'
plot(
x,
include,
PI = TRUE,
showgap = TRUE,
shaded = TRUE,
shadebars = (length(x$mean) < 5),
shadecols = NULL,
col = 1,
fcol = 4,
pi.col = 1,
pi.lty = 2,
ylim = NULL,
main = NULL,
xlab = "",
ylab = "",
type = "l",
flty = 1,
flwd = 2,
...

)

S3 method for class 'forecast'
autoplot(
object,
include,
PI = TRUE,
shadecols = c("#596DD5", "#D5DBFF"),

plot.forecast 121

fcol = "#0000AA",
flwd = 0.5,
...

)

S3 method for class 'splineforecast'
autoplot(object, PI = TRUE, ...)

S3 method for class 'forecast'
autolayer(object, series = NULL, PI = TRUE, showgap = TRUE, ...)

S3 method for class 'splineforecast'
plot(x, fitcol = 2, type = "o", pch = 19, ...)

Arguments

x Forecast object produced by forecast().

include number of values from time series to include in plot. Default is all values.

PI Logical flag indicating whether to plot prediction intervals.

showgap If showgap = FALSE, the gap between the historical observations and the fore-
casts is removed.

shaded Logical flag indicating whether prediction intervals should be shaded (TRUE) or
lines (FALSE).

shadebars Logical flag indicating if prediction intervals should be plotted as shaded bars
(if TRUE) or a shaded polygon (if FALSE). Ignored if shaded = FALSE. Bars are
plotted by default if there are fewer than five forecast horizons.

shadecols Colors for shaded prediction intervals. To get default colors used prior to v3.26,
set shadecols = "oldstyle".

col Colour for the data line.

fcol Colour for the forecast line.

pi.col If shaded = FALSE and PI = TRUE, the prediction intervals are plotted in this
colour.

pi.lty If shaded = FALSE and PI = TRUE, the prediction intervals are plotted using this
line type.

ylim Limits on y-axis.

main Main title.

xlab X-axis label.

ylab Y-axis label.

type 1-character string giving the type of plot desired. As for graphics::plot.default().

flty Line type for the forecast line.

flwd Line width for the forecast line.

... Other plotting parameters to affect the plot.

122 plot.forecast

object Forecast object produced by forecast(). Used for ggplot graphics (S3 method
consistency).

series Matches an unidentified forecast layer with a coloured object on the plot.

fitcol Line colour for fitted values.

pch Plotting character (if type = "p" or type = "o").

Details

autoplot will produce a ggplot object.

plot.splineforecast autoplot.splineforecast

Value

None.

Author(s)

Rob J Hyndman & Mitchell O’Hara-Wild

References

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

stats::plot.ts()

Examples

library(ggplot2)

wine.fit <- hw(wineind, h = 48)
plot(wine.fit)
autoplot(wine.fit)

fit <- tslm(wineind ~ fourier(wineind, 4))
fcast <- forecast(fit, newdata = data.frame(fourier(wineind, 4, 20)))
autoplot(fcast)

fcast <- splinef(airmiles, h = 5)
plot(fcast)
autoplot(fcast)

https://otexts.com/fpp2/

residuals.forecast 123

residuals.forecast Residuals for various time series models

Description

Returns time series of residuals from a fitted model.

Usage

S3 method for class 'forecast'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'ar'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'Arima'
residuals(object, type = c("innovation", "response", "regression"), h = 1, ...)

S3 method for class 'bats'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'tbats'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'ets'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'ARFIMA'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'nnetar'
residuals(object, type = c("innovation", "response"), h = 1, ...)

S3 method for class 'stlm'
residuals(object, type = c("innovation", "response"), ...)

S3 method for class 'tslm'
residuals(object, type = c("innovation", "response", "deviance"), ...)

Arguments

object An object containing a time series model of class ar, Arima, bats, ets, arfima,
nnetar or stlm. If object is of class forecast, then the function will return
object$residuals if it exists, otherwise it returns the differences between the
observations and their fitted values.

type Type of residual.

124 rw_model

... Other arguments not used.

h If type = "response", then the fitted values are computed for h-step forecasts.

Details

Innovation residuals correspond to the white noise process that drives the evolution of the time se-
ries model. Response residuals are the difference between the observations and the fitted values
(equivalent to h-step forecasts). For functions with no h argument, h = 1. For homoscedastic mod-
els, the innovation residuals and the response residuals for h = 1 are identical. Regression residuals
are available for regression models with ARIMA errors, and are equal to the original data minus the
effect of the regression variables. If there are no regression variables, the errors will be identical
to the original series (possibly adjusted to have zero mean). arima.errors is a deprecated func-
tion which is identical to residuals.Arima(object, type="regression"). For nnetar objects,
when type = "innovations" and lambda is used, a matrix of time-series consisting of the residuals
from each of the fitted neural networks is returned.

Value

A ts object.

Author(s)

Rob J Hyndman

See Also

fitted.Arima(), checkresiduals().

Examples

fit <- Arima(lynx, order = c(4, 0, 0), lambda = 0.5)

plot(residuals(fit))
plot(residuals(fit, type = "response"))

rw_model Random walk model

Description

Fit a generalized random walk with Gaussian errors (and optional drift) to a univariate time series.

Usage

rw_model(y, lag = 1, drift = FALSE, lambda = NULL, biasadj = FALSE)

rw_model 125

Arguments

y a numeric vector or univariate time series of class ts

lag Lag parameter. lag = 1 corresponds to a standard random walk (giving naive
forecasts if drift = FALSE or drift forecasts if drift = TRUE), while lag = m
corresponds to a seasonal random walk where m is the seasonal period (giving
seasonal naive forecasts if drift = FALSE).

drift Logical flag. If TRUE, fits a random walk with drift model.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

Details

The model assumes that

Yt = Yt−p + c+ εt

where p is the lag parameter, c is the drift parameter, and εt ∼ N(0, σ2) are iid.

The model without drift has c = 0. In the model with drift, c is estimated by the sample mean of
the differences Yt − Yt−p.

If p = 1, this is equivalent to an ARIMA(0,1,0) model with an optional drift coefficient. For p > 1,
it is equivalent to an ARIMA(0,0,0)(0,1,0)p model.

The forecasts are given by

YT+h|T = YT+h−p(k+1) + ch

where k is the integer part of (h−1)/p. For a regular random walk, p = 1 and c = 0, so all forecasts
are equal to the last observation. Forecast standard errors allow for uncertainty in estimating the
drift parameter (unlike the corresponding forecasts obtained by fitting an ARIMA model directly).

The generic accessor functions stats::fitted() and stats::residuals() extract useful fea-
tures of the object returned.

