Package ‘fmtr’

January 25, 2026

Type Package

Title Easily Apply Formats to Data

Version 1.7.2

Maintainer David Bosak <dbosak@1@gmail.com>

Description Contains a set of functions that can be used to apply
formats to data frames or vectors. The package aims to provide
functionality similar to that of SAS® formats. Formats are assigned to
the format attribute on data frame columns. Then when the fdata()
function is called, a new data frame is created with the column data
formatted as specified. The package also contains a value() function
to create a user-defined format, similar to a SAS® user-defined format.

License CCO
Encoding UTF-8

URL https://fmtr.r-sassy.org, https://github.com/dbosak@1/fmtr

BugReports https://github.com/dbosakd1/fmtr/issues
Depends R (>=4.0.0), common

Suggests testthat, knitr, rmarkdown, covr, logr, utils, dplyr, libr,
hms

Imports tibble, stats, crayon, Rcpp
RoxygenNote 7.3.3
VignetteBuilder knitr

LinkingTo Rcpp
NeedsCompilation yes

Author David Bosak [aut, cre],
Chen Ling [aut]

Repository CRAN
Date/Publication 2026-01-25 06:10:19 UTC

https://fmtr.r-sassy.org
https://github.com/dbosak01/fmtr
https://github.com/dbosak01/fmtr/issues

2 Contents

Contents
as.dataframe.fcat L L L L 3
as.dataframefmto 4
as.data.frame.fmt_ISt L e 5
as.fecat . . L. e e 6
as.fcat.dataframe e 7
asfecat.fmt_ISt e 9
as.featllist L L e e e e 9
as.fecat.tbl_df e 10
asflisto 12
asflist.dataframe 14
asflist.fcat e 16
asflist.list e e e e e 19
asflist.tbl_df 20
as.fmt . .. L e e e e e 22
asfmt.dataframe 23
condition e e 25
descriptions e e 26
fapply e 28
fapply2 . . . e 33
fattr . . . e e e e e 35
fattr<- e e e e 36
feat . . . e e e 37
fdata e e e 38
flist . . e 40
fmt_cnt_pct 42
fmt_mean_sd e e e 44
fmt_mean_stderr e e e e 45
fmt_median e e e e e 46
fmt_n e e e 47
fmt_quantile_range e 48
fmt_range 49
formats e 50
FormattingStrings e 52
is.fcat ..o e e e 54
ISlISt . L e e e e e 55
is.format L e e e e e e e e 56
justification Lo 57
labels.fmt e 59
print.fecat L 60
print.fmto 61
print.fme_ISto e e e 61
read.fcat L L e 62
read flist e 63
value e e e 64
widths e 66

as.data.frame.fcat 3

write flisto 69
Index 71
as.data.frame.fcat Convert a format catalog to a data frame
Description

This function takes the information stored in a format catalog, and converts it to a data frame. This
data frame is useful for storage, editing, saving to a spreadsheet, etc. The data frame shows the
name of the formats, their type, and the format expression. For user-defined formats, the data frame
populates additional columns for the label and order.

Usage
S3 method for class 'fcat'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X The format catalog to convert.
row.names Row names of the return data frame. Default is NULL.
optional TRUE or FALSE value indicating whether converting to syntactic variable names

is desired. In the case of formats, the resulting data frame will always be re-
turned with syntactic names, and this parameter is ignored.

Any follow-on parameters.

Value

A data frame that contains the values stored in the format catalog.

See Also

Other fcat: as.fcat(), as.fcat.data.frame(), as.fcat.fmt_lst(),as.fcat.list(), fcat(),
is.fcat(), print.fcat(), read.fcat(),write.fcat()

Examples
Create a format catalog
cl <- fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),

condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Convert catalog to data frame to view the structure
df <- as.data.frame(cl)
print(df)

4 as.data.frame.fmt

Name Type Expression Label Order
1 num_fmt S %.1f NA
2 label_fmt U x == "A" Label A NA
3 label_fmt U x == "B"” Label B NA
4 label_fmt U TRUE Other NA
5 date_fmt S %d%b%Y NA

Convert data frame back to a format catalog
c2 <- as.fcat(df)

c2

A format catalog: 3 formats

- $date_fmt: type S, "%d%b%Y"

- $label_fmt: type U, 3 conditions
- $num_fmt: type S, "%.1f"

as.data.frame.fmt Casts a format to a data frame

Description

Cast a format object to a data frame. This function is a class-specific implementation of the the
generic as.data. frame method.

Usage

S3 method for class 'fmt'
as.data.frame(

X,

row.names = NULL,

optional = FALSE,

L

name = deparse(substitute(x, env = environment()))

)
Arguments
X An object of class "fmt".
row.names Row names of the return data frame. Default is NULL.
optional TRUE or FALSE value indicating whether converting to syntactic variable names
is options. In the case of formats, the resulting data frame will always be re-
turned with syntactic names, and this parameter is ignored.
Any follow-on parameters.
name An optional name for the format. By default, the name of the variable holding
the format will be used.
See Also

Other fmt: as.fmt (), as.fmt.data.frame(), condition(), is.format(), labels.fmt(), print.fmt(),
value()

as.data.frame.fmt_Ist 5

as.data.frame.fmt_lst Convert a formatting list to a data frame

Description

This function takes the information stored in a formatting list, and converts it to a data frame. The
data frame format is useful for storage, editing, saving to a spreadsheet, etc. The data frame shows
the name of the formats, their type, and the format expression. For user-defined formats, the data
frame populates additional columns for the label and order.

Usage
S3 method for class 'fmt_lst'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X The formatting list to convert.
row.names Row names for the returned data frame. Default is NULL.
optional TRUE or FALSE value indicating whether converting to syntactic variable names

is desired. In the case of formats, the resulting data frame will always be re-
turned with syntactic names, and this parameter is ignored.

Any follow-on parameters.

Value

A data frame that contains the values stored in the formatting list.

See Also

Other flist: as.flist(),as.flist.data.frame(), as.flist.fcat(),as.flist.list(),as.flist.tbl_df(),
flist(), is.flist(), print.fmt_lst(), read.flist(),write.flist()

Examples
Create a formatting list
cl <= flist(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),

condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Convert catalog to data frame to view the structure
df <- as.data.frame(cl)

print(df)
Name Type Expression Label Order
#1 num_fmt S %.1f NA

2 label_fmt U x == "A" Label A NA

6 as.fcat

3 label_fmt U x == "B"” Label B NA
4 label_fmt U TRUE Other NA
5 date_fmt S %d%b%Y NA

Convert data frame back to a formatting list
c2 <- as.flist(df)

c2

A formatting list: 3 formats

- type: column

- simplify: TRUE

Name Type Expression Label Order

1 date_fmt S %d%b%Y <NA>

2 label_fmt U x == "A" Label A <NA>

3 label_fmt U x == "B" Label B <NA>

4 label_fmt u TRUE Other <NA>

5 num_fmt S %.1f <NA>

as.fcat Generic casting method for format catalogs

Description

A generic method for casting objects to a format catalog. Individual objects will inherit from this
function.

Usage

as.fcat(x)

Arguments

X The object to cast.

Value

A format catalog, created using the information in the input object.

See Also

For class-specific methods, see as.fcat.data.frame, as.fcat.list, and as.fcat.fmt_1st.

Other fcat: as.data.frame.fcat(), as.fcat.data.frame(),as.fcat.fmt_lst(), as.fcat.list(),
fcat(), is.fcat(), print.fcat(), read.fcat(),write.fcat()

as.fcat.data.frame 7

as.fcat.data.frame Convert a data frame to a format catalog

Description

This function takes a data frame as input and converts it to a format catalog based on the information
contained in the data frame. The data frame should have 5 columns: "Name", "Type", "Expression”,
"Label" and "Order".

Usage

S3 method for class 'data.frame'
as.fcat(x)

Arguments

X The data frame to convert.

Details

The as.fcat.data.frame converts a data frame to a format catalog. A corresponding conversion
for class "tbl_df" converts a tibble.

To understand the structure of the input data frame, create a format and use the as.data. frame
method to convert the format to a data frame. Then observe the columns and organization of the
data.

Value

A format catalog based on the information contained in the input data frame.

Input Data Frame Specifications
The input data frame should contain the following columns:

* Name: The name of the format
* Type: The type of format. See the type codes below.

» Expression: The formatting expression. The expression will hold different types of values
depending on the format type.

* Label: The label for user-defined, "U" type formats.
* Order: The order for user-defined, "U" type formats.

Any additional columns will be ignored. Column names are case-insensitive.

Valid values for the "Type" column are as follows:

e U: User Defined List created with the value function.

* S: A formatting string of formatting codes. See FormattingStrings.

8 as.fcat.data.frame

¢ F: A vectorized function.

* V: A named vector lookup.

The "Label" and "Order" columns are used only for a type "U", user-defined format created with
the value function.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.fmt_lst(), as.fcat.list(), fcat(),
is.fcat(), print.fcat(), read.fcat(),write.fcat()

Examples

Create a format catalog
cl <- fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d-%b-%Y")

Convert catalog to data frame to view the structure
df <- as.data.frame(c1)

print(df)

Name Type Expression Label Order
1 num_fmt S %.1f NA
2 label_fmt U x == "A" Label A NA
3 label_fmt U x == "B"” Label B NA
4 label_fmt U TRUE Other NA
5 date_fmt S %d-%b-%Y NA

Convert data frame back to a format catalog
c2 <- as.fcat(df)

c2

A format catalog: 3 formats

- $date_fmt: type S, "%d-%b-%Y"

- $label_fmt: type U, 3 conditions
- $num_fmt: type S, "%.1f"

Use re-converted catalog
fapply(123.456, c2$num_fmt)
[1] "123.5"

fapply(c("A”, "B", "C", "B"), c2$label_fmt)
[1]1 "Label A” "Label B” "Other” "Label B"

fapply(Sys.Date(), c2$date_fmt)
[1]1 "07-Jan-2024"

as.fcat.fmt_Ist 9

as.fcat.fmt_lst Convert a formatting list to a format catalog

Description
The as.fcat.list function converts a formatting list to a format catalog. For additional informa-
tion on formatting lists, see flist.
Usage
S3 method for class 'fmt_lst'
as.fcat(x)
Arguments

X The formatting list to convert.

Value

A format catalog based on the formats contained in the input formatting list.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.list(), fcat(),
is.fcat(), print.fcat(), read.fcat(),write.fcat()

as.fcat.list Convert a list to a format catalog

Description
The as.fcat.list function converts a list of formats to a format catalog. Items in the list must be
named.
Usage
S3 method for class 'list'
as.fcat(x)
Arguments

X The list to convert. List must contained named formats.

Value

A format catalog based on the formats contained in the input list.

10 as.fcat.tbl_df

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1st(),
fcat(), is.fcat(), print.fcat(), read.fcat(),write.fcat()

as.fcat.tbl_df Convert a tibble to a format catalog

Description

This function takes a data frame as input and converts it to a format catalog based on the information
contained in the data frame. The data frame should have 5 columns: "Name", "Type", "Expression”,
"Label" and "Order".

Usage
S3 method for class 'tbl_df'
as.fcat(x)

Arguments

X The data frame to convert.

Details
The as.fcat.data.frame converts a data frame to a format catalog. A corresponding conversion
for class "tbl_df" converts a tibble.

To understand the structure of the input data frame, create a format and use the as.data.frame
method to convert the format to a data frame. Then observe the columns and organization of the
data.

Value

A format catalog based on the information contained in the input data frame.

