
Package ‘dynamite’
January 13, 2026

Title Bayesian Modeling and Causal Inference for Multivariate
Longitudinal Data

Version 1.6.2

Description Easy-to-use and efficient interface for
Bayesian inference of complex panel (time series) data using dynamic
multivariate panel models by Helske and Tikka (2024)
<doi:10.1016/j.alcr.2024.100617>. The package supports joint modeling of
multiple measurements per individual, time-varying and time-invariant
effects, and a wide range of discrete and continuous distributions.
Estimation of these dynamic multivariate panel models is carried out via
'Stan'. For an in-depth tutorial of the package, see
(Tikka and Helske, 2025) <doi:10.18637/jss.v115.i05>.

License GPL (>= 3)

URL https://docs.ropensci.org/dynamite/,

https://github.com/ropensci/dynamite/

BugReports https://github.com/ropensci/dynamite/issues/

Depends R (>= 3.6.0)

Imports checkmate, cli, data.table (>= 1.15.0), ggforce, glue,
ggplot2, loo, patchwork, posterior, rlang, rstan, stats, tibble
(>= 2.0.0), utils

Suggests cmdstanr, covr, dplyr, knitr, mice, mockthat, quarto,
testthat (>= 3.0.0), tidyr

VignetteBuilder quarto

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

LazyData true

LazyDataCompression xz

Additional_repositories https://stan-dev.r-universe.dev/

NeedsCompilation no

1

https://doi.org/10.1016/j.alcr.2024.100617
https://doi.org/10.18637/jss.v115.i05
https://docs.ropensci.org/dynamite/
https://github.com/ropensci/dynamite/
https://github.com/ropensci/dynamite/issues/
https://stan-dev.r-universe.dev/

2 Contents

Author Santtu Tikka [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4039-4342>),

Jouni Helske [aut] (ORCID: <https://orcid.org/0000-0001-7130-793X>),
Nicholas Clark [rev],
Lucy D'Agostino McGowan [rev]

Maintainer Santtu Tikka <santtuth@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 11:30:02 UTC

Contents
dynamite-package . 3
as.data.frame.dynamitefit . 4
as.data.table.dynamitefit . 7
as_draws_df.dynamitefit . 9
categorical_example . 11
categorical_example_fit . 12
coef.dynamitefit . 13
confint.dynamitefit . 14
dynamice . 15
dynamite . 18
dynamite-deprecated . 22
dynamiteformula . 23
fitted.dynamitefit . 27
gaussian_example . 29
gaussian_example_fit . 30
get_code . 31
get_data . 32
get_parameter_dims . 33
get_parameter_names . 35
get_parameter_types . 36
get_priors . 36
hmc_diagnostics . 38
lags . 39
lfactor . 40
lfo . 41
loo.dynamitefit . 43
mcmc_diagnostics . 44
multichannel_example . 45
multichannel_example_fit . 45
ndraws.dynamitefit . 47
nobs.dynamitefit . 47
plot.dynamitefit . 48
plot.dynamiteformula . 50
plot.lfo . 51
predict.dynamitefit . 52
print.lfo . 56

https://orcid.org/0000-0003-4039-4342
https://orcid.org/0000-0001-7130-793X

dynamite-package 3

random_spec . 57
splines . 58
update.dynamitefit . 59

Index 61

dynamite-package The dynamite Package

Description

Easy-to-use and efficient interface for Bayesian inference of complex panel data consisting of mul-
tiple individuals with multiple measurements over time using dynamic multivariate panel models.
Supports several observational distributions, time-varying effects and realistic counterfactual pre-
dictions which take into account the dynamic structure of the model.

See Also

• The package vignettes

• dynamiteformula() for information on defining models.

• dynamite() for information on fitting models.

• https://github.com/ropensci/dynamite/issues/ to submit a bug report or a feature re-
quest.

Authors

Santtu Tikka (author) santtuth@gmail.com
Jouni Helske (author) jouni.helske@iki.fi

Author(s)

Maintainer: Santtu Tikka <santtuth@gmail.com> (ORCID)

Authors:

• Jouni Helske <jouni.helske@iki.fi> (ORCID)

Other contributors:

• Nicholas Clark [reviewer]

• Lucy D’Agostino McGowan [reviewer]

https://github.com/ropensci/dynamite/issues/
mailto:santtuth@gmail.com
mailto:jouni.helske@iki.fi
https://orcid.org/0000-0003-4039-4342
https://orcid.org/0000-0001-7130-793X

4 as.data.frame.dynamitefit

See Also

Useful links:

• https://docs.ropensci.org/dynamite/

• https://github.com/ropensci/dynamite/

• Report bugs at https://github.com/ropensci/dynamite/issues/

as.data.frame.dynamitefit

Extract Samples From a dynamitefit Object as a Data Frame

Description

Provides a data.frame representation of the posterior samples of the model parameters.