Value

An object of class rw_model.

See Also

forecast.rw_model(), rwf(), naive(), snaive()

126 seasadj

Examples

model <- rw_model(gold)
forecast(model, h = 50) |> autoplot()

seasadj Seasonal adjustment

Description

Returns seasonally adjusted data constructed by removing the seasonal component.

Usage

seasadj(object, ...)

S3 method for class 'stl'
seasadj(object, ...)

S3 method for class 'mstl'
seasadj(object, ...)

S3 method for class 'decomposed.ts'
seasadj(object, ...)

S3 method for class 'tbats'
seasadj(object, ...)

S3 method for class 'seas'
seasadj(object, ...)

Arguments

object Object created by stats::decompose(), stats::stl() or tbats().

... Other arguments not currently used.

Value

Univariate time series.

Author(s)

Rob J Hyndman

See Also

stats::stl(), stats::decompose(), tbats().

seasonal 127

Examples

plot(AirPassengers)
lines(seasadj(decompose(AirPassengers, "multiplicative")), col = 4)

seasonal Extract components from a time series decomposition

Description

Returns a univariate time series equal to either a seasonal component, trend-cycle component or
remainder component from a time series decomposition.

Usage

seasonal(object)

trendcycle(object)

remainder(object)

Arguments

object Object created by stats::decompose(), stats::stl() or tbats().

Value

Univariate time series.

Author(s)

Rob J Hyndman

See Also

stats::stl(), stats::decompose(), tbats(), seasadj().

Examples

plot(USAccDeaths)
fit <- stl(USAccDeaths, s.window = "periodic")
lines(trendcycle(fit), col = "red")

library(ggplot2)
autoplot(

cbind(
Data = USAccDeaths,
Seasonal = seasonal(fit),
Trend = trendcycle(fit),

128 seasonaldummy

Remainder = remainder(fit)
),
facets = TRUE

) +
labs(x = "Year", y = "")

seasonaldummy Seasonal dummy variables

Description

seasonaldummy returns a matrix of dummy variables suitable for use in Arima(), auto.arima()
or tslm(). The last season is omitted and used as the control.

Usage

seasonaldummy(x, h = NULL)

seasonaldummyf(x, h)

Arguments

x Seasonal time series: a ts or a msts object

h Number of periods ahead to forecast (optional)

Details

seasonaldummyf is deprecated, instead use the h argument in seasonaldummy.

The number of dummy variables is determined from the time series characteristics of x. When h is
missing, the length of x also determines the number of rows for the matrix returned by seasonaldummy.
the value of h determines the number of rows for the matrix returned by seasonaldummy, typically
used for forecasting. The values within x are not used.

Value

Numerical matrix.

Author(s)

Rob J Hyndman

See Also

fourier()

ses 129

Examples

plot(ldeaths)

Using seasonal dummy variables
month <- seasonaldummy(ldeaths)
deaths.lm <- tslm(ldeaths ~ month)
tsdisplay(residuals(deaths.lm))
ldeaths.fcast <- forecast(

deaths.lm,
data.frame(month = I(seasonaldummy(ldeaths, 36)))

)
plot(ldeaths.fcast)

A simpler approach to seasonal dummy variables
deaths.lm <- tslm(ldeaths ~ season)
ldeaths.fcast <- forecast(deaths.lm, h = 36)
plot(ldeaths.fcast)

ses Exponential smoothing forecasts

Description

Returns forecasts and other information for exponential smoothing forecasts applied to y.

Usage

ses(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),
alpha = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

holt(
y,
h = 10,
damped = FALSE,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),

130 ses

exponential = FALSE,
alpha = NULL,
beta = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

hw(
y,
h = 2 * frequency(x),
seasonal = c("additive", "multiplicative"),
damped = FALSE,
level = c(80, 95),
fan = FALSE,
initial = c("optimal", "simple"),
exponential = FALSE,
alpha = NULL,
beta = NULL,
gamma = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

level Confidence levels for prediction intervals.

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

initial Method used for selecting initial state values. If optimal, the initial values are
optimized along with the smoothing parameters using ets(). If simple, the
initial values are set to values obtained using simple calculations on the first few
observations. See Hyndman & Athanasopoulos (2014) for details.

alpha Value of smoothing parameter for the level. If NULL, it will be estimated.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-

ses 131

formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to forecast.ets.

damped If TRUE, use a damped trend.

exponential If TRUE, an exponential trend is fitted. Otherwise, the trend is (locally) linear.

beta Value of smoothing parameter for the trend. If NULL, it will be estimated.

phi Value of damping parameter if damped = TRUE. If NULL, it will be estimated.

seasonal Type of seasonality in hw model. "additive" or "multiplicative".

gamma Value of smoothing parameter for the seasonal component. If NULL, it will be
estimated.

Details

ses, holt and hw are simply convenient wrapper functions for forecast(ets(...)).

Value

An object of class forecast.

forecast class

An object of class forecast is a list usually containing at least the following elements:

model A list containing information about the fitted model

method The name of the forecasting method as a character string

mean Point forecasts as a time series

lower Lower limits for prediction intervals

upper Upper limits for prediction intervals

level The confidence values associated with the prediction intervals

x The original time series.

residuals Residuals from the fitted model. For models with additive errors, the residuals will be x
minus the fitted values.

fitted Fitted values (one-step forecasts)

The function summary can be used to obtain and print a summary of the results, while the functions
plot and autoplot produce plots of the forecasts and prediction intervals. The generic acces-
sors functions fitted.values and residuals extract various useful features from the underlying
model.

Author(s)

Rob J Hyndman

132 simulate.ets

References

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008) Forecasting with exponential smooth-
ing: the state space approach, Springer-Verlag: New York. https://robjhyndman.com/expsmooth/.

Hyndman and Athanasopoulos (2018) Forecasting: principles and practice, 2nd edition, OTexts:
Melbourne, Australia. https://otexts.com/fpp2/

See Also

ets(), stats::HoltWinters(), rwf(), stats::arima().

Examples

fcast <- holt(airmiles)
plot(fcast)
deaths.fcast <- hw(USAccDeaths, h = 48)
plot(deaths.fcast)

simulate.ets Simulation from a time series model

Description

Returns a time series based on the model object object.

Usage

S3 method for class 'ets'
simulate(
object,
nsim = length(object$x),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'Arima'
simulate(
object,
nsim = length(object$x),
seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,

https://robjhyndman.com/expsmooth/
https://otexts.com/fpp2/

simulate.ets 133

lambda = object$lambda,
...