Input Data Frame Specifications
The input data frame should contain the following columns:

* Name: The name of the format
» Type: The type of format. See the type codes below.

* Expression: The formatting expression. The expression will hold different types of values
depending on the format type.

* Label: The label for user-defined, "U" type formats.
* Order: The order for user-defined, "U" type formats.

Any additional columns will be ignored. Column names are case-insensitive.

Valid values for the "Type" column are as follows:

as.fcat.tbl_df 11

* U: User Defined List created with the value function.

* S: A formatting string of formatting codes. See FormattingStrings.
* F: A vectorized function.

* V: A named vector lookup.

The "Label" and "Order" columns are used only for a type "U", user-defined format created with
the value function.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(),as.fcat.fmt_lst(), as.fcat.list(), fcat(),
is.fcat(), print.fcat(), read.fcat(),write.fcat()

Examples

Create a format catalog
cl <~ fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d-%b-%Y")

Convert catalog to data frame to view the structure
df <- as.data.frame(c1)

print(df)

Name Type Expression Label Order
1 num_fmt S %.1f NA
2 label_fmt U x == "A" Label A NA
3 label_fmt U x == "B" Label B NA
4 label_fmt u TRUE Other NA
5 date_fmt S %d-%b-%Y NA

Convert data frame back to a format catalog
c2 <- as.fcat(df)

c2

A format catalog: 3 formats

- $date_fmt: type S, "%d-%b-%Y"

- $label_fmt: type U, 3 conditions
- $num_fmt: type S, "%.1f"

Use re-converted catalog
fapply(123.456, c2$num_fmt)
[1] "123.5"

fapply(c("A”, "B”, "C", "B"), cZ$1abel_fmt)
[1] "Label A" "Label B" "Other"” "Label B”

fapply(Sys.Date(), c2$date_fmt)
[1] "07-Jan-2024"

12 as.flist

as.flist Convert to a formatting list

Description

Converts an object to a formatting list. All other parameters are the same as the flist function.

Usage

as.flist(x, type = "column”, lookup = NULL, simplify = TRUE)

Arguments
X Object to convert.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is *column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for 'row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.
Default is TRUE. If the value is set to FALSE, the return type will be a list.
Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

Value

A formatting list object.

See Also

Other flist: as.data.frame.fmt_lst(), as.flist.data.frame(),as.flist.fcat(),as.flist.list(),
as.flist.thl_df (), flist(), is.flist(), print.fmt_lst(), read.flist(),write.flist()

as.flist 13

Examples

Example 1: Formatting List - Column Type
Set up data
vl <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

Create formatting list
f11 <- flist("%B", "The month is: %s")

Apply formatting list to vector
fapply(vl, f11)
[1] "The month is: October” "The month is: November” "The month is: December”

Example 2: Formatting List - Row Type ordered #i#
Set up data
Notice each row has a different data type
11 <- list("A", 1.263, as.Date("2020-07-21"),
"B", 5.8732, as.Date("2020-10-17"))

These formats will be recycled in the order specified
fl2 <- flist(type = "row”,

c(A = "Label A", B = "Label B"),

"% 1",

"%d%b%Y")

fapply (11, f12)
[1] "Label A" "1.3" "21Jul2020" "Label B" "5.9" "170ct2020"

Example 3: Formatting List - Row Type with lookup

#' # Create formatting list

f13 <- flist(type = "row”,
DEC1 = "%.1f",
DEC2 = "%.2f",
PCT1 = "%.1f%%")

Set up data
df <- data.frame(CODE = c("DEC1", "DEC2", "PCT1", "DEC2", "PCT1"),
VAL = c(41.258, 62.948, 12.125, 65.294, 15.825))

Assign lookup
f13$lookup <- df$CODE

Apply Formatting List
fapply(df$VAL, f13)
[1] "41.3" "62.95" "12.1%" "65.29" "15.8%"

Example 4: Formatting List - Values with Units
#' # Create formatting list

fl4 <- flist(type = "row”,
BASO = "%.2f x10(9)/L",

14 as.flist.data.frame

EOS = "%.2f x10(9)/L",
HCT = "%.1F%%"
HGB = "%.1f g/dL")

Set up data
df <- data.frame(CODE = c("BASO", "EOS", "HCT", "HGB"),
VAL = c(0.02384, 0.14683, 40.68374, 15.6345))

Assign lookup
fl4$lookup <- df$CODE

Apply Formatting List
df$VALC <- fapply(df$VAL, fl4)

View results

df

CODE VAL VALC
1 BASO 0.02384 0.02 x10(9)/L
2 EOS 0.14683 0.15 x10(9)/L
3 HCT 40.68374 40.7%
4 HGB 15.63450 15.6 g/dL

as.flist.data.frame Convert a data frame to a formatting list

Description

Converts a data frame to a formatting list. All other parameters are the same as the flist function.

Usage

S3 method for class 'data.frame'
as.flist(x, type = "column”, lookup = NULL, simplify = TRUE)

Arguments
X Data frame to convert.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is "column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for 'row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.

Default is TRUE. If the value is set to FALSE, the return type will be a list.

as.flist.data.frame 15

Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

Value

A formatting list object.

See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.fcat(),as.flist.list(),as.flist.tbl_df(),
flist(), is.flist(), print.fmt_lst(), read.flist(),write.flist()

Examples

Example 1: Formatting List - Column Type
Set up data
vl <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

Create formatting list
f11 <- flist("%B", "The month is: %s")

Apply formatting list to vector
fapply(vil, f11)
[1] "The month is: October” "The month is: November” "The month is: December”

Example 2: Formatting List - Row Type ordered
Set up data
Notice each row has a different data type
11 <- list("A", 1.263, as.Date("2020-07-21"),
"B", 5.8732, as.Date("2020-10-17"))

These formats will be recycled in the order specified
fl2 <- flist(type = "row”,

c(A = "Label A", B = "Label B"),

"%.1F",

"%d%b%Y")

fapply (11, f12)
[1] "Label A" "1.3" "21Jul2020" "Label B" "5.9" "170ct2020"

Example 3: Formatting List - Row Type with lookup

16

as.flist.fcat

#' # Create formatting list

13 <- flist(type = "row”,
DECT = "%.1f",
DEC2 = "%.2f",
PCT1 = "%.1f%%")

Set up data
df <- data.frame(CODE = c("DEC1", "DEC2", "PCT1", "DEC2", "PCT1"),
VAL = c(41.258, 62.948, 12.125, 65.294, 15.825))

Assign lookup
f13$lookup <- df$CODE

Apply Formatting List
fapply (df$VAL, f13)
[1] "41.3" "62.95" "12.1%" "65.29" "15.8%"

Example 4: Formatting List - Values with Units
#' # Create formatting list

fl4 <- flist(type = "row",
BASO = "%.2f x10(9)/L",

EOS = "%.2f x10(9)/L",
HCT = "%.1F%%"
HGB = "%.1f g/dL")

Set up data
df <- data.frame(CODE = c(”BASO", "EOS", "HCT", "HGB"),
VAL = c(0.02384, 0.14683, 40.68374, 15.6345))

Assign lookup
fl4$lookup <- df$CODE

Apply Formatting List
df$VALC <- fapply(df$VAL, f14)

View results

df

CODE VAL VALC
1 BASO 0.02384 0.02 x10(9)/L
2 EOS 0.14683 0.15 x10(9)/L
3 HCT 40.68374 40.7%
4 HGB 15.63450 15.6 g/dL

as.flist.fcat Convert a format catalog to a formatting list

as.flist.fcat 17

Description

Converts a format catalog to a formatting list. All other parameters are the same as the flist
function.

Usage

S3 method for class 'fcat'
as.flist(x, type = "column”, lookup = NULL, simplify = TRUE)

Arguments
X Format catalog to convert.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is “column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for ‘row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.
Default is TRUE. If the value is set to FALSE, the return type will be a list.
Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

Value

A formatting list object.

See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(),as.flist.list(),
as.flist.tbl_df (), flist(), is.flist(), print.fmt_1st(), read.flist(),write.flist()

Examples

Example 1: Formatting List - Column Type
Set up data
vl <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

Create formatting list
f11 <- flist("%B", "The month is: %s")

18

Apply formatting list to vector
fapply(vl, f11)

as.flist.fcat

[1] "The month is: October” "The month is: November” "The month is: December”

Example 2: Formatting List - Row Type ordered
Set up data
Notice each row has a different data type
11 <- list("A", 1.263, as.Date("2020-07-21"),
"B", 5.8732, as.Date("2020-10-17"))

These formats will be recycled in the order specified
fl2 <- flist(type = "row”,

c(A = "Label A", B = "Label B"),

"%.1F",

"%d%b%Y")

fapply (11, f12)
[1] "Label A" "1.3" "21Jul2020" "Label B" "5.9"

Example 3: Formatting List - Row Type with lookup

#' # Create formatting list

f13 <- flist(type = "row”,
DEC1 = "%.1f",
DEC2 = "%.2f",
PCT1 = "%.1F%%")

Set up data

df <- data.frame(CODE = c("DEC1", "DEC2", "PCT1", "DEC2", "PCT1"),
VAL = c(41.258, 62.948, 12.125, 65.294, 15.825))

Assign lookup
f13$lookup <- df$CODE

Apply Formatting List
fapply (df$VAL, f13)
[1]1 "41.3" "62.95" "12.1%" "65.29" "15.8%"

Example 4: Formatting List - Values with Units

#' # Create formatting list

fl4 <- flist(type = "row”,
BASO = "%.2f x10(9)/L",
EOS = "%.2f x10(9)/L",
HCT = "%.1f%%",
HGB = "%.1f g/dL")

Set up data
df <- data.frame(CODE = c("BASO", "EOS", "HCT", "HGB"),

VAL = c(0.02384, 0.14683, 40.68374, 15.6345))

"170ct2020"

as.flist.list 19

Assign lookup
fl4$lookup <- df$CODE

Apply Formatting List
df$VALC <- fapply(df$VAL, f14)

View results

df

CODE VAL VALC
1 BASO 0.02384 0.02 x10(9)/L
2 EOS 0.14683 0.15 x10(9)/L

3 HCT 40.68374 40.7%
4 HGB 15.63450 15.6 g/dL
as.flist.list Convert a list to a formatting list
Description

Converts a normal list to a formatting list. All other parameters are the same as the flist function.

Usage

S3 method for class 'list'
as.flist(x, type = "column”, lookup = NULL, simplify = TRUE)

Arguments
X List to convert.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is ’column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for ‘row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.
Default is TRUE. If the value is set to FALSE, the return type will be a list.
Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

20 as.flist.tbl_df

Value

A formatting list object.

See Also

flist function documentation for additional details.

Other flist: as.data.frame.fmt_1st(),as.flist(),as.flist.data.frame(),as.flist.fcat(),
as.flist.thl_df (), flist(), is.flist(), print.fmt_lst(), read.flist(),write.flist()

Examples

Example 1: Create flist from list - column type
1st1 <= list("%d%b%Y", "%.1f")
fl1 <- as.flist(lst1, type = "column")

Example 2: Create flist from list - row type

1st2 <- list(lkup = c(A = "Label A", B = "Label B"),
decl = "%.1f",
dt1 = "%d%b%Y")

fl2 <- as.flist(1lst2, type = "row")

as.flist.tbl_df Convert a tibble to a formatting list

Description

Converts a tibble to a formatting list. All other parameters are the same as the f1list function.

Usage

S3 method for class 'tbl_df'
as.flist(x, type = "column”, lookup = NULL, simplify = TRUE)

Arguments
X Tibble to convert.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for 'row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.