Usage

S3 method for class 'dynamitefit'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
types = NULL,
parameters = NULL,
responses = NULL,
times = NULL,
groups = NULL,
summary = FALSE,
probs = c(0.05, 0.95),
include_fixed = TRUE,
...

)

Arguments

x [dynamitefit]
The model fit object.

row.names Ignored.

optional Ignored.

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega. This argument is mutually exclusive with parameters.

https://docs.ropensci.org/dynamite/
https://github.com/ropensci/dynamite/
https://github.com/ropensci/dynamite/issues/

as.data.frame.dynamitefit 5

parameters [character()]
Parameter(s) for which the samples should be extracted. Possible options can
be found with function get_parameter_names(). Default is all parameters of
specific type for all responses. This argument is mutually exclusive with types.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.
Ignored if the argument parameters is supplied. omega_alpha, and omega_psi.
See also get_parameter_types().

times [double()]
Time point(s) to keep. If NULL (the default), all time points are kept.

groups [character()]
Group name(s) to keep. If NULL (the default), all groups are kept.

summary [logical(1)]
If TRUE, returns posterior mean, standard deviation, and posterior quantiles (as
defined by the probs argument) for all parameters. If FALSE (default), returns
the posterior samples instead.

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

include_fixed [logical(1)]
If TRUE (default), time-varying parameters for 1:fixed time points are included
in the output as NA values. If FALSE, fixed time points are omitted completely
from the output.

... Ignored.

Details

The arguments responses and types can be used to extract only a subset of the model parameters
(i.e., only certain types of parameters related to a certain response variable).

Potential values for the types argument are:

• alpha
Intercept terms (time-invariant or time-varying).

• beta
Time-invariant regression coefficients.

• cutpoint
Cutpoints for ordinal regression.

• delta
Time-varying regression coefficients.

• nu
Group-level random effects.

• lambda
Factor loadings.

• kappa
Contribution of the latent factor loadings in the total variation.

6 as.data.frame.dynamitefit

• psi
Latent factors.

• tau
Standard deviations of the spline coefficients of delta.

• tau_alpha
Standard deviations of the spline coefficients of time-varying alpha.

• sigma_nu
Standard deviations of the random effects nu.

• corr_nu
Pairwise within-group correlations of random effects nu. Samples of the full correlation matrix
can be extracted manually as rstan::extract(fit$stanfit, pars = "corr_matrix_nu")
if necessary.

• sigma_lambda
Standard deviations of the latent factor loadings lambda.

• corr_psi
Pairwise correlations of the noise terms of the latent factors. Samples of the full correlation
matrix can be extracted manually as rstan::extract(fit$stanfit, pars = "corr_matrix_psi")
if necessary.

• sigma
Standard deviations of Gaussian responses.

• corr
Pairwise correlations of multivariate Gaussian responses.

• phi
Describes various distributional parameters, such as:

– Dispersion parameter of the Negative Binomial distribution.
– Shape parameter of the Gamma distribution.
– Precision parameter of the Beta distribution.
– Degrees of freedom of the Student t-distribution.

• omega
Spline coefficients of the regression coefficients delta.

• omega_alpha
Spline coefficients of time-varying alpha.

• omega_psi
Spline coefficients of the latent factors psi. Note that in case of nonzero_lambda = FALSE,
mean of these are used to flip the sign of psi to avoid multimodality due to sign-switching,
but omega_psi variables are not modified.

• zeta
Total variation of latent factors, i.e., the sum of sigma_lambda and tau_psi.

Value

A tibble containing either samples or summary statistics of the model parameters in a long format.
For a wide format, see as_draws.dynamitefit().

as.data.table.dynamitefit 7

See Also

Model outputs as.data.table.dynamitefit(), as_draws_df.dynamitefit(), coef.dynamitefit(),
confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
as.data.frame(

gaussian_example_fit,
responses = "y",
types = "beta"

)

Basic summaries can be obtained automatically with summary = TRUE
as.data.frame(

gaussian_example_fit,
responses = "y",
types = "beta",
summary = TRUE

)

Time-varying coefficients "delta"
as.data.frame(

gaussian_example_fit,
responses = "y",
types = "delta",
summary = TRUE

)

Obtain summaries for a specific parameters
as.data.frame(

gaussian_example_fit,
parameters = c("tau_y_x", "sigma_y"),
summary = TRUE

)

as.data.table.dynamitefit

Extract Samples From a dynamitefit Object as a Data Table

Description

Provides a data.table representation of the posterior samples of the model parameters. See
as.data.frame.dynamitefit() for details.

8 as.data.table.dynamitefit

Usage

S3 method for class 'dynamitefit'
as.data.table(
x,
keep.rownames = FALSE,
row.names = NULL,
optional = FALSE,
types = NULL,
parameters = NULL,
responses = NULL,
times = NULL,
groups = NULL,
summary = FALSE,
probs = c(0.05, 0.95),
include_fixed = TRUE,
...