)

S3 method for class 'ar'
simulate(
object,
nsim = object$n.used,
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'rw_model'
simulate(
object,
nsim = length(object$x),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'fracdiff'
simulate(
object,
nsim = object$n,
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'nnetar'
simulate(
object,
nsim = length(object$x),
seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,

134 simulate.ets

lambda = object$lambda,
...

)

S3 method for class 'modelAR'
simulate(
object,
nsim = length(object$x),
seed = NULL,
xreg = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

S3 method for class 'tbats'
simulate(
object,
nsim = length(object$y),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
...

)

S3 method for class 'spline_model'
simulate(
object,
nsim = length(object$y),
seed = NULL,
future = TRUE,
bootstrap = FALSE,
innov = NULL,
lambda = object$lambda,
...

)

Arguments

object An object representing a fitted time series model. For example, it may be of
class ets, Arima, ar, nnetar, etc.

nsim Number of periods for the simulated series. Ignored if either xreg or innov are
not NULL. Otherwise the default is the length of series used to train model (or
100 if no data found).

seed Either NULL or an integer that will be used in a call to set.seed() before simu-

simulate.ets 135

lating the time series. The default, NULL, will not change the random generator
state.

future Produce sample paths that are future to and conditional on the data in object.
Otherwise simulate unconditionally.

bootstrap Do simulation using resampled errors rather than normally distributed errors or
errors provided as innov.

innov A vector of innovations to use as the error series. Ignored if bootstrap = TRUE.
If not NULL, the value of nsim is set to length of innov.

... Other arguments, not currently used.

xreg New values of xreg to be used for forecasting. The value of nsim is set to the
number of rows of xreg if it is not NULL.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

Details

With simulate.Arima(), the object should be produced by Arima() or auto.arima(), rather
than stats::arima(). By default, the error series is assumed normally distributed and generated
using stats::rnorm(). If innov is present, it is used instead. If bootstrap = TRUE and innov =
NULL, the residuals are resampled instead.

When future = TRUE, the sample paths are conditional on the data. When future = FALSE and the
model is stationary, the sample paths do not depend on the data at all. When future = FALSE and
the model is non-stationary, the location of the sample paths is arbitrary, so they all start at the value
of the first observation.

Value

An object of class ts.

Author(s)

Rob J Hyndman

See Also

ets(), Arima(), auto.arima(), ar(), arfima(), nnetar().

Examples

fit <- ets(USAccDeaths)
plot(USAccDeaths, xlim = c(1973, 1982))
lines(simulate(fit, 36), col = "red")

136 sindexf

sindexf Forecast seasonal index

Description

Returns vector containing the seasonal index for h future periods. If the seasonal index is non-
periodic, it uses the last values of the index.

Usage

sindexf(object, h)

Arguments

object Output from stats::decompose() or stats::stl().

h Number of periods ahead to forecast.

Value

Time series

Author(s)

Rob J Hyndman

Examples

uk.stl <- stl(UKDriverDeaths, "periodic")
uk.sa <- seasadj(uk.stl)
uk.fcast <- holt(uk.sa, 36)
seasf <- sindexf(uk.stl, 36)
uk.fcast$mean <- uk.fcast$mean + seasf
uk.fcast$lower <- uk.fcast$lower + cbind(seasf, seasf)
uk.fcast$upper <- uk.fcast$upper + cbind(seasf, seasf)
uk.fcast$x <- UKDriverDeaths
plot(uk.fcast, main = "Forecasts from Holt's method with seasonal adjustment")

spline_model 137

spline_model Cubic spline stochastic model

Description

Fits a state space model based on cubic smoothing splines. The cubic smoothing spline model is
equivalent to an ARIMA(0,2,2) model but with a restricted parameter space. The advantage of
the spline model over the full ARIMA model is that it provides a smooth historical trend as well
as a linear forecast function. Hyndman, King, Pitrun, and Billah (2002) show that the forecast
performance of the method is hardly affected by the restricted parameter space.

Usage

spline_model(y, method = c("gcv", "mle"), lambda = NULL, biasadj = FALSE)

Arguments

y a numeric vector or univariate time series of class ts

method Method for selecting the smoothing parameter. If method = "gcv", the gen-
eralized cross-validation method from stats::smooth.spline() is used. If
method = "mle", the maximum likelihood method from Hyndman et al (2002)
is used.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

Value

An object of class spline_model.

Author(s)

Rob J Hyndman

References

Hyndman, King, Pitrun and Billah (2005) Local linear forecasts using cubic smoothing splines.
Australian and New Zealand Journal of Statistics, 47(1), 87-99. https://robjhyndman.com/
publications/splinefcast/.

See Also

stats::smooth.spline(), stats::arima(), holt().

https://robjhyndman.com/publications/splinefcast/
https://robjhyndman.com/publications/splinefcast/

138 StatForecast

Examples

fit <- spline_model(uspop)
fit
fit |> forecast() |> autoplot()

StatForecast Forecast plot

Description

Generates forecasts from forecast.ts and adds them to the plot. Forecasts can be modified via
sending forecast specific arguments above.

Usage

StatForecast

GeomForecast

geom_forecast(
mapping = NULL,
data = NULL,
stat = "forecast",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
PI = TRUE,
showgap = TRUE,
series = NULL,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot2::ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See ggplot2::fortify() for which variables
will be created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data.

StatForecast 139

stat The stat object to use calculate the data.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. ggplot2::borders().

PI If FALSE, confidence intervals will not be plotted, giving only the forecast line.

showgap If showgap = FALSE, the gap between the historical observations and the fore-
casts is removed.

series Matches an unidentified forecast layer with a coloured object on the plot.

... Additional arguments for forecast.ts(), other arguments are passed on to
ggplot2::layer(). These are often aesthetics, used to set an aesthetic to a
fixed value, like color = "red" or alpha = .5. They may also be parameters to
the paired geom/stat.

Format

An object of class StatForecast (inherits from Stat, ggproto, gg) of length 3.

An object of class GeomForecast (inherits from Geom, ggproto, gg) of length 7.

Details

Multivariate forecasting is supported by having each time series on a different group.

You can also pass geom_forecast a forecast object to add it to the plot.

The aesthetics required for the forecasting to work includes forecast observations on the y axis, and
the time of the observations on the x axis. Refer to the examples below. To automatically set up
aesthetics, use autoplot.

Value

A layer for a ggplot graph.

