
expint: Exponential integral and incomplete
gamma function

Vincent Goulet
Université Laval

1 Introduction
The exponential integral

𝐸1(𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡, 𝑥 ∈ ℝ

and the incomplete gamma function

Γ(𝑎, 𝑥) = ∫
∞

𝑥
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 ∈ ℝ

are two closely related functions that arise in various fields of mathematics.
expint is a small package provides facilities to compute the exponential in-

tegral and the incomplete gamma function. Furthermore, and perhaps most
conveniently for R package developers, the package also gives easy access to
the underlying C workhorses through an API. The C routines are derived from
the GNU Scientific Library (GSL; Galassi et al., 2009).

The package expint started its life in version 2.0-0 of actuar (Dutang et al.,
2008), where we extended the range of admissible values in the computation of
limited expected value functions. This required an incomplete gamma function
that accepts negative values of argument 𝑎, as explained at the beginning of
Appendix A of Klugman et al. (2012).

2 Exponential integral
Abramowitz and Stegun (1972, Section 5.1) first define the exponential integral
as

𝐸1(𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡. (1)

1



An alternative definition (to be understood in terms of the Cauchy principal
value due to the singularity of the integrand at zero) is

Ei(𝑥) = −∫
∞

−𝑥

𝑒−𝑡
𝑡 𝑑𝑡 = ∫

𝑥

−∞

𝑒𝑡
𝑡 𝑑𝑡, 𝑥 > 0.

The above two definitions are related as follows:

𝐸1(−𝑥) = −Ei(𝑥), 𝑥 > 0. (2)

The exponential integral can also generalized to

𝐸𝑛(𝑥) = ∫
∞

1

𝑒−𝑥𝑡
𝑡𝑛 𝑑𝑡, 𝑛 = 0, 1, 2,… , 𝑥 > 0,

where 𝑛 is then the order of the integral. The latter expression is closely related
to the incomplete gamma function (section 3) as follows:

𝐸𝑛(𝑥) = 𝑥𝑛−1Γ(1 − 𝑛, 𝑥). (3)

One should note that the first argument of function Γ is negative for 𝑛 > 1.
The following recurrence relation holds between exponential integrals of

successive orders:
𝐸𝑛+1(𝑥) =

1
𝑛[𝑒

−𝑥 − 𝑥𝐸𝑛(𝑥)]. (4)

Finally, 𝐸𝑛(𝑥) has the following asymptotic expansion:

𝐸𝑛(𝑥) ≍
𝑒−𝑥
𝑥 (1 − 𝑛

𝑥 +
𝑛(𝑛 + 1)

𝑥2 − 𝑛(𝑛 + 1)(𝑛 + 2)
𝑥3 +…) . (5)

3 Incomplete gamma function
From a probability theory perspective, the incomplete gamma function is usu-
ally defined as

𝑃(𝑎, 𝑥) = 1
Γ(𝑎) ∫

𝑥

0
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 > 0.

Function pgamma already implements this function in R (just note the differing
order of the arguments).

Now, the definition of the incomplete gamma function of interest for this
package is rather the following (Abramowitz and Stegun, 1972, Section 6.5):

Γ(𝑎, 𝑥) = ∫
∞

𝑥
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 ∈ ℝ. (6)

2



Note that 𝑎 can be negative with this definition. Of course, for 𝑎 > 0 one has

Γ(𝑎, 𝑥) = Γ(𝑎)[1 − 𝑃(𝑎, 𝑥)]. (7)

Integration by parts of the integral in (6) yields the recursive relation

Γ(𝑎, 𝑥) = −𝑥
𝑎𝑒−𝑥
𝑎 + 1

𝑎Γ(𝑎 + 1, 𝑥). (8)

When 𝑎 < 0, this relation can be used repeatedly 𝑘 times until 𝑎 + 𝑘 is a
positive number. The right hand side can then be evaluated with (7). If 𝑎 =
0,−1, −2,… , this calculation requires the value of

𝐺(0, 𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡 = 𝐸1(𝑥),

the exponential integral defined in (1).

4 R interfaces
expint provides one main and four auxiliary R functions to compute the expo-
nential integral, and one function to compute the incomplete gamma function.
Their signatures are the following:

expint(x, order = 1L, scale = FALSE)
expint_E1(x, scale = FALSE)
expint_E2(x, scale = FALSE)
expint_En(x, order, scale = FALSE)
expint_Ei(x, scale = FALSE)
gammainc(a, x)

Let us first go over function gammainc since there is less to discuss. The
function takes in argument two vectors or real numbers (non-negative for ar-
gument x) and returns the value of Γ(𝑎, 𝑥). The function is vectorized in argu-
ments a and x, so it works similar to, say, pgamma.