)

Arguments

x [dynamitefit]
The model fit object.

keep.rownames [logical(1)]
Not used.

row.names Ignored.

optional Ignored.

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega. This argument is mutually exclusive with parameters.

parameters [character()]
Parameter(s) for which the samples should be extracted. Possible options can
be found with function get_parameter_names(). Default is all parameters of
specific type for all responses. This argument is mutually exclusive with types.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.
Ignored if the argument parameters is supplied. omega_alpha, and omega_psi.
See also get_parameter_types().

times [double()]
Time point(s) to keep. If NULL (the default), all time points are kept.

groups [character()]
Group name(s) to keep. If NULL (the default), all groups are kept.

summary [logical(1)]
If TRUE, returns posterior mean, standard deviation, and posterior quantiles (as

as_draws_df.dynamitefit 9

defined by the probs argument) for all parameters. If FALSE (default), returns
the posterior samples instead.

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

include_fixed [logical(1)]
If TRUE (default), time-varying parameters for 1:fixed time points are included
in the output as NA values. If FALSE, fixed time points are omitted completely
from the output.

... Ignored.

Value

A data.table containing either samples or summary statistics of the model parameters.

See Also

Model outputs as.data.frame.dynamitefit(), as_draws_df.dynamitefit(), coef.dynamitefit(),
confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
as.data.table(

gaussian_example_fit,
responses = "y",
types = "beta",
summary = FALSE

)

as_draws_df.dynamitefit

Convert dynamite Output to draws_df Format

Description

Converts the output from a dynamite() call to a draws_df format of the posterior package, en-
abling the use of diagnostics and plotting methods of posterior and bayesplot packages. Note that
this function returns variables in a wide format, whereas as.data.frame.dynamitefit() uses the
long format.

10 as_draws_df.dynamitefit

Usage

S3 method for class 'dynamitefit'
as_draws_df(
x,
parameters = NULL,
responses = NULL,
types = NULL,
times = NULL,
groups = NULL,
...

)

S3 method for class 'dynamitefit'
as_draws(x, parameters = NULL, responses = NULL, types = NULL, ...)

Arguments

x [dynamitefit]
The model fit object.

parameters [character()]
Parameter(s) for which the samples should be extracted. Possible options can
be found with function get_parameter_names(). Default is all parameters of
specific type for all responses. This argument is mutually exclusive with types.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.
Ignored if the argument parameters is supplied. omega_alpha, and omega_psi.
See also get_parameter_types().

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega. This argument is mutually exclusive with parameters.

times [double()]
Time point(s) to keep. If NULL (the default), all time points are kept.

groups [character()]
Group name(s) to keep. If NULL (the default), all groups are kept.

... Ignored.

Details

You can use the arguments parameters, responses and types to extract only a subset of the model
parameters (i.e., only certain types of parameters related to a certain response variable).

See potential values for the types argument in as.data.frame.dynamitefit() and get_parameter_names()
for potential values for parameters argument.

categorical_example 11

Value

A draws_df object.
A draws_df object.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), coef.dynamitefit(),
confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
as_draws(gaussian_example_fit, types = c("sigma", "beta"))

Compute MCMC diagnostics using the posterior package
posterior::summarise_draws(as_draws(gaussian_example_fit))

categorical_example Simulated Categorical Multivariate Panel Data

Description

A simulated data containing multiple individuals with two categorical response variables.

Usage

categorical_example

Format

A data frame with 2000 rows and 5 variables:

id Variable defining individuals (1 to 100).
time Variable defining the time point of the measurement (1 to 20).
x Categorical variable with three levels, A, B, and C.
y Categorical variable with three levels, a, b, and c.
z A continuous covariate.

Source

The data was generated via categorical_example.R in https://github.com/ropensci/dynamite/
tree/main/data-raw/

See Also

Example models categorical_example_fit, gaussian_example, gaussian_example_fit, multichannel_example,
multichannel_example_fit

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

12 categorical_example_fit

categorical_example_fit

Model Fit for the Simulated Categorical Multivariate Panel Data

Description

A dynamitefit object obtained by running dynamite on the categorical_example dataset as

set.seed(1)
library(dynamite)
f <- obs(x ~ z + lag(x) + lag(y), family = "categorical") +
obs(y ~ z + lag(x) + lag(y), family = "categorical")

categorical_example_fit <- dynamite(
f,
data = categorical_example,
time = "time",
group = "id",
chains = 1,
refresh = 0,
thin = 5,
save_warmup = FALSE

)

Note the small number of samples due to size restrictions on CRAN.

Usage

categorical_example_fit

Format

A dynamitefit object.

Source

The data was generated via categorical_example_fit.R in https://github.com/ropensci/
dynamite/tree/main/data-raw/

See Also

Example models categorical_example, gaussian_example, gaussian_example_fit, multichannel_example,
multichannel_example_fit

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

coef.dynamitefit 13

coef.dynamitefit Extract Regression Coefficients of a dynamite Model

Description

Extracts either time-varying or time-invariant parameters of the model.