Author(s)

Mitchell O’Hara-Wild

See Also

generics::forecast(), ggplot2::ggproto()

140 stlm

Examples

Not run:
library(ggplot2)
autoplot(USAccDeaths) + geom_forecast()

lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths) + geom_forecast()

Using fortify.ts
p <- ggplot(aes(x = x, y = y), data = USAccDeaths)
p <- p + geom_line()
p + geom_forecast()

Without fortify.ts
data <- data.frame(USAccDeaths = as.numeric(USAccDeaths),

time = as.numeric(time(USAccDeaths)))
p <- ggplot(aes(x = time, y = USAccDeaths), data = data)
p <- p + geom_line()
p + geom_forecast()

p + geom_forecast(h = 60)
p <- ggplot(aes(x = time, y = USAccDeaths), data = data)
p + geom_forecast(level = c(70, 98))
p + geom_forecast(level = c(70, 98), colour = "lightblue")

#Add forecasts to multivariate series with colour groups
lungDeaths <- cbind(mdeaths, fdeaths)
autoplot(lungDeaths) + geom_forecast(forecast(mdeaths), series = "mdeaths")

End(Not run)

stlm Forecasting model using STL with a generative time series model

Description

Forecasts of STL objects are obtained by applying a non-seasonal forecasting model to the season-
ally adjusted data and re-seasonalizing using the last year of the seasonal component. stlm takes
a time series y, applies an STL decomposition, and models the seasonally adjusted data using the
model passed as modelfunction or specified using method. It returns an object that includes the
original STL decomposition and a time series model fitted to the seasonally adjusted data. This
object can be passed to the forecast.stlm for forecasting.

Usage

stlm(
y,
s.window = 7 + 4 * seq(6),

stlm 141

t.window = NULL,
robust = FALSE,
method = c("ets", "arima"),
modelfunction = NULL,
model = NULL,
etsmodel = "ZZN",
lambda = NULL,
biasadj = FALSE,
xreg = NULL,
allow.multiplicative.trend = FALSE,
x = y,
...

)

Arguments

y a numeric vector or univariate time series of class ts

s.window Either the character string "periodic" or the span (in lags) of the loess window
for seasonal extraction.

t.window A number to control the smoothness of the trend. See stats::stl() for details.

robust If TRUE, robust fitting will used in the loess procedure within stats::stl().

method Method to use for forecasting the seasonally adjusted series.

modelfunction An alternative way of specifying the function for modelling the seasonally ad-
justed series. If modelfunction is not NULL, then method is ignored. Otherwise
method is used to specify the time series model to be used.

model Output from a previous call to stlm. If a stlm model is passed, this same model
is fitted to y without re-estimating any parameters.

etsmodel The ets model specification passed to ets(). By default it allows any non-
seasonal model. If method != "ets", this argument is ignored.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

xreg Historical regressors to be used in auto.arima() when method = "arima".

allow.multiplicative.trend

If TRUE, then ETS models with multiplicative trends are allowed. Otherwise,
only additive or no trend ETS models are permitted.

x Deprecated. Included for backwards compatibility.

... Other arguments passed to modelfunction.

142 subset.ts

Details

The time series model for the seasonally adjusted data can be specified in stlm using either method
or modelfunction. The method argument provides a shorthand way of specifying modelfunction
for a few special cases. More generally, modelfunction can be any function with first argument a
ts object, that returns an object that can be passed to forecast(). For example, modelfunction =
ar uses the ar() function for modelling the seasonally adjusted series.

Value

An object of class stlm.

Author(s)

Rob J Hyndman

See Also

stats::stl(), ets(), Arima().

Examples

tsmod <- stlm(USAccDeaths, modelfunction = ar)
forecast(tsmod, h = 36) |> autoplot()

decomp <- stl(USAccDeaths, s.window = "periodic")
forecast(decomp) |> autoplot()

subset.ts Subsetting a time series

Description

Various types of subseting of a time series. Allows subsetting by index values (unlike stats::window()).
Also allows extraction of the values of a specific season or subset of seasons in each year. For ex-
ample, to extract all values for the month of May from a time series.

Usage

S3 method for class 'ts'
subset(
x,
subset = NULL,
month = NULL,
quarter = NULL,
season = NULL,
start = NULL,
end = NULL,
...

subset.ts 143

)

S3 method for class 'msts'
subset(x, subset = NULL, start = NULL, end = NULL, ...)

Arguments

x A univariate time series to be subsetted.

subset Optional logical expression indicating elements to keep; missing values are
taken as false. subset must be the same length as x.

month Numeric or character vector of months to retain. Partial matching on month
names used.

quarter Numeric or character vector of quarters to retain.

season Numeric vector of seasons to retain.

start Index of start of contiguous subset.

end Index of end of contiguous subset.

... Other arguments, unused.

Details

If character values for months are used, either upper or lower case may be used, and partial un-
ambiguous names are acceptable. Possible character values for quarters are "Q1", "Q2", "Q3", and
"Q4".

Value

If subset is used, a numeric vector is returned with no ts attributes. If start and/or end are used,
a ts object is returned consisting of x[start:end], with the appropriate time series attributes retained.
Otherwise, a ts object is returned with frequency equal to the length of month, quarter or season.

Author(s)

Rob J Hyndman

See Also

subset(), stats::window()

Examples

plot(subset(gas, month = "November"))
subset(woolyrnq, quarter = 3)
subset(USAccDeaths, start = 49)

144 tbats

taylor Half-hourly electricity demand

Description

Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27 Au-
gust 2000. Discussed in Taylor (2003), and kindly provided by James W Taylor. Units: Megawatts

Usage

taylor

Format

Time series data

Source

James W Taylor

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Examples

plot(taylor)

tbats TBATS model (Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components)

Description

Fits a TBATS model applied to y, as described in De Livera, Hyndman & Snyder (2011). Parallel
processing is used by default to speed up the computations.

tbats 145

Usage

tbats(
y,
use.box.cox = NULL,
use.trend = NULL,
use.damped.trend = NULL,
seasonal.periods = NULL,
use.arma.errors = TRUE,
use.parallel = length(y) > 1000,
num.cores = 2,
bc.lower = 0,
bc.upper = 1,
biasadj = FALSE,
model = NULL,
...

)

Arguments

y The time series to be forecast. Can be numeric, msts or ts. Only univariate
time series are supported.

use.box.cox TRUE/FALSE indicates whether to use the Box-Cox transformation or not. If NULL
then both are tried and the best fit is selected by AIC.

use.trend TRUE/FALSE indicates whether to include a trend or not. If NULL then both are
tried and the best fit is selected by AIC.

use.damped.trend

TRUE/FALSE indicates whether to include a damping parameter in the trend or
not. If NULL then both are tried and the best fit is selected by AIC.

seasonal.periods

If y is numeric, then seasonal periods can be specified with this parameter.
use.arma.errors

TRUE/FALSE indicates whether to include ARMA errors or not. If TRUE the best
fit is selected by AIC. If FALSE then the selection algorithm does not consider
ARMA errors.

use.parallel TRUE/FALSE indicates whether or not to use parallel processing.

num.cores The number of parallel processes to be used if using parallel processing. If NULL
then the number of logical cores is detected and all available cores are used.

bc.lower The lower limit (inclusive) for the Box-Cox transformation.

bc.upper The upper limit (inclusive) for the Box-Cox transformation.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

model Output from a previous call to tbats. If model is passed, this same model is
fitted to y without re-estimating any parameters.

