
Package ‘epiworldR’
January 14, 2026

Type Package

Title Fast Agent-Based Epi Models

Version 0.11.0.1

Depends R (>= 4.1.0)

Description A flexible framework for Agent-Based Models (ABM), the 'epiworldR' package pro-
vides methods for prototyping disease outbreaks and transmission models using a 'C++' back-
end, making it very fast. It supports multiple epidemiological models, including the Susceptible-
Infected-Susceptible (SIS), Susceptible-Infected-Removed (SIR), Susceptible-Exposed-Infected-
Removed (SEIR), and others, involving arbitrary mitigation policies and multiple-disease mod-
els. Users can specify infectiousness/susceptibility rates as a function of agents' features, provid-
ing great complexity for the model dynamics. Furthermore, 'epiworldR' is ideal for simula-
tion studies featuring large populations.

URL https://github.com/UofUEpiBio/epiworldR,

https://uofuepibio.github.io/epiworldR/,

https://uofuepibio.github.io/epiworldR-workshop/

BugReports https://github.com/UofUEpiBio/epiworldR/issues

License MIT + file LICENSE

RoxygenNote 7.3.3

Encoding UTF-8

LinkingTo cpp11

Suggests knitr, rmarkdown, tinytest, netplot, igraph, data.table,
DiagrammeR

Imports utils, parallel, methods

VignetteBuilder knitr

NeedsCompilation yes

Author George Vega Yon [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3171-0844>),

Derek Meyer [aut] (ORCID: <https://orcid.org/0009-0005-1350-6988>),
Andrew Pulsipher [aut] (ORCID: <https://orcid.org/0000-0002-0773-3210>),
Susan Holmes [rev] (what: JOSS reviewer, ORCID:

1

https://github.com/UofUEpiBio/epiworldR
https://uofuepibio.github.io/epiworldR/
https://uofuepibio.github.io/epiworldR-workshop/
https://github.com/UofUEpiBio/epiworldR/issues
https://orcid.org/0000-0002-3171-0844
https://orcid.org/0009-0005-1350-6988
https://orcid.org/0000-0002-0773-3210

2 Contents

<https://orcid.org/0000-0002-2208-8168>),
Abinash Satapathy [rev] (what: JOSS reviewer, ORCID:

<https://orcid.org/0000-0002-2955-2744>),
Carinogurjao [rev],
Centers for Disease Control and Prevention [fnd] (Award number

1U01CK000585; 75D30121F00003)

Maintainer George Vega Yon <g.vegayon@gmail.com>

Repository CRAN

Date/Publication 2026-01-14 06:10:35 UTC

Contents
add_entities_from_dataframe . 3
agents . 4
agents_smallworld . 5
entities . 8
epiworld-gentime . 10
epiworld-history . 11
epiworld-hospitalizations . 12
epiworld-methods . 13
epiworld-repnum . 18
epiworld-summaries . 19
epiworld-transition . 20
epiworld-transmissions . 22
global-events . 23
globalaction_tool . 27
LFMCMC . 27
ModelDiffNet . 32
ModelSEIR . 34
ModelSEIRCONN . 35
ModelSEIRD . 37
ModelSEIRDCONN . 38
ModelSEIRMixing . 40
ModelSEIRMixingQuarantine . 42
ModelSIR . 46
ModelSIRCONN . 48
ModelSIRD . 49
ModelSIRDCONN . 51
ModelSIRLogit . 52
ModelSIRMixing . 54
ModelSIS . 56
ModelSISD . 58
ModelSURV . 59
print.epiworld_diagram . 61
run_multiple . 63
tool . 66
virus . 71

https://orcid.org/0000-0002-2208-8168
https://orcid.org/0000-0002-2955-2744

add_entities_from_dataframe 3

Index 77

add_entities_from_dataframe

Add entities to a model according to a data.frame

Description

Helper function that facilities creating entities and adding them to models. It is a wrapper of
add_entity().

Usage

add_entities_from_dataframe(model, entities, col_name, col_number, ...)

Arguments

model An epiworld_model object.

entities A data.frame with the entities to add. It must contain two columns: entity
names (character) and size (proportion or integer).

col_name The name of the column in entities that contains the entity names.

col_number The name of the column in entities that contains the entity sizes (either as
proportions or integers).

... Further arguments passed to add_entity()

Value

Inivisible the model with the added entities.

Examples

Start off creating three entities.
Individuals will be distributed randomly between the three.
entities <- data.frame(

name = c("Pop 1", "Pop 2", "Pop 3"),
size = rep(3e3, 3)

)

Row-stochastic matrix (rowsums 1)
cmatrix <- c(

c(0.9, 0.05, 0.05),
c(0.1, 0.8, 0.1),
c(0.1, 0.2, 0.7)

) |> matrix(byrow = TRUE, nrow = 3)

flu_model <- ModelSIRMixing(
name = "Flu",
n = 9e3,
prevalence = 1 / 9e3,

4 agents

contact_rate = 20,
transmission_rate = 0.1,
recovery_rate = 1 / 7,
contact_matrix = cmatrix

) |>
add_entities_from_dataframe(

entities = entities,
col_name = "name",
col_number = "size",
This is passed to `add_entity()`
as_proportion = FALSE

)

agents Agents in epiworldR

Description

These functions provide read-access to the agents of the model. The get_agents function returns an
object of class epiworld_agents which contains all the information about the agents in the model.
The get_agent function returns the information of a single agent. And the get_state function
returns the state of a single agent.

Usage

get_agents(model, ...)

S3 method for class 'epiworld_model'
get_agents(model, ...)

S3 method for class 'epiworld_agents'
x[i]

S3 method for class 'epiworld_agent'
print(x, compressed = FALSE, ...)

S3 method for class 'epiworld_agents'
print(x, compressed = TRUE, max_print = 10, ...)

get_state(x)

Arguments

model An object of class epiworld_model.
... Ignored
x An object of class epiworld_agents
i Index (id) of the agent (from 0 to n-1)
compressed Logical scalar. When FALSE, it prints detailed information about the agent.
max_print Integer scalar. Maximum number of agents to print.

agents_smallworld 5

Value

• The get_agents function returns an object of class epiworld_agents.

• The [method returns an object of class epiworld_agent.

• The print function returns information about each individual agent of class epiworld_agent.

• The get_state function returns the state of the epiworld_agents object.

See Also

agents

Examples

model_sirconn <- ModelSIRCONN(
name = "COVID-19",
n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

run(model_sirconn, ndays = 100, seed = 1912)

x <- get_agents(model_sirconn) # Storing all agent information into object of
class epiworld_agents

print(x, compressed = FALSE, max_print = 5) # Displaying detailed information of
the first 5 agents using
compressed=F. Using compressed=T
results in less-detailed
information about each agent.

x[0] # Print information about the first agent. Substitute the agent of
interest's position where '0' is.

agents_smallworld Load agents to a model

Description

These functions provide access to the network of the model. The network is represented by an
edgelist. The agents_smallworld function generates a small world network with the Watts-
Strogatz algorithm. The agents_from_edgelist function loads a network from an edgelist. The
get_network function returns the edgelist of the network.

6 agents_smallworld

Usage

agents_smallworld(model, n, k, d, p)

agents_from_edgelist(model, source, target, size, directed)

get_network(model)

get_agents_states(model)

add_virus_agent(agent, model, virus, state_new = -99, queue = -99)

add_tool_agent(agent, model, tool, state_new = -99, queue = -99)

has_virus(agent, virus)

has_tool(agent, tool)

change_state(agent, model, state_new, queue = -99)

get_agents_tools(model)

Arguments

model Model object of class epiworld_model.

n, size Number of individuals in the population.

k Number of ties in the small world network.

d, directed Logical scalar. Whether the graph is directed or not.

p Probability of rewiring.

source, target Integer vectors describing the source and target of in the edgelist.

agent Agent object of class epiworld_agent.

virus Virus object of class epiworld_virus.

state_new Integer scalar. New state of the agent after the action is executed.

queue Integer scalar. Change in the queuing system after the action is executed.

tool Tool object of class epiworld_tool.

Details

The new_state and queue parameters are optional. If they are not provided, the agent will be
updated with the default values of the virus/tool.

Value

• The ’agents_smallworld’ function returns a model with the agents loaded.

• The agents_from_edgelist function returns an empty model of class epiworld_model.

agents_smallworld 7

• The get_network function returns a data frame with two columns (source and target) de-
scribing the edgelist of the network.

• get_agents_states returns an character vector with the states of the agents by the end of the
simulation.

• The function add_virus_agent adds a virus to an agent and returns the agent invisibly.

• The function add_tool_agent adds a tool to an agent and returns the agent invisibly.

• The functions has_virus and has_tool return a logical scalar indicating whether the agent
has the virus/tool or not.

• get_agents_tools returns a list of class epiworld_agents_tools with epiworld_tools
(list of lists).

Examples

Initializing SIR model with agents_smallworld
sir <- ModelSIR(name = "COVID-19", prevalence = 0.01, transmission_rate = 0.9,

recovery_rate = 0.1)
agents_smallworld(

sir,
n = 1000,
k = 5,
d = FALSE,
p = .01

)
run(sir, ndays = 100, seed = 1912)
sir

We can also retrieve the network
net <- get_network(sir)
head(net)

Simulating a bernoulli graph
set.seed(333)
n <- 1000
g <- matrix(runif(n^2) < .01, nrow = n)
diag(g) <- FALSE
el <- which(g, arr.ind = TRUE) - 1L

Generating an empty model
sir <- ModelSIR("COVID-19", .01, .8, .3)
agents_from_edgelist(

sir,
source = el[, 1],
target = el[, 2],
size = n,
directed = TRUE

)

8 entities

Running the simulation
run(sir, 50)

plot(sir)

entities Get entities

Description

Entities in epiworld are objects that can contain agents.

Usage

get_entities(model)

S3 method for class 'epiworld_entities'
x[i]

entity(name, prevalence, as_proportion, to_unassigned = TRUE)

get_entity_size(entity)

get_entity_name(entity)

entity_add_agent(entity, agent, model = attr(entity, "model"))

rm_entity(model, id)

add_entity(model, entity)

load_agents_entities_ties(model, agents_id, entities_id)

entity_get_agents(entity)

distribute_entity_randomly(prevalence, as_proportion, to_unassigned = TRUE)

distribute_entity_to_set(agents_ids)

set_distribution_entity(entity, distfun)

Arguments

model Model object of class epiworld_model.

x Object of class epiworld_entities.

i Integer index.

name Character scalar. Name of the entity.

entities 9

prevalence Numeric scalar. Prevalence of the entity.

as_proportion Logical scalar. If TRUE, prevalence is interpreted as a proportion.

to_unassigned Logical scalar. If TRUE, the entity is added to the unassigned pool.

entity Entity object of class epiworld_entity.

agent Agent object of class epiworld_agent.

id Integer scalar. Entity id to remove (starting from zero).

agents_id Integer vector.

entities_id Integer vector.

agents_ids Integer vector. Ids of the agents to distribute.

distfun Distribution function object of class epiworld_distribution_entity.

Details

Epiworld entities are especially useful for mixing models, particularly ModelSIRMixing and Mod-
elSEIRMixing.

Value

• The function entity creates an entity object.

• The function get_entity_size returns the number of agents in the entity.

• The function get_entity_name returns the name of the entity.

• The function entity_add_agent adds an agent to the entity.

• The function rm_entity removes an entity from the model.

• The function load_agents_entities_ties loads agents into entities.

• The function entity_get_agents returns an integer vector with the agents in the entity (ids).

Examples

Creating a mixing model
mymodel <- ModelSIRMixing(

name = "My model",
n = 10000,
prevalence = .001,
contact_rate = 10,
transmission_rate = .1,
recovery_rate = 1 / 7,
contact_matrix = matrix(c(.9, .1, .1, .9), 2, 2)

)

ent1 <- entity("First", 5000, FALSE)
ent2 <- entity("Second", 5000, FALSE)

mymodel |>

10 epiworld-gentime

add_entity(ent1) |>
add_entity(ent2)

run(mymodel, ndays = 100, seed = 1912)

summary(mymodel)

epiworld-gentime Generation time

Description

Extraction and plotting of generation time by virus over time.

Usage

get_generation_time(x)

S3 method for class 'epiworld_generation_time'
plot(
x,
type = "b",
xlab = "Day (step)",
ylab = "Avg. Generation Time",
main = "Generation Time",
plot = TRUE,
...

)

plot_generation_time(x, ...)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model), or an
object of class epiworld_generation_time.

ylab, xlab, main, type
Further parameters passed to graphics::plot()

plot Logical scalar. If TRUE (default), the function will plot the desired statistic.

... In the case of plot methods, further arguments passed to graphics::plot.