Default is TRUE. If the value is set to FALSE, the return type will be a list.

as.flist.tbl_df 21

Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

Value

A formatting list object.

See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(),as.flist.fcat(),
as.flist.list(), flist(), is.flist(), print.fmt_lst(), read.flist(),write.flist()

Examples

Example 1: Formatting List - Column Type
Set up data
vl <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

Create formatting list
f11 <- flist("%B", "The month is: %s")

Apply formatting list to vector
fapply(vl, f11)
[1] "The month is: October” "The month is: November” "The month is: December”

Example 2: Formatting List - Row Type ordered
Set up data
Notice each row has a different data type
11 <- list("A", 1.263, as.Date("2020-07-21"),
"B", 5.8732, as.Date("2020-10-17"))

These formats will be recycled in the order specified
fl2 <- flist(type = "row”,

c(A = "Label A", B = "Label B"),

"%.1F",

"%d%b%Y")

fapply (11, f12)
[1] "Label A" "1.3" "21Jul2020" "Label B" "5.9" "170ct2020"

Example 3: Formatting List - Row Type with lookup

22

as.fmt

#' # Create formatting list

13 <- flist(type = "row”,
DECT = "%.1f",
DEC2 = "%.2f",
PCT1 = "%.1f%%")

Set up data
df <- data.frame(CODE = c("DEC1", "DEC2", "PCT1", "DEC2", "PCT1"),
VAL = c(41.258, 62.948, 12.125, 65.294, 15.825))

Assign lookup
f13$lookup <- df$CODE

Apply Formatting List
fapply (df$VAL, f13)
[1] "41.3" "62.95" "12.1%" "65.29" "15.8%"

Example 4: Formatting List - Values with Units

#' # Create formatting list

fl4 <- flist(type = "row”,
BASO = "%.2f x10(9)/L",
EOS "%.2f x10(9)/L",
HCT = "%.1f%%",
HGB = "%.1f g/dL")

Set up data
df <- data.frame(CODE = c(”BASO", "EOS", "HCT", "HGB"),
VAL = c(0.02384, 0.14683, 40.68374, 15.6345))

Assign lookup
fl4$lookup <- df$CODE

Apply Formatting List
df$VALC <- fapply(df$VAL, f14)

View results

df

CODE VAL VALC
1 BASO 0.02384 0.02 x10(9)/L
2 EOS 0.14683 0.15 x10(9)/L
3 HCT 40.68374 40.7%
4 HGB 15.63450 15.6 g/dL

as.fmt Generic casting method for formats

Description

A generic method for casting objects to a format. Individual objects will inherit from this function.

as.fimt.data.frame 23

Usage

as.fmt(x)

Arguments

X The object to cast.

Value

A formatting object, created using the information in the input object.

See Also

Other fmt: as.data.frame.fmt(), as.fmt.data.frame(), condition(), is.format(), labels.fmt(),
print.fmt(), value()

as.fmt.data.frame Convert a data frame to a user-defined format

Description

This function takes a data frame as input and converts it to a user-defined format based on the
information contained in the data frame. The data frame should have 5 columns: "Name", "Type",
"Expression", "Label" and "Order".

Usage

S3 method for class 'data.frame'
as.fmt(x)

Arguments

X The data frame to convert.

Details

The as.fmt.data. frame function converts a data frame to a user-defined format.

To understand the structure of the input data frame, create a user-defined format and use the
as.data.frame method to convert the format to a data frame. Then observe the columns and
organization of the data.

Value

A format catalog based on the information contained in the input data frame.

24 as.fmt.data.frame

Input Data Frame Specifications

The input data frame should contain the following columns:

e Name: The name of the format
* Type: The type of format. See the type codes below.

* Expression: The formatting expression. The expression will hold different types of values
depending on the format type. Within the data frame, this expression is stored as a character
string.

* Label: The label for user-defined, "U" type formats.
* Order: The order for user-defined, "U" type formats.
* Factor: An optional column for "U" type formats that sets the "as.factor" parameter. Valid
values are TRUE, FALSE, or NA.
Any additional columns will be ignored. Column names are case-insensitive.

Valid values for the "Type" column are as follows:

* U: User Defined List created with the value function.

* S: A formatting string of formatting codes. See FormattingStrings.
* F: A vectorized function.

* V: A named vector lookup.

The "Label", "Order", and "Factor" columns are used only for a type "U", user-defined format
created with the value function.

See Also

Other fmt: as.data.frame.fmt(), as.fmt(), condition(), is.format(), labels.fmt(), print.fmt(),
value()

Examples

Create a user-defined format

f1 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Convert user-defined format to data frame to view the structure
df <- as.data.frame(f1)
print(df)

Name Type Expression Label Order Factor
#1 f1 U x == "A" Label A NA FALSE
2 f1 U x == "B" Label B NA FALSE
3 f1 u TRUE Other NA FALSE

Convert data frame back to a user-defined format
f2 <- as.fmt(df)

condition

25

Use re-converted format
f‘a‘:)‘:)]-y((:("AHy “B”’ Hcll’ IIBII)y fz)
[1] "Label A" "Label B"” "Other"” "Label B”

condition

Define a condition for a user-defined format

Description

The condition function creates a condition for a user-defined format. It is typically used in con-
junction with the value function.

Usage

condition(expr, label, order = NULL)

Arguments

expr

label

order

Details

A valid R expression. The value in the expression is identified by the variable
x’, 1.e. x =="A’ or x >3 & x < 6. The expression should not be quoted. The
expression parameter will accept equality, relational, and logical operators. It
will also accept numeric or string literals. String literals should be quoted. It
will not accept functions or any expression that includes a comma. For these
more complex operations, it is best to use a vectorized function. See fapply for
an example of a vectorized function.

A label to be assigned if the expression is TRUE. The label can any valid literal
value. Typically, the label will be a character string. However, the label param-
eter does not restrict the data type. Meaning, the label could also be a number,
date, or other R object type. The label may also be a string format, which allows
you to perform conditional formatting.

An optional integer order number. When used, this parameter will effect the
order of the labels returned from the labels. fmt function. The purpose of the
parameter is to control ordering of the format labels independently of the order
they are assigned in the conditions. The order parameter is useful when you are
using the format labels to assign ordered levels in a factor.

The condition function creates a condition as part of a format definition. The format is defined
using the value function. The condition is defined as an expression/label pair. The expression pa-
rameter can be any valid R expression. The label parameter can be any valid literal. Conditions are
evaluated in the order they are assigned. A default condition is created by assigning the expression
parameter to TRUE. If your data can contain missing values, it is recommended that you test for
those values first. Any data values that do not meet one of the conditions will fall through the format

as-is.

The condition object is an S3 class of type "fmt_cond". The condition labels can be extracted from
the format using the labels function.

26 descriptions

The format object may be applied to a vector using the fapply function. See fapply for further
details.

Value

The new condition object.

See Also

fdata to apply formatting to a data frame, value to define a format, levels or labels.fmt to
access the labels, and fapply to apply the format to a vector.

Other fmt: as.data.frame.fmt(), as.fmt(), as.fmt.data.frame(), is.format(), labels.fmt(),
print.fmt(), value()

Examples

Set up vector
V‘I <_ C(HA”, “B“, “C”, IIBII)

Define format

fmt1 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Apply format to vector
v2 <- fapply(vl, fmt1)

v2
[1] "Label A" "Label B" "Other"” "Label B”
descriptions Get or set descriptions for data frame columns
Description

The descriptions function extracts all assigned description attributes from a data frame, and re-
turns them in a named list. The function also assigns description attributes from a named list.

Usage

descriptions(x)

descriptions(x, verbose = FALSE) <- value

Arguments
X A data frame or tibble
verbose If TRUE, the function will emit messages regarding which descriptions have

been added or revised, and which are still missing. This option can help you if
you are filling out a lot of descriptions on a large dataset.

value A named list of description values.

descriptions 27

Details

If descriptions are assigned to the "description" attributes of the data frame columns, the descriptions
function will extract those values. The function will return the description values in a named list,
where the names correspond to the name of the column that the description was assigned to. If a
column does not have a description attribute assigned, that column will not be included in the list.

When used on the receiving side of an assignment, the function will assign descriptions to a data
frame. The description values should be in a named list, where each name corresponds to the name
of the data frame column to assign values to.

Finally, if you wish to clear out the description attributes, assign a NULL value to the descriptions
function.

Value

A named list of description values.

See Also

fdata to display formatted data, value to create user-defined formats, and fapply to apply format-
ting to a vector.

Examples

Take subset of data
df1 <- mtcars[1:5, c("mpg"”, "cyl") 1]

Print current state

print(df1)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8

Assign descriptions
descriptions(df1) <- list(mpg = "Miles per Gallon"”, cyl = "Cylinders")

Display descriptions
descriptions(df1)

$mpg

[1] "Miles per Gallon”

#
#
$cyl

[1] "Cylinders”

Clear descriptions
descriptions(df1) <- NULL

Confirm descriptions are cleared
descriptions(df1)
list()

28 fapply

fapply Apply formatting to a vector

Description

The fapply function applies formatting to a vector.

Usage

fapply(x, format = NULL, width = NULL, justify = NULL)

Arguments
X A vector, factor, or list to apply the format to.
format A format to be applied.
width The desired character width of the formatted vector. Default value is NULL,
meaning the vector will be variable width.
justify Whether to justify the return vector. Valid values are ’left’, ’right’, ’center’,
’centre’, or 'none’.
Details

The fapply function accepts several types of formats: formatting strings, named vectors, vector-
ized functions, or user-defined formats. It also accepts a formatting list, composed of any of the
previous types. The function will first determine the type of format, and then apply the format in
the appropriate way. Results are returned as a vector.

The function also has parameters for width and justification.

Parameters may also be passed as attributes on the vector. See the fattr function for additional
information on setting formatting attributes.

Value

A vector of formatted values.

Types of Formats
The fapply function will process any of the following types of formats:

* Formatting string: A single string will be interpreted as a formatting string. Formatting
strings include R-style formatting codes, and some SAS-style format names like "best" and
"date". See the FormattingStrings documentation and the sections below for further details.

* Named vector: A named vector can serve as a lookup list or decode for a vector. You can use
a named vector to perform simple lookups on character vectors.

* Format object: A format object may be created using the value function. The format object
is included in the fmtr package, and is specially designed for data categorization.

fapply 29

* Vectorized formatting function: A vectorized function provides the most flexibility and
power over your formatting. You can use an existing formatting function from any package,
or create your own vectorized formatting function using Vectorize.

fapply will also accept a formatting list, which can contain any number of formats from the above
list. To create a formatting list, see the f1list function.

"best' Format

The SAS "best" format is used to fit numeric values within a certain width. The word "best" is
followed by the desired width, i.e. "best6" or "best12". The format will then use the most optimal
display for the available width.

The format will use the entire value if the number of digits fits in the desired width. If not, the
format may round the value. The format may also use scientific notation if the value is very large
or very small. If the format cannot fit the value in the desired width at all, it will emit stars ("*") in
the desired width.

For input values that are less than the desired width, the result will be left-padded with spaces. The
output value will then always contain the exact number of characters requested.

Such a format has no direct equivalent in R, and is indeed difficult to replicate. For this reason, the
fmtr package added this format option for those situations when you want to replicate SAS "best"
formatting as closely as possible.

The "best" format accepts widths between 1 and 32. The default width is 12. The R "best" format
syntax does not accept a number of decimals, as in "bestW.d".

