Package ‘easyViz’
January 24, 2026

Title Easy Visualization of Conditional Effects from Regression Models
Version 2.0.1

Description Offers a flexible and user-friendly interface for visualizing conditional
effects from a broad range of regression models, including mixed-effects and generalized
additive (mixed) models. Compatible model types include Im(), rlm(), glm(), glm.nb(),
betareg(), and gam() (from 'mgcv'); nonlinear models via nls(); generalized least
squares via gls(); and survival models via coxph() (from 'survival').
Mixed-effects models with random intercepts and/or slopes can be fitted using Imer(),
glmer(), glmer.nb(), glmmTMB(), or gam() (from 'mgcV', via smooth terms).
Plots are rendered using base R graphics with extensive customization options.
Approximate confidence intervals for nls() and betareg() models are computed using
the delta method. Robust standard errors for rlm() are computed using the sandwich
estimator (Zeileis 2004) <doi:10.18637/jss.v011.110>. For beta regression using
'betareg’, see Cribari-Neto and Zeileis (2010) <doi:10.18637/jss.v034.102>. For
mixed-effects models with Tme4', see Bates et al. (2015) <doi:10.18637/jss.v067.101>.
For models using 'glmmTMB', see Brooks et al. (2017) <doi:10.32614/RJ-2017-066>.
Methods for generalized additive models using 'mgcv' follow Wood (2017)
<doi:10.1201/9781315370279>.

Maintainer Luca Corlatti <lucac1980@yahoo.it>
Imports stats, utils, graphics, grDevices

Suggests MASS, sandwich, nlme, numDeriv, betareg, statmod, survival,
Ime4, glmmTMB, mgcv

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Luca Corlatti [aut, cre]

Repository CRAN

Date/Publication 2026-01-24 15:00:02 UTC

Contents

€asYVIZ e

https://doi.org/10.18637/jss.v011.i10
https://doi.org/10.18637/jss.v034.i02
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1201/9781315370279

2 easyViz

Index 23

easyViz Easy Visualization of Conditional Effects from Regression Models

Description

easyViz offers a flexible and user-friendly interface for visualizing conditional effects from a broad
range of regression and mixed-effects models using base R graphics.

Usage

easyViz(
model,
data,
predictor,
by = NULL,
by_breaks = NULL,
pred_type = "response”,
pred_range_limit = TRUE,
pred_on_top = FALSE,
pred_resolution = 101,
num_conditioning = "median”,
cat_conditioning = "mode",
fix_values = NULL,
re_form = NULL,

rlm_vcov = "HCQ",
backtransform_response = NULL,
xlim = NULL,

ylim = NULL,

xlab = NULL,

ylab = NULL,

cat_labels = NULL,

font_family = "sans",

las =1,

bty = "o",

plot_args = list(),

show_data_points = TRUE,
binary_data_type = "plain”,

bins = 10,

jitter_data_points = FALSE,
point_col = rgh(0, @, 0, alpha = 0.4),
point_pch = 16,

point_cex = 0.75,

pred_line_col = "black”,
pred_line_lty = c(1, 2, 3, 4, 5, 6),
pred_line_lwd = 2,

ci_level = 0.95,

easyViz 3

ci_type = "polygon”,

ci_polygon_col = c("gray”, "black"”, "lightgray", "darkgray”, "gray", "black"),
ci_polygon_alpha = 0.5,

ci_line_col = "black”,

ci_line_1lty = c(1, 2, 3, 4, 5, 6),

ci_line_lwd =1,

pred_point_col = c("black”, "gray", "darkgray"”, "lightgray”, "black", "gray"),

pred_point_pch = 16,
pred_point_cex = 1,
ci_bar_col = "black”,
ci_bar_lty =1,
ci_bar_lwd =1

ci_bar_caps = 0.1,
add_legend = NULL,
legend_position = "out”,
legend_horiz = FALSE,
legend_title = NULL,
legend_labels = NULL,
legend_title_size = 1,
legend_label_size = 0.9,
legend_args = list(),
show_conditioning = FALSE,
plot = TRUE

Arguments

model [required] A fitted model object (e.g., model = your.model). Supported models
include a wide range of regression types, including linear, robust linear, non-
linear, generalized least squares, generalized linear, survival, mixed-effects, and
generalized additive (mixed) models. Compatible model-fitting functions in-
clude: stats::1m,MASS: :rlm, nlme: :gls, stats: :nls, stats: :glm, MASS: :glm.nb,
betareg: :betareg, survival: :coxph, Ime4: :1mer, Ime4: :glmer, Ime4: :glmer.nb,
glmmTMB: : glmmTMB, and mgcv: : gam.

data [required] The data frame used to fit the model (e.g., data = your.data). This
data frame is used internally for generating predictions. All variables used in the
model formula (including predictors, offset variables, grouping variables, and
interaction terms) must be present in this data frame. If the model was fitted
without using a data argument (e.g., using variables from the global environ-
ment), you must ensure that data includes all required variables. Otherwise,
prediction may fail or produce incorrect results.

predictor [required] The name of the target explanatory variable to be plotted (e.g., predictor
= HX1 II).

by The name of an interaction or additional variable for conditioning (e.g., by =
"x2"). If supplied, easyViz() conditions predictions on by as follows:

* Categorical (factor/character): a separate prediction line (or point) is plotted
for each level.

easyViz

e Numeric with few distinct values (default: < 6 unique values): the numeric
values are treated as discrete groups, and a separate prediction line is plotted
for each value. This is useful for variables coded as numbers (e.g., 0/1, 1-5,
small ordinal scales).

* Numeric with many distinct values (default: > 6 unique values): by is
treated as continuous and predictions are shown at representative values (by
default the 10th, 50th, and 90th percentiles), unless overridden by by_breaks.

* Grouping variable in random effects: if by corresponds to a variable used
as a grouping term (as in, e.g., (1|group) or s(group, bs="re")) and
re_form = NULL, predictions are conditional on group-specific random ef-
fects.