Value

• The function get_generation_time returns a data.frame with the following columns: "agent",
"virus_id", "virus", "date", and "gentime".

• The function plot_generation_time is a wrapper for plot and get_generation_time.

epiworld-history 11

See Also

Other Epidemiological metrics: epiworld-repnum

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

set.seed(937)
run(seirconn, 50)

Get and plot generation time
gent <- plot_generation_time(seirconn)

epiworld-history Model history and totals

Description

Functions to extract simulation history at total, variant, and tool levels, plus snapshot totals and a
common plot method for history objects.

Usage

get_hist_total(x)

get_today_total(x)

S3 method for class 'epiworld_hist'
plot(x, y, ...)

get_hist_virus(x)

get_hist_tool(x)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model).
y Ignored.
... In the case of plot methods, further arguments passed to graphics::plot.

12 epiworld-hospitalizations

Value

• The get_hist_total function returns an object of class epiworld_hist_total.

• The get_today_total function returns a named vector with the total number of individuals
in each state at the end of the simulation.

• The get_hist_virus function returns an object of class epiworld_hist_virus.

• The get_hist_tool function returns an object of epiworld_hist_tool.

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

Running the simulation for 50 steps (days)
set.seed(937)
run(seirconn, 50)

Retrieving date, state, and counts dataframe including any added tools
get_hist_tool(seirconn)

Retrieving overall date, state, and counts dataframe
head(get_hist_total(seirconn))

Retrieving date, state, and counts dataframe by variant
head(get_hist_virus(seirconn))

Snapshot of totals at end of simulation
get_today_total(seirconn)

epiworld-hospitalizations

Hospitalizations by tool

Description

Weighted hospitalization tracking when agents have multiple tools.

epiworld-methods 13

Usage

get_hospitalizations(x)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model).

Value

• The function get_hospitalizations returns a data.frame with five columns: date, virus_id,
tool_id, hospitalizations, and weight. The weight column is used to keep track of indi-
viduals having multiple tools. For example, if an agent has two tools (vaccination and mask-
wearing), then it will show up twice under count, but with weights 0.5 for each count. Models
with no hospitalization tracking will return the same data.frame with no rows.

See Also

Other Summaries: epiworld-summaries

Examples

See model documentation for examples with hospitalization tracking

epiworld-methods Methods for epiworldR objects

Description

The functions described in this section are methods for objects of class epiworld_model. Besides
of printing and plotting, other methods provide access to manipulate model parameters, getting
information about the model and running the simulation.

Usage

queuing_on(x)

queuing_off(x)

verbose_off(x)

verbose_on(x)

run(model, ndays, seed = NULL)

S3 method for class 'epiworld_model'
summary(object, ...)

14 epiworld-methods

get_states(x)

get_param(x, pname)

add_param(x, pname, pval)

S3 method for class 'epiworld_model'
add_param(x, pname, pval)

set_param(x, pname, pval)

set_name(x, mname)

get_name(x)

get_n_viruses(x)

get_n_tools(x)

get_ndays(x)

today(x)

get_n_replicates(x)

size(x)

set_agents_data(model, data)

get_agents_data_ncols(model)

get_virus(model, virus_pos)

get_tool(model, tool_pos)

initial_states(model, proportions)

clone_model(model)

draw_mermaid(model, output_file = "", allow_self_transitions = FALSE)

Arguments

x An object of class epiworld_model.

model Model object.

ndays Number of days (steps) of the simulation.

seed Seed to set for initializing random number generator (passed to set.seed()).

object Object of class epiworld_model.

epiworld-methods 15

... Additional arguments.

pname String. Name of the parameter.

pval Numeric. Value of the parameter.

mname String. Name of the model.

data A numeric matrix.

virus_pos Integer. Relative location (starting from 0) of the virus in the model

tool_pos Integer. Relative location (starting from 0) of the tool in the model

proportions Numeric vector. Proportions in which agents will be distributed (see details).

output_file String. Optional path to a file. If provided, the diagram will be written to the
file.

allow_self_transitions

Logical. Whether to allow self-transitions, defaults to FALSE.

Details

The verbose_on and verbose_off functions activate and deactivate printing progress on screen,
respectively. Both functions return the model (x) invisibly.

epiworld_model objects are pointers to an underlying C++ class in epiworld. To generate a copy
of a model, use clone_model, otherwise, the assignment operator will only copy the pointer.

draw_mermaid generates a mermaid diagram of the model. The diagram is saved in the specified
output file (or printed to the standard output if the filename is empty). See draw_mermaid_from_data().

Value

• The verbose_on and verbose_off functions return the same model, however verbose_off
returns the model with no progress bar.

• The run function returns the simulated model of class epiworld_model.

• The summary function prints a more detailed view of the model, and returns the same model
invisibly.

• The get_states function returns the unique states found in a model.

• The get_param function returns a selected parameter from the model object of class epiworld_model.

• add_param returns the model with the added parameter invisibly.

• The set_param function does not return a value but instead alters a parameter value.

• The set_name function does not return a value but instead alters an object of epiworld_model.

• get_name returns the name of the model.

• get_n_viruses returns the number of viruses of the model.

• get_n_tools returns the number of tools of the model.

16 epiworld-methods

• get_ndays returns the number of days of the model.

• today returns the current model day

• get_n_replicates returns the number of replicates of the model.

• size.epiworld_model returns the number of agents in the model.

• The ’set_agents_data’ function returns an object of class DataFrame.

• ’get_agents_data_ncols’ returns the number of columns in the model dataframe.

• ’get_virus’ returns a virus.

• get_tool returns a tool.

• inital_states returns the model with an updated initial state.

• clone_model returns a copy of the model.

• The draw_mermaid returns the mermaid diagram as a string.

Examples

model_sirconn <- ModelSIRCONN(
name = "COVID-19",
n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

Queuing - If you wish to implement the queuing function, declare whether
you would like it "on" or "off", if any.
queuing_on(model_sirconn)
queuing_off(model_sirconn)
run(model_sirconn, ndays = 100, seed = 1912)

Verbose - "on" prints the progress bar on the screen while "off"
deactivates the progress bar. Declare which function you want to implement,
if any.
verbose_on(model_sirconn)
verbose_off(model_sirconn)
run(model_sirconn, ndays = 100, seed = 1912)

get_states(model_sirconn) # Returns all unique states found within the model.

get_param(model_sirconn, "Contact rate") # Returns the value of the selected
parameter within the model object.
In order to view the parameters,
run the model object and find the
"Model parameters" section.

epiworld-methods 17

set_param(model_sirconn, "Contact rate", 2) # Allows for adjustment of model
parameters within the model
object. In this example, the
Contact rate parameter is
changed to 2. You can now rerun
the model to observe any
differences.

set_name(model_sirconn, "My Epi-Model") # This function allows for setting
a name for the model. Running the
model object, the name of the model
is now reflected next to "Name of
the model".

get_name(model_sirconn) # Returns the set name of the model.

get_n_viruses(model_sirconn) # Returns the number of viruses in the model.
In this case, there is only one virus:
"COVID-19".

get_n_tools(model_sirconn) # Returns the number of tools in the model. In
this case, there are zero tools.

get_ndays(model_sirconn) # Returns the length of the simulation in days. This
will match "ndays" within the "run" function.

today(model_sirconn) # Returns the current day of the simulation. This will
match "get_ndays()" if run at the end of a simulation, but will differ if run
during a simulation

get_n_replicates(model_sirconn) # Returns the number of replicates of the
model.

size(model_sirconn) # Returns the population size in the model. In this case,
there are 10,000 agents in the model.
Set Agents Data
First, your data matrix must have the same number of rows as agents in the
model. Below is a generated matrix which will be passed into the
"set_agents_data" function.
data <- matrix(data = runif(20000, min = 0, max = 100), nrow = 10000, ncol = 2)
set_agents_data(model_sirconn, data)
get_agents_data_ncols(model_sirconn) # Returns number of columns

get_virus(model_sirconn, 0) # Returns information about the first virus in
the model (index begins at 0).

add_tool(model_sirconn, tool("Vaccine", .9, .9, .5, 1, prevalence = 0.5, as_prop = TRUE))
get_tool(model_sirconn, 0) # Returns information about the first tool in the
model. In this case, there are no tools so an
error message will occur.

Draw a mermaid diagram of the transitions

18 epiworld-repnum

draw_mermaid(model_sirconn)

epiworld-repnum Reproductive number (Rt)

Description

Extraction and plotting of the reproductive number (Rt) by virus over time.

Usage

get_reproductive_number(x)

S3 method for class 'epiworld_repnum'
plot(
x,
y = NULL,
ylab = "Average Rep. Number",
xlab = "Day (step)",
main = "Reproductive Number",
type = "b",
plot = TRUE,
...

)

plot_reproductive_number(x, ...)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model), or an
object of class epiworld_repnum.

y Ignored.
ylab, xlab, main, type

Further parameters passed to graphics::plot()

plot Logical scalar. If TRUE (default), the function will plot the desired statistic.

... In the case of plot methods, further arguments passed to graphics::plot.

Details

The plot_reproductive_number function is a wrapper around get_reproductive_number that plots
the result.

Value

• The get_reproductive_number function returns an object of class epiworld_repnum.

• The plot method for epiworld_repnum returns a plot of the reproductive number over time.

epiworld-summaries 19

See Also

Other Epidemiological metrics: epiworld-gentime

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

set.seed(937)
run(seirconn, 50)

Retrieving (and plotting) the reproductive number
rp <- get_reproductive_number(seirconn)
plot(rp) # Also equivalent to plot_reproductive_number(seirconn)

epiworld-summaries Summary counts and probabilities

Description

Functions to extract summary statistics from models, including transition probabilities, active cases,
and outbreak sizes.

Usage

get_transition_probability(x)

get_active_cases(x)

get_outbreak_size(x)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model).

20 epiworld-transition

Value

• The get_transition_probability function returns an object of class matrix.

• The function get_active_cases returns a data.frame with four columns: date, virus_id,
virus, and active_cases indicating the number of active cases (individuals with a virus) at
each point in time.

• The function get_outbreak_size returns a data.frame with four columns: date, virus_id,
virus, and outbreak_size indicating the outbreak size per virus at each point in time.

See Also

Other Summaries: epiworld-hospitalizations

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

set.seed(937)
run(seirconn, 50)

Retrieving the transition probability
get_transition_probability(seirconn)

Get active cases
head(get_active_cases(seirconn))

Get outbreak size
head(get_outbreak_size(seirconn))

epiworld-transition Transition dynamics and incidence

Description

Functions to extract and visualize state transition counts, daily incidence, and conversion to array
format.

epiworld-transition 21

Usage

get_hist_transition_matrix(x, skip_zeros = FALSE)

S3 method for class 'epiworld_hist_transition'
as.array(x, ...)

plot_incidence(x, ...)

S3 method for class 'epiworld_hist_transition'
plot(
x,
type = "b",
xlab = "Day (step)",
ylab = "Counts",
main = "Daily incidence",
plot = TRUE,
...

)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model), or an
object of class epiworld_hist_transition.

skip_zeros Logical scalar. When FALSE it will return all the entries in the transition matrix.

... In the case of plot methods, further arguments passed to graphics::plot.
ylab, xlab, main, type

Further parameters passed to graphics::plot()

plot Logical scalar. If TRUE (default), the function will plot the desired statistic.

Details

The plot_incidence function is a wrapper between get_hist_transition_matrix and its plot method.

The plot method for the epiworld_hist_transition class plots the daily incidence of each state.
The function returns the data frame used for plotting.

Value

• get_hist_transition_matrix returns a data.frame with four columns: "state_from", "state_to",
"date", and "counts."

• The as.array method for epiworld_hist_transition objects turns the data.frame re-
turned by get_hist_transition_matrix into an array of nstates x nstates x (ndays + 1)
entries, where the first entry is the initial state.

• The plot_incidence function returns a plot originating from the object get_hist_transition_matrix.

• The plot method for epiworld_hist_transition returns a plot of the daily incidence.

22 epiworld-transmissions

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

set.seed(937)
run(seirconn, 50)

Get the transition history
t_hist <- get_hist_transition_matrix(seirconn)
head(t_hist)

Convert to array
as.array(t_hist)[, , 1:3]

Plot incidence
inci <- plot_incidence(seirconn)

epiworld-transmissions

Transmission network

Description

Transmission edges, including seeded infections (source = -1).

Usage

get_transmissions(x)

Arguments

x An object of class epiworld_sir, epiworld_seir, etc. (any model).

Details

The function get_transmissions includes the seeded infections, with the source column coded
as -1.

global-events 23

Value

• The function get_transmissions returns a data.frame with the following columns: date,
source, target, virus_id, virus, and source_exposure_date.