Usage

S3 method for class 'dynamitefit'
coef(
object,
types = c("alpha", "beta", "delta"),
parameters = NULL,
responses = NULL,
times = NULL,
groups = NULL,
summary = TRUE,
probs = c(0.05, 0.95),
...

)

Arguments

object [dynamitefit]
The model fit object.

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega. This argument is mutually exclusive with parameters.

parameters [character()]
Parameter(s) for which the samples should be extracted. Possible options can
be found with function get_parameter_names(). Default is all parameters of
specific type for all responses. This argument is mutually exclusive with types.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.
Ignored if the argument parameters is supplied. omega_alpha, and omega_psi.
See also get_parameter_types().

times [double()]
Time point(s) to keep. If NULL (the default), all time points are kept.

groups [character()]
Group name(s) to keep. If NULL (the default), all groups are kept.

14 confint.dynamitefit

summary [logical(1)]
If TRUE (default), returns posterior mean, standard deviation, and posterior quan-
tiles (as defined by the probs argument) for all parameters. If FALSE, returns the
posterior samples instead.

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

... Ignored.

Value

A tibble containing either samples or summary statistics of the model parameters in a long format.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
betas <- coef(gaussian_example_fit, type = "beta")
deltas <- coef(gaussian_example_fit, type = "delta")

confint.dynamitefit Credible Intervals for dynamite Model Parameters

Description

Extracts credible intervals from dynamitefit object.

Usage

S3 method for class 'dynamitefit'
confint(object, parm, level = 0.95, ...)

Arguments

object [dynamitefit]
The model fit object.

parm Ignored.

level [numeric(1)]
Credible interval width.

... Ignored.

dynamice 15

Value

The rows of the resulting matrix will be named using the following logic: {parameter}_{time}_{category}_{group}
where parameter is the name of the parameter, time is the time index of the parameter, category
specifies the level of the response the parameter is related to if the response is categorical, and group
determines which group of observations the parameter is related to in the case of random effects
and loadings. Non-applicable fields in the this syntax are set to NA.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
confint(gaussian_example_fit, level = 0.9)

dynamice Estimate a Bayesian Dynamic Multivariate Panel Model With Multiple
Imputation

Description

Applies multiple imputation using mice::mice() to the supplied data and fits a dynamic mul-
tivariate panel model to each imputed data set using dynamite(). Posterior samples from each
imputation run are combined. When using wide format imputation, the long format data is auto-
matically converted to a wide format before imputation to preserve the longitudinal structure, and
then converted back to long format for estimation.

Usage

dynamice(
dformula,
data,
time,
group = NULL,
priors = NULL,
backend = "rstan",
verbose = TRUE,
verbose_stan = FALSE,
stanc_options = list("O0"),
threads_per_chain = 1L,
grainsize = NULL,
custom_stan_model = NULL,
interval = 1L,

16 dynamice

debug = NULL,
mice_args = list(),
impute_format = "wide",
keep_imputed = FALSE,
stan_csv_dir = tempdir(),
...

)

Arguments

dformula [dynamiteformula]
The model formula. See dynamiteformula() and ’Details’.

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

priors [data.frame]
An optional data frame with prior definitions. See get_priors() and ’Details’.

backend [character(1)]
Defines the backend interface to Stan, should be either "cmdstanr" (the default)
or "rstan". Note that cmdstanr needs to be installed separately as it is not on
CRAN. It also needs the actual CmdStan software. See https://mc-stan.org/
cmdstanr/ for details. Defaults to "rstan" if "cmdstanr" cannot be used.

verbose [logical(1)]
All warnings and messages are suppressed if set to FALSE. Defaults to TRUE.
Setting this to FALSE will also disable checks for perfect collinearity in the model
matrix.

verbose_stan [logical(1)]
This is the verbose argument for rstan::sampling(). Defaults to FALSE.

stanc_options [list()]
This is the stanc_options argument passed to the compile method of a CmdStanModel
object via cmdstan_model() when backend = "cmdstanr". Defaults to list("O0").
To enable level one compiler optimizations, use list("O1"). See https://
mc-stan.org/cmdstanr/reference/cmdstan_model.html for details.

https://mc-stan.org/cmdstanr/
https://mc-stan.org/cmdstanr/
https://mc-stan.org/cmdstanr/reference/cmdstan_model.html
https://mc-stan.org/cmdstanr/reference/cmdstan_model.html

dynamice 17

threads_per_chain

[integer(1)]
A Positive integer defining the number of parallel threads to use within each
chain. Default is 1. See rstan::rstan_options() and https://mc-stan.
org/cmdstanr/reference/model-method-sample.html for details.