Although easyViz does not natively support direct visualization of three-way
interactions in a multi-panel plot, this can be easily achieved by combining
the by and fix_values arguments. For example, if your model includes a
term like x1*x2*x3, you can visualize the effect of x1 across levels of x2 by
setting predictor = "x1", by = "x2", and fixing x3 at a specific value using
fix_values = c(x3 = ...). Repeating this with different values of x3 produces
multiple plots that can be arranged to visualize the full three-way interaction.
See the Examples section for a demonstration of how to apply this approach.

by_breaks Optional numeric vector specifying the values of a numeric conditioning vari-
able to include in the plot (e.g., by_breaks = c(-2, @, 2) orby_breaks = quantile(your.data$x2,
c(0.25, 0.5, 0.75))). For numeric by, this selects the cross-sections to plot
and overrides the default quantiles (0.1, 0.5, 0.9). Ignored if by is categorical.

pred_type Character string indicating the type of predictions to plot. Either "response”
(default), which returns predictions on the original outcome scale by applying
the inverse of the model’s link function (e.g., probabilities for binary models),
or "link"”, which returns predictions on the linear predictor (link) scale (e.g.,
log-odds, log-counts, or other transformed scales depending on the model). For
survival models (coxph), pred_type = "1ink" returns predictions on the linear
predictor scale (log-hazard ratio), while pred_type = "response” returns haz-
ard ratios. Survival probabilities are not produced because they require a time
point and the baseline hazard.

pred_range_limit
Logical. Applies only when the predictor is numeric and a categorical by vari-
able is specified. If TRUE (default), the prediction range for each level of the
by variable is limited to the range of the predictor observed within that level.
This avoids extrapolating predictions beyond the available data for each sub-
group. If FALSE, predictions span the entire range of the predictor across all
levels of the by variable. If the by variable is numeric, pred_range_limit is
automatically set to FALSE, since numeric by values are treated as continuous
rather than grouping factors.

pred_on_top Logical. If TRUE, prediction lines (and their confidence intervals) for numeric
predictors are drawn after raw data, so they appear on top. Default is FALSE,
which draws predictions underneath the data. This has no effect for categorical
predictors — for those, predictions are always drawn on top of raw data.
pred_resolution
Number of prediction points to use for numeric predictors. Defaults to 101,

easyViz 5

consistent with visreg. The default should work well in most cases. Increasing
pred_resolution may be particularly helpful when the predictor spans a wide
range or when visualizing nonlinear relationships (e.g., splines or polynomials),
to ensure smooth and accurate rendering of the effect. Note: A higher value
may slightly increase computation time, especially when combined with many
levels of a by variable.

num_conditioning
How to condition non-target numeric predictors. Either "median” (default) or
"mean”. This determines how numeric variables that are not directly plotted are
held constant during prediction, while varying the predictor of interest. To fix
specific variables at custom values instead, use the fix_values argument.

cat_conditioning
How to condition non-target categorical predictors. Either "mode” (default) or
"reference”. As for "num_conditioning”, conditioning means holding these
variables constant while varying the predictor of interest. If multiple levels are
equally frequent when "mode” is selected, the level chosen will be the first in
the factor’s level order (which by default is alphabetical and typically coincides
with the reference level, unless explicitly re-leveled). This behavior also ap-
plies to grouping variables used as random effects when re_form = NULL. To
fix categorical variables (including grouping variables) at specific levels, use
fix_values.

fix_values A named vector or named list specifying fixed values for one or more vari-
ables during prediction. Supports both numeric and categorical variables. For
numeric variables, specify a fixed value (e.g., fix_values = c(x = 1)). For cat-
egorical variables, provide the desired level as a character string or factor (e.g.,
fix_values = c(group = "levelA"). Multiple values should be provided as
alist (e.g., fix_values = list(x =1, group = "levelA")). This overrides the
default conditioning behavior specified via num_conditioning and cat_conditioning.
This argument also applies to grouping variables used as random effects: when
re_form = NULL, predictions are conditional on the level specified in fix_values;
if not specified, the level is chosen based on cat_conditioning. This argu-
ment is also useful for setting offset variables. For count models with a log
link in which the offset is specified as of fset(log(exposure)), easyViz in-
terprets the model as a rate model and, by default, fixes the exposure variable
to 1 in the prediction grid. Raw response values are correspondingly scaled by
the exposure so that both data points and predictions are displayed on the same
unit-rate scale (e.g., detections per day; see show_data_points for more de-
tails). To obtain predictions on a different rate scale, fix the exposure at the
desired value using fix_values. If the offset is specified outside the model
formula, for gam() and glmer () models it is treated as of fset = @ during pre-
diction (i.e., exposure = 1 for log-link models). This matches easyViz’s default
behavior, but in such cases easyViz cannot vary the exposure. Include the off-
set inside the formula (e.g., of fset (log(exposure))) to enable full control. If
the default behavior is not desired (i.e., if you do not want automatic rate stan-
dardization or fixing exposure to 1), you may still use an offset by specifying a
pre-transformed exposure variable (e.g., log_exposure = log(exposure) and
offset(log_exposure)). In this case, easyViz treats the offset as a generic ad-
ditive term on the link scale. Model predictions are computed correctly, but the

re_form

rlm_vcov

easyViz

offset variable is conditioned using the default rules for numeric covariates (see
num_conditioning) or values supplied via fix_values. Because the exposure
structure is no longer explicit, raw data are plotted on the original response scale
and no automatic rate standardization is applied. Additional uses: fix_values
is useful also for forcing predictions at specific values or ensuring consistent
conditioning across models, for example when you want to visualize the effect
of a predictor at a specific level of an interacting variable, without condition-
ing on all levels. E.g., to plot the conditional effect of a continuous predictor
x1 at a specific value of another variable x2 (numeric or categorical), simply
set fix_values = c(x2 = ...) and omit the by argument. This creates a clean
single-effect plot for x1 at the desired level of x2, without plotting multiple lines
or groups as by would. This argument can also be used to visualize three-way
interactions when combined with by. See the by argument for details, and the
Examples section for a demonstration of how to apply this approach.