Examples

SEIR Connected model
seirconn <- ModelSEIRCONN(

name = "Disease",
n = 10000,
prevalence = 0.1,
contact_rate = 2.0,
transmission_rate = 0.8,
incubation_days = 7.0,
recovery_rate = 0.3

)

set.seed(937)
run(seirconn, 50)

Get transmission data
head(get_transmissions(seirconn))

global-events Global Events

Description

Global events are functions that are executed at each time step of the simulation. They are useful
for implementing interventions, such as vaccination, isolation, and social distancing by means of
tools.

Usage

globalevent_tool(tool, prob, name = get_name_tool(tool), day = -99)

globalevent_tool_logit(
tool,
vars,
coefs,
name = get_name_tool(tool),
day = -99

)

globalevent_set_params(
param,
value,

24 global-events

name = paste0("Set ", param, " to ", value),
day = -99

)

globalevent_fun(fun, name = deparse(substitute(fun)), day = -99)

add_globalevent(model, event, action = NULL)

rm_globalevent(model, event)

Arguments

tool An object of class tool.

prob Numeric scalar. A probability between 0 and 1.

name Character scalar. The name of the action.

day Integer. The day (step) at which the action is executed (see details).

vars Integer vector. The position of the variables in the model.

coefs Numeric vector. The coefficients of the logistic regression.

param Character scalar. The name of the parameter to be set.

value Numeric scalar. The value of the parameter.

fun Function. The function to be executed.

model An object of class epiworld_model.

event The event to be added or removed. If it is to add, then it should be an object of
class epiworld_globalevent. If it is to remove, it should be the name of the
event (character).

action (Deprecated) use event instead.

Details

The function globalevent_tool_logit allows to specify a logistic regression model for the prob-
ability of using a tool. The model is specified by the vector of coefficients coefs and the vector of
variables vars. vars is an integer vector indicating the position of the variables in the model.

The function globalevent_set_param allows to set a parameter of the model. The parameter is
specified by its name param and the value by value.

The function globalevent_fun allows to specify a function to be executed at a given day. The
function object must receive an object of class epiworld_model as only argument.

The function add_globalevent adds a global action to a model. The model checks for actions to be
executed at each time step. If the added action matches the current time step, the action is executed.
When day is negative, the action is executed at each time step. When day is positive, the action is
executed at the specified time step.

global-events 25

Value

• The globalevent_set_params function returns an object of class epiworld_globalevent_set_param
and epiworld_globalevent.

• globalevent_tool returns an object of class epiworld_globalevent_tool and epiworld_globalevent.

• globalevent_tool_logit returns an object of class epiworld_globalevent_tool_logit and
epiworld_globalevent.

• The function add_globalevent returns the model with the added event

• The function rm_globalevent returns the model with the removed event.

See Also

epiworld-model

Examples

Simple model
model_sirconn <- ModelSIRCONN(

name = "COVID-19",
n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

Creating a tool
epitool <- tool(

name = "Vaccine",
prevalence = 0,
as_proportion = FALSE,
susceptibility_reduction = .9,
transmission_reduction = .5,
recovery_enhancer = .5,
death_reduction = .9

)

Adding a global event
vaccine_day_20 <- globalevent_tool(epitool, .2, day = 20)
add_globalevent(model_sirconn, vaccine_day_20)

Running and printing
run(model_sirconn, ndays = 40, seed = 1912)
model_sirconn
plot_incidence(model_sirconn)

Example 2: Changing the contact rate -------------------------------------
model_sirconn2 <- ModelSIRCONN(

name = "COVID-19",

26 global-events

n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

closure_day_10 <- globalevent_set_params("Contact rate", 0, day = 10)
add_globalevent(model_sirconn2, closure_day_10)

Running and printing
run(model_sirconn2, ndays = 40, seed = 1912)
model_sirconn2
plot_incidence(model_sirconn2)
Example using `globalevent_fun` to record the state of the
agents at each time step.

We start by creating an SIR connected model
model <- ModelSIRCONN(

name = "SIR with Global Saver",
n = 1000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.3

)

We create the object where the history of the agents will be stored
agents_history <- NULL

This function prints the total number of agents in each state
and stores the history of the agents in the object `agents_history`
hist_saver <- function(m) {

message("Today's totals are: ", paste(get_today_total(m), collapse = ", "))

We use the `<<-` operator to assign the value to the global variable
`agents_history` (see ?"<<-")
agents_history <<- cbind(
agents_history,
get_agents_states(m)

)

}

We create the global event that will execute the function `hist_saver`
at each time step
hist_saver_event <- globalevent_fun(hist_saver, "Agent History Saver")

We add the global event to the model
model <- add_globalevent(model, hist_saver_event)

globalaction_tool 27

globalaction_tool Deprecated and removed functions in epiworldR

Description

Starting version 0.0-4, epiworld changed how it refered to "actions." Following more traditional
ABMs, actions are now called "events."

Starting version 0.11.0.0, the measles models have been removed from epiworldR and now are part
of the measles R package: https://github.com/UofUEpiBio/measles. The models previously
available in epiworldR were: ModelMeaslesSchool and ModelMeaslesMixing.

Usage

globalaction_tool(...)

globalaction_tool_logit(...)

globalaction_set_params(...)

globalaction_fun(...)

add_tool_n(model, tool, n)

add_virus_n(model, virus, n)

Arguments

... Arguments to be passed to the new function.

model Model object of class epiworld_model.

tool Tool object of class epiworld_tool.

n Deprecated.

virus Virus object of class epiworld_virus.

LFMCMC Likelihood-Free Markhov Chain Monte Carlo (LFMCMC)

Description

Likelihood-Free Markhov Chain Monte Carlo (LFMCMC)

https://github.com/UofUEpiBio/measles

28 LFMCMC

Usage

LFMCMC(model = NULL)

run_lfmcmc(lfmcmc, params_init, n_samples, epsilon, seed = NULL)

set_observed_data(lfmcmc, observed_data)

set_proposal_fun(lfmcmc, fun)

use_proposal_norm_reflective(lfmcmc)

set_simulation_fun(lfmcmc, fun)

set_summary_fun(lfmcmc, fun)

set_kernel_fun(lfmcmc, fun)

use_kernel_fun_gaussian(lfmcmc)

get_mean_params(lfmcmc)

get_mean_stats(lfmcmc)

get_initial_params(lfmcmc)

get_current_proposed_params(lfmcmc)

get_current_accepted_params(lfmcmc)

get_current_proposed_stats(lfmcmc)

get_current_accepted_stats(lfmcmc)

get_observed_stats(lfmcmc)

get_all_sample_params(lfmcmc)

get_all_sample_stats(lfmcmc)

get_all_sample_acceptance(lfmcmc)

get_all_sample_drawn_prob(lfmcmc)

get_all_sample_kernel_scores(lfmcmc)

get_all_accepted_params(lfmcmc)

get_all_accepted_stats(lfmcmc)

LFMCMC 29

get_all_accepted_kernel_scores(lfmcmc)

get_n_samples(lfmcmc)

get_n_stats(lfmcmc)

get_n_params(lfmcmc)

S3 method for class 'epiworld_lfmcmc'
verbose_off(x)

set_params_names(lfmcmc, names)

set_stats_names(lfmcmc, names)

S3 method for class 'epiworld_lfmcmc'
print(x, burnin = 0, ...)

Arguments

model A model of class epiworld_model or NULL (see details).

lfmcmc LFMCMC model

params_init Initial model parameters, treated as double

n_samples Number of samples, treated as integer

epsilon Epsilon parameter, treated as double

seed Random engine seed

observed_data Observed data, treated as double.

fun A function (see details).

x LFMCMC model to print

names Character vector of names.

burnin Integer. Number of samples to discard as burnin before computing the summary.

... Ignored

Details

Performs a Likelihood-Free Markhov Chain Monte Carlo simulation. When model is not NULL, the
model uses the same random-number generator engine as the model. Otherwise, when model is
NULL, a new random-number generator engine is created.

The functions passed to the LFMCMC object have different arguments depending on the object:

• set_proposal_fun: A vector of parameters and the model.

• set_simulation_fun: A vector of parameters and the model.

• set_summary_fun: A vector of simulated data and the model.

• set_kernel_fun: A vector of simulated statistics, observed statistics, epsilon, and the model.

30 LFMCMC

The verbose_on and verbose_off functions activate and deactivate printing progress on screen,
respectively. Both functions return the model (x) invisibly.

Value

The LFMCMC function returns a model of class epiworld_lfmcmc.

The simulated model of class epiworld_lfmcmc.

• use_kernel_fun_gaussian: The LFMCMC model with kernel function set to gaussian.

• get_mean_params: The param means for the given lfmcmc model.

• get_mean_stats: The stats means for the given lfmcmc model.

• The function get_initial_params returns the initial parameters for the given LFMCMC
model.

• The function get_current_proposed_params returns the proposed parameters for the next
LFMCMC sample.

• The function get_current_accepted_params returns the most recently accepted parameters
(the current state of the LFMCMC)

• The function get_current_proposed_stats returns the statistics from the simulation run
with the proposed parameters

• The function get_current_accepted_stats returns the statistics from the most recently ac-
cepted parameters

• The function get_observed_stats returns the statistics for the observed data

• The function get_all_sample_params returns a matrix of sample parameters for the given
LFMCMC model. with the number of rows equal to the number of samples and the number
of columns equal to the number of parameters.

• The function get_all_sample_stats returns a matrix of statistics for the given LFMCMC
model. with the number of rows equal to the number of samples and the number of columns
equal to the number of statistics.

• The function get_all_sample_acceptance returns a vector of boolean flags which indicate
whether a given sample was accepted

• The function get_all_sample_drawn_prob returns a vector of drawn probabilities for each
sample

• The function get_all_sample_kernel_scores returns a vector of kernel scores for each
sample

• The function get_all_accepted_params returns a matrix of accepted parameters for the
given LFMCMC model. with the number of rows equal to the number of samples and the
number of columns equal to the number of parameters.

LFMCMC 31

• The function get_all_accepted_stats returns a matrix of accepted statistics for the given
LFMCMC model. with the number of rows equal to the number of samples and the number
of columns equal to the number of statistics.

• The function get_all_accepted_kernel_scores returns a vector of kernel scores for each
accepted sample

• The functions get_n_samples, get_n_stats, and get_n_params return the number of sam-
ples, statistics, and parameters for the given LFMCMC model, respectively.

• The verbose_on and verbose_off functions return the same model, however verbose_off
returns the model with no progress bar.

• set_params_names: The lfmcmc model with the parameter names added.

• set_stats_names: The lfmcmc model with the stats names added.

Examples

Setup an SIR model to use in the simulation
model_seed <- 122
model_sir <- ModelSIR(name = "COVID-19", prevalence = .1,

transmission_rate = .9, recovery_rate = .3)
agents_smallworld(

model_sir,
n = 1000,
k = 5,
d = FALSE,
p = 0.01

)
verbose_off(model_sir)
run(model_sir, ndays = 50, seed = model_seed)

Setup LFMCMC
Extract the observed data from the model
obs_data <- get_today_total(model_sir)

Define the simulation function
simfun <- function(params, lfmcmc_obj) {

set_param(model_sir, "Recovery rate", params[1])
set_param(model_sir, "Transmission rate", params[2])
run(model_sir, ndays = 50)
res <- get_today_total(model_sir)
return(res)

}

Define the summary function
sumfun <- function(dat, lfmcmc_obj) {

return(dat)
}

Create the LFMCMC model
lfmcmc_model <- LFMCMC(model_sir) |>

32 ModelDiffNet

set_simulation_fun(simfun) |>
set_summary_fun(sumfun) |>
use_proposal_norm_reflective() |>
use_kernel_fun_gaussian() |>
set_observed_data(obs_data)

Run LFMCMC simulation
Set initial parameters
par0 <- c(0.1, 0.5)
n_samp <- 2000
epsil <- 1.0

Run the LFMCMC simulation
verbose_off(lfmcmc_model)
run_lfmcmc(

lfmcmc = lfmcmc_model,
params_init = par0,
n_samples = n_samp,
epsilon = epsil,
seed = model_seed

)

Print the results
set_stats_names(lfmcmc_model, get_states(model_sir))
set_params_names(lfmcmc_model, c("Immune recovery", "Infectiousness"))

print(lfmcmc_model)

get_mean_stats(lfmcmc_model)
get_mean_params(lfmcmc_model)

ModelDiffNet Network Diffusion Model

Description

The network diffusion model is a simple model that assumes that the probability of adoption of a
behavior is proportional to the number of adopters in the network.

Usage

ModelDiffNet(
name,
prevalence,
prob_adopt,
normalize_exposure = TRUE,
data = matrix(nrow = 0, ncol = 0),
data_cols = 1L:ncol(data),
params = vector("double")

)

ModelDiffNet 33

Arguments

name Name of the model.

prevalence Prevalence of the disease.

prob_adopt Probability of adoption.
normalize_exposure

Normalize exposure.

data Data.

data_cols Data columns.

params Parameters.