We now turn to the expint family of functions. The function expint is a
unified interface to compute exponential integrals 𝐸𝑛(𝑥) of any (non-negative)
order, with default the most common case 𝐸1(𝑥). The function is vectorized
in arguments x and order. In other words, one can compute the exponential
integral of a different order for each value of 𝑥.

3



> expint(c(1.275, 10, 12.3), order = 1:3)
[1] 1.408099e-01 3.830240e-06 3.009983e-07
The argument order should be a vector of integers. Non-integer values are

silently coerced to integers using truncation towards zero.
When the argument scale is TRUE, the result is scaled by 𝑒𝑥.
The functions expint_E1, expint_E2 and expint_En are simpler, slightly

fasterways to directly compute exponential integrals𝐸1(𝑥),𝐸2(𝑥) and𝐸𝑛(𝑥), the
latter for a single order 𝑛 (the first value of order if order is a vector).
> expint_E1(1.275)
[1] 0.1408099
> expint_E2(10)
[1] 3.83024e-06
> expint_En(12.3, order = 3L)
[1] 3.009983e-07
Finally, the function expint_Ei is provided as a convenience to compute

Ei(𝑥) using (2).
> expint_Ei(5)
[1] 40.18528
> -expint_E1(-5) # same
[1] 40.18528

5 Accessing the C routines
The actual workhorses behind the R functions of section 4 are C routines with
the following prototypes:

double expint_E1(double x, int scale);
double expint_E2(double x, int scale);
double expint_En(double x, int order, int scale);
double gamma_inc(double a, double x);

expint makes these routines available to other packages through declara-
tions in the header file ‘include/expintAPI.h’ in the package installation direc-
tory. If you want to use a routine — say expint_E1 — in your package pkg,
proceed as follows:

4



1. Add the package expint to the Imports and LinkingTo directives of the
‘DESCRIPTION’ file of pkg;

2. Add an entry ‘import(expint)’ in the ‘NAMESPACE’ file of pkg;

3. Define the routine with a call to R_GetCCallable in the initialization rou-
tine R_init_pkg of pkg (R Core Team, 2025, Section 5.4). For the current
example, the file ‘src/init.c’ of pkg would contain the following code:
void R_init_pkg(DllInfo *dll)
{

R_registerRoutines(/* native routine registration */);

pkg_expint_E1 = (double(*)(double,int,int))
R_GetCCallable(”expint”, ”expint_E1”);

}

4. Define a native routine interface, say pkg_expint_E1 to avoid any name
clash, in ‘src/init.c’ that will call expint_E1:

double(*pkg_expint_E1)(double,int);

5. Declare the routine in a header file of pkg with the keyword extern to ex-
pose the interface to all routines of the package. In our example, ‘src/pkg.h’
would contain:

extern double(*pkg_expint_E1)(double,int);

6. Include the package header file ‘pkg.h’ in anyC filemaking use of the routine
pkg_expint_E1.

To help developers get started, expint ships with a complete test package
implementing the above; see the ‘example_API’ sub-directory in the installation
directory. This test package uses the .External R to C interface and, as a
bonus, shows how to vectorize an R function on the C side (the code for this
being mostly derived from base R).

There are various ways to define a package API. The approach described
above was derived from the package zoo (Zeileis and Grothendieck, 2005). The
package xts (Ryan and Ulrich, 2014) — and probably a few others on CRAN—
draws fromMatrix (Bates andMaechler, 2016) to propose a somewhat simpler
approach where the API exposes routines that can be used directly in a pack-
age. However, the provided header file can be included only once in a package,

5



otherwise one gets ‘duplicate symbols’ errors at link time. This constraint
does not show in the example providedwith xts or in packagesRcppXts (Eddel-
buettel, 2013) and TTR (Ulrich, 2016) that link to it (the only two at the time
of writing). A way around the issue is to define a native routine calling the
routines exposed in the API. In this scenario, tests we conducted proved the
approach we retained to be up to 10% faster most of the time.

6 Implementation details
As already stated, the C routines mentioned in section 5 are derived from code
in the GNU Scientific Library (Galassi et al., 2009).

For exponential integrals, the main routine expint_E1 computes 𝐸1(𝑥) us-
ing Chebyshev expansions (Gil et al., 2007, chapter 3). Routine expint_E2
computes 𝐸2(𝑥) using expint_E1 with relation (4) for 𝑥 < 100, and using
the asymptotic expression (5) otherwise. Routine expint_En simply relies on
gamma_inc to compute 𝐸𝑛(𝑥) for 𝑛 > 2 through relation (3).

