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acorr_diagnostics Autocorrelation diagnostics for residuals
Description

Autocorrelation diagnostics for residuals

Usage
acorr_diagnostics(
resid,
runs = NULL,
max_lag = 20L,
aggregate = c("mean”, "median”, "none")
)
Arguments
resid Numeric matrix (time x voxels), typically whitened residuals.
runs Optional run labels.
max_lag Maximum lag to evaluate.
aggregate Aggregation across voxels: "mean"”, "median", or "none".
Value

List of autocorrelation values and nominal confidence interval.

Examples

# Generate example residuals with some autocorrelation
n_time <- 200

n_voxels <- 50

resid <- matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

# Add some AR(1) structure
for (v in 1:n_voxels) {
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resid[, v] <- filter(resid[, v], filter = 0.3, method = "recursive")

}

# Check autocorrelation
acorr_check <- acorr_diagnostics(resid, max_lag = 10, aggregate = "mean")

# Examine lag-1 autocorrelation
lagl_acorr <- acorr_check$acf[2] # First element is lag-@ (always 1)

afni_restricted_plan  Build an AFNI-style restricted AR plan from root parameters

Description

Build an AFNI-style restricted AR plan from root parameters

Usage
afni_restricted_plan(
resid,
runs = NULL,
parcels = NULL,
p = 3L,
roots,

estimate_mal = TRUE,
exact_first = TRUE

)
Arguments
resid (n x v) residual matrix (used only if estimate_mal=TRUE)
runs integer vector length n (optional)
parcels integer vector length v (optional; if provided, plan pooling="parcel’)
p either 3 or 5
roots either a single list with elements named as needed - for p=3: list(a, rl, t1, vrt =

1.0) - for p=5: list(a, rl, t1, r2, t2, vrt = 1.0) or a named list of such lists keyed
by parcel id (character) for per-parcel specs.

estimate_mal logical, if TRUE estimate MA(1) on AR residuals to mimic AFNI’s additive
white
exact_first apply exact AR(1) scaling at segment starts (harmless here; default TRUE)

Value

An fmriAR_plan with method = "afni” that can be supplied to whiten_apply().

Examples

NULL
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fit_noise Fit an AR/ARMA noise model (run-aware) and return a whitening plan
Description
Fit an AR/ARMA noise model (run-aware) and return a whitening plan
Usage
fit_noise(
resid = NULL,
Y = NULL,
X = NULL,
runs = NULL,
censor = NULL,
method = c("ar"”, "arma"),
p = n au tO n ,
q=0L,
p_max = 6L,
exact_first = c("ar1”, "none"),
pooling = c("global”, "run", "parcel”),
parcels = NULL,
parcel_sets = NULL,
multiscale = c("pacf_weighted”, "acvf_pooled"”),
ms_mode = NULL,
p_target = NULL,
beta = 0.5,
hr_iter = oL,
stepl = c("burg”, "yw"),
parallel = FALSE
)
Arguments
resid Numeric matrix (time x voxels) of residuals from an initial OLS fit.
Y Optional data matrix used to compute residuals when resid is omitted.
X Optional design matrix used with Y to compute residuals.
runs Optional integer vector of run identifiers.
censor Optional integer vector of 1-based timepoint indices to exclude from AR param-
eter estimation, or a logical vector of length nrow(resid) where TRUE
indicates censored timepoints. Censored frames (e.g., motion-corrupted) are
excluded when computing autocorrelations. Each run’s estimation uses only its
own valid (non-censored) segments.
method Either "ar" or "arma".
p AR order (integer or "auto" if method == "ar").
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q MA order (integer).

p_max Maximum AR order when p = "auto”.

exact_first Apply exact AR(1) scaling at segment starts ("ar1" or "none").

pooling Combine parameters across runs or parcels ("global", "run", "parcel").

parcels Integer vector (length = ncol(resid)) giving fine parcel memberships when pooling
= "parcel”.

parcel_sets Optional named list with entries coarse, medium, fine of equal length specify-

ing nested parcel labels for multi-scale pooling.

multiscale Multi-scale pooling mode when parcel_sets is supplied ("pacf_weighted" or
"acvf_pooled"), or TRUE/FALSE to toggle pooling.

ms_mode Explicit multiscale mode when multiscale is logical.
p_target Target AR order for multi-scale pooling (defaults to p_max).
beta Size exponent for multi-scale weights (default 0.5).
hr_iter Number of Hannan—Rissanen refinement iterations for ARMA.
step1l Preliminary high-order AR fit method for HR ("burg" or "yw").
parallel Reserved for future parallel estimation (logical).

Value

An object of class fmriAR_plan used by whiten_apply().