A formula specifying which random effects to include when generating predic-
tions:

e re_form = NULL (default): produces group-specific predictions, conditional
on the random-effect levels present in the data. By default, easyViz fixes
grouping variables at their mode (i.e., the most frequent level), so the pre-
diction reflects the conditional estimate for that group. You can override this
by explicitly fixing the grouping variable via fix_values (e.g., fix_values
=c(group = "levelA")). If all levels are equally frequent and no value is
specified, the first level (in factor order) is used, which is usually alphabet-
ical unless re-leveled. If by corresponds to a grouping variable used in a
random effect, predictions are visualized for all group levels (i.e., condi-
tional predictions).

e re_form=NA or re_form = ~0: produces population-level (i.e., marginal)
predictions by excluding random effects from the prediction step. The ran-
dom effects are still part of the fitted model and influence the estimation
of fixed effects and their uncertainty, but they are not included when com-
puting predicted values. This is equivalent to assuming random effects are
zero — representing an "average" group or subject.

This argument is relevant for mixed-effects models only (e.g., from 1me4, glmmTMB,
or mgev: :gam()). For mgcv::gam() models, random effects can be modeled
using smooth terms like s(group, bs = "re"). Although predict.gam() does
not support a re.form argument, easyViz emulates its behavior: re_form=
NULL includes random-effect smooths, while re_form = NA or ~@ excludes them
via the exclude argument in predict.gam(). Note: For models fitted with
1me4 (e.g., lmer (), glmer()), standard errors are not available when re_form

= NULL.

Robust variance type for MASS: : r1m models. May be one of the sandwich types:
HHC@II’ HHC‘I H’ ”HCZH’ ”HC3H’ ”HC4”’ ”Hc4ml1’ HHCSH’ ”Const”’ ”HCH' Alter—
natively, users may provide a covariance matrix (used directly), or a function
f(model) returning a covariance matrix. Default is "HC@".

backtransform_response

A custom function to back-transform predictions for transformed response vari-
ables (e.g., exp for log-transformed responses, or function(x) x*2 for square

easyViz 7

root-transformed responses). Note: For log-transformed responses, recall that
in lognormal models the mean on the original scale is not simply exp(x) due to
Jensen’s inequality. If you want the expected value of a lognormal response, use
a function such as function(x) exp(x + sigma2/2), where sigma2 is the resid-
ual variance on the log scale (e.g., sigma2 <- sigma(your.model)*2). Note:
If you wish to model a transformed response, it is recommended to apply the
transformation directly in the model formula (e.g., log(y) ~ ...), rather than
modifying the response variable in the data set. This ensures that observed data
points are correctly plotted on the original (back-transformed) scale. Otherwise,
raw data and predicted values may not align properly in the plot.

xlim x-axis limits for the plot (e.g., x1im = c(@, 10)). Defaults to automatic scaling
based on the data range. Applies to both numeric and categorical predictors. For
categorical variables, x-axis positions are treated as integer values (e.g., 1, 2, ...,
k), and adjusting x1im (e.g., x1im=c(@.5, k + @.5)) can control spacing and
margins around the plotted levels.

ylim y-axis limits for the plot (e.g., ylim = c(10, 20)). Defaults to automatic scaling
based on the data and prediction range.

xlab x-axis labels (e.g., x1ab = "x"). Defaults to "predictor”.

ylab y-axis labels (e.g., ylab = "y"). Defaults to "response”.

cat_labels Custom labels for levels of a categorical predictor (e.g., cat_labels = c("Level

A", "Level B", "Level C")).
font_family Font family for the plot. E.g., "sans” (default), "serif”, "mono”.

las Text orientation for axis labels (default: 1).
bty Box type around the plot. E.g., "o" (default), "n", "L".
plot_args A named list of additional graphical parameters passed to base R’s plot () func-

tion. These arguments allow users to override default appearance settings in a
flexible way. Common options include axis label size, color, label text, tick
mark spacing, and coordinate scaling. Note: Only arguments recognized by
plot.default() are supported. Parameters that must be set via par() (such
as mar, oma, mfrow, mgp) are not applied through plot_args. If you wish to
adjust those settings, set them directly using par () before calling easyViz().
Many valid parameters are documented in both ?plot.default and ?par. In
plot_args, they are passed to plot(), not to par(). Common plot() param-
eters you may override:

* Label/Text size and style: cex.lab, cex.axis, cex.main, font.lab, font.axis,
font.main.
¢ Colors: col.lab, col.axis, col.main, col.sub, col, bg, fg.
¢ Label/Text content: x1ab, ylab, main, sub.
* Box and axis rendering: bty, axes, frame.plot, ann.
* Coordinate settings and tick spacing: x1im, ylim, xaxs, yaxs, xaxp, yaxp,
asp, xlog, ylog.
For a full list of supported parameters, see ?plot.default and ?par. Example
usage:
plot_args =1list(main="Title", cex.lab=1.2, col.axis = "gray40", xaxp
=c(0, 10, 5)).

easyViz

show_data_points

Logical. Whether to display raw data points (default: TRUE). For binomial mod-
els where the response is expressed as cbind(successes, failures) or as a
proportion successes / trials, the raw data points shown on the y-axis are
plotted as proportions: successes / (successes + failures) or successes /
trials, respectively. For count models with a log link that include an offset
specified as of fset(log(exposure)), easyViz interprets the model as a rate
model. Raw response values are rescaled as (count / exposure) * exposure_ref
and, by default, exposure_ref = 1, so points are displayed on the unit-rate scale
(e.g., detections per day). The prediction grid uses the same reference expo-
sure value, ensuring that points and predictions are on the same scale. To use

a different rate scale, set the exposure reference value via fix_values (e.g.,
fix_values = c(exposure = 7) for detections per 7 days). If this default be-
havior is not desired, the offset can instead be specified using a pre-transformed
exposure variable (e.g., Llog_exposure = log(exposure) and of fset (log_exposure)
in the model formula). In this case, easyViz does not apply automatic rate stan-
dardization and treats the offset as a generic additive term on the link scale (see
fix_values for details). For survival models (coxph), raw data points are not
displayed, because survival outcomes involve event times and censoring and are
not directly comparable to the plotted linear predictor (or hazard ratio) scale.

binary_data_type

bins

For binary responses, how to display raw data points in the plot. Either "plain”
(default), which plots each individual 0/1 observation as-is, or "binned”, which
groups observations into intervals (bins) of the predictor and plots the proportion
of Os and 1s within each bin. This makes it easier to visualize trends in binary
outcomes, especially when many points overlap.