Note that "best" widths between 8 and 16 will match SAS most reliably. Small widths have many
special cases, and the logic is difficult to replicate. For large values, there are some differences
between SAS and R in how they represent these numbers, and sometimes they will not match.

"date'' Format

The "date" format is used to display date values in a readable character form, such as "01JAN70"
or "01-JAN-1970", depending on the specified width. The word "date" is followed by the desired
width, e.g. "date7" or "date9". This format replicates similar capabilities in SAS.

The format converts numeric or Date values into character strings using a pattern that depends on the
width. Smaller widths display shorter forms, while larger widths display more detail. For example:

 date5S — Displays as mmmyy (e.g., "JAN70")

 date7 — Displays as ddmmmyy (e.g., "01JAN70")

 date9 — Displays as ddmmmyyyy (e.g., "01JAN1970")

* datell — Displays as dd-mmm-yyyy (e.g., "01-JAN-1970")

The "date" format accepts widths between 5 and 11. Widths outside this range are not valid and will
result in an error. The default width is 7. Both "dateW” and "dateW. " are accepted, the trailing dot
(".") is optional and does not affect behavior.

For input values that are numeric, the function will interpret them as the number of days since 1970-
01-01, consistent with R’s internal date representation. If the input is already an R Date or POSIXt
object, it will be used directly. Missing values will be returned as missing.

30

fapply

The output value is left-padded with spaces if it is shorter than the requested width, ensuring the
formatted result always occupies exactly the specified number of characters. For example, for the
date 1970-01-01, the result of date7 is "01JAN70@", while the result of date8 is " @1JAN70", with
one additional leading space.

This format has no direct equivalent in base R. The fmtr package adds this capability for users who
wish to replicate SAS-style "date" formatting behavior as closely as possible.

"time'' Format

The "'time" format is used to display time-of-day values in a readable character form, such as
"9:00" or "23:59:59.995", depending on the specified width and number of decimal places. The
word "time" is followed by the desired width w and optional decimal precision d, e.g. "time8",
"time12.3", or "time20.9". This format closely replicates the behavior of SAS TIMEw.d.

The format converts numeric or time-like objects into character strings representing elapsed time in
hours, minutes, and seconds. Hours are not limited to the 0-23 range and may exceed 24, allowing
the format to represent durations such as "119:26:40" or "1388:53:20".

Width and precision: The total width w controls the minimum number of characters in the
output, while the optional decimal precision d controls the number of digits displayed after the
decimal point for seconds.

* timeS — Displays hours and minutes or only hours (e.g. " 9:00", "24:00", " 120")

¢ time7 — Displays h:mm:ss or hh:mm (e.g., "1:03:10", " 23:59")

* time8 — Displays as hh:mm:ss (e.g. " 1:03:10", "23:59:59")

* time9.1 — Displays seconds with one decimal place (e.g., "1:00:00.0")

* timel2.3 — Displays seconds with three decimal places (e.g., " 9:00:01.005")

* time20.9 — Displays seconds with up to nine decimal places (e.g., " 9:00:00.987654321")

Valid widths range from 2 to 20. The decimal precision d, when specified, must be between 0 and
w - 1. Widths or precisions outside these ranges are not valid and will result in an error.

If the width w is omitted (e.g., "time” or "time."), it defaults to 8. If the decimal precision d is
omitted, it defaults to . Both "TIMEw" and "TIMEw." are accepted, and the trailing dot is optional.

Input handling: The TIMEw.d format accepts the following input types:

¢ Numeric values, interpreted as the number of seconds since midnight
¢ POSIXt objects, using the time-of-day component

* hms objects from the hms package

e difftime objects

For numeric, hms and difftime inputs, negative values and values larger than 24 hours are al-
lowed and formatted accordingly, consistent with SAS behavior. For example, values such as
-3600 or 430000 are valid. For POSIXt inputs, only the clock time is used. As a result, negative
times and times exceeding 24 hours are not applicable to POSIXt objects.

The TIMEw.d format resolves known differences in fractional-second rounding between base R
and SAS, it applies SAS-compatible rounding to ensure that formatted results match SAS output
exactly, particularly near rounding boundaries.

In addition, whereas base R effectively limits fractional seconds to 6 digits, TIMEw.d supports up
to 12 digits of decimal precision, padding with trailing zeros when necessary, consistent with SAS
behavior.

fapply 31

See Also

fcat to create a format catalog, value to define a format, fattr to easily set the formatting at-
tributes of a vector, and flist to define a formatting list. Also see fdata to apply formats to an
entire data frame, and FormattingStrings for how to define a formatting string.

Examples

Example 1: Formatting string
vl <- ¢(1.235, 8.363, 5.954, 2.465)

Apply string format.
fapply(vl, "%.1f")
[11 "1.2" "8.4" "6.0" "2.5"

Apply width and two decimals
fapply(vl, "%5.2f")
[1]1 " 1.24" " 8.36" " 5.95" " 2.46"

Apply "best” format
fapply(vl, "best3")
['I] VI‘I.ZII "8.4“ n 6” II2.5II

Example 2: Named vector
Set up vector
v2 <= c("A", "B", "C", "B")

Set up named vector for formatting
fmt2 <- c(A = "Label A", B = "Label B"”, C = "Label C")

Apply format to vector
fapply(v2, fmt2)
[1] "Label A" "Label B" "Label C" "Label B”

Example 3: User-defined format

Define format

fmt3 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Apply format to vector
fapply(v2, fmt3)
[1] "Label A" "Label B" "Other” "Label B"

Example 4: Formatting function
Set up vectorized function
fmt4 <- Vectorize(function(x) {

if (x %in% c("A", "B"))
ret <- paste(”Label”, x)
else
ret <- "Other”

32

return(ret)

b

Apply format to vector
fapply(v2, fmt4)
[1] "Label A" "Label B" "Other” "Label B"

Example 5: Formatting List - Row Type #i#
Set up data
Notice each row has a different data type
v3 <- 1ist(2841.258, "H", Sys.Date(),

"L", Sys.Date() + 60, 1382.8865)

v4 <- c("int", "char", "date"”, "char"”, "date"”, "int")

Create formatting list
1st <- flist(type = "row", lookup = v4,

int = function(x) format(x, digits = 2, nsmall = 1,
big.mark=","),
char = value(condition(x == "H", "High"),

—T

condition(x == "L", "Low"),

condition(TRUE, "NA")),

date = "%d%b%Y")

Apply formatting list to vector
fapply(v3, 1lst)

[1] "2,841.3" "High” "06Jan2024" "Low”

Example 6: Formatting List - Column Type
Set up data

v5 <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

v5
[1] "2024-01-06" "2024-02-05" "2024-03-06"

Create formatting list
Ist <- flist("%B", "This month is: %s", type =

Apply formatting list to vector
fapply(vs, 1st)

[1] "This month is: January” "This month is: February” "This month is: March”

Example 7: Conditional Formatting
Data vector

v6 <- c(8.38371, 1.46938, 3.28783, NA, 0.98632)

User-defined format

fmt5 <- value(condition(is.na(x), "Missing"),
condition(x < 1, "Low"),
condition(x > 5, "High"),
condition(TRUE, "%.2f"))

Apply format to data vector
fapply(v6, fmt5)

[1]1 "High” "1.47" "3.29" "Missing” "Low"

"@6Mar2024" "1,382.9"

fapply

fapply2 33

Example 8: "best"” Format
#' # Data vector
v7 <- c(12.3456, 1234567.89, NA, 0.123456, 0.000012345)

fapply(v7, "best6")
[1] "12.346" "1.23E6" NA "9.1235" "123E-7"

Example 9: "date"” Format
Data Vector
v8 <- as.Date(c("1924-02-29" ,NA,"1980-12-31","2019-12-31","2020-02-29", "2030-08-20"))

fapply(v8, "date7")
[1] "29FEB24" NA "31DEC80" "31DEC19" "29FEB20" "20AUG30"

fapply(v8, "datel1")
[1] "29-FEB-1924" NA "31-DEC-1980" "31-DEC-2019" "29-FEB-2020" "20-AUG-2030"

Example 10: "time" format

Data vector

v9 <- c(-3600, NA, 0, 59.9, 3600.12345, 86399.995, 90000)

v10 <- strptime(c(”01:00:00.123", "09:00:01.456", NA), format="%H:%M:%0S")
fapply(v9, "time8")

[1]1 "-1:00:00" NA " 9:00:00" " 0:01:00" " 1:00:00" "24:00:00" "25:00:00"

fapply(vie, "timel0.2")
[1] "1:00:00.12" "9:00:01.46" NA

fapply2 Apply formatting to two vectors

Description

The fapply?2 function applies formatting to two different vectors, and combines them into a single
vector. This function is useful in cases where your data is in two different variables, and you would
like them displayed as a single column for reporting purposes. For example, if you wish to create
one column to display mean and standard deviation.

Usage

fapply2(
x1,
X2,
format1 = NULL,
format2 = NULL,
sep = " ",
width = NULL,
justify = NULL

34 fapply2

Arguments
x1 A vector, factor, or list to apply the formatl to.
X2 A second vector, factor, or list to which format2 will be applied.
format1 A format to be applied to the first input.
format2 A format to be applied to the second input.
sep A separator to use between the two formatted values. Default is a single blank
space (" ").
width The desired character width of the formatted vector. Default value is NULL,
meaning the vector will be variable width.
justify Whether to justify the return vector. Valid values are ’left’, ’right’, ’center’,
’centre’, or ‘none’.
Details

The fapply?2 function works nearly the same as fapply. The difference is it has parameters for
two vectors and formats instead of one. The output of the function is a single vector. The function
essentially calls fapply on each vector and pastes them together afterwards.

There is an additional sep parameter so you can define a separator between the two formatted
values. The width and justify parameters will apply to the single vector result. The function will
also pick up format attributes on the supplied vectors.

The fapply?2 function accepts any of the format types that fapply accepts. See fapply for addi-
tional information on the types of formats that can be applied.

Parameters may also be passed as attributes on the vector. See the fattr function for additional
information on setting formatting attributes.

Value

A vector of formatted values.

See Also

fapply to format a single input, fcat to create a format catalog, value to define a format, fattr
to easily set the formatting attributes of a vector, and flist to define a formatting list. Also see
fdata to apply formats to an entire data frame, and FormattingStrings for how to define a formatting
string.

Examples

Create sample data
dt <- ¢(2.1, 5, 6, 9, 2, 7, 3)

Calculate mean and standard deviation
vl <- mean(dt)
v2 <- sd(dt)

Apply formats and combine
fapply2(v1l, v2, "%.1f", "(%.2f)")
[1]1 "4.9 (2.66)"

fattr

35

fattr

Set formatting attributes

Description

Assign formatting attributes to a vector.

Usage

fattr(
X,

format = NULL,

width = NULL,

justify = NULL,

label = NULL,
description
keep = TRUE

Arguments

X

format

width

justify

label

description

keep

Details

NULL,

The vector or data frame column to assign attributes to.

The format to assign to the format attribute. The format can be a formatting
string, a named vector decode, a vectorized formatting function, or a formatting
list.

The desired width of the formatted output.

Justification of the output vector. Valid values are "none’, ’left’, right’, ’center’,
or ’centre’.

A label string to assign to the vector. This parameter was added for convenience,
as the label is frequently assigned at the same time the formatting attributes are
assigned.

A description string to assign to the vector. This parameter was added for conve-
nience, as the description is frequently assigned at the same time the formatting
attributes are assigned.