Examples

# Generate example data with AR(1) structure
n_time <- 200

n_voxels <- 50

phi_true <- 0.5

# Simulate residuals with AR(1) structure
resid <- matrix(@, n_time, n_voxels)
for (v in 1:n_voxels) {
e <- rnorm(n_time)
resid[1, v] <- e[1]
for (t in 2:n_time) {
resid[t, v] <- phi_true * resid[t-1, v] + e[t]
}
3

# Fit AR model
plan <- fit_noise(resid, method = "ar

"

, P =1

# With multiple runs
runs <- rep(1:2, each = 100)
plan_runs <- fit_noise(resid, runs = runs, method = "ar

n

, pooling = "run")
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print.fmriAR_plan Pretty-print an fmriAR whitening plan

Description

Pretty-print an fmriAR whitening plan

Usage
## S3 method for class 'fmriAR_plan'
print(x, ...)
Arguments
X An object returned by fit_noise().
Unused; included for S3 compatibility.
Value

The input plan, invisibly.

Examples

resid <- matrix(rnorm(60), 20, 3)
plan <- fit_noise(resid, method = "ar", p = 2)
print(plan)

sandwich_from_whitened_resid
GLS standard errors from whitened residuals

Description

GLS standard errors from whitened residuals

Usage
sandwich_from_whitened_resid(
Xw,
Yw,
beta = NULL,

type = C(”iid”’ ”hC@”)’
df_mode = c("rankX", "n-p"),
runs = NULL



whiten

Arguments
Xw Whitened design matrix.
Yw Whitened data matrix (time x voxels).
beta Optional coefficients (p x v); estimated if NULL.
type Either "iid" (default) or "hc0" for a robust sandwich.
df_mode Degrees-of-freedom mode: "rankX" (default) or "n-p".
runs Optional run labels (reserved for future per-run scaling).
Value

List containing standard errors, innovation variances, and XtX inverse.

Examples

# Generate example whitened data

n_time <- 200

n_pred <- 3

n_voxels <- 50

Xw <- matrix(rnorm(n_time * n_pred), n_time, n_pred)

Yw <- matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

# Compute standard errors
se_result <- sandwich_from_whitened_resid(Xw, Yw, type = "iid")

# Extract standard errors for first voxel
se_voxell <- se_result$se[, 1]

whiten Fit and apply whitening in one call

Description

Fit and apply whitening in one call

Usage

whiten(X, Y, runs = NULL, censor = NULL, ...)
Arguments

X Design matrix (time x regressors).

Y Data matrix (time x voxels).

runs Optional run labels.

censor Optional censor indices.

Additional parameters passed to fit_noise().



Value

List with whitened X and Y matrices.

Examples

# Create example data

n_time <- 200
n_pred <- 3
n_voxels <- 50

X <= matrix(rnorm(n_time * n_pred), n_time, n_pred)
Y <= X %*% matrix(rnorm(n_pred * n_voxels), n_pred, n_voxels) +
matrix(rnorm(n_time * n_voxels, sd = 2), n_time, n_voxels)

# One-step whitening
whitened <- whiten(X, Y, method = "ar"”, p = 2)

whiten_apply

whiten_apply

Apply a whitening plan to design and data matrices

Description

Apply a whitening plan to design and data matrices

Usage
whiten_apply(
plan,
X,
Y,
runs = NULL,

run_starts = NULL,
censor = NULL,
parcels = NULL,
inplace = FALSE,
parallel = TRUE

Arguments

plan

X

Y

runs
run_starts
censor
parcels
inplace
parallel

Whitening plan from fit_noise().

Numeric matrix of predictors (time X regressors).
Numeric matrix of data (time x voxels).
Optional run labels.

Optional 0-based run start indices (alternative to runs).

Optional indices of censored TRs (1-based); filter resets after gaps.

Optional parcel labels (length = ncol(Y)) when using parcel plans.
Modify inputs in place (logical).
Use OpenMP parallelism if available.
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Value

List with whitened data. Parcel plans return X_by per parcel; others return a single X matrix.

Examples

# Create example design matrix and data

n_time <- 200

n_pred <- 3

n_voxels <- 50

X <- matrix(rnorm(n_time * n_pred), n_time, n_pred)

Y <= X %*% matrix(rnorm(n_pred * n_voxels), n_pred, n_voxels) +
matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

# Fit noise model from residuals
residuals <- Y - X %*% solve(crossprod(X), crossprod(X, Y))
plan <- fit_noise(residuals, method = "ar"”, p = 2)

# Apply whitening

whitened <- whiten_apply(plan, X, Y)
Xw <- whitened$X

Yw <- whitened$Y
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