Number of bins for displaying binary response raw data when binary_data_type
= "binned" (default: 10).

jitter_data_points

point_col

Logical. If TRUE, raw data points are jittered horizontally to reduce overplotting.
Applies to both categorical and numeric predictors. Default is FALSE. For cat-
egorical predictors, jittering helps distinguish overlapping points. For numeric
predictors, it can be useful when many data points share the same x-value (e.g.,
integers or rounding).

Point color for raw data (default: rgh(@, 0, 0, alpha=0.4)). Can be speci-
fied as a color name (e.g., "gray"), an integer (e.g., 1), or an RGB (e.g., rgh (@,
0, 0, alpha=0.4)) or hex string (e.g., "#808080"). When the focal predictor
is numeric, raw data points are plotted at the observation level. This typically
matters when visualizing interactions involving a grouping variable (via by).
In this case, point_col must be either a single value (applied to all points) or
a vector of length equal to the number of observations in the data supplied to
easyViz() (e.g., generated via ifelse(group == "levelA”, "blue"”, "red")
or similar logic; see the Example section). When the focal predictor is categor-
ical and points are plotted for different levels of a grouping variable (via by),
point_col can be a vector of colors, with one color per group (e.g., point_col
=c("blue”, "red"); see the Example section).

Tip: For large data sets with many overlapping data points, it is recommended to
use semi-transparent colors to reduce overplotting. You can achieve this by set-

easyViz 9

ting a low alpha value (e.g., rgb(1,0,0, alpha =0.1), or by using adjustcolor()
with the argument alpha.f (e.g., adjustcolor(”red”, alpha.f =0.1)). In
such cases, consider setting pred_on_top = TRUE to ensure that prediction lines
and confidence intervals remain clearly visible above the dense cloud of raw
data points.

point_pch Point shape for raw data (default: 16). Dynamic: accepts multiple values when
points are plotted for different values/levels of a variable. The same grouping
logic described for point_col applies.

point_cex Point size for raw data (default: @.75). Dynamic: accepts multiple values when
points are plotted for different values/levels of a variable. The same grouping
logic described for point_col applies.

pred_line_col Color of the predicted line for numeric predictors (default: "black"). Can be
specified as a color name, number or RGB/hex string. Dynamic: accepts multi-
ple values (e.g., c("red”, "green”, "blue")) when multiple lines are plotted
(i.e., when by is specified).

pred_line_lty Type of the predicted line for numeric predictors (default: 1). Dynamic: accepts
multiple values (e.g., c(1, 2, 3)) when multiple lines are plotted (i.e., when by
is specified).

pred_line_lwd Width of the predicted line for numeric predictors (default: 2). Dynamic: ac-
cepts multiple values (e.g., c(1, 2, 3)) when multiple lines are plotted (i.e.,
when by is specified).

ci_level Confidence level for the intervals (between O and 1). Defaults to ©.95. For
example, ci_level = @.85 plots 85 percent confidence intervals.

ci_type Type of confidence intervals for numeric predictors. Either "polygon” (default)
to draw shaded confidence bands, "lines” to draw lines, or NULL to suppress
confidence intervals for numeric predictors. Note: ci_type = NULL does not
suppress confidence bars for categorical predictors; these are always shown un-
less manually suppressed via custom logic (e.g., by setting ci_bar_lwd = 9).

ci_polygon_col Color for confidence interval polygon (default: "gray"). Requires ci_type
= "polygon”. Can be specified as a color name, number or RGB/hex string.
Dynamic: accepts multiple values (e.g., c("red”, "green”, "blue")) when
ClIs are plotted for multiple lines (i.e., when by is specified).

ci_polygon_alpha
Numeric value between 0 and 1 controlling the transparency of confidence in-
terval bands when ci_type = "polygon”. Default is @.5. Higher values make
the band more opaque; lower values make it more transparent.

ci_line_col Color for confidence interval lines (default: "black"). Requires ci_type =
"lines"”. Can be specified as a color name, number or RGB/hex string. Dy-
namic: accepts multiple values (e.g., c("red"”, "green”, "blue”)) when CIs
are plotted for multiple lines (i.e., when by is specified).

ci_line_lty Type for confidence interval lines (default: 1). Requires ci_type = "lines”.
Dynamic: accepts multiple values (e.g., c(1, 2, 3)) when Cls are plotted for
multiple lines (i.e., when by is specified).

ci_line_1lwd Width for confidence interval lines (default: 1). Requires ci_type = "lines”.
Dynamic: accepts multiple values (e.g., c(1, 2, 3)) when CIs are plotted for
multiple lines (i.e., when by is specified).

10

easyViz

pred_point_col Color for predicted point values of categorical predictors (default: "black").
Can be specified as a color name, number or RGB/hex string. When by is spec-
ified (interaction plots), pred_point_col may be a vector with one color per
group (i.e., per level/value of by); the same group color is then used for pre-
dicted points across all levels of the focal predictor.

pred_point_pch Shape for predicted point values of categorical predictors (default: 16). Dy-
namic: accepts multiple values (e.g., c(1, 2, 3)) when points are plotted for an
interaction (i.e., when by is specified). The same grouping logic described for
pred_point_col applies.

pred_point_cex Size for predicted point values of categorical predictors (default: 1). Dynamic:
accepts multiple values (e.g., c(1, 2, 3)) when points are plotted for an in-
teraction (i.e., when by is specified). The same grouping logic described for
pred_point_col applies.