Details

Different from common epidemiological models, the network diffusion model assumes that the
probability of adoption of a behavior is proportional to the number of adopters in the network. The
model is defined by the following equations:

P (adopt) = Logit−1(prob_adopt+ params ∗ data+ exposure)

Where exposure is the number of adopters in the agent’s network.

Another important difference is that the transmission network is not necesary useful since adoption
in this model is not from a particular neighbor.

Value

An object of class epiworld_diffnet and epiworld_model.

See Also

Other Models: ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(), ModelSEIRMixing(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

set.seed(2223)
n <- 10000

Generating synthetic data on a matrix with 2 columns.
X <- cbind(

age = sample(1:100, n, replace = TRUE),
female = sample.int(2, n, replace = TRUE) - 1

)

adopt_chatgpt <- ModelDiffNet(
"ChatGPT",
prevalence = .01,
prob_adopt = .1,
data = X,

34 ModelSEIR

params = c(1, 4)
)

Simulating a population from smallworld
agents_smallworld(adopt_chatgpt, n, 8, FALSE, .01)

Running the model for 50 steps
run(adopt_chatgpt, 50)

Plotting the model
plot(adopt_chatgpt)

ModelSEIR Susceptible Exposed Infected Recovered model (SEIR)

Description

Susceptible Exposed Infected Recovered model (SEIR)

Usage

ModelSEIR(name, prevalence, transmission_rate, incubation_days, recovery_rate)

Arguments

name String. Name of the virus.
prevalence Double. Initial proportion of individuals with the virus.
transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.
incubation_days

Numeric scalar greater than 0. Average number of incubation days.
recovery_rate Numeric scalar between 0 and 1. Rate of recovery_rate from virus.

Details

The initial_states function allows the user to set the initial state of the model. The user must provide
a vector of proportions indicating the following values: (1) Proportion of non-infected agents who
are removed, and (2) Proportion of exposed agents to be set as infected.

Value

• The ModelSEIRfunction returns a model of class epiworld_model.

Model diagram

ModelSEIRCONN 35

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(), ModelSEIRMixing(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_seir <- ModelSEIR(name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery_rate = 0.1, incubation_days = 4)

Adding a small world population
agents_smallworld(

model_seir,
n = 1000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_seir, ndays = 100, seed = 1912)
model_seir

plot(model_seir, main = "SEIR Model")

ModelSEIRCONN Susceptible Exposed Infected Removed model (SEIR connected)

Description

The SEIR connected model implements a model where all agents are connected. This is equivalent
to a compartmental model (wiki).

Usage

ModelSEIRCONN(
name,
n,
prevalence,
contact_rate,
transmission_rate,
incubation_days,
recovery_rate

)

https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1155757336#The_SEIR_model

36 ModelSEIRCONN

Arguments

name String. Name of the virus.

n Number of individuals in the population.

prevalence Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.
incubation_days

Numeric scalar greater than 0. Average number of incubation days.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery_rate.

Value

• The ModelSEIRCONNfunction returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRD(), ModelSEIRDCONN(), ModelSEIRMixing(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

An example with COVID-19
model_seirconn <- ModelSEIRCONN(

name = "COVID-19",
prevalence = 0.01,
n = 10000,
contact_rate = 2,
incubation_days = 7,
transmission_rate = 0.5,
recovery_rate = 0.3

)

Running and printing
run(model_seirconn, ndays = 100, seed = 1912)
model_seirconn

plot(model_seirconn)

ModelSEIRD 37

Adding the flu
flu <- virus("Flu", .9, 1 / 7, prevalence = 0.001, as_proportion = TRUE)
add_virus(model_seirconn, flu)

#' # Running and printing
run(model_seirconn, ndays = 100, seed = 1912)
model_seirconn

plot(model_seirconn)

ModelSEIRD Susceptible-Exposed-Infected-Recovered-Deceased model (SEIRD)

Description

Susceptible-Exposed-Infected-Recovered-Deceased model (SEIRD)

Usage

ModelSEIRD(
name,
prevalence,
transmission_rate,
incubation_days,
recovery_rate,
death_rate

)

Arguments

name String. Name of the virus.

prevalence Double. Initial proportion of individuals with the virus.
transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.
incubation_days

Numeric scalar greater than 0. Average number of incubation days.

recovery_rate Numeric scalar between 0 and 1. Rate of recovery_rate from virus.

death_rate Numeric scalar between 0 and 1. Rate of death from virus.

Details

The initial_states function allows the user to set the initial state of the model. The user must provide
a vector of proportions indicating the following values: (1) Proportion of exposed agents who are
infected, (2) proportion of non-infected agents already removed, and (3) proportion of non-ifected
agents already deceased.

38 ModelSEIRDCONN

Value

• The ModelSEIRDfunction returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRDCONN(), ModelSEIRMixing(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_seird <- ModelSEIRD(name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery_rate = 0.1, incubation_days = 4,
death_rate = 0.01)

Adding a small world population
agents_smallworld(

model_seird,
n = 100000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_seird, ndays = 100, seed = 1912)
model_seird

plot(model_seird, main = "SEIRD Model")

ModelSEIRDCONN Susceptible Exposed Infected Removed Deceased model (SEIRD con-
nected)

Description

The SEIRD connected model implements a model where all agents are connected. This is equivalent
to a compartmental model (wiki).

https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1155757336#The_SEIR_model

ModelSEIRDCONN 39

Usage

ModelSEIRDCONN(
name,
n,
prevalence,
contact_rate,
transmission_rate,
incubation_days,
recovery_rate,
death_rate

)

Arguments

name String. Name of the virus.

n Number of individuals in the population.

prevalence Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.
incubation_days

Numeric scalar greater than 0. Average number of incubation days.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery_rate.

death_rate Numeric scalar between 0 and 1. Probability of death.

Details

The initial_states function allows the user to set the initial state of the model. The user must provide
a vector of proportions indicating the following values: (1) Proportion of exposed agents who are
infected, (2) proportion of non-infected agents already removed, and (3) proportion of non-ifected
agents already deceased.

Value

• The ModelSEIRDCONNfunction returns a model of class epiworld_model.

Model diagram

40 ModelSEIRMixing

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRMixing(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

An example with COVID-19
model_seirdconn <- ModelSEIRDCONN(

name = "COVID-19",
prevalence = 0.01,
n = 10000,
contact_rate = 2,
incubation_days = 7,
transmission_rate = 0.5,
recovery_rate = 0.3,
death_rate = 0.01

)

Running and printing
run(model_seirdconn, ndays = 100, seed = 1912)
model_seirdconn

plot(model_seirdconn)

Adding the flu
flu <- virus(

"Flu", prob_infecting = .3, recovery_rate = 1 / 7,
prob_death = 0.001,
prevalence = 0.001, as_proportion = TRUE

)
add_virus(model = model_seirdconn, virus = flu)

#' # Running and printing
run(model_seirdconn, ndays = 100, seed = 1912)
model_seirdconn

plot(model_seirdconn)

ModelSEIRMixing Susceptible Exposed Infected Removed model (SEIR) with mixing

Description

Susceptible Exposed Infected Removed model (SEIR) with mixing

ModelSEIRMixing 41

Usage

ModelSEIRMixing(
name,
n,
prevalence,
contact_rate,
transmission_rate,
incubation_days,
recovery_rate,
contact_matrix

)

Arguments

name String. Name of the virus

n Number of individuals in the population.

prevalence Double. Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.
incubation_days

Numeric scalar. Average number of days in the incubation period.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery.

contact_matrix Matrix of contact rates between individuals.

Details

The contact_matrix is a matrix of contact rates between entities. The matrix should be of size
n x n, where n is the number of entities. This is a row-stochastic matrix, i.e., the sum of each row
should be 1.

The initial_states function allows the user to set the initial state of the model. In particular, the
user can specify how many of the non-infected agents have been removed at the beginning of the
simulation.

Value

• The ModelSEIRMixingfunction returns a model of class epiworld_model.

Model diagram

42 ModelSEIRMixingQuarantine

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

Start off creating three entities.
Individuals will be distribured randomly between the three.
e1 <- entity("Population 1", 3e3, as_proportion = FALSE)
e2 <- entity("Population 2", 3e3, as_proportion = FALSE)
e3 <- entity("Population 3", 3e3, as_proportion = FALSE)

Row-stochastic matrix (rowsums 1)
cmatrix <- c(

c(0.9, 0.05, 0.05),
c(0.1, 0.8, 0.1),
c(0.1, 0.2, 0.7)

) |> matrix(byrow = TRUE, nrow = 3)

N <- 9e3

flu_model <- ModelSEIRMixing(
name = "Flu",
n = N,
prevalence = 1 / N,
contact_rate = 20,
transmission_rate = 0.1,
recovery_rate = 1 / 7,
incubation_days = 7,
contact_matrix = cmatrix

)

Adding the entities to the model
flu_model |>

add_entity(e1) |>
add_entity(e2) |>
add_entity(e3)

set.seed(331)
run(flu_model, ndays = 100)
summary(flu_model)
plot_incidence(flu_model)

ModelSEIRMixingQuarantine

Susceptible Exposed Infected Removed model (SEIR) with mixing and
quarantine

ModelSEIRMixingQuarantine 43

Description

ModelSEIRMixingQuarantine creates a model of the SEIR type with mixing and a quarantine
mechanism. Agents who are infected can be quarantined or isolated. Isolation happens after the
agent has been detected as infected, and agents who have been in contact with the detected person
will me moved to quarantined status.

Usage

ModelSEIRMixingQuarantine(
name,
n,
prevalence,
contact_rate,
transmission_rate,
incubation_days,
recovery_rate,
contact_matrix,
hospitalization_rate,
hospitalization_period,
days_undetected,
quarantine_period,
quarantine_willingness,
isolation_willingness,
isolation_period,
contact_tracing_success_rate,
contact_tracing_days_prior

)

Arguments

name String. Name of the virus

n Number of individuals in the population.

prevalence Double. Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.
incubation_days

Numeric scalar. Average number of days in the incubation period.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery.

contact_matrix Matrix of contact rates between individuals.
hospitalization_rate

Double. Rate of hospitalization.
hospitalization_period

Double. Period of hospitalization.
days_undetected

Double. Number of days an infection goes undetected.

44 ModelSEIRMixingQuarantine

quarantine_period

Integer. Number of days for quarantine.

quarantine_willingness

Double. Proportion of agents willing to quarantine.

isolation_willingness

Double. Proportion of agents willing to isolate.

isolation_period

Integer. Number of days for isolation.

contact_tracing_success_rate

Double. Probability of successful contact tracing.

contact_tracing_days_prior

Integer. Number of days prior to the onset of the infection for which contact
tracing is effective.

Details

The contact_matrix is a matrix of contact rates between entities. The matrix should be of size
n x n, where n is the number of entities. This is a row-stochastic matrix, i.e., the sum of each row
should be 1.

The initial_states function allows the user to set the initial state of the model. In particular, the
user can specify how many of the non-infected agents have been removed at the beginning of the
simulation.

Value

• The ModelSEIRMixingQuarantine function returns a model of class epiworld_model.

ModelSEIRMixingQuarantine 45

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSIR(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(), ModelSIRLogit(),
ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

Start off creating three entities.
Individuals will be distributed randomly between the three.
e1 <- entity("Population 1", 3e3, as_proportion = FALSE)
e2 <- entity("Population 2", 3e3, as_proportion = FALSE)
e3 <- entity("Population 3", 3e3, as_proportion = FALSE)

Row-stochastic matrix (rowsums 1)
cmatrix <- c(

c(0.9, 0.05, 0.05),
c(0.1, 0.8, 0.1),
c(0.1, 0.2, 0.7)

46 ModelSIR

) |> matrix(byrow = TRUE, nrow = 3)

N <- 9e3

flu_model <- ModelSEIRMixingQuarantine(
name = "Flu",
n = N,
prevalence = 1 / N,
contact_rate = 20,
transmission_rate = 0.1,
recovery_rate = 1 / 7,
incubation_days = 7,
contact_matrix = cmatrix,
hospitalization_rate = 0.05,
hospitalization_period = 7,
days_undetected = 3,
quarantine_period = 14,
quarantine_willingness = 0.8,
isolation_period = 7,
isolation_willingness = 0.5,
contact_tracing_success_rate = 0.7,
contact_tracing_days_prior = 3

)

Adding the entities to the model
flu_model |>

add_entity(e1) |>
add_entity(e2) |>
add_entity(e3)

set.seed(331)
run(flu_model, ndays = 100)
summary(flu_model)

ModelSIR SIR model

Description

SIR model

Usage

ModelSIR(name, prevalence, transmission_rate, recovery_rate)

Arguments

name String. Name of the virus

prevalence Double. Initial proportion of individuals with the virus.