For the sake of providing routines that better fit within the R ecosystem and
coding style, we made the following changes to the original GSL code:

1. routines now compute a single value and return their result by value;

2. accordingly, calculation of the approximation error was dropped in all rou-
tines;

3. most importantly, gamma_inc computes Γ(𝑎, 𝑥) for 𝑎 > 0 with (7) using
the routines gammafn and pgamma of the R API, rather than using the GSL
routines, as the example below illustrates;

> options(digits = 20)
> gammainc(1.2, 3)

[1] 0.06542142809100923162

> gamma(1.2) * pgamma(3, 1.2, 1, lower = FALSE)

[1] 0.06542142809100923162

4. finally, gamma_inc computes Γ(𝑎, 𝑥) for −0.5 < 𝑎 < 0 using the recursion
(8) instead of a series expansion as in the GSL routines, thereby relying on
the accuracy of pgamma near 𝑎 = 0.5 (fixes issue #2).

6

https://gitlab.com/vigou3/expint/-/issues/2


7 Alternative packages
The Comprehensive R Archive Network1 (CRAN) contains a number of pack-
ages with features overlapping expint. We review the similarities and differ-
ences here.

The closest package in functionality is gsl (Hankin, 2006). This package is
an R wrapper for the special functions and quasi random number generators of
the GNU Scientific Library. As such, it provides access to basically the same C
code as used in expint. Apart from the changes to the GSL code mentioned in
section 6, themain difference between the two packages is that gsl requires that
the GSL be installed on one’s system, whereas expint is a regular, free standing
R package.

Package VGAM (Yee, 2015) is a large, high quality package that provides
functions to compute the exponential integral Ei(𝑥) for real values, as well as
𝑒−𝑥 Ei(𝑥) and 𝐸1(𝑥) and their derivatives (up to the third derivative). Functions
expint, expexpint and expint.E1 are wrappers to the Netlib2 FORTRAN
subroutines in file ei.f. VGAM does not provide an API to its C routines.

Packagepracma (Borchers, 2016) provides a large number of functions from
numerical analysis, linear algebra, numerical optimization, differential equa-
tions and special functions. Its versions of expint, expint_E1, expint_Ei
and gammainc are entirely written in R with perhaps less focus on numerical
accuracy than the GSL and Netlib implementations. The functions are not vec-
torized.

Package frmqa (Tran, 2012) has a function gamma_inc_err that computes
the incomplete gamma function using the incomplete Laplace integral, but it is
only valid for 𝑎 = 𝑗 + 1

2
, 𝑗 = 0, 1, 2,… .

Package zipfR (Evert and Baroni, 2007) introduces a set of functions to
compute various quantities related to the gamma and incomplete gamma func-
tions, but these are essentiallywrappers around the base R functions gamma and
pgamma with no new functionalities.

8 Examples
We tabulate the values of 𝐸𝑛(𝑥) for 𝑥 = 1.275, 10, 12.3 and 𝑛 = 1, 2,… , 10 as
found in examples 4–6 of Abramowitz and Stegun (1972, section 5.3).

1https://cran.r-project.org
2https://www.netlib.org

7

https://cran.r-project.org
https://www.netlib.org


> x <- c(1.275, 10, 12.3)
> n <- 1:10
> structure(t(outer(x, n, expint)),
+ dimnames = list(n, paste(”x =”, x)))

x = 1.275 x = 10 x = 12.3
1 0.14080993 4.156969e-06 3.439534e-07
2 0.09989831 3.830240e-06 3.211177e-07
3 0.07603031 3.548763e-06 3.009983e-07
4 0.06083077 3.304101e-06 2.831550e-07
5 0.05046793 3.089729e-06 2.672346e-07
6 0.04301687 2.900528e-06 2.529517e-07
7 0.03743074 2.732441e-06 2.400730e-07
8 0.03310097 2.582217e-06 2.284066e-07
9 0.02965340 2.447221e-06 2.177930e-07
10 0.02684699 2.325303e-06 2.080990e-07
We also tabulate the values of Γ(𝑎, 𝑥) for 𝑎 = −1.5, −1, −0.5, 1 and 𝑥 =