ci_bar_col Color for confidence interval bars (default: "black”). Applies only when the
predictor is categorical. Can be a single color (applied to all CI bars) or a vector
of colors. When by is used, CI bars are drawn by looping first over the levels of
the focal predictor and then over the levels of the grouping variable. Colors are
assigned following this order, so they may need to be repeated to match predictor
levels within each group. For example, with 2 levels of x and 2 groups for by,
four CI bars are drawn, and a length-4 vector can be used to assign colors to
each bar (e.g., c("blue”,"blue”, "red", "red"); see the Examples section).

ci_bar_lty Type for confidence interval bars (default: 1). Applies only when the predictor
is categorical. Follows the same assignment logic as ci_bar_col.

ci_bar_lwd Width for confidence interval bars (default: 1). Applies only when the predictor
is categorical. Follows the same assignment logic as ci_bar_col. To suppress
confidence interval bars, set ci_bar_lwd = @ (line width of zero).

ci_bar_caps Size of the caps on confidence interval bars (default: @.1). Applies only when
the predictor is categorical. Follows the same assignment logic as ci_bar_col.
Increase for more visible caps, set to 0 to remove caps and draw plain vertical
bars.

add_legend Logical. Whether to draw a legend for the by variable. By default, a legend is
drawn automatically (i.e., add_legend = TRUE) when by is supplied and omitted
otherwise. Set add_legend = FALSE to suppress the legend even when by is
present.

legend_position
Legend position. Either a named position string (“top”, "bottom”, "left",
"right"”, "topleft”, "topright”, "bottomleft"”, "bottomright”), the spe-
cial keyword "out”, or a numeric vector c(x, y) specifying exact coordinates
for manual placement. When a by variable is specified, a legend is drawn auto-
matically with default position "out”, i.e., a horizontal legend is drawn above
the plotting region. All other values follow standard base R legend position-
ing rules. Advanced manual placement outside the plot region is possible by
temporarily increasing margins with par(mar = ...) and/or allowing drawing
outside the plot region with par (xpd = TRUE), then adjusting the legend position
using inset or explicit coordinates. For example, to place a legend to the right
of the axes, you may need to increase the right margin (e.g., par(mar = c(5,

easyViz

11

4, 4, 8))) and set par (xpd = TRUE) before calling easyViz(). You can then
fine-tune placement using inset via legend_args when legend_position is
a keyword (i.e., "topright”, "right”, "bottomright"”). If legend_position
is given as explicit coordinates c(x, y), inset is not used because the legend is

positioned directly at (x, y). See the Examples section for demonstrations.

legend_horiz Logical. If TRUE, the legend is drawn horizontally (side-by-side). If FALSE, the

legend is drawn vertically (stacked). Note: when legend_position = "out”,
easyViz may automatically draw the legend horizontally (and adjust legend set-
tings) to improve readability, unless overridden by user-supplied legend_args.

legend_title Optional character string controlling the legend title. If legend_title is not

specified, and a by variable is present, easyViz () automatically uses the name
of the by variable as the legend title, and legend labels correspond to the levels
of by (e.g., "A", "B", "C"). If legend_title is explicitly set to NULL, no legend
title is drawn, and legend labels revert to the verbose form "by = level” (e.g.,
"group = A"). If legend_title is a character string, it is used as the legend
title, and legend labels correspond to the levels of by. In all cases, legend labels
can be manually overridden using legend_labels.

legend_labels Custom labels for the legend (e.g., legend_labels = c("Level A", "Level B",

"Level C")).

legend_title_size

Numeric. Text size for the legend title (default: 1).

legend_label_size

Numeric. Text size for the legend labels (default: 0. 9).

legend_args A named list of additional arguments passed to base R’s legend() function.

These allow fine-tuned control over the appearance and placement of the legend
and override the high-level options provided by legend_position, legend_title
and other legend_* arguments. For example, you can adjust the legend’s box
style, border color, spacing, point size, or background color. Common options
include:

* Point and line appearance: pch, col, pt.cex, pt.1lwd, 1ty, lwd.

* Layout and spacing: ncol, x.intersp, y.intersp, inset, xjust, yjust.

 Text style and color: cex, text.col, font, adj.

* Box and background: bty, box. lwd, box.col, bg.

« Title control: title, title.col, title.cex, title.adj.

For a full list of supported parameters, see ?1egend. Example usage:

legend_args = list(bty = "0", box.col = "black”, pt.cex =1.5). Tip: Leg-

ends can be pushed outside the plotting region by combining par (xpd = TRUE)
and wider margins (e.g., via par(mar = .. .)), and by supplying appropriate co-
ordinates or negative inset values through legend_args.

show_conditioning

Logical. If TRUE, easyViz prints a concise summary in the R console describing
how predictions are conditioned. The message reports:

* Whether predictions from mixed-effects or GAM models are conditional on
random effects (re_form = NULL) or represent marginal / population-level
predictions (re_form = NA or ~0).

12 easyViz

* For numeric by variables, the values (e.g., quantiles or user-specified by_breaks)
at which predictions are evaluated.

e Which variables are held fixed during prediction (and their values).

¢ Which variables vary across the prediction grid (typically the focal predictor
and, if specified, the by variable).

This option does not affect the plot or returned values and is intended as a diag-
nostic aid to improve transparency and reproducibility. Default is FALSE.

plot Logical. If TRUE (default), easyViz produces a plot. If FALSE, no plot is drawn
and the function only returns the predicted values (as an invisible easyviz.pred.df
object). This is useful when you want to extract or store the predictions (e.g., in
a data frame) without generating any graphical output.

Details

This function provides an easy-to-use yet highly flexible tool for visualizing conditional effects from
a wide range of regression models, including mixed-effects and generalized additive (mixed) mod-
els. Compatible model types include 1m, r1m, glm, glm.nb, betareg, and mgcv: : gam; nonlinear
models via nls; generalized least squares via gls; survival models via survival: : coxph. Mixed-
effects models with random intercepts and/or slopes can be fitted using 1mer, glmer, glmer.nb,
glmmTMB, or mgcv: :gam (via smooth terms). The function handles nonlinear relationships (e.g.,
splines, polynomials), two-way interactions, and supports visualization of three-way interactions
via conditional plots. Plots are rendered using base R graphics with extensive customization options
available through the plot_args and legend_args argument. Users can pass any valid graphical
parameters accepted by plot, par or legend enabling full control over axis/legend labels, font
styles, colors, margins, and more.