ModelSIR 47

transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.

recovery_rate Numeric scalar between 0 and 1. Rate of recovery_rate from virus.

Details

The initial_states function allows the user to set the initial state of the model. In particular, the
user can specify how many of the non-infected agents have been removed at the beginning of the
simulation.

Value

• The ModelSIR function returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIRCONN(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_sir <- ModelSIR(name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery_rate = 0.1)

Adding a small world population
agents_smallworld(

model_sir,
n = 1000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_sir, ndays = 100, seed = 1912)
model_sir

Plotting
plot(model_sir)

48 ModelSIRCONN

ModelSIRCONN Susceptible Infected Removed model (SIR connected)

Description

Susceptible Infected Removed model (SIR connected)

Usage

ModelSIRCONN(
name,
n,
prevalence,
contact_rate,
transmission_rate,
recovery_rate

)

Arguments

name String. Name of the virus

n Number of individuals in the population.

prevalence Double. Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery.

Details

The initial_states function allows the user to set the initial state of the model. In particular, the
user can specify how many of the non-infected agents have been removed at the beginning of the
simulation.

Value

• The ModelSIRCONNfunction returns a model of class epiworld_model.

Model diagram

ModelSIRD 49

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRD(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_sirconn <- ModelSIRCONN(
name = "COVID-19",
n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

Running and printing
run(model_sirconn, ndays = 100, seed = 1912)
model_sirconn

plot(model_sirconn, main = "SIRCONN Model")

ModelSIRD SIRD model

Description

SIRD model

Usage

ModelSIRD(name, prevalence, transmission_rate, recovery_rate, death_rate)

Arguments

name String. Name of the virus

prevalence Double. Initial proportion of individuals with the virus.
transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.

recovery_rate Numeric scalar between 0 and 1. Rate of recovery_rate from virus.

death_rate Numeric scalar between 0 and 1. Rate of death from virus.

Details

The initial_states function allows the user to set the initial state of the model. The user must pro-
vide a vector of proportions indicating the following values: (1) proportion of non-infected agents
already removed, and (2) proportion of non-ifected agents already deceased.

50 ModelSIRD

Value

• The ModelSIRD function returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRDCONN(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_sird <- ModelSIRD(
name = "COVID-19",
prevalence = 0.01,
transmission_rate = 0.9,
recovery_rate = 0.1,
death_rate = 0.01

)

Adding a small world population
agents_smallworld(

model_sird,
n = 1000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_sird, ndays = 100, seed = 1912)
model_sird

Plotting
plot(model_sird)

ModelSIRDCONN 51

ModelSIRDCONN Susceptible Infected Removed Deceased model (SIRD connected)

Description

Susceptible Infected Removed Deceased model (SIRD connected)

Usage

ModelSIRDCONN(
name,
n,
prevalence,
contact_rate,
transmission_rate,
recovery_rate,
death_rate

)

Arguments

name String. Name of the virus

n Number of individuals in the population.

prevalence Double. Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.

transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery.

death_rate Numeric scalar between 0 and 1. Probability of death.

Details

The initial_states function allows the user to set the initial state of the model. The user must pro-
vide a vector of proportions indicating the following values: (1) proportion of non-infected agents
already removed, and (2) proportion of non-ifected agents already deceased.

Value

• The ModelSIRDCONNfunction returns a model of class epiworld_model.

52 ModelSIRLogit

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

model_sirdconn <- ModelSIRDCONN(
name = "COVID-19",
n = 100000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.5,
death_rate = 0.1

)

Running and printing
run(model_sirdconn, ndays = 100, seed = 1912)
model_sirdconn

plot(model_sirdconn, main = "SIRDCONN Model")

ModelSIRLogit SIR Logistic model

Description

SIR Logistic model

ModelSIRLogit 53

Usage

ModelSIRLogit(
vname,
data,
coefs_infect,
coefs_recover,
coef_infect_cols,
coef_recover_cols,
prob_infection,
recovery_rate,
prevalence

)

Arguments

vname Name of the virus.

data A numeric matrix with n rows.

coefs_infect Numeric vector. Coefficients associated to infect.

coefs_recover Numeric vector. Coefficients associated to recover.
coef_infect_cols

Integer vector. Columns in the coeficient.

coef_recover_cols

Integer vector. Columns in the coeficient.

prob_infection Numeric scalar. Baseline probability of infection.

recovery_rate Numeric scalar. Baseline probability of recovery.

prevalence Numeric scalar. Prevalence (initial state) in proportion.

Value

• The ModelSIRLogit function returns a model of class epiworld_model.

Model diagram

See Also

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRDCONN(), ModelSIRMixing(), ModelSIS(), ModelSISD(), ModelSURV()

54 ModelSIRMixing

Examples

set.seed(2223)
n <- 100000

Creating the data to use for the "ModelSIRLogit" function. It contains
information on the sex of each agent and will be used to determine
differences in disease progression between males and females. Note that
the number of rows in these data are identical to n (100000).
X <- cbind(

Intercept = 1,
Female = sample.int(2, n, replace = TRUE) - 1

)

Declare coefficients for each sex regarding transmission_rate and recovery.
coef_infect <- c(.1, -2, 2)
coef_recover <- rnorm(2)

Feed all above information into the "ModelSIRLogit" function.
model_logit <- ModelSIRLogit(

"covid2",
data = X,
coefs_infect = coef_infect,
coefs_recover = coef_recover,
coef_infect_cols = 1L:ncol(X),
coef_recover_cols = 1L:ncol(X),
prob_infection = .8,
recovery_rate = .3,
prevalence = .01

)

agents_smallworld(model_logit, n, 8, FALSE, .01)

run(model_logit, 50)

plot(model_logit)

Females are supposed to be more likely to become infected.
rn <- get_reproductive_number(model_logit)

Probability of infection for males and females.
(table(

X[, "Female"],
(1:n %in% rn$source)

) |> prop.table())[, 2]

Looking into the individual agents.
get_agents(model_logit)

ModelSIRMixing Susceptible Infected Removed model (SIR) with mixing

ModelSIRMixing 55

Description

Susceptible Infected Removed model (SIR) with mixing

Usage

ModelSIRMixing(
name,
n,
prevalence,
contact_rate,
transmission_rate,
recovery_rate,
contact_matrix

)

Arguments

name String. Name of the virus

n Number of individuals in the population.

prevalence Double. Initial proportion of individuals with the virus.

contact_rate Numeric scalar. Average number of contacts per step.
transmission_rate

Numeric scalar between 0 and 1. Probability of transmission.

recovery_rate Numeric scalar between 0 and 1. Probability of recovery.

contact_matrix Matrix of contact rates between individuals.

Details

The contact_matrix is a matrix of contact rates between entities. The matrix should be of size
n x n, where n is the number of entities. This is a row-stochastic matrix, i.e., the sum of each row
should be 1.

The initial_states function allows the user to set the initial state of the model. In particular, the
user can specify how many of the non-infected agents have been removed at the beginning of the
simulation.

Value

• The ModelSIRMixingfunction returns a model of class epiworld_model.

Model diagram

56 ModelSIS

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRDCONN(), ModelSIRLogit(), ModelSIS(), ModelSISD(), ModelSURV()

Examples

From the vignette

Start off creating three entities.
Individuals will be distribured randomly between the three.
e1 <- entity("Population 1", 3e3, as_proportion = FALSE)
e2 <- entity("Population 2", 3e3, as_proportion = FALSE)
e3 <- entity("Population 3", 3e3, as_proportion = FALSE)

Row-stochastic matrix (rowsums 1)
cmatrix <- c(

c(0.9, 0.05, 0.05),
c(0.1, 0.8, 0.1),
c(0.1, 0.2, 0.7)

) |> matrix(byrow = TRUE, nrow = 3)

N <- 9e3

flu_model <- ModelSIRMixing(
name = "Flu",
n = N,
prevalence = 1 / N,
contact_rate = 20,
transmission_rate = 0.1,
recovery_rate = 1 / 7,
contact_matrix = cmatrix

)

Adding the entities to the model
flu_model |>

add_entity(e1) |>
add_entity(e2) |>
add_entity(e3)

set.seed(331)
run(flu_model, ndays = 100)
summary(flu_model)
plot_incidence(flu_model)

ModelSIS SIS model

ModelSIS 57

Description

Susceptible-Infected-Susceptible model (SIS) (wiki)

Usage

ModelSIS(name, prevalence, transmission_rate, recovery_rate)

Arguments

name String. Name of the virus.

prevalence Double. Initial proportion of individuals with the virus.
transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.

recovery_rate Numeric scalar between 0 and 1. Rate of recovery from virus.

Value

• The ModelSIS function returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRDCONN(), ModelSIRLogit(), ModelSIRMixing(), ModelSISD(), ModelSURV()

Examples

model_sis <- ModelSIS(name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery_rate = 0.1)

Adding a small world population
agents_smallworld(

model_sis,
n = 1000,
k = 5,
d = FALSE,
p = .01

https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1155757336#The_SIS_model

58 ModelSISD

)

Running and printing
run(model_sis, ndays = 100, seed = 1912)
model_sis

Plotting
plot(model_sis, main = "SIS Model")

ModelSISD SISD model

Description

Susceptible-Infected-Susceptible-Deceased model (SISD) (wiki)

Usage

ModelSISD(name, prevalence, transmission_rate, recovery_rate, death_rate)

Arguments

name String. Name of the virus.
prevalence Double. Initial proportion of individuals with the virus.
transmission_rate

Numeric scalar between 0 and 1. Virus’s rate of infection.
recovery_rate Numeric scalar between 0 and 1. Rate of recovery from virus.
death_rate Numeric scalar between 0 and 1. Rate of death from virus.

Value

• The ModelSISD function returns a model of class epiworld_model.

Model diagram

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRDCONN(), ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSURV()

https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1155757336#The_SIS_model

ModelSURV 59

Examples

model_sisd <- ModelSISD(
name = "COVID-19",
prevalence = 0.01,
transmission_rate = 0.9,
recovery_rate = 0.1,
death_rate = 0.01

)

Adding a small world population
agents_smallworld(

model_sisd,
n = 1000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_sisd, ndays = 100, seed = 1912)
model_sisd

Plotting
plot(model_sisd, main = "SISD Model")

ModelSURV SURV model

Description

SURV model

Usage

ModelSURV(
name,
prevalence,
efficacy_vax,
latent_period,
infect_period,
prob_symptoms,
prop_vaccinated,
prop_vax_redux_transm,
prop_vax_redux_infect,
surveillance_prob,
transmission_rate,
prob_death,
prob_noreinfect

)

60 ModelSURV

Arguments

name String. Name of the virus.

prevalence Initial number of individuals with the virus.

efficacy_vax Double. Efficacy of the vaccine. (1 - P(acquire the disease)).

latent_period Double. Shape parameter of a ’Gamma(latent_period, 1)’ distribution. This
coincides with the expected number of latent days.

infect_period Double. Shape parameter of a ’Gamma(infected_period, 1)’ distribution. This
coincides with the expected number of infectious days.

prob_symptoms Double. Probability of generating symptoms.
prop_vaccinated

Double. Probability of vaccination. Coincides with the initial prevalence of
vaccinated individuals.

prop_vax_redux_transm

Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect

Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob

Double. Probability of testing an agent.
transmission_rate

Double. Raw transmission probability.

prob_death Double. Raw probability of death for symptomatic individuals.
prob_noreinfect

Double. Probability of no re-infection.

Value

• The ModelSURVfunction returns a model of class epiworld_model.

See Also

epiworld-methods

Other Models: ModelDiffNet(), ModelSEIR(), ModelSEIRCONN(), ModelSEIRD(), ModelSEIRDCONN(),
ModelSEIRMixing(), ModelSEIRMixingQuarantine(), ModelSIR(), ModelSIRCONN(), ModelSIRD(),
ModelSIRDCONN(), ModelSIRLogit(), ModelSIRMixing(), ModelSIS(), ModelSISD()

Examples

model_surv <- ModelSURV(
name = "COVID-19",
prevalence = 20,
efficacy_vax = 0.6,
latent_period = 4,
infect_period = 5,
prob_symptoms = 0.5,
prop_vaccinated = 0.7,
prop_vax_redux_transm = 0.8,

print.epiworld_diagram 61

prop_vax_redux_infect = 0.95,
surveillance_prob = 0.1,
transmission_rate = 0.2,
prob_death = 0.001,
prob_noreinfect = 0.5

)

Adding a small world population
agents_smallworld(

model_surv,
n = 10000,
k = 5,
d = FALSE,
p = .01

)

Running and printing
run(model_surv, ndays = 100, seed = 1912)
model_surv

Plotting
plot(model_surv, main = "SURV Model")

print.epiworld_diagram

Model Diagram

Description

Functions described here are helper functions for drawing diagrams from model data. These gener-
ate mermaid diagrams from transition probability matrices which can then be rendered using other
packages.