grainsize [integer(1)]
A positive integer defining the suggested size of the partial sums when us-
ing within-chain parallelization. Default is number of time points divided by
threads_per_chain. Setting this to 1 leads the workload division entirely to
the internal scheduler. The performance of the within-chain parallelization can
be sensitive to the choice of grainsize, see Stan manual on reduce-sum for
details.

custom_stan_model

[character(1)]
An optional character string that either contains a customized Stan model code
or a path to a .stan file that contains the code. Using this will override the
generated model code. For expert users only.

interval [integer(1)]
This arguments acts as an offset for the evaluation of lagged observations when
measurements are not available at every time point. For example, if measure-
ments are only available at every second time point, setting interval = 2 means
that a lag of order k will instead use the observation at 2 * k time units in the
past. The default value is 1 meaning that there is a one-to-one correspondence
between the lag order and the time scale. For expert users only.

debug [list()]
A named list of form name = TRUE indicating additional objects in the environ-
ment of the dynamite function which are added to the return object. Addition-
ally, values no_compile = TRUE and no_sampling = TRUE can be used to skip
the compilation of the Stan code and sampling steps respectively. This can be
useful for debugging when combined with model_code = TRUE, which adds the
Stan model code to the return object.

mice_args [list()]
Arguments passed to mice::mice() excluding data.

impute_format [character(1)]
Format of the data that will be passed to the imputation method. Should be either
"wide" (the default) or "long" corresponding to wide format and long format
imputation.

keep_imputed [logical(1)]
Should the imputed datasets be kept in the return object? The default is FALSE.
If TRUE, the imputations will be included in the imputed field in the return object
that is otherwise NULL.

stan_csv_dir [character(1)]
A directory path to output the Stan .csv files when backend is "cmdstanr".
The files are saved here via $save_output_files() to avoid garbage collection
between sampling runs with different imputed datasets.

... For dynamite(), additional arguments to rstan::sampling() or the $sample()
method of the CmdStanModel object (see https://mc-stan.org/cmdstanr/

https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html

18 dynamite

reference/model-method-sample.html), such as chains and cores (chains
and parallel_chains in cmdstanr). For summary(), additional arguments to
as.data.frame.dynamitefit(). For print(), further arguments to the print
method for tibbles (see tibble::formatting). Not used for formula().

See Also

Model fitting dynamite(), get_priors(), update.dynamitefit()

dynamite Estimate a Bayesian Dynamic Multivariate Panel Model

Description

Fit a Bayesian dynamic multivariate panel model (DMPM) using Stan for Bayesian inference. The
dynamite package supports a wide range of distributions and allows the user to flexibly customize
the priors for the model parameters. The dynamite model is specified using standard R formula
syntax via dynamiteformula(). For more information and examples, see ’Details’ and the package
vignettes.

The formula method returns the model definition as a quoted expression.

Information on the estimated dynamite model can be obtained via print() including the following:
The model formula, the data, the smallest effective sample sizes, largest Rhat and summary statistics
of the time-invariant and group-invariant model parameters.

The summary() method provides statistics of the posterior samples of the model; this is an alias of
as.data.frame.dynamitefit() with summary = TRUE.

Usage

dynamite(
dformula,
data,
time,
group = NULL,
priors = NULL,
backend = "cmdstanr",
verbose = TRUE,
verbose_stan = FALSE,
stanc_options = list("O0"),
threads_per_chain = 1L,
grainsize = NULL,
custom_stan_model = NULL,
debug = NULL,
interval = 1L,
...

)

https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html

dynamite 19

S3 method for class 'dynamitefit'
formula(x, ...)

S3 method for class 'dynamitefit'
print(x, full_diagnostics = FALSE, ...)

S3 method for class 'dynamitefit'
summary(object, ...)

Arguments

dformula [dynamiteformula]
The model formula. See dynamiteformula() and ’Details’.

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

priors [data.frame]
An optional data frame with prior definitions. See get_priors() and ’Details’.

backend [character(1)]
Defines the backend interface to Stan, should be either "cmdstanr" (the default)
or "rstan". Note that cmdstanr needs to be installed separately as it is not on
CRAN. It also needs the actual CmdStan software. See https://mc-stan.org/
cmdstanr/ for details. Defaults to "rstan" if "cmdstanr" cannot be used.

verbose [logical(1)]
All warnings and messages are suppressed if set to FALSE. Defaults to TRUE.
Setting this to FALSE will also disable checks for perfect collinearity in the model
matrix.

verbose_stan [logical(1)]
This is the verbose argument for rstan::sampling(). Defaults to FALSE.

stanc_options [list()]
This is the stanc_options argument passed to the compile method of a CmdStanModel
object via cmdstan_model() when backend = "cmdstanr". Defaults to list("O0").

https://mc-stan.org/cmdstanr/
https://mc-stan.org/cmdstanr/

20 dynamite

To enable level one compiler optimizations, use list("O1"). See https://
mc-stan.org/cmdstanr/reference/cmdstan_model.html for details.