Tip: To customize plot appearance, look for argument names by prefix. Arguments starting with
point_ control the appearance of raw data. Arguments starting with pred_ control the appearance
of predicted values (lines or points). Arguments starting with ci_ adjust the display of confidence
intervals (polygons, lines or bars). Arguments starting with legend_ control the appearance of the
legend. This naming convention simplifies styling: just type the prefix (point, pred, ci, or legend)
to discover relevant arguments.

The arguments model, data, and predictor are required. The function will return an error if any
of them is missing or invalid.

Value

A base R plot visualizing the conditional effect of a predictor on the response variable. Additionally,
a data frame is invisibly returned containing the predictor values, conditioning variables, predicted
values (fit), and lower and upper confidence limits. The confidence interval columns are labeled
according to the specified level (e.g., 951cl and 95ucl for ci_level = @.95). To extract prediction
data for further use (e.g., custom plotting or tabulation), assign the output to an object: pred.df <-
easyViz(...). You can then inspect it using head (pred. df) or save it withwrite.csv(pred.df,

D).

Examples

Load required packages

easyViz 13

library(MASS)
library(nlme)
library(betareg)
library(survival)
library(1me4)
library(glmmTMB)
library(mgcv)

set.seed(123)

n <- 100

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <- runif(n, 0, 5)

x4 <- factor(sample(letters[1:3], n, replace = TRUE))
group_levels <- paste@("G", 1:10)

group <- factor(sample(group_levels, n, replace = TRUE))

Generate random intercepts for each group

group_effects <- rnorm(length(group_levels), mean = @, sd = 2) # non-zero variance
names(group_effects) <- group_levels

group_intercept <- group_effects[as.character(group)]

Non-linear continuous response

true_y <- 5 * sin(x3) + 3 * x1 + group_intercept + model.matrix(~x4)[, -1] %x% c(2, -2)
noise <- rnorm(n, sd = 3)

y <- as.vector(true_y + noise)

Binary response with group effect added to logit
logit_p <- 2 * x1 - 1 + group_intercept

p<-1/ (1 + exp(-logit_p))

binary_y <- rbinom(n, size = 1, prob = p)

Binomial response: number of successes and failures
y3 <- sample(10:30, n, replace = TRUE)

logit_p_prop <- -1.5 * scale(x1)

p_prop <- 1 / (1 + exp(-logit_p_prop))

y1 <- rbinom(n, size = y3, prob = p_prop) # successes
y2 <- y3 -yl # failures

Count response with group effect in log(mu)

mu_count <- exp(1 + 0.8 * x2 - 0.5 * (x4 == "b") + group_intercept)
size <- 1.2

count_y <- rnbinom(n, size = size, mu = mu_count)

Offset variable

exposure <- runif(n, 1, 10)

Assemble dataset
sim.data <- data.frame(x1, x2, x3, x4, group, y, binary_y, y1, y2, y3, count_y, exposure)

14

mod.1lm <- 1Im(y

d
easyViz(model
by ="

pred_r

pred_o

ylim =

xlab =

ylab =

point_

point_
pred_l
pred_1l
ci_pol

mod.1m2 <- 1Im(

easyViz(model
by="x4
backtr
ylim =
show_d
show_c

mod.1m3 <- 1Im(

easyViz(model
pred_o
font_f
point_
point_
ci_lev
ci_typ
ci_lin

Extract pred
pred.df <- eas

head(pred.df)

mod.rlm <- rlm

del (Im)
~ x1 + x4,
ata = sim.data)
= mod.1lm, data = sim.data, predictor = "x1",
x4",
ange_limit = FALSE,
n_top = TRUE,
c(-12,18),
"Predictor x1",
"Response y",
col = ifelse(sim.data$x4=="a", "red",
ifelse(sim.data$x4=="b", "orange”,
"yellow")),
cex = 0.5,
ine_col = c("red”, "orange"”, "yellow"),
ine_lty =1,
ygon_col = c(rgb(1,0,0,0.5),

rgb(1,0.5,0,0.5),
rgb(1,1,0,0.5)))

sqrt(x3) ~ x1 * x4,

data = sim.data)

= mod.1lm2, data = sim.data, predictor = "x1",
ansform_response = function(x) x*2,

c(0,8),

ata_points = FALSE,

onditioning = TRUE)

y ~ poly(x3, 3),
data = sim.data)

= mod.1lm3, data = sim.data, predictor = "x3",
n_top = TRUE,

amily = "mono”,

col = rgh(1,0,0,0.3),

pch = "+",

el = 0.85,

e = "lines”,

e_lty = 2)

iction data
yViz(model = mod.lm, data = sim.data, predictor = "x1",
by = "x4", ci_level = 0.85, plot = FALSE)

(y ~ x1 + x4,
data = sim.data)

easyViz

easyViz

old_xpd_mar <- par(xpd = TRUE, mar = c(5.1, 4.1, 4.1, 5.1))

easyViz(model = mod.rlm, data = sim.data, predictor = "x1",
by = "x4",
pred_on_top = TRUE,
bty = "n",
xlab = "Predictor x1",
ylab = "Response y",
point_col = ifelse(sim.data$x4=="a", "red",
ifelse(sim.data$x4=="b", "orange”,
"yellow")),

point_cex = 0.5,
pred_line_col = c("red”, "orange"”, "yellow"),
pred_line_lty = 1,
ci_polygon_col = c(rgb(1,0,0),

rgb(1,0.5,0),

rgb(1,1,0)),
ci_polygon_alpha = 0.4,
legend_position = c(2.25,13),
legend_title = "Predictor x4",
legend_title_size = 0.9,
legend_args = list(legend = c("a", "b", "c",

Ilall, llblr’ IICII)’
col = c("red”, "orange", "yellow”,
"red"”, "orange"”, "yellow"),