Usage

S3 method for class 'epiworld_diagram'
print(x, ...)

S3 method for class 'epiworld_diagram'
plot(x, ...)

draw_mermaid_from_data(
states,
transition_probs,
output_file = "",
allow_self_transitions = FALSE

)

62 print.epiworld_diagram

draw_mermaid_from_matrix(
transition_matrix,
output_file = "",
allow_self_transitions = FALSE

)

draw_mermaid_from_file(
transitions_file,
output_file = "",
allow_self_transitions = FALSE

)

draw_mermaid_from_files(
transitions_files,
output_file = "",
allow_self_transitions = FALSE

)

Arguments

x An epiworld_diagram object.

... Additional arguments passed to DiagrammeR::mermaid().

states String vector. List of model states.
transition_probs

Numeric vector. Transition probability matrix

output_file String. Optional path to a file. If provided, the diagram will be written to the
file.

allow_self_transitions

Logical. Whether to allow self-transitions, defaults to FALSE.
transition_matrix

Square matrix. Contains states and transition probabilities.
transitions_file

String. Path to file containing the transition probabilities matrix.
transitions_files

String vector. List of files containing transition probabilities matrices from mul-
tiple model runs.

Value

• The draw_mermaid_from_data function returns the mermaid diagram as a string.

• The draw_mermaid_from_matrix function returns the mermaid diagram as a string.

• The draw_mermaid_from_file function returns the mermaid diagram as a string.

• The draw_mermaid_from_files function returns the mermaid diagram as a string.

run_multiple 63

Examples

Create and run a model
model <- ModelSIRCONN(

name = "A Virus",
n = 10000,
prevalence = .01,
contact_rate = 4.0,
transmission_rate = .5,
recovery_rate = 1.0 / 7.0

)

verbose_off(model)
run(model, ndays = 50, seed = 1912)

Draw mermaid diagrams from model data
diagram <- draw_mermaid_from_data(

states = get_states(model),
transition_probs = c(get_transition_probability(model))

)

Not run:
If DiagrammeR is installed, we can plot the diagram
plot(diagram)

End(Not run)

run_multiple Run multiple simulations at once

Description

The run_multiple function allows running multiple simulations at once. When available, users
can take advantage of parallel computing to speed up the process.

Usage

run_multiple(
m,
ndays,
nsims,
seed = sample.int(10000, 1),
saver = make_saver(),
reset = TRUE,
verbose = TRUE,
nthreads = 1L

)

run_multiple_get_results(

64 run_multiple

m,
nthreads = min(2L, parallel::detectCores()),
freader = NULL,
...

)

make_saver(..., fn = "")

Arguments

m, ndays, seed See run.

nsims Integer. Number of replicats

saver An object of class epiworld_saver.

reset When TRUE (default,) resets the simulation.

verbose When TRUE (default,) prints a progress bar.

nthreads Integer. Number of threads (passed to parallel::makeCluster()).

freader A function to read the files. If NULL (default,) uses utils::read.table.

... Additional arguments passed to freader.

fn A file name pattern.

Details

Currently, the following elements can be saved:

Keyword Description Function
total_hist History of the model (total numbers per time). get_hist_total()
virus_info Information about viruses.
virus_hist Changes in viruses. get_hist_virus()
tool_info Information about tools.
tool_hist Changes in tools. get_hist_tool()
transmission Transmission events. get_transmissions()
transition Transition matrices. get_hist_transition_matrix()
reproductive Reproductive number. get_reproductive_number()
generation Estimation of generation time. get_generation_time()
active_cases Number of active cases per virus. get_active_cases()
outbreak_size Size of outbreaks per virus. get_outbreak_size()
hospitalizations Number of hospitalizations per virus/tool. get_hospitalizations()

An alternative to using the default utils::read.table function is to use data.table::fread
from the data.table package. This can be done by specifying freader = data.table::fread
and passing additional arguments (e.g., nThread = 2L) via This can significantly speed up the
reading process, especially for large datasets.

If the model does not have, for example, tools, then the corresponding data frame will be empty (0
rows). A warning will be issued in this case when trying to retrieve or plot the results.

run_multiple 65

Value

• In the case of make_saver, an list of class epiworld_saver.

• The run_multiple function runs a specified number of simulations and returns a model object
of class epiworld_model.

• The run_multiple_get_results function returns a named list with the data specified by
make_saver. Each entry will be a data.frame (default), or the output of freader.

Data structures

The datasets generated by run_multiple_get_results have the following columns:

• total_hist: date (integer), nviruses (integer), state (character), counts (integer).

• virus_info: virus_id (integer), virus (character), virus_sequence (character), date_recorded
(integer), parent (integer)

• virus_hist: date (integer), virus_id (integer), virus (character), n (integer).

• tool_info: id (integer), tool_name (character), tool_sequence (character), date_recorded
(integer).

• tool_hist: date (integer), id (integer), state (character), n (integer).

• transmission: date (integer), virus_id (integer), virus (character), source_exposure_date
(integer), source (integer), target (integer).

• transition: date (integer), from (character), to (character), counts (integer).

• reproductive: virus_id (integer), virus (character), source (integer), source_exposure_date
(integer), rt (integer).

• generation: virus (integer), source (integer), source_exposure_date (integer), generation_time
(integer).

• active_cases: date (integer), virus_id (integer), virus (character), active_cases (inte-
ger).

• outbreak_size: date (integer), virus_id (integer), virus (character), outbreak_size (in-
teger).

• hospitalizations: date (integer), virus_id (integer), tool_id (integer), counts (integer),
and weight (numeric).

An important difference from the function get_reproductive_number() is that the returned
reproductive number here includes a -1 in the column source. This is the reproductive number of
the model as an agent, a number that matches the initial number of infected agents at the start of the
model.

Examples

model_sir <- ModelSIRCONN(
name = "COVID-19",
prevalence = 0.01,
n = 1000,
contact_rate = 2,
transmission_rate = 0.9, recovery_rate = 0.1

66 tool

)

Generating a saver
saver <- make_saver("total_hist", "reproductive")

Running and printing
run_multiple(model_sir, ndays = 100, nsims = 50, saver = saver, nthreads = 2)

Retrieving the results
ans <- run_multiple_get_results(model_sir, nthreads = 2)

head(ans$total_hist)
head(ans$reproductive)

Plotting
multi_sir <- ans$total_hist
multi_sir <- multi_sir[multi_sir$date <= 20,]
plot(multi_sir)

tool Tools in epiworld

Description

Tools are functions that affect how agents react to the virus. They can be used to simulate the effects
of vaccination, isolation, and social distancing.

Usage

tool(
name,
prevalence,
as_proportion,
susceptibility_reduction,
transmission_reduction,
recovery_enhancer,
death_reduction

)

set_name_tool(tool, name)

get_name_tool(tool)

add_tool(model, tool, proportion)

rm_tool(model, tool_pos)

tool 67

tool_fun_logit(vars, coefs, model)

set_susceptibility_reduction(tool, prob)

set_susceptibility_reduction_ptr(tool, model, param)

set_susceptibility_reduction_fun(tool, model, tfun)

set_transmission_reduction(tool, prob)

set_transmission_reduction_ptr(tool, model, param)

set_transmission_reduction_fun(tool, model, tfun)

set_recovery_enhancer(tool, prob)

set_recovery_enhancer_ptr(tool, model, param)

set_recovery_enhancer_fun(tool, model, tfun)

set_death_reduction(tool, prob)

set_death_reduction_ptr(tool, model, param)

set_death_reduction_fun(tool, model, tfun)

S3 method for class 'epiworld_agents_tools'
print(x, max_print = 10, ...)

set_distribution_tool(tool, distfun)

distribute_tool_randomly(prevalence, as_proportion, agents_ids = integer(0))

distribute_tool_to_set(agents_ids)

distribute_tool_to_entities(prevalence, as_proportion)

Arguments

name Name of the tool

prevalence Numeric scalar. Prevalence of the tool. In the case of distribute_tool_to_entities,
it is a vector of prevalences, one per entity.

as_proportion Logical scalar. If TRUE, prevalence is interpreted as a proportion of the total
number of agents in the model.

susceptibility_reduction

Numeric. Proportion it reduces susceptibility.
transmission_reduction

Numeric. Proportion it reduces transmission.

68 tool

recovery_enhancer

Numeric. Proportion it improves recovery.
death_reduction

Numeric. Proportion it reduces probability of death.e

tool An object of class epiworld_tool

model Model

proportion Deprecated.

tool_pos Positive integer. Index of the tool’s position in the model.

vars Integer vector. Indices (starting from 0) of the positions of the variables used to
compute the logit probability.

coefs Numeric vector. Of the same length of vars, is a vector of coefficients associ-
ated to the logit probability.

prob Numeric scalar. A probability (between zero and one).

param Character scalar. Name of the parameter featured in model that will be added to
the tool (see details).

tfun An object of class epiworld_tool_fun.

x An object of class epiworld_agents_tools.

max_print Numeric scalar. Maximum number of tools to print.

... Currently ignored.

distfun An object of class epiworld_tool_distfun.

agents_ids Integer vector. Indices of the agents to which the tool will be assigned.

Details

The name of the epiworld_tool object can be manipulated with the functions set_name_tool()
and get_name_tool().

The add_tool function adds the specified tool to the model of class epiworld_model with specified
proportion.

In the case of set_susceptibility_reduction_ptr, set_transmission_reduction_ptr, set_recovery_enhancer,
and set_death_reduction_ptr, the corresponding parameters are passed as a pointer to the tool.
The implication of using pointers is that the values will be read directly from the model object, so
changes will be reflected.

The set_distribution_tool function assigns a distribution function to the specified tool of class
epiworld_tool. The distribution function can be created using the functions distribute_tool_randomly()
and distribute_tool_to_set().

The distribute_tool_randomly function creates a distribution function that randomly assigns
the tool to a proportion of the population.

The distribute_tool_to_set function creates a distribution function that assigns the tool to a set
of agents.

The distribute_tool_to_entities function creates a distribution function that assigns the tool
to a number of agents based on prevalence at the entity level. This is only useful for the mixing
models.

tool 69

Value

• The tool function creates a tool of class epiworld_tool.

• The set_name_tool function assigns a name to the tool of class epiworld_tool and returns the
tool.

• The get_name_tool function returns the name of the tool of class epiworld_tool.

• The rm_tool function removes the specified tool from a model.

• The set_susceptibility_reduction function assigns a probability reduction to the speci-
fied tool of class epiworld_tool.

• The set_transmission_reduction function assigns a probability reduction to the specified
tool of class epiworld_tool.

• The set_recovery_enhancer function assigns a probability increase to the specified tool of
class epiworld_tool.

• The set_death_reduction function assigns a probability decrease to the specified tool of
class epiworld_tool.

• The distribute_tool_randomly function returns a distribution function of class epiworld_tool_distfun.
When agents_ids is not empty, it will distribute the tool randomly within that set. Otherwise
it uses all the agents in the model.

• The distribute_tool_to_set function returns a distribution function of class epiworld_tool_distfun.