146 tbats.components

... Additional arguments to be passed to auto.arima when choose an ARMA(p,
q) model for the errors. (Note that xreg will be ignored, as will any arguments
concerning seasonality and differencing, but arguments controlling the values of
p and q will be used.)

Value

An object with class c("tbats", "bats"). The generic accessor functions fitted.values() and
residuals() extract useful features of the value returned by bats() and associated functions. The
fitted model is designated TBATS(omega, p,q, phi, <m1,k1>,...,<mJ,kJ>) where omega is the Box-
Cox parameter and phi is the damping parameter; the error is modelled as an ARMA(p,q) process
and m1,...,mJ list the seasonal periods used in the model and k1,...,kJ are the corresponding number
of Fourier terms used for each seasonality.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

tbats.components().

Examples

Not run:
fit <- tbats(USAccDeaths)
plot(forecast(fit))

taylor.fit <- tbats(taylor)
plot(forecast(taylor.fit))

End(Not run)

tbats.components Extract components of a TBATS model

Description

Extract the level, slope and seasonal components of a TBATS model. The extracted components are
Box-Cox transformed using the estimated transformation parameter.

theta_model 147

Usage

tbats.components(x)

Arguments

x A tbats object created by tbats().

Value

A multiple time series (mts) object. The first series is the observed time series. The second series
is the trend component of the fitted model. Series three onwards are the seasonal components of
the fitted model with one time series for each of the seasonal components. All components are
transformed using estimated Box-Cox parameter.

Author(s)

Slava Razbash and Rob J Hyndman

References

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex
seasonal patterns using exponential smoothing, Journal of the American Statistical Association,
106(496), 1513-1527.

See Also

tbats().

Examples

Not run:
fit <- tbats(USAccDeaths, use.parallel = FALSE)
components <- tbats.components(fit)
plot(components)

End(Not run)

theta_model Theta model

Description

The theta method of Assimakopoulos and Nikolopoulos (2000) is equivalent to simple exponential
smoothing with drift (Hyndman and Billah, 2003). This function fits the theta model to a time
series. The series is tested for seasonality using the test outlined in A&N. If deemed seasonal, the
series is seasonally adjusted using a classical multiplicative decomposition before fitting the theta
model.

148 theta_model

Usage

theta_model(y, lambda = NULL, biasadj = FALSE)

Arguments

y a numeric vector or univariate time series of class ts

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

Details

More general theta methods are available in the forecTheta package.

Value

An object of class theta_model.

Author(s)

Rob J Hyndman

References

Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model: a decomposition approach to
forecasting. International Journal of Forecasting 16, 521-530.

Hyndman, R.J., and Billah, B. (2003) Unmasking the Theta method. International J. Forecasting,
19, 287-290.

See Also

thetaf()

Examples

nile_fit <- theta_model(Nile)
forecast(nile_fit) |> autoplot()

https://CRAN.R-project.org/package=forecTheta

tsclean 149

tsclean Identify and replace outliers and missing values in a time series

Description

Uses supsmu for non-seasonal series and a robust STL decomposition for seasonal series. To esti-
mate missing values and outlier replacements, linear interpolation is used on the (possibly season-
ally adjusted) series

Usage

tsclean(x, replace.missing = TRUE, iterate = 2, lambda = NULL)

Arguments

x Time series.
replace.missing

If TRUE, it not only replaces outliers, but also interpolates missing values.

iterate The number of iterations required.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

Value

Time series

Author(s)

Rob J Hyndman

References

Hyndman (2021) "Detecting time series outliers" https://robjhyndman.com/hyndsight/tsoutliers/.

See Also

na.interp(), tsoutliers(), stats::supsmu()

Examples

cleangold <- tsclean(gold)

https://robjhyndman.com/hyndsight/tsoutliers/

150 tsCV

tsCV Time series cross-validation

Description

tsCV computes the forecast errors obtained by applying forecastfunction to subsets of the time
series y using a rolling forecast origin.

Usage

tsCV(y, forecastfunction, h = 1, window = NULL, xreg = NULL, initial = 0, ...)

Arguments

y a numeric vector or univariate time series of class ts
forecastfunction

Function to return an object of class forecast. Its first argument must be a uni-
variate time series, and it must have an argument h for the forecast horizon. If
exogenous predictors are used, then it must also have xreg and newxreg argu-
ments corresponding to the training and test periods.

h Number of periods for forecasting. Default value is twice the largest seasonal
period (for seasonal data) or ten (for non-seasonal data).

window Length of the rolling window, if NULL, a rolling window will not be used.

xreg Exogeneous predictor variables passed to the forecast function if required.

initial Initial period of the time series where no cross-validation is performed.

... Other arguments are passed to forecastfunction.

Details

Let y contain the time series y1, . . . , yT . Then forecastfunction is applied successively to the
time series y1, . . . , yt, for t = 1, . . . , T − h, making predictions ŷt+h|t. The errors are given by
et+h = yt+h − ŷt+h|t. If h=1, these are returned as a vector, e1, . . . , eT . For h>1, they are returned
as a matrix with the hth column containing errors for forecast horizon h. The first few errors may
be missing as it may not be possible to apply forecastfunction to very short time series.

Value

Numerical time series object containing the forecast errors as a vector (if h=1) and a matrix other-
wise. The time index corresponds to the last period of the training data. The columns correspond to
the forecast horizons.

Author(s)

Rob J Hyndman

tslm 151

See Also

CV(), CVar(), residuals.Arima(), https://robjhyndman.com/hyndsight/tscv/.

Examples

#Fit an AR(2) model to each rolling origin subset
far2 <- function(x, h) forecast(Arima(x, order = c(2, 0, 0)), h = h)
e <- tsCV(lynx, far2, h = 1)

#Fit the same model with a rolling window of length 30
e <- tsCV(lynx, far2, h = 1, window = 30)

#Example with exogenous predictors
far2_xreg <- function(x, h, xreg, newxreg) {

forecast(Arima(x, order = c(2, 0, 0), xreg = xreg), xreg = newxreg)
}

y <- ts(rnorm(50))
xreg <- matrix(rnorm(100), ncol = 2)
e <- tsCV(y, far2_xreg, h = 3, xreg = xreg)

tslm Fit a linear model with time series components

Description

tslm is used to fit linear models to time series including trend and seasonality components.