1ty = c(1, 1, 1, NA, NA, NA),
Iwd = c(2, 2, 2, NA, NA, NA),
pch = c(NA, NA, NA, 16, 16, 15),
cex = 0.75,
bty = "n"))

par(old_xpd_mar)

mod.gls <- gls(y ~ x1 + x2 + x4,
correlation = corAR1(form = ~1|group),
data = sim.data)
easyViz(model = mod.gls, data = sim.data, predictor = "x4",
jitter_data_points = TRUE,
bty = "n",
xlab = "Predictor x4",
ylab = "Response y”",
point_col = rgb(0,0,1,0.2),
pred_point_col = "blue”,
cat_labels = c("group A", "group B", "group C"))

sim.data$x5 <- sample(c(rep(”CatA”, 50), rep(”"CatB"”, 50)))
mod.gls2 <- gls(y ~ x1 + x2 + x4 * x5,
correlation = corAR1(form = ~1|group),
data = sim.data)
old_xpd_mar <- par(xpd = TRUE, mar = c(5.1, 4.1, 4.1, 5.1))
easyViz(model = mod.gls2, data = sim.data, predictor = "x4",
by = "x5",

16

jitter_data_points = TRUE,

bty = "n",
ylim = c¢(-15,15),
xlab = "Predictor x4",

ylab = "Response y",
cat_labels = c("group A", "group B", "group C"),
point_col = c(rgb(0,0,1,0.2), rgb(1,0,0,0.2)),
pred_point_col = c("blue”, "red"),
ci_bar_col = c("blue”, "blue”, "blue"”, "red", "red", "red"),
ci_bar_caps = 0,
legend_position = "topright”,
legend_args = list(title = "Predictor x5",
title.cex = 1,
legend = c("A", "B"),

pt.cex = 1.25,
horiz = TRUE,
inset = c(-0.2, 0)))
par(old_xpd_mar)
__
4. Nonlinear least squares (nls)
__

mod.nls <- nls(y ~ a * sin(b * x3) + c,
data = sim.data,
start = list(a =5, b =1, c =0))
summary (mod.nls)
easyViz(model = mod.nls, data = sim.data, predictor = "x3",
pred_on_top = TRUE,
font_family = "serif",
bty = "n",
xlab = "Predictor x3",
ylab = "Response y”,
point_col = rgb(0,1,0,0.7),

point_pch = 1,
ci_type = "lines",
ci_line_col = "black”,

ci_line_lty = 2)
text(x = 2.5, y = 11,
labels = expression(Y %~% 5.31584 %*% sin(1.08158 %x% X[3]) + ©.51338),

cex = 0.7)
__
5. Generalized linear model (glm)
__

mod.glm <- glm(binary_y ~ x1 + x4 + offset(log(exposure)),
family = binomial(link="cloglog"),
data = sim.data)

easyViz(model = mod.glm, data = sim.data, predictor = "x1",
fix_values = list(x4="b", exposure=1),
xlab = "Predictor x1",

ylab = "Response y",
binary_data_type = "binned”,
point_col = "black”,

easyViz

easyViz

ci_polygon_col = "red",
ci_polygon_alpha = 1)

easyViz(model = mod.glm, data = sim.data, predictor = "x4",
bty = "n",
xlab = "Predictor x4",

ylab = "Response y",
binary_data_type = "plain”,
jitter_data_points = TRUE,
point_col = "black”,
point_pch = "|"
point_cex = 0.5)

’

mod.glm2 <- glm(y1/y3 ~ x1 + x4, weights = y3,
family = binomial(link="logit"),
data = sim.data)

easyViz(model = mod.glm2, data = sim.data, predictor = "x1",
pred_on_top = TRUE,
xlab = "Predictor x1",

)

ylab = "Response y",
point_col = "black”,
ci_polygon_col = "red")

mod.glm.nb <- glm.nb(count_y ~ x2 + offset(log(exposure)),
data = sim.data)

easyViz(model = mod.glm.nb, data = sim.data, predictor = "x2",
font_family = "mono",
bty = IILII,
plot_args = list(main = "NB model"”),
xlab = "Predictor x2",

ylab = "Response y",
ci_polygon_col = "blue")

sim.data$prop <- y1/y3
mod.betareg <- betareg(prop ~ x1 * x4, offset = log(exposure),
data = sim.data, link= "cloglog")
easyViz(model = mod.betareg, data = sim.data, predictor = "x1",
fix_values = c(exposure = 6),
xlab = "Predictor x1",
ylab = "Response y",
ci_polygon_col = "forestgreen”,
show_conditioning = TRUE)

mod.surviv <- coxph(Surv(y3, binary_y) ~ poly(x1,2) + x4, data=sim.data)

18

easyViz(model = mod.surviv, data = sim.data, predictor = "x1",
pred_type = "link",
xlab = "Predictor x1",
ci_polygon_col = "orange2",
ci_polygon_alpha = 1,
show_conditioning = TRUE)
__
9. Linear mixed model (lmer)
__

mod.lmer <- lmer(y ~ x1 + x4 + (1 | group),
data = sim.data)
easyViz(model = mod.lmer, data = sim.data, predictor = "x1",
by="group"”,
re_form = NULL,
bty = "n",
plot_args = list(xaxp = c(round(min(sim.data$x1),1),
round(max(sim.data$x1),1), 5)),
ylim = c(-15, 15),

xlab = "Predictor x1",
ylab = "Response y",
pred_line_col = "green",

pred_line_lty =1,

pred_line_lwd = 1,

add_legend = FALSE)
old_new <- par(new = TRUE)

easyViz(model = mod.lmer, data = sim.data, predictor = "x1",
re_form = NA,
bty = "n”,

plot_args = list(xaxp = c(round(min(sim.data$x1),1),
round(max(sim.data$x1),1), 5)),
show_data_points = FALSE,
xlab = "Predictor x1",
ylab = "Response y",
ylim = c(-15, 15),
pred_line_col = "red",
pred_line_lty = 1,
pred_line_lwd = 2,
ci_type = NULL)
par(old_new)

mod.glmer <- glmer(binary_y ~ x1 + x4 + (1 | group),
family = binomial,
data = sim.data)

easyViz(model = mod.glmer, data = sim.data, predictor = "x1",
by = "group”,
re_form = NULL,
cat_conditioning = "reference”,
font_family = "serif”,

xlab = "Predictor x1",

easyViz

easyViz

ylab = "Response y",
binary_data_type = "binned”,
pred_range_limit = FALSE,
pred_line_col = "blue”,
pred_line_lty = 1,
pred_line_lwd = 1,
add_legend = FALSE)

mod.glmer.nb <- glmer.nb(count_y ~ x2 + x4 + (1 | group),
data = sim.data)

easyViz(model = mod.glmer.nb, data = sim.data, predictor = "x2",
re_form = NA,
bty = Ilnll’
xlab = "Predictor x2",

ylab = "Response y",
ylim = c(0, 120),
point_pch = 1)