Examples

Simple model
model_sirconn <- ModelSIRCONN(

name = "COVID-19",
n = 10000,
prevalence = 0.01,
contact_rate = 5,
transmission_rate = 0.4,
recovery_rate = 0.95

)

Running and printing
run(model_sirconn, ndays = 100, seed = 1912)
plot(model_sirconn)

epitool <- tool(
name = "Vaccine",
prevalence = 0.5,
as_proportion = TRUE,
susceptibility_reduction = .9,
transmission_reduction = .5,
recovery_enhancer = .5,
death_reduction = .9

70 tool

)

epitool

set_name_tool(epitool, "Pfizer") # Assigning name to the tool
get_name_tool(epitool) # Returning the name of the tool
add_tool(model_sirconn, epitool)
run(model_sirconn, ndays = 100, seed = 1912)
model_sirconn
plot(model_sirconn)

To declare a certain number of individuals with the tool
rm_tool(model_sirconn, 0) # Removing epitool from the model
Setting prevalence to 0.1
set_distribution_tool(epitool, distribute_tool_randomly(0.1, TRUE))
add_tool(model_sirconn, epitool)
run(model_sirconn, ndays = 100, seed = 1912)

Adjusting probabilities due to tool
set_susceptibility_reduction(epitool, 0.1) # Susceptibility reduction
set_transmission_reduction(epitool, 0.2) # Transmission reduction
set_recovery_enhancer(epitool, 0.15) # Probability increase of recovery
set_death_reduction(epitool, 0.05) # Probability reduction of death

rm_tool(model_sirconn, 0)
add_tool(model_sirconn, epitool)
run(model_sirconn, ndays = 100, seed = 1912) # Run model to view changes

Using the logit function --------------
sir <- ModelSIR(

name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery_rate = 0.1

)

Adding a small world population
agents_smallworld(

sir,
n = 10000,
k = 5,
d = FALSE,
p = .01

)

Creating a tool
mask_wearing <- tool(

name = "Mask",
prevalence = 0.5,
as_proportion = TRUE,
susceptibility_reduction = 0.0,
transmission_reduction = 0.3, # Only transmission
recovery_enhancer = 0.0,
death_reduction = 0.0

virus 71

)

add_tool(sir, mask_wearing)

run(sir, ndays = 50, seed = 11)
hist_0 <- get_hist_total(sir)

And adding features
dat <- cbind(

female = sample.int(2, 10000, replace = TRUE) - 1,
x = rnorm(10000)

)

set_agents_data(sir, dat)

Creating the logit function
tfun <- tool_fun_logit(

vars = c(0L, 1L),
coefs = c(-1, 1),
model = sir

)

The infection prob is lower
hist(plogis(dat %*% rbind(.5, 1)))

tfun # printing

set_susceptibility_reduction_fun(
tool = get_tool(sir, 0),
model = sir,
tfun = tfun

)

run(sir, ndays = 50, seed = 11)
hist_1 <- get_hist_total(sir)

op <- par(mfrow = c(1, 2))
plot(hist_0)
abline(v = 30)
plot(hist_1)
abline(v = 30)
par(op)

virus Virus design

72 virus

Description

Viruses can be considered to be anything that can be transmitted (e.g., diseases, as well as ideas.)
Most models in epiworldR can feature multiple viruses.

Usage

virus(
name,
prevalence,
as_proportion,
prob_infecting,
recovery_rate = 0.5,
prob_death = 0,
post_immunity = -1,
incubation = 7

)

set_name_virus(virus, name)

get_name_virus(virus)

add_virus(model, virus, proportion)

virus_set_state(virus, init, end, removed)

rm_virus(model, virus_pos)

virus_fun_logit(vars, coefs, model)

set_prob_infecting(virus, prob)

set_prob_infecting_ptr(virus, model, param)

set_prob_infecting_fun(virus, model, vfun)

set_prob_recovery(virus, prob)

set_prob_recovery_ptr(virus, model, param)

set_prob_recovery_fun(virus, model, vfun)

set_prob_death(virus, prob)

set_prob_death_ptr(virus, model, param)

set_prob_death_fun(virus, model, vfun)

set_incubation(virus, incubation)

virus 73

set_incubation_ptr(virus, model, param)

set_incubation_fun(virus, model, vfun)

set_distribution_virus(virus, distfun)

distribute_virus_randomly(prevalence, as_proportion, agents_ids = integer(0))

distribute_virus_to_set(agents_ids)

distribute_virus_set(agents_ids)

distribute_virus_to_entities(prevalence, as_proportion)

Arguments

name of the virus

prevalence Numeric scalar. Prevalence of the virus. In the case of distribute_virus_to_entities,
it is a vector of prevalences, one per entity.

as_proportion Logical scalar. If TRUE, the prevalence is set as a proportion of the total number
of agents in the model.

prob_infecting Numeric scalar. Probability of infection (transmission).

recovery_rate Numeric scalar. Probability of recovery.

prob_death Numeric scalar. Probability of death.

post_immunity Numeric scalar. Post immunity (prob of re-infection).

incubation Numeric scalar. Incubation period (in days) of the virus.

virus An object of class epiworld_virus

model An object of class epiworld_model.

proportion Deprecated.
init, end, removed

states after acquiring a virus, removing a virus, and removing the agent as a
result of the virus, respectively.

virus_pos Positive integer. Index of the virus’s position in the model.

vars Integer vector. Indices (starting from 0) of the positions of the variables used to
compute the logit probability.

coefs Numeric vector. Of the same length of vars, is a vector of coefficients associ-
ated to the logit probability.

prob Numeric scalar. A probability (between zero and one).

param Character scalar. Name of the parameter featured in model that will be added to
the virus (see details).

vfun An object of class epiworld_virus_fun.

distfun An object of class epiworld_distribution_virus.

agents_ids Integer vector. Indices of the agents that will receive the virus.

74 virus

Details

The virus() function can be used to initialize a virus. Virus features can then be modified using
the functions set_prob_*.

The function virus_fun_logit() creates a "virus function" that can be evaluated for transmission,
recovery, and death. As the name sugests, it computes those probabilities using a logit function (see
examples).

The name of the epiworld_virus object can be manipulated with the functions set_name_virus()
and get_name_virus().

In the case of set_prob_infecting_ptr, set_prob_recovery_ptr, and set_prob_death_ptr,
the corresponding parameters is passed as a pointer to the virus. The implication of using pointers
is that the values will be read directly from the model object, so changes will be reflected.

The distribute_virus_randomly function is a factory function used to randomly distribute the
virus in the model. The prevalence can be set as a proportion or as a number of agents. The resulting
function can then be passed to set_distribution_virus.

The distribute_virus_to_entities function is a factory function used to distribute the virus to
a number of agents based on a prevalence at the entity level.

Value

• The set_name_virus function does not return a value, but merely assigns a name to the virus
of choice.

• The get_name_virus function returns the name of the virus of class epiworld_virus.

• The add_virus function does not return a value, instead it adds the virus of choice to the
model object of class epiworld_model.

• The virus_set_state function does not return a value but assigns epidemiological properties
to the specified virus of class epiworld_virus.

• The rm_virus function does not return a value, but instead removes a specified virus from the
model of class epiworld_model.

• The set_prob_infecting function does not return a value, but instead assigns a probability
to infection for the specified virus of class epiworld_virus.

• The set_prob_recovery function does not return a value, but instead assigns a probability to
recovery for the specified virus of class epiworld_virus.

• The set_prob_death function does not return a value, but instead assigns a probability to
death for the specified virus of class epiworld_virus.

• The set_incubation function does not return a value, but instead assigns an incubation pe-
riod to the specified virus of class epiworld_virus.

• The distribute_virus_randomly function returns a function that can be used to distribute
the virus in the model. When agents_ids is not empty, it will distribute the virus randomly
within that set. Otherwise it uses all the agents in the model.

virus 75

Examples

mseirconn <- ModelSEIRCONN(
name = "COVID-19",
prevalence = 0.01,
n = 10000,
contact_rate = 4,
incubation_days = 7,
transmission_rate = 0.5,
recovery_rate = 0.99

)

delta <- virus(
"Delta Variant", 0, .5, .2, .01, prevalence = 0.3, as_proportion = TRUE

)

Adding virus and setting/getting virus name
add_virus(mseirconn, delta)
set_name_virus(delta, "COVID-19 Strain")
get_name_virus(delta)

run(mseirconn, ndays = 100, seed = 992)
mseirconn

rm_virus(mseirconn, 0) # Removing the first virus from the model object
set_distribution_virus(delta, distribute_virus_randomly(100, as_proportion = FALSE))
add_virus(mseirconn, delta)

Setting parameters for the delta virus manually
set_prob_infecting(delta, 0.5)
set_prob_recovery(delta, 0.9)
set_prob_death(delta, 0.01)
run(mseirconn, ndays = 100, seed = 992) # Run the model to observe changes

If the states were (for example):
1: Infected
2: Recovered
3: Dead
delta2 <- virus(

"Delta Variant 2", 0, .5, .2, .01, prevalence = 0, as_proportion = TRUE
)
virus_set_state(delta2, 1, 2, 3)
Using the logit function --------------
sir <- ModelSIR(

name = "COVID-19", prevalence = 0.01,
transmission_rate = 0.9, recovery = 0.1

)

Adding a small world population
agents_smallworld(

sir,
n = 10000,
k = 5,

76 virus

d = FALSE,
p = .01

)

run(sir, ndays = 50, seed = 11)
plot(sir)

And adding features
dat <- cbind(

female = sample.int(2, 10000, replace = TRUE) - 1,
x = rnorm(10000)

)

set_agents_data(sir, dat)

Creating the logit function
vfun <- virus_fun_logit(

vars = c(0L, 1L),
coefs = c(-1, 1),
model = sir

)

The infection prob is lower
hist(plogis(dat %*% rbind(-1, 1)))

vfun # printing

set_prob_infecting_fun(
virus = get_virus(sir, 0),
model = sir,
vfun = vfun

)

run(sir, ndays = 50, seed = 11)
plot(sir)

Index

∗ Epidemiological metrics
epiworld-gentime, 10
epiworld-repnum, 18

∗ History
epiworld-history, 11

∗ Models
ModelDiffNet, 32
ModelSEIR, 34
ModelSEIRCONN, 35
ModelSEIRD, 37
ModelSEIRDCONN, 38
ModelSEIRMixing, 40
ModelSEIRMixingQuarantine, 42
ModelSIR, 46
ModelSIRCONN, 48
ModelSIRD, 49
ModelSIRDCONN, 51
ModelSIRLogit, 52
ModelSIRMixing, 54
ModelSIS, 56
ModelSISD, 58
ModelSURV, 59

∗ Network outputs
epiworld-transmissions, 22

∗ Summaries
epiworld-hospitalizations, 12
epiworld-summaries, 19

∗ Transition dynamics
epiworld-transition, 20

∗ deprecated-functions
globalaction_tool, 27

∗ entity-functions
add_entities_from_dataframe, 3
entities, 8

∗ fmcmc
LFMCMC, 27

∗ general-models
ModelDiffNet, 32
ModelSEIR, 34

ModelSEIRCONN, 35
ModelSEIRD, 37
ModelSEIRDCONN, 38
ModelSEIRMixing, 40
ModelSEIRMixingQuarantine, 42
ModelSIR, 46
ModelSIRCONN, 48
ModelSIRD, 49
ModelSIRDCONN, 51
ModelSIRLogit, 52
ModelSIRMixing, 54
ModelSIS, 56
ModelSISD, 58
ModelSURV, 59

∗ global-events
global-events, 23

∗ model-utility-functions
agents, 4
agents_smallworld, 5
epiworld-gentime, 10
epiworld-history, 11
epiworld-hospitalizations, 12
epiworld-methods, 13
epiworld-repnum, 18
epiworld-summaries, 19
epiworld-transition, 20
epiworld-transmissions, 22
print.epiworld_diagram, 61
run_multiple, 63

∗ tool-functions
tool, 66

∗ virus-functions
virus, 71

[.epiworld_agents (agents), 4
[.epiworld_entities (entities), 8

actions (global-events), 23
add_entities_from_dataframe, 3
add_entity (entities), 8
add_entity(), 3

77

78 INDEX

add_globalevent (global-events), 23
add_param (epiworld-methods), 13
add_tool (tool), 66
add_tool_agent (agents_smallworld), 5
add_tool_n (globalaction_tool), 27
add_virus (virus), 71
add_virus_agent (agents_smallworld), 5
add_virus_n (globalaction_tool), 27
agents, 4
agents_from_edgelist

(agents_smallworld), 5
agents_smallworld, 5
as.array.epiworld_hist_transition

(epiworld-transition), 20

change_state (agents_smallworld), 5
clone_model (epiworld-methods), 13

data.frame, 21
DiagrammeR::mermaid(), 62
distribute_entity_randomly (entities), 8
distribute_entity_to_set (entities), 8
distribute_tool_randomly (tool), 66
distribute_tool_randomly(), 68
distribute_tool_to_entities (tool), 66
distribute_tool_to_set (tool), 66
distribute_tool_to_set(), 68
distribute_virus_randomly (virus), 71
distribute_virus_set (virus), 71
distribute_virus_to_entities (virus), 71
distribute_virus_to_set (virus), 71
draw_mermaid (epiworld-methods), 13
draw_mermaid_from_data

(print.epiworld_diagram), 61
draw_mermaid_from_data(), 15
draw_mermaid_from_file

(print.epiworld_diagram), 61
draw_mermaid_from_files

(print.epiworld_diagram), 61
draw_mermaid_from_matrix

(print.epiworld_diagram), 61

entities, 8
entity (entities), 8
entity_add_agent (entities), 8
entity_get_agents (entities), 8
epiworld-gentime, 10
epiworld-history, 11
epiworld-hospitalizations, 12

epiworld-methods, 13
epiworld-model-diagram

(print.epiworld_diagram), 61
epiworld-repnum, 18
epiworld-summaries, 19
epiworld-transition, 20
epiworld-transmissions, 22
epiworld_agent, 5
epiworld_agent (agents), 4
epiworld_agents, 4, 5
epiworld_agents (agents), 4
epiworld_diffnet, 33
epiworld_diffnet (ModelDiffNet), 32
epiworld_generation_time, 10
epiworld_generation_time