Whether to keep any existing formatting attributes and transfer to the new vector.
Default value is TRUE.

The fattr function is a convenience function for assigning formatting attributes to a vector. The
function accepts parameters for format, width, and justify. Any formatting attributes assigned can
be applied using fapply or fdata.

Value

The vector with formatting attributes assigned.

36 fattr<-

See Also

fdata to apply formats to a data frame, fapply to apply formats to a vector. See FormattingStrings
for documentation on formatting strings.

Examples

Create vector
a <- c(1.3243, 5.9783, 2.3848)

Assign format attributes
a <- fattr(a, format = "%.1f", width = 10, justify = "center")

Apply format attributes

fapply(a)
#0171 " 1.3 "o 60 o o4 "
fattr<- Set formatting attributes
Description

Assign formatting attributes to a vector

Usage

fattr(x) <- value

Arguments
X The vector or data frame column to assign attributes to.
value A named vector of attribute values.

Details

The fattr function is a convenience function for assigning formatting attributes to a vector. The
function accepts a named list of formatting attributes. Valid names are *format’, *width’, ’justify’,
’label’ and "description’. See fattr for additional details.

See Also

fdata to apply formats to a data frame, fapply to apply formats to a vector.

feat 37

Examples

Create vector
a <- c(1.3243, 5.9783, 2.3848)

Assign format attributes
fattr(a) <- list(format = "%.1f")

Apply format attributes

fapply(a)
[1] 111‘311 “6.0” 112'4“

fcat Create a format catalog

Description

A format catalog is a collection of formats. A format collection allows you to manage and store
formats as a unit. The fcat function defines the format catalog.

Usage
fcat(..., log = TRUE)
Arguments
A set of formats. Pass the formats as a name/value pair. Multiple name/value
pairs are separated by a comma.
log Whether to log the creation of the format catalog. Default is TRUE. This pa-
rameter is used internally.
Details

A format catalog is an S3 object of class "fcat". The purpose of the catalog is to combine related
formats, and allow you to manipulate all of them as a single object. The format catalog can be saved
to/from a file using the write.fcat and read. fcat functions. A format catalog can also be con-
verted to/from a data frame using the as.fcat.data.frame and as.data.frame.fcat functions.
Formats are accessed in the catalog using list syntax.

A format catalog can be used to assign formats to a data frame or tibble using the formats function.
Formats may be applied using the fdata and fapply functions.

A format catalog may contain any type of format except a formatting list. Allowed formats include
a formatting string, a named vector lookup, a user-defined format, and a vectorized formatting
function. A formatting list can be converted to a format catalog and saved independently. See the
flist function for more information on formatting lists.

Value

The format catalog object.

38

fdata

See Also

formats function for assigning formats to a data frame, and the fdata and fapply functions for
applying formats.

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1st(),
as.fcat.list(), is.fcat(), print.fcat(), read.fcat(),write.fcat()

Examples

Create format catalog
cl <~ fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Use formats in the catalog
fapply(2, c1$num_fmt)
[1] "2.0"

fapply(c("A", "B”, "C", "B"), c1$1abel_fmt)
[1] "Label A" "Label B" "Other"” "Label B”

fapply(Sys.Date(), cl$date_fmt)
[1] "06Jan2024"

fdata Format a data frame or tibble

Description

The fdata function applies formatting attributes to the entire data frame.

Usage
fdata(x, ...)
Arguments
X A data frame or tibble to be formatted.
Any follow-on parameters to the format function.
Details

If formats are assigned to the "format" attributes of the data frame columns, the fdata function
will apply those formats to the specified columns, and return a new, formatted data frame. Formats
can be specified as formatting strings, named vectors, user-defined formats, or vectorized formatting
functions. The fdata function will apply the format to the associated column data using the fapply

fdata

39

function. A format can also be specified as a formatting list of the previous four types. See the
fapply function for additional information.

After formatting each column, the fdata function will call the base R format function on the data
frame. Any follow on parameters will be sent to the format function.

The fdata function will also apply any width or justify attributes assigned to the data frame
columns. These attributes can be controlled at the column level. Using attributes to assign format-
ting and fdata to apply those attributes gives you a great deal of control over how your data is
presented.

Value

A new, formatted data frame or tibble with the formats applied.

See Al

SO

fcat to create a format catalog, fapply to apply a format to a vector, value to define a format ob-
ject, fattr to assign formatting specifications to a single column/vector, and the formats, widths,
and justification functions to get or set formatting for an entire data frame. Also see Format-
tingStrings for documentation on formatting strings.

Examples

Construct data frame from state vectors
df <- data.frame(state = state.abb, area = state.area)[1:10,

Calculate percentages
df$pct <- df$area / sum(state.area) * 100

Before formatting

df
#
#
#
#
#
#
#
#
#
#
#

#

state
AL
AK
AZ
AR
CA

(6(0]
CT

DE

FL

Q GA

= O 0O NO Ul WN =

area
51609
589757
113909
53104
158693
104247
5009
2057
58560
58876

—C OO N b~ WO -

pct

.42629378
.29883824
.14804973
.46761040
.38572418
.88102556
.13843139
.05684835
.61839532
.62712846

Create state name lookup list
name_lookup <- state.name
names(name_lookup) <- state.abb

Assign formats
formats(df) <- list(state = name_lookup,

area = function(x) format(x, big.mark =
pct

"% 1F%%")

]

non
’

),

40 flist

Apply formats
fdata(df)

state area pct
Alabama 51,609 4%
Alaska 589,757 16.3%
Arizona 113,909 1%
Arkansas 53,104 .5%
California 158,693 4%
Colorado 104,247 .9%
Connecticut 5,009 1%
Delaware 2,057 1%
Florida 58,560 1.6%
0 Georgia 58,876 .6%

J

e E E
—_ L, OO N = wo -

= O 0O NO Ul WN =

flist Create a formatting list

Description

A formatting list contains more than one formatting object.

Usage
flist(..., type = "column”, lookup = NULL, simplify = TRUE)
Arguments
A set of formatting objects.
type The type of formatting list. Valid values are 'row’ or ’column’. The default
value is column’.
lookup A lookup vector. Used for looking up the format from the formatting list. This
parameter is only used for 'row’ type formatting lists.
simplify Whether to simplify the results to a vector. Valid values are TRUE or FALSE.
Default is TRUE. If the value is set to FALSE, the return type will be a list.
Details

To apply more than one formatting object to a vector, use a formatting list. There are two types of
formatting list: column and row. The column type formatting lists applies all formats to all values
in the vector. The row type formatting list can apply a different format to each value in the vector.

Further, there are two styles of row type list: ordered and lookup. The ordered style applies each
format in the list to the vector values in the order specified. The ordered style will recycle the
formats as needed. The lookup style formatting list uses a lookup to determine which format from
the list to apply to a particular value of the vector. The lookup column values should correspond to
names on the formatting list.

Examples of column type and row type formatting lists are given below.

flist 41

Value

A vector or list of formatted values. The type of return value can be controlled with the simplify
parameter. The default return type is a vector.

See Also

fapply for information on how formats are applied to a vector, value for how to create a user-
defined format, and as.flist to convert an existing list of formats to a formatting list. Also see
FormattingStrings for details on how to use formatting strings.

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(),as.flist.fcat(),
as.flist.list(),as.flist.tbl_df(),is.flist(),print.fmt_lst(),read.flist(),write.flist()

Examples

Example 1: Formatting List - Column Type
Set up data
vl <- c(Sys.Date(), Sys.Date() + 30, Sys.Date() + 60)

Create formatting list
f11 <- flist("%B", "The month is: %s")

Apply formatting list to vector
fapply(vil, f11)
[1] "The month is: October” "The month is: November” "The month is: December”

Example 2: Formatting List - Row Type ordered
Set up data
Notice each row has a different data type
11 <- list("A", 1.263, as.Date("2020-07-21"),
"B", 5.8732, as.Date(”2020-10-17"))

These formats will be recycled in the order specified
fl2 <- flist(type = "row”,

c(A = "Label A", B = "Label B"),

"%.1F",

"%d%b%Y")

fapply (11, f12)
[1] "Label A" "1.3" "21Jul2020" "Label B" "5.9" "170ct2020"

Example 3: Formatting List - Row Type with lookup

#' # Create formatting list

13 <- flist(type = "row”,
DEC1 = "%.1f",
DEC2 = "%.2f",
PCT1 = "%.1f%%")

Set up data
df <- data.frame(CODE = c("DEC1", "DEC2", "PCT1", "DEC2", "PCT1"),

42 fmt_cnt_pct

VAL = c(41.258, 62.948, 12.125, 65.294, 15.825))

Assign lookup
f13$lookup <- df$CODE

Apply Formatting List
fapply(df$VAL, f13)
[1] "41.3" "62.95" "12.1%" "65.29" "15.8%"

Example 4: Formatting List - Values with Units

#' # Create formatting list

fl4 <- flist(type = "row”,
BASO = "%.2f x10(9)/L",
EOS "%.2f x10(9)/L",
HCT = "%.1f%%",
HGB = "%.1f g/dL")

Set up data
df <- data.frame(CODE = c(”BASO”, "EOS", "HCT", "HGB"),
VAL = c(0.02384, 0.14683, 40.68374, 15.6345))

Assign lookup
fl4$lookup <- df$CODE

Apply Formatting List
df$VALC <- fapply(df$VAL, fl4)

View results

df

CODE VAL VALC
1 BASO 0.02384 0.02 x10(9)/L
2 EOS 0.14683 0.15 x10(9)/L

3 HCT 40.68374 40.7%
4 HGB 15.63450 15.6 g/dL
fmt_cnt_pct Formatted count and percent
Description

A function to calculate and format a count and percent.

Usage

fmt_cnt_pct(x, denom = NULL, format = "%5.1f", na = NULL, zero = NULL)

fmt_cnt_pct 43

Arguments
X The input data vector or data frame column.
denom The denominator to use for the percentage. By default, the parameter is NULL,
meaning the function will use the number of non-missing values of the data
vector as the denominator. Otherwise, supply the denominator as a numeric
value.
format A formatting string suitable for input into the sprintf function. By default, this
format is defined as "%35.1f", which displays the value with one decimal place.
na The value to return for any NA value encountered in the input vector. Usually
this parameter is passed as a string, such as "-", yet any value can be supplied.
zero The value to return for any zero values encountered in the input vector. Usually
this value is supplied as string such as "0 (-)".
Details

This function calculates a percent and appends to the provided count. The input vector is assumed
to contain the counts. This function will not perform counting. It will calculate percentages and
append to the given counts.

The result is then formatted using sprintf. By default, the number of non-missing values in the
input data vector is used as the denominator. Alternatively, you may supply the denominator using
the denom parameter. You may also control the percent format using the format parameter. The
function will return any NA values in the input data unaltered.

If the calculated percentage is between 0% and 1%, the function will display "(< 1.0%)" as the
percentage value. Zero values will be displayed as "(0.0%)"

Value

A character vector of formatted counts and percents.