threads_per_chain

[integer(1)]
A Positive integer defining the number of parallel threads to use within each
chain. Default is 1. See rstan::rstan_options() and https://mc-stan.
org/cmdstanr/reference/model-method-sample.html for details.

grainsize [integer(1)]
A positive integer defining the suggested size of the partial sums when us-
ing within-chain parallelization. Default is number of time points divided by
threads_per_chain. Setting this to 1 leads the workload division entirely to
the internal scheduler. The performance of the within-chain parallelization can
be sensitive to the choice of grainsize, see Stan manual on reduce-sum for
details.

custom_stan_model

[character(1)]
An optional character string that either contains a customized Stan model code
or a path to a .stan file that contains the code. Using this will override the
generated model code. For expert users only.

debug [list()]
A named list of form name = TRUE indicating additional objects in the environ-
ment of the dynamite function which are added to the return object. Addition-
ally, values no_compile = TRUE and no_sampling = TRUE can be used to skip
the compilation of the Stan code and sampling steps respectively. This can be
useful for debugging when combined with model_code = TRUE, which adds the
Stan model code to the return object.

interval [integer(1)]
This arguments acts as an offset for the evaluation of lagged observations when
measurements are not available at every time point. For example, if measure-
ments are only available at every second time point, setting interval = 2 means
that a lag of order k will instead use the observation at 2 * k time units in the
past. The default value is 1 meaning that there is a one-to-one correspondence
between the lag order and the time scale. For expert users only.

... For dynamite(), additional arguments to rstan::sampling() or the $sample()
method of the CmdStanModel object (see https://mc-stan.org/cmdstanr/
reference/model-method-sample.html), such as chains and cores (chains
and parallel_chains in cmdstanr). For summary(), additional arguments to
as.data.frame.dynamitefit(). For print(), further arguments to the print
method for tibbles (see tibble::formatting). Not used for formula().

x [dynamitefit]
The model fit object.

full_diagnostics

By default, the effective sample size (ESS) and Rhat are computed only for
the time- and group-invariant parameters (full_diagnostics = FALSE). Setting
this to TRUE computes ESS and Rhat values for all model parameters, which can
take some time for complex models.

https://mc-stan.org/cmdstanr/reference/cmdstan_model.html
https://mc-stan.org/cmdstanr/reference/cmdstan_model.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html
https://mc-stan.org/cmdstanr/reference/model-method-sample.html

dynamite 21

object [dynamitefit]
The model fit object.

Details

The best-case scalability of dynamite in terms of data size should be approximately linear in terms
of number of time points and and number of groups, but as wall-clock time of the MCMC algorithms
provided by Stan can depend on the discrepancy of the data and the model (and the subsequent shape
of the posterior), this can vary greatly.

Value

dynamite returns a dynamitefit object which is a list containing the following components:

• stanfit
A stanfit object, see rstan::sampling() for details.

• dformulas
A list of dynamiteformula objects for internal use.

• data
A processed version of the input data.

• data_name
Name of the input data object.

• stan
A list containing various elements related to Stan model construction and sampling.

• group_var
Name of the variable defining the groups.

• time_var
Name of the variable defining the time index.

• priors
Data frame containing the used priors.

• backend
Either "rstan" or "cmdstanr" indicating which package was used in sampling.

• permutation
Randomized permutation of the posterior draws.

• call
Original function call as an object of class call.

formula returns a quoted expression.

print returns x invisibly.

summary returns a data.frame.

References

Santtu Tikka and Jouni Helske (2025). dynamite: An R Package for Dynamic Multivariate Panel
Models. Journal of Statistical Software, 115(5), 1-42, doi:10.18637/jss.v115.i05.

Jouni Helske and Santtu Tikka (2022). Estimating Causal Effects from Panel Data with Dynamic
Multivariate Panel Models. Advances in Life Course Research, 60, 100617. doi:10.1016/j.alcr.
2024.100617.

doi:10.18637/jss.v115.i05
doi:10.1016/j.alcr.2024.100617
doi:10.1016/j.alcr.2024.100617

22 dynamite-deprecated

See Also

Model fitting dynamice(), get_priors(), update.dynamitefit()

Model formula construction dynamiteformula(), lags(), lfactor(), random_spec(), splines()

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), get_code(), get_data(), get_parameter_dims(),
get_parameter_names(), get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN

Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

fit <- dynamite(
dformula = obs(y ~ -1 + varying(~x), family = "gaussian") +

lags(type = "varying") +
splines(df = 20),

gaussian_example,
"time",
"id",
chains = 1,
refresh = 0

)
}

data.table::setDTthreads(1) # For CRAN
formula(gaussian_example_fit)

data.table::setDTthreads(1) # For CRAN
print(gaussian_example_fit)

data.table::setDTthreads(1) # For CRAN
summary(gaussian_example_fit,

types = "beta",
probs = c(0.05, 0.1, 0.9, 0.95)

)

dynamite-deprecated Deprecated Functions in the dynamite Package

Description

These functions are provided for compatibility with older versions of the package. They will even-
tually be completely removed.

dynamiteformula 23

Usage

plot_betas(x, ...)
plot_deltas(x, ...)
plot_nus(x, ...)
plot_lambdas(x, ...)
plot_psis(x, ...)

