Package ‘fastmatch’

January 17, 2026
Version 1.1-8
Title Fast 'match()' Function

Author Simon Urbanek [aut, cre, cph] (https://urbanek.nz, ORCID:
<https://orcid.org/0000-0003-2297-1732>)

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Description Package providing a fast match() replacement for cases
that require repeated look-ups. It is slightly faster that R's
built-in match() function on first match against a table, but
extremely fast on any subsequent lookup as it keeps the hash
table in memory.

License GPL-2
Depends R (>=2.3.0)

URL https://www.rforge.net/fastmatch

BugReports https://github.com/s-u/fastmatch/issues/
NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-17 08:50:02 UTC

Contents
CoaleSCE e e
ctapply e
fmatch e
Index

https://orcid.org/0000-0003-2297-1732
https://www.rforge.net/fastmatch
https://github.com/s-u/fastmatch/issues/

2 coalesce

coalesce Create an index that groups unique values together

Description

coalesce makes sure that a given index vector is coalesced, i.e., identical values are grouped into
contiguous blocks. This can be used as a much faster alternative to sort.list where the goal is
to group identical values, but not necessarily in a pre-defined order. The algorithm is linear in the
length of the vector.

Usage

coalesce(x)

Arguments

X character, integer or real vector to coalesce

Details

The current implementation takes two passes through the vector. In the first pass it creates a hash
table for the values of x counting the occurrences in the process. In the second pass it assigns indices
for every element based on the index stored in the hash table.

The order of the groups of unique values is defined by the first occurence of each unique value,
hence it is identical to the order of unique.

One common use of coalesce is to allow the use of arbitrary vectors in ctapply via ctapply(x[coalesce(x)],

).

Value

Integer vector with the resulting permutation. x[coalesce(x)] gives x with contiguous unique
values.

Author(s)

Simon Urbanek

See Also

unique, sort.list, ctapply

ctapply 3

Examples

i = rnorm(2e6)

names(i) = as.integer(rnorm(2e6))

compare sorting and coalesce
system.time(o <- i[order(names(i))])
system.time(o <- i[coalesce(names(i))1)

more fair comparison taking the coalesce time (and copy) into account
system.time(tapply(i, names(i), sum))
system.time({ o <- i[coalesce(names(i))]; ctapply(o, names(o), sum) })

in fact, using ctapply() on a dummy vector is faster than table() ...
believe it or not ... (that that is actually wasteful, since coalesce
already computed the table internally anyway ...)
ftable <- function(x) {
t <- ctapply(rep(oL, length(x)), x[coalesce(x)], length)
t[sort.list(names(t))]
3
system.time(table(names(i)))
system.time(ftable(names(i)))

ctapply Fast tapply() replacement functions

Description

ctapply is a fast replacement of tapply that assumes contiguous input, i.e. unique values in the
index are never speparated by any other values. This avoids an expensive split step since both
value and the index chungs can be created on the fly. This makes it many orders of magnitude faster

than the classical lapply(split(), ...) implementation.
Usage
ctapply(X, INDEX, FUN, ..., MERGE=c, .SAFE=TRUE)
Arguments
X an atomic object, typically a vector
INDEX numeric or character vector of the same length as X
FUN the function to be applied
additional arguments to FUN. They are passed as-is, i.e., without replication or
recycling
MERGE function to merge the resulting vector or NULL if the arguments to such a function

are to be returned instead

.SAFE logical, if TRUE then fresh regular vectors are allocated for each call of FUN which
makes it safe to be used with any FUN. If FALSE then both the index and value
vectors use cached resizable vectors, but this imposes constraints on FUN (see
below).

4 fmatch

Details

Note that ctapply supports either integer, real or character vectors as indices (note that factors
are integer vectors and thus supported, but you do not need to convert character vectors). Unlike
tapply it does not take a list of factors - if you want to use a cross-product of factors, create the
product first, e.g. using paste(il, i2, i3, sep="\01"') or multiplication - whetever method is
convenient for the input types.

ctapply requires the INDEX to contiguous. One (slow) way to achieve that is to use sort or order.

If . SAFE=FALSE then both index and value vectors will be re-used in subsequent iterations and
created as growable vectors, thus avoiding allocations at each iteration. However, this means that
FUN may not directly store the value it is being passed, it can only compute on it and store/return
derived values (e.g., it is safe to use with functions like sum). This approach can be faster for large
X if INDEX consists of many small groups, but enable only if you have direct control over FUN and
know that it is safe to use this way.