__
12. GLMM (glmmTMB)
__
mod.glmmTMB <- glmmTMB(count_y ~ x2 + x4 + (1 | group),
ziformula = ~ x2,
family = nbinom2,
data = sim.data)
easyViz(model = mod.glmmTMB, data = sim.data, predictor = "x2",
re_form = NA,
bty = "n",
xlab = "Predictor x2",
ylab = "Response y",
ylim = c(0, 120),
point_pch =1,
ci_type = NULL)
__
13. GAM (mgcv::gam) with random smooth
__

mod.gam <- gam(y ~ s(x3) + s(group, bs = "re"),
data = sim.data)

easyViz(model = mod.gam, data = sim.data, predictor = "x3",
re_form = NA,
las = 0,
plot_args = list(xlab = "", ylab = "", axes = FALSE),
bty = "n",
xlab = "Predictor x3",

ylab = "Response y",
point_col = "black”,
point_pch =1,

ci_level = 0.99,
ci_polygon_alpha = 0.25,

19

20

ci_polygon_col = "red")
old_new <- par(new = TRUE)

easyViz

easyViz(model = mod.gam, data = sim.data, predictor = "x3",
re_form = NA,
las = 0,
plot_args = list(xlab = "", ylab = "", axes = FALSE),
bty = "n",
xlab = "Predictor x3",
ylab = "Response y”,
point_col = "black”,
point_pch = 1,
ci_level = 0.95,
ci_polygon_alpha = 0.5,
ci_polygon_col = "red")
par(old_new)
old_new <- par(new = TRUE)
easyViz(model = mod.gam, data = sim.data, predictor = "x3",
re_form = NA,
las = 0,
bty = "n",
xlab = "Predictor x3",

ylab = "Response y",

point_col = "black”,

point_pch =1,

ci_polygon_alpha = 1,

ci_level = 0.8,

ci_polygon_col = "red")
par (old_new)

rect(3.5,9,4,9.5, col=adjustcolor(”"red”, alpha.f
rect(3.5,7.5,4,8, col=adjustcolor(”red”, alpha.f
rect(3.5,6,4,6.5, col=adjustcolor(”red”, alpha.f
text(c(4.4, 4.4, 4.4), c(9.25, 7.75, 6.25), c("99

mod.1lm.int <- Im(y ~ x1 * x2 * X3,
data = sim.data)

Check conditional values to use for plotting

quantile(x2, c(0.1,0.5, 0.9))
quantile(x3, c(0.1,0.5, 0.9))

%

0.25), border=FALSE)

0.5), border=FALSE)

1), border=FALSE)

CI", "95% CI", "80% CI"), cex=0.75)

(optional) Generate a customizable function to add a strip label at the top
add_strip_label <- function(label, bg = "grey90", cex = 1, font = 2, height_mult = 2.5) {

usr <- par("usr")

x_left <- usr[1]

x_right <- usr[2]

y_top <- usr[4]

Estimate strip height using text height

h <- strheight(label, cex = cex) * height_mult

Strip coordinates (extending above the plotting region)

y_bottom <- y_top + 0.2 * h

easyViz

y_top_box <- y_bottom + h
Draw the full-width strip
rect(x_left, y_bottom, x_right, y_top_box, col = bg, border = "black”, xpd = NA)
Add centered text
text(x = mean(c(x_left, x_right)),
y = mean(c(y_bottom, y_top_box)),
labels = label, cex = cex, font = font, xpd = NA)
3

par settings for multi-panel plot
old_mfrow <- par(mfrow = c(1, 3))

old_oma <- par(oma = c(4, 4, 2, 1))
old_mar <- par(mar = c(@, @, 2, 0))

Panel 1

easyViz(model = mod.lm.int, data = sim.data, predictor = "x1",
by = "x2",
fix_values = c(x3 = 0.5750978),
plot_args = list(xlab = "", ylab = ""),

show_data_points = FALSE,

pred_line_col = c(2, 3, 4),

ci_polygon_col = c(2, 3, 4),

legend_position = "topleft”,

legend_title = NULL,

legend_labels = c("x2 = -1.3", "x2 = -0.2", "x2 = 1.5"))
add_strip_label(”"x3 = 0.6")
mtext ("Response y", side = 2, outer = TRUE, line = 2.5)

Panel 2

easyViz(model = mod.1lm.int, data = sim.data, predictor = "x1",
by = lezll,
fix_values = c(x3 = 2.3095046),
plot_args = list(yaxt = "n", xlab = "", ylab = ""),

show_data_points = FALSE,
pred_line_col = c(2, 3, 4),
ci_polygon_col = c(2, 3, 4),
add_legend = FALSE)
add_strip_label(”"x3 = 2.3")

Panel 3

easyViz(model = mod.1lm.int, data = sim.data, predictor = "x1",
by = "x2",
fix_values = c(x3 = 4.4509078),
plot_args = list(yaxt = "n", xlab = "", ylab = ""),

show_data_points = FALSE,
pred_line_col = c(2, 3, 4),
ci_polygon_col = c(2, 3, 4),
add_legend = FALSE)
add_strip_label("x3 = 4.5")
mtext("Predictor x1", side = 1, outer = TRUE, line = 2.5)

Restore original settings
par(old_mfrow)

22

par(old_oma)
par(old_mar)

easyViz

Index

easyViz, 2

23

	easyViz
	Index