Arguments

x [dynamitefit]
The model fit object.

... Not used.

Value

A ggplot object.

Details

• plot_betas is now called via plot(., types = "beta")

• plot_deltas is now called via plot(., types = "delta")

• plot_nus is now called via plot(., types = "nu")

• plot_lambdas is now called via plot(., types = "lambda")

• plot_psis is now called via plot(., types = "psi")

See Also

See plot.dynamitefit() for documentation of the parameters of these functions

dynamiteformula Model Formula for dynamite

Description

Defines a new observational or a new auxiliary channel for the model using standard R formula
syntax. Formulas of individual response variables can be joined together via +. See ’Details’ and the
package vignettes for more information. The function obs is a shorthand alias for dynamiteformula,
and aux is a shorthand alias for dynamiteformula(formula, family = "deterministic").

24 dynamiteformula

Usage

dynamiteformula(formula, family, link = NULL)

obs(formula, family, link = NULL)

aux(formula)

S3 method for class 'dynamiteformula'
e1 + e2

S3 method for class 'dynamiteformula'
print(x, ...)

Arguments

formula [formula]
An R formula describing the model.

family [character(1)]
The family name. See ’Details’ for the supported families.

link [character(1)]
The name of the link function to use or NULL. See details for supported link
functions and default values of specific families.

e1 [dynamiteformula]
A model formula specification.

e2 [dynamiteformula]
A model formula specification.

x [dynamiteformula]
The model formula.

... Ignored.

Details

Currently the dynamite package supports the following distributions for the observations:

• Categorical: categorical (with a softmax link using the first category as reference). See
the documentation of the categorical_logit_glm in the Stan function reference manual
https://mc-stan.org/users/documentation/.

• Multinomial: multinomial (softmax link, first category is reference).

• Gaussian: gaussian (identity link, parameterized using mean and standard deviation).

• Multivariate Gaussian: mvgaussian (identity link, parameterized using mean vector, standard
deviation vector and the Cholesky decomposition of the correlation matrix).

• Poisson: poisson (log-link, with an optional known offset variable).

• Negative-binomial: negbin (log-link, using mean and dispersion parameterization, with an
optional known offset variable). See the documentation on NegBinomial2 in the Stan function
reference manual.

https://mc-stan.org/users/documentation/

dynamiteformula 25

• Bernoulli: bernoulli (logit-link).

• Binomial: binomial (logit-link).

• Exponential: exponential (log-link).

• Gamma: gamma (log-link, using mean and shape parameterization).

• Beta: beta (logit-link, using mean and precision parameterization).

• Student t: student (identity link, parameterized using degrees of freedom, location and scale)

The models in the dynamite package are defined by combining the channel-specific formulas de-
fined via R formula syntax. Each channel is defined via the obs function, and the channels are
combined with +. For example a formula obs(y ~ lag(x), family = "gaussian") + obs(x ~ z,
family = "poisson") defines a model with two channels; first we declare that y is a Gaussian vari-
able depending on a previous value of x (lag(x)), and then we add a second channel declaring x
as Poisson distributed depending on some exogenous variable z (for which we do not define any
distribution).

Number of trials for binomial channels should be defined via a trials model component, e.g.,
obs(y ~ x + trials(n), family = "binomial"), where n is a data variable defining the number of
trials. For multinomial channels, the number of trials is automatically defined to be the sum of the
observations over the categories, but can also be defined using the trials component, for example
for prediction.

Multivariate channels are defined by providing a single formula for all components or by provid-
ing component-specific formulas separated by a |. The response variables that correspond to the
components should be joined by c(). For instance, the following would define c(y1, y2) as multi-
variate gaussian with x as a predictor for the mean of the first component and x and z as predictors
for the mean of the second component: obs(c(y1, y2) ~ x | x + z, family = "mvgaussian"). A
multinomial channel should only have a single formula.

In addition to declaring response variables via obs, we can also use the function aux to define auxil-
iary channels which are deterministic functions of other variables. The values of auxiliary variables
are computed dynamically during prediction, making the use of lagged values and other transfor-
mations possible. The function aux also does not use the family argument, which is automatically
set to deterministic and is a special channel type of obs. Note that lagged values of deterministic
aux channels do not imply fixed time points. Instead they must be given starting values using a spe-
cial function init that directly initializes the lags to specified values, or by past which computes
the initial values based on an R expression. Both init and past should appear on the right hand
side of the model formula, separated from the primary defining expression via |.