Author(s)

Simon Urbanek

See Also

tapply

Examples

i = rnorm(4e6)

names(i) = as.integer(rnorm(l1e6))

i = iforder(names(i))]
system.time(tapply(i, names(i), sum))
system.time(ctapply(i, names(i), sum))

fmatch Fast match() replacement

Description

fmatch is a faster version of the built-in match() function. It is slightly faster than the built-in
version because it uses more specialized code, but in addition it retains the hash table within the
table object such that it can be re-used, dramatically reducing the look-up time especially for large
tables.

Although fmatch can be used separately, in general it is also safe to use: match <- fmatch since
it is a drop-in replacement. Any cases not directly handled by fmatch are passed to match with a
warning.

fmatch.hash is identical to fmatch but it returns the table object with the hash table attached
instead of the result, so it can be used to create a table object in cases where direct modification is
not possible.

%fin% is a version of the built-in %in% function that uses fmatch instead of match() and %! fin% is
the equivalent of %notin%.

fmatch 5

Usage

fmatch(x, table, nomatch = NA_integer_, incomparables = NULL)
fmatch.hash(x, table, nomatch = NA_integer_, incomparables = NULL)
x %fin% table

X %!fin% table

Arguments
X values to be matched
table values to be matched against
nomatch the value to be returned in the case when no match is found. It is coerced to

integer.

incomparables a vector of values that cannot be matched. Any value other than NULL will result
in a fall-back to match without any speed gains.

Details

See match for the purpose and details of the match function. fmatch is a drop-in replacement for
the match function with the focus on performance. incomparables are not supported by fmatch
and will be passed down to match.

The first match against a table results in a hash table to be computed from the table. This table is
then attached as the ".match.hash” attribute of the table so that it can be re-used on subsequent
calls to fmatch with the same table.

The hashing algorithm used is the same as the match function in R, but it is re-implemented in a
slightly different way to improve its performance at the cost of supporting only a subset of types
(integer, real and character). For any other types fmatch falls back to match (with a warning).

Value

fmatch: A vector of the same length as x - see match for details.
fmatch.hash: table, possibly coerced to match the type of x, with the hash table attached.

%fin% and %!fin%: A logical vector the same length as x - see %in% for details (%!fin% is the
negation of %fin%).

Note

fmatch modifies the table by attaching an attribute to it. It is expected that the values will not
change unless that attribute is dropped. Under normal circumstances this should not have any effect
from user’s point of view, but there is a theoretical chance of the cache being out of sync with the
table in case the table is modified directly (e.g. by some C code) without removing attributes.

In cases where the table object cannot be modified (or such modification would not survive)
fmatch.hash can be used to build the hash table and return table object including the hash ta-
ble. In that case no lookup is done and x is only used to determine the type into which table needs
to be coerced.

Also fmatch does not convert to a common encoding so strings with different representation in two
encodings don’t match.

6 fmatch

Author(s)

Simon Urbanek

See Also

match

Examples

some random speed comparison examples:

first use integer matching

X = as.integer(rnorm(1e6) * 1000000)

s =1:100

the first call to fmatch is comparable to match
system. time(fmatch(s,x))

but the subsequent calls take no time!
system. time(fmatch(s,x))

system. time(fmatch(-50:50,x))
system.time(fmatch(-5000:5000,x))

here is the speed of match for comparison
system. time(base: :match(s, x))

the results should be identical
identical(base: :match(s, x), fmatch(s, x))

next, match a factor against the table

this will require both x and the factor

to be cast to strings

= factor(c("1","1","2","foo","3" ,NA))

because the casting will have to allocate a string
cache in R, we run a dummy conversion to take

that out of the equation

dummy = as.character(x)

now we can run the speed tests
system.time(fmatch(s, x))

system. time(fmatch(s, x))

the cache is still valid for string matches as well
system. time(fmatch(c("foo","bar"”,"1","2"),x))

now back to match

system.time(base: :match(s, x))
identical(base::match(s, x), fmatch(s, x))

T N E

finally, some reals to match

y = rnorm(1e6)

s = c(y[sample(length(y), 100)1, 123.567, NA, NaN)
system.time(fmatch(s, y))

system. time(fmatch(s, y))

system.time(fmatch(s, y))

system.time(base: :match(s, y))

identical(base: :match(s, y), fmatch(s, y))

this used to fail before 0.1-2 since nomatch was ignored
identical(base::match(4L, 1:3, nomatch=0), fmatch(4L, 1:3, nomatch=0))

Index

* logic
fmatch, 4

* manip
coalesce, 2
ctapply, 3
fmatch, 4

%! fin% (fmatch), 4

%fin% (fmatch), 4

%in%, 4, 5

coalesce, 2
ctapply, 2,3

fastmatch (fmatch), 4
fmatch, 4

match, 4-6
order, 4

sort, 4
sort.list, 2

tapply, 4

unique, 2

	coalesce
	ctapply
	fmatch
	Index