Usage

tslm(formula, data, subset, lambda = NULL, biasadj = FALSE, ...)

Arguments

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

data An optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset An optional subset containing rows of data to keep. For best results, pass a
logical vector of rows to keep. Also supports subset() functions.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

https://robjhyndman.com/hyndsight/tscv/

152 tsoutliers

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If trans-
formed data is used to produce forecasts and fitted values, a regular back trans-
formation will result in median forecasts. If biasadj is TRUE, an adjustment will
be made to produce mean forecasts and fitted values.

... Other arguments passed to stats::lm().

Details

tslm is largely a wrapper for stats::lm() except that it allows variables "trend" and "season"
which are created on the fly from the time series characteristics of the data. The variable "trend"
is a simple time trend and "season" is a factor indicating the season (e.g., the month or the quarter
depending on the frequency of the data).

Value

Returns an object of class "lm".

Author(s)

Mitchell O’Hara-Wild and Rob J Hyndman

See Also

forecast.lm(), stats::lm().

Examples

y <- ts(rnorm(120, 0, 3) + 1:120 + 20 * sin(2 * pi * (1:120) / 12), frequency = 12)
fit <- tslm(y ~ trend + season)
plot(forecast(fit, h = 20))

tsoutliers Identify and replace outliers in a time series

Description

Uses supsmu for non-seasonal series and a periodic stl decomposition with seasonal series to iden-
tify outliers and estimate their replacements.

Usage

tsoutliers(x, iterate = 2, lambda = NULL)

wineind 153

Arguments

x Time series.

iterate The number of iterations required.

lambda Box-Cox transformation parameter. If lambda = "auto", then a transformation
is automatically selected using BoxCox.lambda. The transformation is ignored
if NULL. Otherwise, data transformed before model is estimated.

Value

index Indicating the index of outlier(s)

replacement Suggested numeric values to replace identified outliers

Author(s)

Rob J Hyndman

References

Hyndman (2021) "Detecting time series outliers" https://robjhyndman.com/hyndsight/tsoutliers/.

See Also

na.interp(), tsclean()

Examples

data(gold)
tsoutliers(gold)

wineind Australian total wine sales

Description

Australian total wine sales by wine makers in bottles <= 1 litre. Jan 1980 – Aug 1994.

Usage

wineind

Format

Time series data

Source

Time Series Data Library. https://pkg.yangzhuoranyang.com/tsdl/

https://robjhyndman.com/hyndsight/tsoutliers/
https://pkg.yangzhuoranyang.com/tsdl/

154 woolyrnq

Examples

tsdisplay(wineind)

woolyrnq Quarterly production of woollen yarn in Australia

Description

Quarterly production of woollen yarn in Australia: tonnes. Mar 1965 – Sep 1994.

Usage

woolyrnq

Format

Time series data

Source

Time Series Data Library. https://pkg.yangzhuoranyang.com/tsdl/

Examples

tsdisplay(woolyrnq)

https://pkg.yangzhuoranyang.com/tsdl/

Index

∗ datasets
gas, 89
gold, 98
StatForecast, 138
taylor, 144
wineind, 153
woolyrnq, 154

∗ hplot
plot.Arima, 116
plot.bats, 118
plot.ets, 119

∗ htest
dm.test, 38

∗ models
CV, 36

∗ stats
forecast.lm, 60
tslm, 151

∗ ts
accuracy.forecast, 4
Acf, 6
arfima, 9
Arima, 11
arima.errors, 13
arimaorder, 14
auto.arima, 15
autoplot.mforecast, 24
baggedModel, 26
bats, 27
bizdays, 29
bld.mbb.bootstrap, 30
BoxCox, 31
BoxCox.lambda, 33
CVar, 37
dm.test, 38
dshw, 40
easter, 42
ets, 43
findfrequency, 45

fitted.ARFIMA, 46
forecast.baggedModel, 47
forecast.bats, 49
forecast.croston_model, 51
forecast.ets, 53
forecast.fracdiff, 55
forecast.HoltWinters, 58
forecast.mean_model, 62
forecast.modelAR, 66
forecast.nnetar, 70
forecast.rw_model, 72
forecast.spline_model, 76
forecast.stl, 78
forecast.StructTS, 81
forecast.theta_model, 83
forecast.ts, 85
fourier, 87
getResponse, 90
ggseasonplot, 94
ggtsdisplay, 96
ma, 100
mean_model, 101
modelAR, 103
monthdays, 106
msts, 108
na.interp, 109
ndiffs, 110
nnetar, 111
plot.forecast, 120
residuals.forecast, 123
seasadj, 126
seasonal, 127
seasonaldummy, 128
ses, 129
simulate.ets, 132
sindexf, 136
spline_model, 137
stlm, 140
subset.ts, 142

155

156 INDEX

tbats, 144
tbats.components, 146
theta_model, 147
tsclean, 149
tsCV, 150
tsoutliers, 152

‘[.msts‘ (msts), 108

accuracy.Arima (accuracy.forecast), 4
accuracy.fc_model (accuracy.forecast), 4
accuracy.forecast, 4
accuracy.lm (accuracy.forecast), 4
accuracy.mforecast (accuracy.forecast),

4
accuracy.numeric (accuracy.forecast), 4
accuracy.ts (accuracy.forecast), 4
Acf, 6
Acf(), 23, 98
aes(), 138
ar(), 135, 142
arfima, 9
arfima(), 14, 56, 58, 135
Arima, 11
Arima(), 14, 17, 18, 45, 58, 75, 87, 117, 128,

135, 142
arima.errors, 13
arimaorder, 14
as.character.Arima (Arima), 11
as.character.bats (bats), 27
as.character.ets (ets), 43
as.character.tbats (tbats), 144
as.data.frame.forecast (forecast.ts), 85
as.data.frame.mforecast (forecast.mts),

68
as.ts.forecast (forecast.ts), 85
auto.arima, 14, 15
auto.arima(), 10, 13, 14, 56, 58, 80, 87, 111,

115, 128, 135, 141
autolayer, 18
autolayer.forecast (plot.forecast), 120
autolayer.mforecast

(autoplot.mforecast), 24
autolayer.msts (autolayer.mts), 19
autolayer.mts, 19
autolayer.ts (autolayer.mts), 19
automatic_plotting, 18
autoplot, 18
autoplot.acf, 21
autoplot.ar (plot.Arima), 116

autoplot.Arima (plot.Arima), 116
autoplot.bats (plot.bats), 118
autoplot.decomposed.ts, 23
autoplot.ets (plot.ets), 119
autoplot.forecast (plot.forecast), 120
autoplot.mforecast, 24
autoplot.mpacf (autoplot.acf), 21
autoplot.mstl (autoplot.decomposed.ts),

