Package ‘fmriAR’

January 25, 2026
Type Package

Title Fast AR and ARMA Noise Whitening for Functional MRI (fMRI)
Design and Data

Version 0.3.1
Author Bradley Buchsbaum [aut, cre]
Maintainer Bradley Buchsbaum <brad.buchsbaum@gmail.com>

Description Lightweight utilities to estimate autoregressive (AR) and
autoregressive moving average (ARMA) noise models from residuals and apply
matched generalized least squares to whiten functional magnetic resonance
imaging (fMRI) design and data matrices. The ARMA estimator follows a
classic 1982 approach <doi:10.1093/biomet/69.1.81>, and a restricted AR
family mirrors workflows described by Cox (2012)
<doi:10.1016/j.neuroimage.2011.08.056>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.0)

Imports Rcpp, stats

Suggests testthat (>= 3.0.0), knitr, rmarkdown, abind, withr
LinkingTo Rcpp, ReppArmadillo

SystemRequirements OpenMP (optional)
Config/testthat/edition 3

VignetteBuilder knitr

URL https://bbuchsbaum.github.io/fmriAR/
NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-25 22:30:02 UTC

https://doi.org/10.1093/biomet/69.1.81
https://doi.org/10.1016/j.neuroimage.2011.08.056
https://bbuchsbaum.github.io/fmriAR/

2 acorr_diagnostics

Contents
acorr_diagnostics L. e e 2
afni_restricted_plan L 3
it NOISE e e e e 4
print.fmriAR_plan 6
sandwich_from_whitened_resid 6
wWhiten e 7
whiten_apply 8

Index 10

acorr_diagnostics Autocorrelation diagnostics for residuals
Description

Autocorrelation diagnostics for residuals

Usage
acorr_diagnostics(
resid,
runs = NULL,
max_lag = 20L,
aggregate = c("mean”, "median”, "none")
)
Arguments
resid Numeric matrix (time x voxels), typically whitened residuals.
runs Optional run labels.
max_lag Maximum lag to evaluate.
aggregate Aggregation across voxels: "mean"”, "median", or "none".
Value

List of autocorrelation values and nominal confidence interval.

Examples

Generate example residuals with some autocorrelation
n_time <- 200

n_voxels <- 50

resid <- matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

Add some AR(1) structure
for (v in 1:n_voxels) {

afni_restricted_plan 3

resid[, v] <- filter(resid[, v], filter = 0.3, method = "recursive")

}

Check autocorrelation
acorr_check <- acorr_diagnostics(resid, max_lag = 10, aggregate = "mean")

Examine lag-1 autocorrelation
lagl_acorr <- acorr_check$acf[2] # First element is lag-@ (always 1)

afni_restricted_plan Build an AFNI-style restricted AR plan from root parameters

Description

Build an AFNI-style restricted AR plan from root parameters

Usage
afni_restricted_plan(
resid,
runs = NULL,
parcels = NULL,
p = 3L,
roots,

estimate_mal = TRUE,
exact_first = TRUE

)
Arguments
resid (n x v) residual matrix (used only if estimate_mal=TRUE)
runs integer vector length n (optional)
parcels integer vector length v (optional; if provided, plan pooling="parcel’)
p either 3 or 5
roots either a single list with elements named as needed - for p=3: list(a, rl, t1, vrt =

1.0) - for p=5: list(a, rl, t1, r2, t2, vrt = 1.0) or a named list of such lists keyed
by parcel id (character) for per-parcel specs.

estimate_mal logical, if TRUE estimate MA(1) on AR residuals to mimic AFNI’s additive
white
exact_first apply exact AR(1) scaling at segment starts (harmless here; default TRUE)

Value

An fmriAR_plan with method = "afni” that can be supplied to whiten_apply().

Examples

NULL

4 fit_noise
fit_noise Fit an AR/ARMA noise model (run-aware) and return a whitening plan
Description
Fit an AR/ARMA noise model (run-aware) and return a whitening plan
Usage
fit_noise(
resid = NULL,
Y = NULL,
X = NULL,
runs = NULL,
censor = NULL,
method = c("ar"”, "arma"),
p = n au tO n ,
q=0L,
p_max = 6L,
exact_first = c("ar1”, "none"),
pooling = c("global”, "run", "parcel”),
parcels = NULL,
parcel_sets = NULL,
multiscale = c("pacf_weighted”, "acvf_pooled"”),
ms_mode = NULL,
p_target = NULL,
beta = 0.5,
hr_iter = oL,
stepl = c("burg”, "yw"),
parallel = FALSE
)
Arguments
resid Numeric matrix (time x voxels) of residuals from an initial OLS fit.
Y Optional data matrix used to compute residuals when resid is omitted.
X Optional design matrix used with Y to compute residuals.
runs Optional integer vector of run identifiers.
censor Optional integer vector of 1-based timepoint indices to exclude from AR param-
eter estimation, or a logical vector of length nrow(resid) where TRUE
indicates censored timepoints. Censored frames (e.g., motion-corrupted) are
excluded when computing autocorrelations. Each run’s estimation uses only its
own valid (non-censored) segments.
method Either "ar" or "arma".
p AR order (integer or "auto" if method == "ar").

fit_noise 5

q MA order (integer).

p_max Maximum AR order when p = "auto”.

exact_first Apply exact AR(1) scaling at segment starts ("ar1" or "none").

pooling Combine parameters across runs or parcels ("global", "run", "parcel").

parcels Integer vector (length = ncol(resid)) giving fine parcel memberships when pooling
= "parcel”.

parcel_sets Optional named list with entries coarse, medium, fine of equal length specify-

ing nested parcel labels for multi-scale pooling.

multiscale Multi-scale pooling mode when parcel_sets is supplied ("pacf_weighted" or
"acvf_pooled"), or TRUE/FALSE to toggle pooling.

ms_mode Explicit multiscale mode when multiscale is logical.
p_target Target AR order for multi-scale pooling (defaults to p_max).
beta Size exponent for multi-scale weights (default 0.5).
hr_iter Number of Hannan—Rissanen refinement iterations for ARMA.
step1l Preliminary high-order AR fit method for HR ("burg" or "yw").
parallel Reserved for future parallel estimation (logical).