See Also
Other helpers: fmt_mean_sd(), fmt_mean_stderr(), fmt_median(), fmt_n(), fmt_quantile_range(),
fmt_range()

Examples

vl <- c(4, 3, 8,6, 9,5 NA, @, 7, 4, 3, 7)

Format count and percent
fmt_cnt_pct(v1)

Output
[11 "4 (36.4%)" "3 (27.3%)" "8 (72.7%)" "6 (54.5%)"
[5] "9 (81.8%)" "5 (45.5%)" NA "0 (0.0%)"

091 "7 (63.6%)" "4 (36.4%)" "3 (27.3%)" "7 (63.6%)"

Custom values for NA and zero
fmt_cnt_pct(vl, na = "N/A", zero = "0 (-)")

44 fmt_mean_sd

Custom NA and zero output

[1]1 "4 (36.4%)" "3 (27.3%)" "8 (72.7%)" "6 (54.5%)"
[5] "9 (81.8%)" "5 (45.5%)" "N/A" "o (-)"

091 "7 (63.6%)" "4 (36.4%)" "3 (27.3%)" "7 (63.6%)"

fmt_mean_sd Formatted mean and standard deviation

Description

A function to calculate and format a mean and standard deviation.

Usage

fmt_mean_sd(x, format = "%.1f", sd_format = NULL)

Arguments
X The input data vector or data frame column.
format A formatting string suitable for input into the sprintf function. By default, this
format is defined as "%.1f", which displays the mean and standard deviation
with one decimal place.
sd_format An optional format for the standard deviation. If this parameter is not supplied,
the standard deviation will be formatted the same as the mean, according to the
‘format‘ parameter.
Details

This function calculates a mean and standard deviation, and formats using sprintf. You may
control the format using the format parameter. Function will ignore NA values in the input data.
Results are returned as a character vector.

Value

The formatted mean and standard deviation.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_stderr(), fmt_median(), fmt_n(), fmt_quantile_range(),
fmt_range()
Examples

vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format mean and standard deviation
fmt_mean_sd(v1)
#"5.7 (2.7)"

fmt_mean_stderr 45

fmt_mean_stderr Formatted mean and standard error

Description

A function to calculate and format a mean and standard error.

Usage

fmt_mean_stderr(x, format = "%.1f", stderr_format = NULL)

Arguments
X The input data vector or data frame column.
format A formatting string suitable for input into the sprintf function. By default, this

format is defined as "%.1f", which displays the mean and standard error with
one decimal place.

stderr_format An optional format for the standard error. If this parameter is not supplied, the
standard error will be formatted the same as the mean, according to the ‘format’
parameter.

Details

This function calculates a mean and standard error, and formats using sprintf. You may control
the format using the format parameter. Function will ignore NA values in the input data. Results
are returned as a character vector.

Value

The formatted mean and standard error.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_sd(), fmt_median(), fmt_n(), fmt_quantile_range(),
fmt_range()

Examples

vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format mean and standard error
fmt_mean_stderr(v1)
"5.7 (0.9)"

46 fmt_median

fmt_median Formatted Median

Description

A function to calculate and format a median.

Usage

fmt_median(x, format = "%.1f")

Arguments
X The input data vector or data frame column.
format A formatting string suitable for input into the sprintf function. By default, this
format is defined as "%.1f", which displays the value with one decimal place.
Details

This function calculates a median using the stats package median function, and then formats the
output using sprintf. You may control the format using the format parameter. Function will
ignore any NA values in the input data. Results are returned as a character vector.

Value

The formatted median value.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_sd(), fmt_mean_stderr(), fmt_n(), fmt_quantile_range(),
fmt_range()

Examples
vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format median
fmt_median(v1)
"5.6"

fmt_n 47

fmt_n Formatted Count

Description

A function to calculate and format a numeric count.

Usage

fmt_n(x)

Arguments

X The input data vector or data frame column.

Details

This function calculates a count using the Base R sum function. NA values are not counted. Results
are returned as a character vector.

Value

The formatted count value.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_sd(), fmt_mean_stderr(), fmt_median(), fmt_quantile_range(),
fmt_range()

Examples

Create example vector
vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format n
fmt_n(v1)
ll9ll

48

fmt_quantile_range

fmt_quantile_range Formatted Quantile Range

Description

A function to calculate and format a quantile range.

Usage

fmt_quantile_range(

X7

format = "%.1f",

n_n

sep =

lower = 0.25,
0.75,

upper
type = 7

Arguments

X

format

sep
lower
upper

type

Details

The input data vector or data frame column.

A formatting string suitable for input into the sprintf function. By default, this
format is defined as "%.1f", which displays the value with one decimal place.

The character to use as a separator between the two quantiles.
The lower quantile range. Default is .25.
The upper quantile range. Default is .75.

An integer between 1 and 9 selecting one of the nine quantile algorithms. The
default is 7, which is the standard R default. If you are trying to match SAS
results, use type 2. See the quantile function documentation for further details.

This function calculates a quantile range using the stats package quantile function, and then for-
mats the output using sprintf. You may control the format using the format parameter. Function
will ignore any NA values in the input data. Results are returned as a character vector.

By default, the function calculates the 1st and 3rd quantiles at .25 and .75. The upper and lower
quantile ranges may be changed with the upper and lower parameters.

Value

The formatted quantile range.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_sd(), fmt_mean_stderr(), fmt_median(), fmt_n(),

fmt_range()

fmt_range 49

Examples

Create example vector
vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format Quantiles
fmt_quantile_range(v1)
"4.3 - 7.8"

fmt_range Formatted Range

Description

A function to calculate and format a numeric range.

Usage
fmt_range(x, format = "%s", sep = "-")
Arguments
X The input data vector or data frame column.
format A formatting string suitable for input into the sprintf function. By default, this
format is defined as "%s", which simply converts the value to a string with no
specific formatting.
sep The token used to separate the minimum and maximum range values. Default
value is a hyphen ("-").
Details

This function calculates a range using the Base R range function, and then formats the output using
sprintf. You may control the format using the format parameter. Any NA values in the input data
are ignored. Results are returned as a character vector.

Value

The formatted range values.

See Also

Other helpers: fmt_cnt_pct(), fmt_mean_sd(), fmt_mean_stderr(), fmt_median(), fmt_n(),
fmt_quantile_range()

50 formats

Examples

Create example vector
vl <- c(4.3, 3.7, 8.7, 6.1, 9.2, 5.6, NA, 0.7, 7.8, 4.9)

Format range
fmt_range(v1)
"0.7 - 9.2"

formats Get or set formats for a data frame

Description

The formats function extracts all assigned formats from a data frame, and returns them in a named
list. The function also assigns formats from a named list.

Usage

formats(x)

formats(x) <- value

Arguments
X A data frame or tibble
value A named list of formats
Details

If formats are assigned to the "format" attributes of the data frame columns, the formats function
will extract those formats. The function will return the formats in a named list, where the names
correspond to the name of the column that the format was assigned to. If a column does not have a
format attribute assigned, that column will not be included in the list.

When used on the receiving side of an assignment, the function will assign formats to a data frame.
The formats should be in a named list, where each name corresponds to the data frame column to
assign the format to.

The formats function can also accept a format catalog as input. This feature allows you to save
formats in metadata, load them into a format catalog, and quickly assign them to a data frame or
tibble. See the fcat function for additional information.

Finally, if you wish to clear out format attributes, assign a NULL value to the formats function.

Value

A named list of formats.

formats 51

See Also

fdata to display formatted data, value to create user-defined formats, fapply to apply formats to
a vector, and fcat to create a format catalog. Also see FormattingStrings for documentation on
formatting strings.

Examples

Take subset of data
df1 <- mtcars[1:5, c("mpg", "cyl")]

Print current state

print(df1)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8

H+

Assign formats

attr(dfi1$mpg, "format"”) <- value(condition(x >= 20, "High"),
condition(x < 20, "Low"))

attr(dfi$cyl, "format"”) <- function(x) format(x, nsmall = 1)

Display formatted data

fdata(df1)

mpg cyl
Mazda RX4 High 6.0
Mazda RX4 Wag High 6.0
Datsun 710 High 4.0
Hornet 4 Drive High 6.0
Hornet Sportabout Low 8.0

H

Extract format list
1st <- formats(df1)

Alter format list and reassign

1st$mpg <- value(condition(x >= 22, "High"),
condition(x < 22, "Low"))

1st$cyl <- function(x) format(x, nsmall = 2)

formats(df1) <- 1st

Display formatted data

fdata(df1)

mpg cyl
Mazda RX4 Low 6.00
Mazda RX4 Wag Low 6.00
Datsun 710 High 4.00
Hornet 4 Drive Low 6.00
Hornet Sportabout Low 8.00

H

Clear formats

52 FormattingStrings

formats(df1) <- NULL

Confirm formats are cleared
formats(df1)
list()

FormattingStrings Formatting Strings

Description

Formatting codes for formatting strings follow the conventions of the base R strptime and sprintf
functions. See below for further details.

Details

The fmtr packages accepts single strings as formatting specifications. These formatting strings
are interpreted differently depending on the data type of the vector being formatted. For date and
datetime vectors, the string will be interpreted as an input to the base R strptime function. For all
other types of vectors, the formatting string will be interpreted as an input to the sprintf function.

The formatting codes for these functions are simple to use. For example, the code fapply(as.Date("1970-01-01"),
"%B %d, %Y") will produce the output "January @1, 1970". The code fapply(1.2345, "%.1f")
will produce the output "1.2".

Date Formatting
Below are some commonly used formatting codes for dates:

* %d = day as a number

* %a = abbreviated weekday
* %A = unabbreviated weekday
* %m = month

* %D = abbreviated month

* %B = unabbreviated month
* %y = 2-digit year

* %Y = 4-digit year

* %H = hour (24 hour clock)
* %] = hour (12 hour clock)

* %M = minute

* %S = second

* %p = AM/PM indicator

* 9%q = Quarter as integer

* %Q = Quarter as "Q?"

See the strptime function for additional codes and examples of formatting dates and times.

FormattingStrings 53

"date'' Format

The "dateW." format is a date-display format that replicates the behavior of the SAS "DATEw."
family of formats. The "dateW." format converts either numeric date values, R Date objects, or
POSIXt date-time objects into standard fixed-width character representations.

Smaller widths show abbreviated forms (e.g., "JAN70" for "date5"), while larger widths show full
day/month/year values (e.g., "01JAN1970" for "date9" or "01-JAN-1970" for "date11"). For POSIXt
values, only the date portion is used.

Numeric inputs follow R conventions and are interpreted as days since 1970-01-01. The default
width is 7. A trailing dot (".") is optional.

Output always occupies the specified width. If the date value is shorter than the specified width, it
is left-padded with spaces.

"time" Format

The "TIMEw.d" format is a time-display format that replicates the behavior of the SAS "TIMEw.d"
family of formats. It converts time values into fixed-width character representations of the form
h:mm: ss, optionally including fractional seconds.

The format accepts numeric values (interpreted as seconds), POSIXt objects, hms objects or difftime
objects. For POSIXt inputs, only the time-of-day component is used. Numeric hms and difftime
inputs may be negative or exceed 24 hours; this is not applicable to POSIXt values.

The width W controls the total output width, while D specifies the number of decimal places for
seconds. If omitted, W defaults to 8 and D defaults to 0. A trailing dot (".") is optional.

Output always occupies the specified width and is left-padded with spaces if needed. Missing values
return NA. This format resolves known rounding differences between R and SAS and supports up to
12 digits of fractional seconds, exceeding R’s default precision.

Numeric Formatting

Below are some commonly used formatting codes for other data types:

* %s = string
* %d = integer

* %f = floating point number

See the sprintf function for additional codes and examples of formatting other data types.

"best'' Numeric Format

The "best" format is a special numeric format that replicates the "best" style of formatting from SAS.
The "best" format automatically determines the best way to format a number within a specified with.

For example, if you have a number like 123.45678, and format it with "best6", the result will be
"123.46". Note that the decimal point counts as one of the digits. Also note that the rightmost digit
will be rounded according to SAS rounding rules.