1, 2,… , 10.
> a <- c(-1.5, -1, -0.5, 1)
> x <- 1:10
> structure(t(outer(a, x, gammainc)),
+ dimnames = list(x, paste(”a =”, a)))

a = -1.5 a = -1 a = -0.5 a = 1
1 1.264878e-01 1.484955e-01 1.781477e-01 3.678794e-01
2 1.183299e-02 1.876713e-02 3.009876e-02 1.353353e-01
3 1.870260e-03 3.547308e-03 6.776136e-03 4.978707e-02
4 3.706365e-04 7.995573e-04 1.733500e-03 1.831564e-02
5 8.350921e-05 1.992938e-04 4.773965e-04 6.737947e-03
6 2.045031e-05 5.304291e-05 1.379823e-04 2.478752e-03
7 5.310564e-06 1.478712e-05 4.127115e-05 9.118820e-04
8 1.440569e-06 4.267206e-06 1.266464e-05 3.354626e-04
9 4.042025e-07 1.264846e-06 3.964430e-06 1.234098e-04
10 1.165117e-07 3.830240e-07 1.260904e-06 4.539993e-05

9 Acknowledgments
We built on the source code of R andmany of the packages cited in this manual
to create expint, so the R Core Team and the package developers deserve credit.

8



Wealso extend our thanks toDirk Eddelbuettel whowas of great help in putting
together the package API, through both his posts in online forums and private
communication. Joshua Ulrich provided a fix to the API infrastructure to avoid
duplicated symbols that was implemented in version 0.1-6 of the package.

References
M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
1972. URL https://personal.math.ubc.ca/~cbm/aands/.

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Meth-
ods, 2016. URL https://CRAN.R-project.org/package=Matrix. R
package version 1.2-7.1.

H. W. Borchers. pracma: Practical Numerical Math Functions, 2016. URL
https://cran.r-project.org/package=pracma. R package.

C. Dutang, V. Goulet, and M. Pigeon. actuar: An R package for actuarial
science. Journal of Statistical Software, 25(7), 2008. URL https://www.
jstatsoft.org/v25/i07.

D. Eddelbuettel. RcppXts: Interface the xts API via Rcpp, 2013. URL https:
//CRAN.R-project.org/package=RcppXts. R package version 0.0.4.

S. Evert andM.Baroni. zipfR:Word frequency distributions inR. InProceedings
of the 45th Annual Meeting of the Association for Computational Linguistics,
Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic,
2007. URL https://cran.r-project.org/package=zipfR. R package.

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, Alken P., M. Booth,
F. Rossi, and R. Ulerich. GNU Scientific Library Reference Manual, third edi-
tion, 2009. URL https://www.gnu.org/software/gsl/.

A. Gil, J. Segura, and N. M. Temme. Numerical Methods for Special Functions.
Society for Industrial and AppliedMathematics, 2007. ISBN 978-0-89871634-
4. URL https://dx.doi.org/10.1137/1.9780898717822.

R. K. S. Hankin. Special functions in R: introducing the gsl package. R News,
6, October 2006.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 4 edition, 2012. ISBN 978-1-11831532-3.

9

https://personal.math.ubc.ca/~cbm/aands/
https://CRAN.R-project.org/package=Matrix
https://cran.r-project.org/package=pracma
https://www.jstatsoft.org/v25/i07
https://www.jstatsoft.org/v25/i07
https://CRAN.R-project.org/package=RcppXts
https://CRAN.R-project.org/package=RcppXts
https://cran.r-project.org/package=zipfR
https://www.gnu.org/software/gsl/
https://dx.doi.org/10.1137/1.9780898717822


R Core Team. Writing R Extensions, 2025. URL https://cran.r-project.
org/doc/manuals/R-exts.html. Manual for R version 4.5.2.

J. A. Ryan and J. M. Ulrich. xts: eXtensible Time Series, 2014. URL https:
//CRAN.R-project.org/package=xts. R package version 0.9-7.

Thanh T. Tran. frmqa: The Generalized Hyperbolic Distribution, Related Dis-
tributions and Their Applications in Finance, 2012. URL https://cran.
r-project.org/package=frmqa. R package.

J. Ulrich. TTR: Technical Trading Rules, 2016. URL https://CRAN.
R-project.org/package=TTR. R package version 0.23-1.

T. W. Yee. Vector Generalized Linear and Additive Models: With an Imple-
mentation in R. Springer, 2015. ISBN 978-1-49392818-7. URL https:
//cran.r-project.org/package=VGAM.

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular
time series. Journal of Statistical Software, 14(6):1–27, 2005. doi: 10.18637/
jss.v014.i06.

10

https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts
https://cran.r-project.org/package=frmqa
https://cran.r-project.org/package=frmqa
https://CRAN.R-project.org/package=TTR
https://CRAN.R-project.org/package=TTR
https://cran.r-project.org/package=VGAM
https://cran.r-project.org/package=VGAM

	1 Introduction
	2 Exponential integral
	3 Incomplete gamma function
	4 R interfaces
	5 Accessing the C routines
	6 Implementation details
	7 Alternative packages
	8 Examples
	9 Acknowledgments