(epiworld-gentime), 10
epiworld_globalevent, 25
epiworld_globalevent (global-events), 23
epiworld_globalevent_set_param, 25
epiworld_globalevent_set_param

(global-events), 23
epiworld_globalevent_tool, 25
epiworld_globalevent_tool

(global-events), 23
epiworld_globalevent_tool_logit, 25
epiworld_globalevent_tool_logit

(global-events), 23
epiworld_hist_tool, 12
epiworld_hist_tool (epiworld-history),

11
epiworld_hist_total, 12
epiworld_hist_total (epiworld-history),

11
epiworld_hist_transition, 21
epiworld_hist_transition

(epiworld-transition), 20
epiworld_hist_virus, 12
epiworld_hist_virus (epiworld-history),

11
epiworld_lfmcmc, 30
epiworld_lfmcmc (LFMCMC), 27
epiworld_model, 3, 4, 6, 24, 29, 33, 34, 36,

38, 39, 41, 44, 47, 48, 50, 51, 53, 55,
57, 58, 60, 65, 68, 74

epiworld_model (epiworld-methods), 13
epiworld_repnum, 18
epiworld_repnum (epiworld-repnum), 18
epiworld_saver, 64

INDEX 79

epiworld_saver (run_multiple), 63
epiworld_seir, 10, 11, 13, 18, 19, 21, 22
epiworld_seir (ModelSEIR), 34
epiworld_seirconn (ModelSEIRCONN), 35
epiworld_seird (ModelSEIRD), 37
epiworld_seirdconn (ModelSEIRDCONN), 38
epiworld_seirmixing (ModelSEIRMixing),

40
epiworld_seirmixingquarantine

(ModelSEIRMixingQuarantine), 42
epiworld_sir, 10, 11, 13, 18, 19, 21, 22
epiworld_sir (ModelSIR), 46
epiworld_sirconn (ModelSIRCONN), 48
epiworld_sird (ModelSIRD), 49
epiworld_sirdconn (ModelSIRDCONN), 51
epiworld_sirmixing (ModelSIRMixing), 54
epiworld_sis (ModelSIS), 56
epiworld_sisd (ModelSISD), 58
epiworld_surv (ModelSURV), 59
epiworld_tool, 68, 69
epiworld_tool (tool), 66
epiworld_virus, 74
epiworld_virus (virus), 71
epiworldR-deprecated

(globalaction_tool), 27

get_active_cases (epiworld-summaries),
19

get_active_cases(), 64
get_agents (agents), 4
get_agents_data_ncols

(epiworld-methods), 13
get_agents_states (agents_smallworld), 5
get_agents_tools (agents_smallworld), 5
get_all_accepted_kernel_scores

(LFMCMC), 27
get_all_accepted_params (LFMCMC), 27
get_all_accepted_stats (LFMCMC), 27
get_all_sample_acceptance (LFMCMC), 27
get_all_sample_drawn_prob (LFMCMC), 27
get_all_sample_kernel_scores (LFMCMC),

27
get_all_sample_params (LFMCMC), 27
get_all_sample_stats (LFMCMC), 27
get_current_accepted_params (LFMCMC), 27
get_current_accepted_stats (LFMCMC), 27
get_current_proposed_params (LFMCMC), 27
get_current_proposed_stats (LFMCMC), 27
get_entities (entities), 8

get_entity_name (entities), 8
get_entity_size (entities), 8
get_generation_time, 10
get_generation_time (epiworld-gentime),

10
get_generation_time(), 64
get_hist_tool (epiworld-history), 11
get_hist_tool(), 64
get_hist_total (epiworld-history), 11
get_hist_total(), 64
get_hist_transition_matrix, 21
get_hist_transition_matrix

(epiworld-transition), 20
get_hist_transition_matrix(), 64
get_hist_virus (epiworld-history), 11
get_hist_virus(), 64
get_hospitalizations

(epiworld-hospitalizations), 12
get_hospitalizations(), 64
get_initial_params (LFMCMC), 27
get_mean_params (LFMCMC), 27
get_mean_stats (LFMCMC), 27
get_n_params (LFMCMC), 27
get_n_replicates (epiworld-methods), 13
get_n_samples (LFMCMC), 27
get_n_stats (LFMCMC), 27
get_n_tools (epiworld-methods), 13
get_n_viruses (epiworld-methods), 13
get_name (epiworld-methods), 13
get_name_tool (tool), 66
get_name_tool(), 68
get_name_virus (virus), 71
get_name_virus(), 74
get_ndays (epiworld-methods), 13
get_network (agents_smallworld), 5
get_observed_stats (LFMCMC), 27
get_outbreak_size (epiworld-summaries),

19
get_outbreak_size(), 64
get_param (epiworld-methods), 13
get_reproductive_number, 18
get_reproductive_number

(epiworld-repnum), 18
get_reproductive_number(), 64, 65
get_state (agents), 4
get_states (epiworld-methods), 13
get_today_total (epiworld-history), 11
get_tool (epiworld-methods), 13

80 INDEX

get_transition_probability
(epiworld-summaries), 19

get_transmissions
(epiworld-transmissions), 22

get_transmissions(), 64
get_virus (epiworld-methods), 13
global-actions (global-events), 23
global-events, 23
globalaction_fun (globalaction_tool), 27
globalaction_set_params

(globalaction_tool), 27
globalaction_tool, 27
globalaction_tool_logit

(globalaction_tool), 27
globalevent_fun (global-events), 23
globalevent_set_params (global-events),

23
globalevent_tool (global-events), 23
globalevent_tool_logit (global-events),

23
graphics::plot, 10, 11, 18, 21
graphics::plot(), 10, 18, 21

has_tool (agents_smallworld), 5
has_virus (agents_smallworld), 5

initial_states, 34, 37, 39, 41, 44, 47–49,
51, 55

initial_states (epiworld-methods), 13

LFMCMC, 27
load_agents_entities_ties (entities), 8

make_saver (run_multiple), 63
ModelDiffNet, 32, 35, 36, 38, 40, 42, 45, 47,

49, 50, 52, 53, 56–58, 60
ModelMeaslesMixing (globalaction_tool),

27
ModelMeaslesMixingRiskQuarantine

(globalaction_tool), 27
ModelMeaslesQuarantine

(globalaction_tool), 27
ModelMeaslesSchool (globalaction_tool),

27
ModelSEIR, 33, 34, 36, 38, 40, 42, 45, 47, 49,

50, 52, 53, 56–58, 60
ModelSEIRCONN, 33, 35, 35, 38, 40, 42, 45, 47,

49, 50, 52, 53, 56–58, 60
ModelSEIRD, 33, 35, 36, 37, 40, 42, 45, 47, 49,

50, 52, 53, 56–58, 60

ModelSEIRDCONN, 33, 35, 36, 38, 38, 42, 45,
47, 49, 50, 52, 53, 56–58, 60

ModelSEIRMixing, 9, 33, 35, 36, 38, 40, 40,
45, 47, 49, 50, 52, 53, 56–58, 60

ModelSEIRMixingQuarantine, 33, 35, 36, 38,
40, 42, 42, 47, 49, 50, 52, 53, 56–58,
60

ModelSIR, 33, 35, 36, 38, 40, 42, 45, 46, 49,
50, 52, 53, 56–58, 60

ModelSIRCONN, 33, 35, 36, 38, 40, 42, 45, 47,
48, 50, 52, 53, 56–58, 60

ModelSIRD, 33, 35, 36, 38, 40, 42, 45, 47, 49,
49, 52, 53, 56–58, 60

ModelSIRDCONN, 33, 35, 36, 38, 40, 42, 45, 47,
49, 50, 51, 53, 56–58, 60

ModelSIRLogit, 33, 35, 36, 38, 40, 42, 45, 47,
49, 50, 52, 52, 56–58, 60

ModelSIRMixing, 9, 33, 35, 36, 38, 40, 42, 45,
47, 49, 50, 52, 53, 54, 57, 58, 60

ModelSIS, 33, 35, 36, 38, 40, 42, 45, 47, 49,
50, 52, 53, 56, 56, 58, 60

ModelSISD, 33, 35, 36, 38, 40, 42, 45, 47, 49,
50, 52, 53, 56, 57, 58, 60

ModelSURV, 33, 35, 36, 38, 40, 42, 45, 47, 49,
50, 52, 53, 56–58, 59

network (agents_smallworld), 5

parallel::makeCluster(), 64
plot, 10
plot.epiworld_diagram

(print.epiworld_diagram), 61
plot.epiworld_generation_time

(epiworld-gentime), 10
plot.epiworld_hist (epiworld-history),

11
plot.epiworld_hist_transition

(epiworld-transition), 20
plot.epiworld_repnum (epiworld-repnum),

18
plot_generation_time

(epiworld-gentime), 10
plot_incidence (epiworld-transition), 20
plot_reproductive_number

(epiworld-repnum), 18
print.epiworld_agent (agents), 4
print.epiworld_agents (agents), 4
print.epiworld_agents_tools (tool), 66
print.epiworld_diagram, 61

INDEX 81

print.epiworld_lfmcmc (LFMCMC), 27

queuing_off (epiworld-methods), 13
queuing_on (epiworld-methods), 13

rm_entity (entities), 8
rm_globalevent (global-events), 23
rm_tool (tool), 66
rm_virus (virus), 71
run, 64
run (epiworld-methods), 13
run_lfmcmc (LFMCMC), 27
run_multiple, 63
run_multiple_get_results

(run_multiple), 63

set.seed(), 14
set_agents_data (epiworld-methods), 13
set_death_reduction (tool), 66
set_death_reduction_fun (tool), 66
set_death_reduction_ptr (tool), 66
set_distribution_entity (entities), 8
set_distribution_tool (tool), 66
set_distribution_virus (virus), 71
set_incubation (virus), 71
set_incubation_fun (virus), 71
set_incubation_ptr (virus), 71
set_kernel_fun (LFMCMC), 27
set_name (epiworld-methods), 13
set_name_tool (tool), 66
set_name_tool(), 68
set_name_virus (virus), 71
set_name_virus(), 74
set_observed_data (LFMCMC), 27
set_param (epiworld-methods), 13
set_params_names (LFMCMC), 27
set_prob_death (virus), 71
set_prob_death_fun (virus), 71
set_prob_death_ptr (virus), 71
set_prob_infecting (virus), 71
set_prob_infecting_fun (virus), 71
set_prob_infecting_ptr (virus), 71
set_prob_recovery (virus), 71
set_prob_recovery_fun (virus), 71
set_prob_recovery_ptr (virus), 71
set_proposal_fun (LFMCMC), 27
set_recovery_enhancer (tool), 66
set_recovery_enhancer_fun (tool), 66
set_recovery_enhancer_ptr (tool), 66

set_simulation_fun (LFMCMC), 27
set_stats_names (LFMCMC), 27
set_summary_fun (LFMCMC), 27
set_susceptibility_reduction (tool), 66
set_susceptibility_reduction_fun

(tool), 66
set_susceptibility_reduction_ptr

(tool), 66
set_transmission_reduction (tool), 66
set_transmission_reduction_fun (tool),

66
set_transmission_reduction_ptr (tool),

66
size (epiworld-methods), 13
summary.epiworld_model

(epiworld-methods), 13

today (epiworld-methods), 13
tool, 16, 24, 66
tool_fun_logit (tool), 66

use_kernel_fun_gaussian (LFMCMC), 27
use_proposal_norm_reflective (LFMCMC),

27

verbose_off (epiworld-methods), 13
verbose_off.epiworld_lfmcmc (LFMCMC), 27
verbose_on (epiworld-methods), 13
virus, 16, 71
virus(), 74
virus_fun_logit (virus), 71
virus_fun_logit(), 74
virus_set_state (virus), 71

	add_entities_from_dataframe
	agents
	agents_smallworld
	entities
	epiworld-gentime
	epiworld-history
	epiworld-hospitalizations
	epiworld-methods
	epiworld-repnum
	epiworld-summaries
	epiworld-transition
	epiworld-transmissions
	global-events
	globalaction_tool
	LFMCMC
	ModelDiffNet
	ModelSEIR
	ModelSEIRCONN
	ModelSEIRD
	ModelSEIRDCONN
	ModelSEIRMixing
	ModelSEIRMixingQuarantine
	ModelSIR
	ModelSIRCONN
	ModelSIRD
	ModelSIRDCONN
	ModelSIRLogit
	ModelSIRMixing
	ModelSIS
	ModelSISD
	ModelSURV
	print.epiworld_diagram
	run_multiple
	tool
	virus
	Index