The same number above formatted with "best8" will be "123.4567". The default width is 12. That
means, if you simply send the format "best" with no width, it will be interpreted as "best12".

54 is.fcat
See Also
fapply for formatting vectors, and fdata for formatting data frames.
Examples
Examples for formatting dates and times
t <- Sys.time()
fapply(t, "%d/%m/%Y") # Day/Month/Year
fapply(t, "%d%b%Y") # Day abbreviated month year
fapply(t, "%y-%m") # Two digit year - month
fapply(t, "%A, %B %d") # Weekday, unabbreviated month and date
fapply(t, "%Y-%Q") # Year and Quarter
fapply(t, "%Y-%m%-%d %H:%M:%S %p") # Common timestamp format
Examples for formatting dates (date and times) using "dateW."”
d <- Sys.Date()
fapply(d, "date5") # Month Year (mmmyy)
fapply(d, "date7") # Day Month Year (ddmmmyy)
fapply(d, "date9") # Day Month Year (ddmmmyyyy)
fapply(d, "datel1") # Day Month Year (dd-mmm-yyyy)
t <- Sys.time()
fapply(t, "date5") # Month Year (mmmyy)
fapply(t, "date7") # Day Month Year (ddmmmyy)
fapply(t, "date9") # Day Month Year (ddmmmyyyy)
fapply(t, "datel1") # Day Month Year (dd-mmm-yyyy)
Examples for formatting numbers
a <- 1234.56789
fapply(a, "%f") # Floating point number
fapply(a, "%.1f") # One decimal place
fapply(a, "%8.1f") # Fixed width
fapply(a, "%-8.1f") # Fixed width left justified
fapply(a, "%08.1f") # Zero padded
fapply(a, "%+.1f") # Forced sign
fapply(-a, "%t.1f") # Negative
fapply(a, "%.1f%%") # Percentage
fapply(a, "$%.2f") # Currency
fapply(a, "The number is %f.") # Interpolation
"best” formatting
fapply(a, "best6") # Total width of 6
fapply(a, "best8") # Total width of 8
is.fcat Class test for a format catalog
Description

This function tests whether an object is a format catalog. The format catalog has a class of "fcat".

is.flist 55

Usage

is.fcat(x)

Arguments

X The object to test.

Value

TRUE or FALSE, depending on whether or not the object is a format catalog.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1st(),
as.fcat.list(), fcat(), print.fcat(), read.fcat(),write.fcat()

Examples

Create format catalog
cl <- fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Test for "fcat” class
is.fcat(cl)
[1] TRUE

is.fcat(Sys.Date())
[1] FALSE

is.flist Is object a formatting list

Description

Determines if object is a formatting list of class *fmt_lIst’.

Usage

is.flist(x)

Arguments

X Object to test.

56 is.format

Value

TRUE or FALSE, depending on class of object.

See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(),as.flist.fcat(),
as.flist.list(),as.flist.thl_df(), flist(),print.fmt_lst(),read.flist(),write.flist()

Examples

Create flist
flst <- flist("%d%b%Y", "%.1f")
is.flist(flst)
is.flist("A")

is.format Determine whether an object is a user-defined format

Description
The is.format function can be used to determine if an object is a user-defined format of class
"fmt”_

Usage

is.format(x)

Arguments

X A user-defined format of class "fmt".

Details
The is. format function returns TRUE if the object passed is a user-defined format. User-defined
formats are defined using the value function. See the value function help for further details.
Value

A logical value or TRUE or FALSE.

See Also

value to define a format, condition to define the conditions for a format, and fapply to apply the
format to a vector.

Other fmt: as.data.frame.fmt(), as.fmt(), as.fmt.data.frame(), condition(), labels.fmt(),

print.fmt(), value()

Jjustification 57

Examples

Define format

fmt1 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Check for format
is.format(fmt1)
[1] TRUE

is.format("A")
[1] FALSE

justification Get or set justification for data frame columns

Description

The justification function extracts all assigned justify attributes from a data frame, and returns
them in a named list. The function also assigns justify attributes from a named list.

Usage

justification(x)

justification(x) <- value

Arguments

X A data frame or tibble

value A named list of justification values.
Details

If justification values are assigned to the "justify" attributes of the data frame columns, the justification
function will extract those values. The function will return the justification values in a named list,
where the names correspond to the name of the column that the justification was assigned to. If a
column does not have a justify attribute assigned, that column will not be included in the list.

When used on the receiving side of an assignment, the function will assign justification to a data
frame. The justification values should be in a named list, where each name corresponds to the name
of the data frame column to assign values to.

Finally, if you wish to clear out the justification attributes, assign a NULL value to the justification
function.

Value

A named list of justification values.

58

See Also

Jjustification

fdata to display formatted data, value to create user-defined formats, and fapply to apply format-

ting to a vector.

Examples

Take subset of data
df1 <- mtcars[1:5, c("mpg", "cyl") 1]

Print current state

print(df1)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8

Assign justification

justification(df1) <- list(mpg = "left"”, cyl = "right")

widths(df1) <- list(mpg = 12, cyl = 10)

fdata(df1)

mpg cyl
Mazda RX4 21 6
Mazda RX4 Wag 21 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8

Display justification
justification(df1)

$mpg

[1] "left”

#
#
$cyl

[1] "right”

Display widths
widths(df1)

$mpg

[11 12

#
#
$cyl

#[1] 10

Clear justification
justification(df1) <- NULL

Confirm justifications are cleared
justification(df1)
list()

labels.fmt 59

labels.fmt Extract labels from a user-defined format

Description

The 1abels function creates a vector of labels associated with a user-defined format.

Usage
S3 method for class 'fmt'
labels(object, ...)
Arguments
object A user-defined format of class "fmt".

Following arguments.

Details

The condition function creates a condition as part of a format definition. Each condition has
a label as part of its definition. The labels function extracts the labels from the conditions and
returns them as a vector. While the labels will typically be of type character, they can be of any data
type. See the condition function help for further details.

Value

A vector of label values.

See Also

value to define a format, condition to define the conditions for a format, and fapply to apply the
format to a vector.

Other fmt: as.data.frame.fmt(), as.fmt(), as.fmt.data.frame(), condition(), is.format(),
print.fmt(), value()

Examples

Define format

fmt1 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Extract labels
labels(fmt1)
[1] "Label A" "Label B" "Other”

60 print.fcat

print.fcat Print a format catalog

Description

A class-specific instance of the print function for format catalogs. The function prints the format
catalog in a tabular manner. Use verbose = TRUE to print the catalog as a list.

Usage

S3 method for class 'fcat'

print(x, ..., verbose = FALSE)
Arguments

X The format catalog to print.

Any follow-on parameters.

verbose Whether or not to print the format catalog in verbose style. By default, the
parameter is FALSE, meaning to print in tabular style.

Value

The object, invisibly.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1lst(),
as.fcat.list(), fcat(), is.fcat(), read.fcat(),write.fcat()

Examples

#' # Create format catalog
cl <- fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Print the catalog

print(c1)

A format catalog: 3 formats

- $num_fmt: type S, "%.1f"

- $label_fmt: type U, 3 conditions
- $date_fmt: type S, "%d%b%Y"

print.fmt 61

print.fmt Print a format

Description

Prints a format object. This function is a class-specific implementation of the the generic print
method.

Usage

S3 method for class 'fmt'

print(
X’
name = deparse(substitute(x, env = environment())),
verbose = FALSE

)
Arguments
X An object of class "fmt".
Any follow-on parameters to the print function.
name The name of the format to print. By default, the variable name that holds the
format will be used.
verbose Turn on or off verbose printing mode. Verbose mode will print object as a list.
Otherwise, the object will be printed as a table.
See Also

Other fmt: as.data.frame.fmt(), as.fmt(), as.fmt.data.frame(), condition(), is.format(),
labels.fmt(), value()

print.fmt_lst Print a formatting list

Description

Print a formatting list

Usage

S3 method for class 'fmt_lst'
print(x, ..., verbose = FALSE)

62 read.fcat

Arguments
X The formatting list to print
Follow-on parameters to the print function
verbose Whether to print in summary or list-style.
See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(), as.flist.fcat(),
as.flist.list(), as.flist.tbl_df(), flist(), is.flist(), read.flist(),write.flist()

read.fcat Read a format catalog from the file system

Description
The read. fcat function reads a format catalog from the file system. The function accepts a path to
the format catalog, reads the catalog, and returns it.

Usage
read.fcat(file_path)

Arguments

file_path The path to the format catalog.

Value

The format catalog as an R object.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1st(),
as.fcat.list(), fcat(), is.fcat(), print.fcat(), write.fcat()

Examples

Create format catalog
cl <~ fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Get temp directory
tmp <- tempdir()

Save catalog to file system

read.flist 63

pth <- write.fcat(cl, dir_path = tmp)

Read from file system
c2 <- read.fcat(pth)

Use formats in the catalog
fapply(2, c1$num_fmt)
[1] "2.0"

fapply(c(”A”, "B“, Ilcll’ an)’ C1$label_f:mt)
[1] "Label A" "Label B" "Other” "Label B"

fapply(Sys.Date(), cl$date_fmt)
[1] "07Jan2024"

read.flist Read a formatting list from the file system

Description
The read. flist function reads a formatting list from the file system. The function accepts a path
to the formatting list, reads the list, and returns it.

Usage
read.flist(file_path)

Arguments

file_path The path to the formatting list.

Value

The formatting list as an R object.

See Also

Other flist: as.data.frame.fmt_lst(),as.flist(),as.flist.data.frame(),as.flist.fcat(),
as.flist.list(),as.flist.tbl_df(), flist(),is.flist(),print.fmt_1lst(),write.flist()

Examples

Create formatting list
fl <= flist(f1 = "%5.1f",
f2 = "%6.2f",
type = "row”

Get temp directory
tmp <- tempdir()

64 value

Save formatting list to file system
pth <- write.flist(fl, dir_path = tmp)

Read from file system
fr <- read.flist(pth)

Create sample data
dat <- c(12.3844, 292.28432)

Use formats in the catalog
fapply(dat, fr)
[1] " 12.4" "292.28"

value Create a user-defined format

Description

The value function creates a user-defined format.

Usage
value(..., log = TRUE, as.factor = FALSE)
Arguments
One or more condition functions.
log Whether to log the creation of the format. Default is TRUE. This parameter is
used internally.
as.factor If TRUE, the fapply function will return the result as an ordered factor. Other-
wise, the result will be returned as a vector. Default is FALSE.
Details

The value function creates a user defined format object, in a manner similar to a SAS® format. The
value function accepts one or more condition arguments that define the format. The conditions
map an R expression to a label. When applied, the format will return the label corresponding to the
first true expression.

The format object is an S3 class of type "fmt". When the object is created, the levels attribute
of the object will be set with a vector of values assigned to the labels property of the condition
arguments. These labels may be accessed either from the levels function or the labels function.
If no order has been assigned to the conditions, the labels will be returned in the order the conditions
were passed to the value function. If an order has been assigned to the conditions, the labels will
be returned in the order specified.

The format object may be applied to a vector using the fapply function. See fapply for further
details.

Note that the label may also be a string format. That means a user-defined format can be used to
apply string formats conditionally. This capability is useful when you want to conditionally format
data values.

value 65

Value

The new format object.

See Also

condition to define a condition, levels or labels. fmt to access the labels, and fapply to apply
the format to a vector.