23
autoplot.msts (autolayer.mts), 19
autoplot.mts (autolayer.mts), 19
autoplot.seas (autoplot.decomposed.ts),

23
autoplot.splineforecast

(plot.forecast), 120
autoplot.stl (autoplot.decomposed.ts),

23
autoplot.StructTS

(autoplot.decomposed.ts), 23
autoplot.tbats (plot.bats), 118
autoplot.ts (autolayer.mts), 19

baggedETS (baggedModel), 26
baggedETS(), 31
baggedModel, 26
baggedModel(), 48, 49
bats, 27
bats(), 50, 51, 118, 146
bizdays, 29
bizdays(), 106
bld.mbb.bootstrap, 30
bld.mbb.bootstrap(), 26
BoxCox, 31
BoxCox(), 33
BoxCox.lambda, 33
BoxCox.lambda(), 32

Ccf (Acf), 6
checkresiduals, 34
checkresiduals(), 124
coef.ets (ets), 43
croston (forecast.croston_model), 51
croston(), 87
croston_model, 35
croston_model(), 52
CV, 36
CV(), 38, 151
CVar, 37
CVar(), 151

INDEX 157

dm.test, 38
dshw, 40

easter, 42
ets, 43
ets(), 26, 41, 52, 54, 55, 59, 79, 86, 119, 130,

132, 135, 141, 142

findfrequency, 45
fitted.ar (fitted.ARFIMA), 46
fitted.ARFIMA, 46
fitted.Arima (fitted.ARFIMA), 46
fitted.Arima(), 124
fitted.bats (fitted.ARFIMA), 46
fitted.ets (fitted.ARFIMA), 46
fitted.forecast_ARIMA (fitted.ARFIMA),

46
fitted.modelAR (fitted.ARFIMA), 46
fitted.nnetar (fitted.ARFIMA), 46
fitted.tbats (fitted.ARFIMA), 46
forecast(), 48, 62, 72, 80, 121, 122, 142
forecast.ar (forecast.fracdiff), 55
forecast.Arima (forecast.fracdiff), 55
forecast.Arima(), 13, 47, 80, 81, 86, 87
forecast.baggedModel, 47
forecast.baggedModel(), 26
forecast.bats, 49
forecast.bats(), 47
forecast.croston_model, 51
forecast.default (forecast.ts), 85
forecast.ets, 53
forecast.ets(), 47, 51, 81, 87
forecast.forecast_ARIMA

(forecast.fracdiff), 55
forecast.fracdiff, 55
forecast.fracdiff(), 10
forecast.HoltWinters, 58
forecast.HoltWinters(), 87
forecast.lm, 60
forecast.lm(), 65, 66, 152
forecast.mean_model, 62
forecast.mean_model(), 102
forecast.mlm, 64
forecast.mlm(), 69, 70
forecast.modelAR, 66
forecast.mts, 68
forecast.nnetar, 70
forecast.nnetar(), 47
forecast.rw_model, 72

forecast.rw_model(), 125
forecast.spline_model, 76
forecast.stl, 78
forecast.stlm (forecast.stl), 78
forecast.StructTS, 81
forecast.StructTS(), 87
forecast.tbats (forecast.bats), 49
forecast.tbats(), 47
forecast.theta_model, 83
forecast.ts, 85
forecast.ts(), 86, 139
fortify, 18
fortify.ts (autolayer.mts), 19
fourier, 87
fourier(), 128
fourierf (fourier), 87
fracdiff::fracdiff(), 10, 14, 56, 57

gas, 89
generics::forecast(), 139
geom_forecast (StatForecast), 138
geom_forecast(), 20
GeomForecast (StatForecast), 138
getResponse, 90
ggAcf (autoplot.acf), 21
ggCcf (autoplot.acf), 21
gghistogram, 91
gglagchull (gglagplot), 92
gglagplot, 92
ggmonthplot, 93
ggPacf (autoplot.acf), 21
ggplot2::borders(), 139
ggplot2::fortify(), 20, 138
ggplot2::geom_histogram(), 91
ggplot2::ggplot(), 138
ggplot2::ggproto(), 139
ggplot2::layer(), 139
ggseasonplot, 94
ggsubseriesplot (ggmonthplot), 93
ggtaperedacf (autoplot.acf), 21
ggtaperedpacf (autoplot.acf), 21
ggtsdisplay, 96
ggtsdisplay(), 34, 35
gold, 98
graphics::hist(), 91
graphics::par(), 117, 118
graphics::plot(), 95
graphics::plot.default(), 121
grDevices::nclass.FD(), 91

158 INDEX

holt (ses), 129
holt(), 55, 87, 137
hw (ses), 129
hw(), 55, 87

InvBoxCox (BoxCox), 31
is.acf, 98
is.Arima (is.acf), 98
is.baggedModel (is.acf), 98
is.bats (is.acf), 98
is.constant, 99
is.ets (is.acf), 98
is.forecast, 100
is.mforecast (is.forecast), 100
is.modelAR (is.acf), 98
is.nnetar (is.acf), 98
is.nnetarmodels (is.acf), 98
is.splineforecast (is.forecast), 100
is.stlm (is.acf), 98

list, 11

ma, 100
mean_model, 101
mean_model(), 62–64, 102
meanf (forecast.mean_model), 62
meanf(), 62, 85, 87, 102
mforecast (forecast.mts), 68
modelAR, 103
modelAR(), 67
modeldf, 105
monthdays, 106
monthdays(), 30
mstl, 107
msts, 108
msts(), 40

na.interp, 109
na.interp(), 8, 22, 97, 149, 153
naive (forecast.rw_model), 72
naive(), 72, 125
ndiffs, 110
ndiffs(), 17, 111, 115
nnet::nnet(), 112
nnetar, 111
nnetar(), 37, 68, 70, 71, 135
nsdiffs, 114
nsdiffs(), 17, 116

ocsb.test, 115

ocsb.test(), 115

Pacf (Acf), 6
parallel::mclapply(), 17
parallel::parLapply(), 112
plot(), 63, 102
plot.ar (plot.Arima), 116
plot.Arima, 116
plot.bats, 118
plot.ets, 119
plot.forecast, 120
plot.forecast(), 25
plot.mforecast (autoplot.mforecast), 24
plot.splineforecast (plot.forecast), 120
plot.tbats (plot.bats), 118
print.ARIMA (Arima), 11
print.baggedModel (baggedModel), 26
print.bats (bats), 27
print.CVar (CVar), 37
print.ets (ets), 43
print.forecast (forecast.ts), 85
print.mforecast (forecast.mts), 68
print.modelAR (modelAR), 103
print.msts (msts), 108
print.nnetar (nnetar), 111
print.nnetarmodels (nnetar), 111
print.OCSBtest (ocsb.test), 115
print.tbats (tbats), 144

remainder (seasonal), 127
residuals.ar (residuals.forecast), 123
residuals.ARFIMA (residuals.forecast),