Value

An object of class fmriAR_plan used by whiten_apply().

Examples

Generate example data with AR(1) structure
n_time <- 200

n_voxels <- 50

phi_true <- 0.5

Simulate residuals with AR(1) structure
resid <- matrix(@, n_time, n_voxels)
for (v in 1:n_voxels) {
e <- rnorm(n_time)
resid[1, v] <- e[1]
for (t in 2:n_time) {
resid[t, v] <- phi_true * resid[t-1, v] + e[t]
}
3

Fit AR model
plan <- fit_noise(resid, method = "ar

"

, P =1

With multiple runs
runs <- rep(1:2, each = 100)
plan_runs <- fit_noise(resid, runs = runs, method = "ar

n

, pooling = "run")

6 sandwich_from_whitened_resid

print.fmriAR_plan Pretty-print an fmriAR whitening plan

Description

Pretty-print an fmriAR whitening plan

Usage
S3 method for class 'fmriAR_plan'
print(x, ...)
Arguments
X An object returned by fit_noise().
Unused; included for S3 compatibility.
Value

The input plan, invisibly.

Examples

resid <- matrix(rnorm(60), 20, 3)
plan <- fit_noise(resid, method = "ar", p = 2)
print(plan)

sandwich_from_whitened_resid
GLS standard errors from whitened residuals

Description

GLS standard errors from whitened residuals

Usage
sandwich_from_whitened_resid(
Xw,
Yw,
beta = NULL,

type = C(”iid”’ ”hC@”)’
df_mode = c("rankX", "n-p"),
runs = NULL

whiten

Arguments
Xw Whitened design matrix.
Yw Whitened data matrix (time x voxels).
beta Optional coefficients (p x v); estimated if NULL.
type Either "iid" (default) or "hc0" for a robust sandwich.
df_mode Degrees-of-freedom mode: "rankX" (default) or "n-p".
runs Optional run labels (reserved for future per-run scaling).
Value

List containing standard errors, innovation variances, and XtX inverse.

Examples

Generate example whitened data

n_time <- 200

n_pred <- 3

n_voxels <- 50

Xw <- matrix(rnorm(n_time * n_pred), n_time, n_pred)

Yw <- matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

Compute standard errors
se_result <- sandwich_from_whitened_resid(Xw, Yw, type = "iid")

Extract standard errors for first voxel
se_voxell <- se_result$se[, 1]

whiten Fit and apply whitening in one call

Description

Fit and apply whitening in one call

Usage

whiten(X, Y, runs = NULL, censor = NULL, ...)
Arguments

X Design matrix (time x regressors).

Y Data matrix (time x voxels).

runs Optional run labels.

censor Optional censor indices.

Additional parameters passed to fit_noise().

Value

List with whitened X and Y matrices.

Examples

Create example data

n_time <- 200
n_pred <- 3
n_voxels <- 50

X <= matrix(rnorm(n_time * n_pred), n_time, n_pred)
Y <= X %*% matrix(rnorm(n_pred * n_voxels), n_pred, n_voxels) +
matrix(rnorm(n_time * n_voxels, sd = 2), n_time, n_voxels)

One-step whitening
whitened <- whiten(X, Y, method = "ar"”, p = 2)

whiten_apply

whiten_apply

Apply a whitening plan to design and data matrices

Description

Apply a whitening plan to design and data matrices

Usage
whiten_apply(
plan,
X,
Y,
runs = NULL,

run_starts = NULL,
censor = NULL,
parcels = NULL,
inplace = FALSE,
parallel = TRUE

Arguments

plan

X

Y

runs
run_starts
censor
parcels
inplace
parallel

Whitening plan from fit_noise().

Numeric matrix of predictors (time X regressors).
Numeric matrix of data (time x voxels).
Optional run labels.

Optional 0-based run start indices (alternative to runs).

Optional indices of censored TRs (1-based); filter resets after gaps.

Optional parcel labels (length = ncol(Y)) when using parcel plans.
Modify inputs in place (logical).
Use OpenMP parallelism if available.

whiten_apply

Value

List with whitened data. Parcel plans return X_by per parcel; others return a single X matrix.

Examples

Create example design matrix and data

n_time <- 200

n_pred <- 3

n_voxels <- 50

X <- matrix(rnorm(n_time * n_pred), n_time, n_pred)

Y <= X %*% matrix(rnorm(n_pred * n_voxels), n_pred, n_voxels) +
matrix(rnorm(n_time * n_voxels), n_time, n_voxels)

Fit noise model from residuals
residuals <- Y - X %*% solve(crossprod(X), crossprod(X, Y))
plan <- fit_noise(residuals, method = "ar"”, p = 2)

Apply whitening

whitened <- whiten_apply(plan, X, Y)
Xw <- whitened$X

Yw <- whitened$Y

Index

acorr_diagnostics, 2
afni_restricted_plan, 3

fit_noise, 4
fit_noise(), 6-8

print.fmriAR_plan, 6
sandwich_from_whitened_resid, 6

whiten, 7
whiten_apply, 8
whiten_apply(), 3,5

10

	acorr_diagnostics
	afni_restricted_plan
	fit_noise
	print.fmriAR_plan
	sandwich_from_whitened_resid
	whiten
	whiten_apply
	Index