Other fmt: as.data.frame.fmt(), as.fmt(), as.fmt.data.frame(), condition(), is.format(),
labels.fmt(), print.fmt()

Examples

Example 1: Character to Character Mapping
Set up vector
vl <= c("A", "B", "C", "B")

Define format

fmt1 <- value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other"))

Apply format to vector
fapply(vl, fmt1)
[1] "Label A" "Label B" "Other"” "Label B”

Example 2: Character to Integer Mapping

fmt2 <- value(condition(x == "A", 1),
condition(x == "B", 2),
condition(TRUE, 3))

Apply format to vector
fapply(vl, fmt2)
111232

Example 3: Categorization of Continuous Variable
Set up vector
v2 <- c(1, 6, 11, 7)

Define format

fmt3 <- value(condition(x < 5, "Low"),
condition(x >= 5 & x < 10, "High"),
condition(TRUE, "Out of range"))

Apply format to vector
fapply(v2, fmt3)
[1] "Low" "High" "Out of range" "High"

Example 4: Conditional formatting
v3 <- ¢(10.398873, 12.98762, 0.5654, 11.588372)

fmt4 <- value(condition(x < 1, "< 1.0"),

66 widths

condition(TRUE, "%.2f"))

fapply(v3, fmt4)
[1] "10.40" "12.99" "< 1.0" "11.59"

widths Get or set column widths for a data frame

Description

The widths function extracts all assigned widths from a data frame, and returns them in a named
list. The function also assigns widths from a named list.

Usage
widths(x)

widths(x) <- value

Arguments

X A data frame or tibble

value A named list of widths. The widths must be positive integers greater than zero.
Details

If widths are assigned to the "width" attributes of the data frame columns, the widths function
will extract those widths. The function will return the widths in a named list, where the names
correspond to the name of the column that the width was assigned to. If a column does not have a
width attribute assigned, that column will not be included in the list.

When used on the receiving side of an assignment, the function will assign widths to a data frame.
The widths should be in a named list, where each name corresponds to the data frame column to
assign the width to.

Finally, if you wish to clear out the width attributes, assign a NULL value to the widths function.

Value

A named list of widths. The widths must be positive integers greater than zero.

See Also

fdata to display formatted data, value to create user-defined formats, and fapply to apply formats
to a vector.

write.fcat 67

Examples

Take subset of data
df1 <- mtcars[1:5, c("mpg", "cyl")]

Print current state

print(df1)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8

Assign widths
widths(df1) <- list(mpg = 12, cyl = 10)

Display formatted data
fdata(df1)

mpg cyl
Mazda RX4 21.0
Mazda RX4 Wag 21.0
Datsun 710 22.8
Hornet 4 Drive 21.4

#
#
#
#
#
Hornet Sportabout 18.7

0 o OO

View assigned widths
widths(df1)

$mpg

[1] 12

#
#
$cyl

[1] 10

Clear widths
widths(df1) <- NULL

Confirm widths are cleared
widths(df1)
list()

write.fcat Write a format catalog to the file system

Description

The write. fcat function writes a format catalog to the file system. By default, the catalog will be
written to the current working directory, using the variable name as the file name. These defaults
can be overridden using the appropriate parameters. The catalog will be saved with a file extension
of ".fcat".

68 write.fcat

Usage

write.fcat(x, dir_path = getwd(), file_name = NULL)

Arguments
X The format catalog to write.
dir_path The directory path to write the catalog to. Default is the current working direc-
tory.
file_name The name of the file to save the catalog as. Default is the name of the variable
that contains the catalog. The ".fcat" file extension will be added automatically.
Value

The full path of the saved format catalog.

See Also

Other fcat: as.data.frame.fcat(), as.fcat(), as.fcat.data.frame(), as.fcat.fmt_1st(),
as.fcat.list(), fcat(), is.fcat(), print.fcat(), read.fcat()

Examples

Create format catalog
cl <- fcat(num_fmt = "%.1f",
label_fmt = value(condition(x == "A", "Label A"),
condition(x == "B", "Label B"),
condition(TRUE, "Other")),
date_fmt = "%d%b%Y")

Get temp directory
tmp <- tempdir()

Save catalog to file system
pth <- write.fcat(c1, dir_path = tmp)

Read from file system
c2 <- read.fcat(pth)

Use formats in the catalog
fapply(2, c1$num_fmt)
[1] "2.0"

fapply(c(”A”, "B", "C", "B"), cl$label_fmt)
[1]1 "Label A” "Label B” "Other” "Label B"

fapply(Sys.Date(), cl$date_fmt)
[1] "@7Jan2024"

write.flist 69

write.flist Write a formatting list to the file system

Description

The write.flist function writes a formatting list to the file system. By default, the formatting list
will be written to the current working directory, using the variable name as the file name. These
defaults can be overridden using the appropriate parameters. The catalog will be saved with a file
extension of ".flist".

Usage

write.flist(x, dir_path = getwd(), file_name = NULL)

Arguments
X The formatting list to write.
dir_path The directory path to write the catalog to. Default is the current working direc-
tory.
file_name The name of the file to save the catalog as. Default is the name of the vari-
able that contains the formatting list. The ".flist" file extension will be added
automatically.
Value

The full path of the saved formatting list.

See Also

Other flist: as.data.frame.fmt_1st(), as.flist(),as.flist.data.frame(), as.flist.fcat(),
as.flist.list(),as.flist.tbl_df(), flist(),is.flist(),print.fmt_lst(),read.flist()

Examples

Create formatting list
fl <= flist(f1 = "%5.1f",
f2 = "%6.2f",
type = "row")

Get temp directory
tmp <- tempdir()

Save formatting list to file system
pth <- write.flist(fl, dir_path = tmp)

Read from file system
fr <- read.flist(pth)

70

Create sample data
dat <- c(12.3844, 292.28432)

Use formats in the catalog
fapply(dat, fr)
[1] " 12.4" "292.28"

write.flist

Index

x fcat
as
as
as
as
as

.data.frame.fcat, 3
.fcat, 6
.fcat.data.frame, 7
.fcat.fmt_1st, 9
.fcat.list, 9

fcat, 37

is

.fcat, 54

print.fcat, 60
read.fcat, 62
write.fcat, 67

* flist
as
as
as
as
as
as

.data.frame.fmt_1st, 5
.flist, 12
.flist.data.frame, 14
.flist.fcat, 16
.flist.list, 19
.flist.tbl_df, 20

flist, 40

is

.flist, 55

print.fmt_1st, 61
read.flist, 63
write.flist, 69

* fmt
as
as
as

.data.frame.fmt, 4
.fmt, 22
.fmt.data.frame, 23

condition, 25

is

.format, 56

labels. fmt, 59
print.fmt, 61
value, 64

+ helpers
fmt_cnt_pct, 42
fmt_mean_sd, 44
fmt_mean_stderr, 45
fmt_median, 46
fmt_n, 47
fmt_quantile_range, 48

71

as.

as.

as.

as

as.

as.

as.

as

as.

as.

as

as.

as.
as.

fmt_range, 49

data.frame.fcat, 3, 6, 8-11, 37, 38, 55,
60, 62, 68

data.frame.fmt, 4, 23, 24, 26, 56, 59, 61,
65

data.frame.fmt_1st, 5, 12, 15, 17, 20,
21,41, 56, 62, 63, 69

.fcat, 3,6,8-11, 38, 55, 60, 62, 68

fcat.data.frame, 3,6, 7,9, 10, 37, 38,

55,60, 62, 68
fcat.fmt_1st, 3,6,8,9, 10, 11, 38, 55,
60, 62, 68
fcat.list, 3,6,8, 9,9, 11, 38, 55, 60, 62,
68

.fcat.tbl_df, 10
as.

flist, 5,12, 15,17, 20, 21,41, 56, 62, 63,
69

flist.data.frame, 5, 12, 14, 17, 20, 21,
41, 56, 62, 63, 69

flist.fcat, 5, 12, 15, 16, 20, 21, 41, 56,
62, 63,69

.flist.list, 5, 12,15,17,19, 21,41, 56,

62, 63,69
flist.tbl_df, 5, 12, 15, 17, 20, 20, 41,
56, 62, 63, 69
fmt, 4, 22, 24, 26, 56, 59, 61, 65
fmt.data.frame, 4, 23, 23, 26, 56, 59, 61,
65

condition, 4, 23, 24, 25, 56, 59, 61, 64, 65

descriptions, 26
descriptions<- (descriptions), 26

fapply, 25-27, 28, 34-39, 41, 51, 54, 56, 58,

59, 64-66

fapply2, 33
fattr, 28, 31, 34, 35, 36, 39
fattr<-, 36

72

fcat, 3,6, 811, 31, 34,37, 39, 50, 51, 55, 60,
62, 68

fdata, 26, 27, 31, 34-38, 38, 51, 54, 58, 66

flist, 5,9,12,15,17,20, 21,29, 31, 34, 37,
40, 56, 62, 63, 69

fmt_cnt_pct, 42, 44-49

fmt_mean_sd, 43, 44, 45—49

fmt_mean_stderr, 43, 44, 45, 46—49

fmt_median, 43—45, 46, 4749

fmt_n, 4346, 47, 48, 49

fmt_quantile_range, 4347, 48, 49

fmt_range, 4348, 49

format, 39

formats, 37-39, 50

formats<- (formats), 50

FormattingStrings, 7, 11, 24, 28, 31, 34, 36,
39,41,51,52

is.fcat, 3,6, 8-11, 38, 54, 60, 62, 68

is.flist, 5,12, 15,17, 20, 21,41, 55, 62, 63,
69

is.format, 4, 23, 24, 26, 56, 59, 61, 65

justification, 39, 57
justification<- (justification), 57

labels. fmt, 4, 23-26, 56, 59, 61, 65
levels, 26, 65

median, 46

print.fcat, 3,6, 8-11, 38, 55, 60, 62, 68

print.fmt, 4, 23, 24, 26, 56, 59, 61, 65

print.fmt_lst, 5, 12, 15,17, 20, 21, 41, 56,
61, 63,69

quantile, 48

range, 49

read.fcat, 3,6, 8-11, 37, 38, 55, 60, 62, 68

read.flist, 5,12, 15,17, 20, 21,41, 56, 62,
63, 69

sprintf, 4346, 48, 49, 52, 53
strptime, 52
sum, 47

value, 4,7, 8,11,23-28, 31,34, 39,41, 51,
56, 58, 59, 61, 64, 66
Vectorize, 29

INDEX

widths, 39, 66

widths<- (widths), 66

write.fcat, 3,6, 8-11, 37, 38, 55, 60, 62, 67

write.flist, 5,12, 15,17, 20, 21,41, 56, 62,
63,69

	as.data.frame.fcat
	as.data.frame.fmt
	as.data.frame.fmt_lst
	as.fcat
	as.fcat.data.frame
	as.fcat.fmt_lst
	as.fcat.list
	as.fcat.tbl_df
	as.flist
	as.flist.data.frame
	as.flist.fcat
	as.flist.list
	as.flist.tbl_df
	as.fmt
	as.fmt.data.frame
	condition
	descriptions
	fapply
	fapply2
	fattr
	fattr<-
	fcat
	fdata
	flist
	fmt_cnt_pct
	fmt_mean_sd
	fmt_mean_stderr
	fmt_median
	fmt_n
	fmt_quantile_range
	fmt_range
	formats
	FormattingStrings
	is.fcat
	is.flist
	is.format
	justification
	labels.fmt
	print.fcat
	print.fmt
	print.fmt_lst
	read.fcat
	read.flist
	value
	widths
	write.fcat
	write.flist
	Index