123
residuals.Arima (residuals.forecast),

123
residuals.Arima(), 14, 47, 151
residuals.bats (residuals.forecast), 123
residuals.bats(), 47
residuals.ets (residuals.forecast), 123
residuals.ets(), 47
residuals.forecast, 123
residuals.forecast_ARIMA

(residuals.forecast), 123
residuals.nnetar (residuals.forecast),

123
residuals.nnetar(), 47
residuals.stlm (residuals.forecast), 123
residuals.tbats (residuals.forecast),

123

INDEX 159

residuals.tbats(), 47
residuals.tslm (residuals.forecast), 123
rw_model, 124
rw_model(), 72, 73, 75
rwf (forecast.rw_model), 72
rwf(), 45, 72, 85, 87, 125, 132

seasadj, 126
seasadj(), 127
seasonal, 127
seasonal::seas(), 23, 24
seasonaldummy, 128
seasonaldummy(), 88
seasonaldummyf (seasonaldummy), 128
seasonplot (ggseasonplot), 94
ses, 129
ses(), 53, 55, 85, 87
set.seed(), 134
simulate.ar (simulate.ets), 132
simulate.Arima (simulate.ets), 132
simulate.ets, 132
simulate.fracdiff (simulate.ets), 132
simulate.modelAR (simulate.ets), 132
simulate.nnetar (simulate.ets), 132
simulate.nnetar(), 67, 71
simulate.rw_model (simulate.ets), 132
simulate.spline_model (simulate.ets),

132
simulate.tbats (simulate.ets), 132
sindexf, 136
snaive (forecast.rw_model), 72
snaive(), 72, 125
spline_model, 137
spline_model(), 76, 78
splinef (forecast.spline_model), 76
splinef(), 87
StatForecast, 138
stats::acf(), 8, 97
stats::AIC(), 36
stats::ar(), 14, 56, 58, 117
stats::arima(), 9–12, 14, 17, 56, 58, 85, 86,

132, 135, 137
stats::Box.test(), 35
stats::ccf(), 8
stats::decompose(), 23, 24, 101, 126, 127,

136
stats::fitted(), 63, 74, 102, 125
stats::HoltWinters, 59
stats::HoltWinters(), 41, 45, 59, 60, 132

stats::lag.plot(), 93
stats::lm(), 36, 60, 62, 65, 66, 152
stats::monthplot(), 94, 96
stats::na.contiguous(), 8, 22, 97
stats::na.pass(), 8, 22, 97
stats::pacf(), 8
stats::plot.acf(), 23
stats::plot.stl(), 24
stats::plot.ts(), 20, 25, 98, 122
stats::predict.ar, 57
stats::predict.ar(), 58
stats::predict.Arima(), 57, 58
stats::predict.HoltWinters, 60
stats::predict.HoltWinters(), 59
stats::predict.lm(), 61
stats::residuals(), 63, 74, 102, 125
stats::rnorm(), 135
stats::smooth.spline(), 137
stats::spec.ar(), 98
stats::stl(), 23, 24, 79–81, 107, 126, 127,

136, 141, 142
stats::StructTS(), 24, 81, 82
stats::supsmu(), 107, 149
stats::window(), 142, 143
stlf (forecast.stl), 78
stlf(), 52, 86
stlm, 140
stlm(), 80
subset(), 143, 151
subset.msts (subset.ts), 142
subset.ts, 142
summary(), 63, 102
summary.Arima (Arima), 11
summary.ets (ets), 43
summary.forecast (forecast.ts), 85
summary.mforecast (forecast.mts), 68

taperedacf (Acf), 6
taperedacf(), 23
taperedpacf (Acf), 6
taylor, 144
tbats, 144
tbats(), 51, 118, 126, 127, 147
tbats.components, 146
tbats.components(), 146
theta_model, 147
theta_model(), 83
thetaf (forecast.theta_model), 83
thetaf(), 80, 87, 148

160 INDEX

timeDate::isBizday(), 30
trendcycle (seasonal), 127
tsclean, 149
tsclean(), 153
tsCV, 150
tsCV(), 38
tsdiag.ets (ets), 43
tsdisplay (ggtsdisplay), 96
tsdisplay(), 8
tslm, 151
tslm(), 36, 60, 62, 65, 66, 69, 87, 128
tsoutliers, 152
tsoutliers(), 109, 149

uroot::ch.test(), 115
uroot::hegy.test(), 115

window.msts (msts), 108
wineind, 153
woolyrnq, 154

	accuracy.forecast
	Acf
	arfima
	Arima
	arima.errors
	arimaorder
	auto.arima
	autolayer
	autolayer.mts
	autoplot.acf
	autoplot.decomposed.ts
	autoplot.mforecast
	baggedModel
	bats
	bizdays
	bld.mbb.bootstrap
	BoxCox
	BoxCox.lambda
	checkresiduals
	croston_model
	CV
	CVar
	dm.test
	dshw
	easter
	ets
	findfrequency
	fitted.ARFIMA
	forecast.baggedModel
	forecast.bats
	forecast.croston_model
	forecast.ets
	forecast.fracdiff
	forecast.HoltWinters
	forecast.lm
	forecast.mean_model
	forecast.mlm
	forecast.modelAR
	forecast.mts
	forecast.nnetar
	forecast.rw_model
	forecast.spline_model
	forecast.stl
	forecast.StructTS
	forecast.theta_model
	forecast.ts
	fourier
	gas
	getResponse
	gghistogram
	gglagplot
	ggmonthplot
	ggseasonplot
	ggtsdisplay
	gold
	is.acf
	is.constant
	is.forecast
	ma
	mean_model
	modelAR
	modeldf
	monthdays
	mstl
	msts
	na.interp
	ndiffs
	nnetar
	nsdiffs
	ocsb.test
	plot.Arima
	plot.bats
	plot.ets
	plot.forecast
	residuals.forecast
	rw_model
	seasadj
	seasonal
	seasonaldummy
	ses
	simulate.ets
	sindexf
	spline_model
	StatForecast
	stlm
	subset.ts
	taylor
	tbats
	tbats.components
	theta_model
	tsclean
	tsCV
	tslm
	tsoutliers
	wineind
	woolyrnq
	Index