The formula within obs can also contain an additional special function varying, which defines the
time-varying part of the model equation, in which case we could write for example obs(x ~ z +
varying(~ -1 + w), family = "poisson"), which defines a model equation with a constant inter-
cept and time-invariant effect of z, and a time-varying effect of w. We also remove the duplicate in-
tercept with -1 in order to avoid identifiability issues in the model estimation (we could also define a
time varying intercept, in which case we would write obs(x ~ -1 + z + varying(~ w), family = "poisson)).
The part of the formula not wrapped with varying is assumed to correspond to the fixed part of the
model, so obs(x ~ z + varying(~ -1 + w), family = "poisson") is actually identical to obs(x ~
-1 + fixed(~ z) + varying(~ -1 + w), family = "poisson") and obs(x ~ fixed(~ z) + varying(~
-1 + w), family = "poisson").

When defining varying effects, we also need to define how the these time-varying regression coeffi-
cient behave. For this, a splines component should be added to the model, e.g., obs(x ~ varying(~ -1 + w), family = "poisson) + splines(df = 10)

26 dynamiteformula

defines a cubic B-spline with 10 degrees of freedom for the time-varying coefficient corresponding
to the w. If the model contains multiple time-varying coefficients, same spline basis is used for all
coefficients, with unique spline coefficients and their standard deviation.

If the desired model contains lagged predictors of each response in each channel, these can be
quickly added to the model as either time-invariant or time-varying predictors via lags() instead
of writing them manually for each channel.

It is also possible to define group-specific (random) effects term using the special syntax random()
similarly as varying(). For example, random(~1) leads to a model where in addition to the com-
mon intercept, each individual/group has their own intercept with zero-mean normal prior and un-
known standard deviation analogously with the typical mixed models. An additional model com-
ponent random_spec() can be used to define whether the random effects are allowed to correlate
within and across channels and whether to use centered or noncentered parameterization for the
random effects.

Value

A dynamiteformula object.

See Also

Model formula construction dynamite(), lags(), lfactor(), random_spec(), splines()

Examples

data.table::setDTthreads(1) # For CRAN
A single gaussian response channel with a time-varying effect of 'x',
and a time-varying effect of the lag of 'y' using B-splines with
20 degrees of freedom for the coefficients of the time-varying terms.
obs(y ~ -1 + varying(~x), family = "gaussian") +

lags(type = "varying") +
splines(df = 20)

A two-channel categorical model with time-invariant predictors
here, lag terms are specified manually
obs(x ~ z + lag(x) + lag(y), family = "categorical") +

obs(y ~ z + lag(x) + lag(y), family = "categorical")

The same categorical model as above, but with the lag terms
added using 'lags'
obs(x ~ z, family = "categorical") +

obs(y ~ z, family = "categorical") +
lags(type = "fixed")

A multichannel model with a gaussian, Poisson and a Bernoulli response and
an auxiliary channel for the logarithm of 'p' plus one
obs(g ~ lag(g) + lag(logp), family = "gaussian") +

obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
aux(numeric(logp) ~ log(p + 1))

data.table::setDTthreads(1) # For CRAN

fitted.dynamitefit 27

obs(y ~ x, family = "gaussian") + obs(z ~ w, family = "exponential")

data.table::setDTthreads(1) # For CRAN
x <- obs(y ~ x + random(~ 1 + lag(d)), family = "gaussian") +

obs(z ~ varying(~w), family = "exponential") +
aux(numeric(d) ~ log(y) | init(c(0, 1))) +
lags(k = 2) +
splines(df = 5) +
random_spec(correlated = FALSE)

print(x)

fitted.dynamitefit Extract Fitted Values of a dynamite Model

Description

Fitted values for a dynamitefit object, i.e., E(yt|newdata, θ) where θ contains all the model
parameters. See also predict.dynamitefit() for multi-step predictions.

Usage

S3 method for class 'dynamitefit'
fitted(
object,
newdata = NULL,
n_draws = NULL,
thin = 1,
expand = TRUE,
df = TRUE,
drop = TRUE,
...

)

Arguments

object [dynamitefit]
The model fit object.

newdata [data.frame]
Data used in predictions. If NULL (default), the data used in model estimation is
used for predictions as well. There should be no new time points that were not
present in the data that were used to fit the model, and no new group levels can
be included.

n_draws [integer(1)]
Number of posterior samples to use, default is NULL which uses all samples with-
out permuting (with chains concatenated). If n_drawsis smaller than ndraws(object),
a random subset of n_draws posterior samples are used.

28 fitted.dynamitefit

thin [integer(1)]
Use only every thin posterior sample. This can be beneficial with when the
model object contains large number of samples. Default is 1 meaning that all
samples are used.

expand [logical(1)]
If TRUE (the default), the output is a single data.frame containing the original
newdata and the predicted values. Otherwise, a list is returned with two com-
ponents, simulated and observed, where the first contains only the predicted
values, and the second contains the original newdata. Setting expand to FALSE
can help conserve memory because newdata is not replicated n_draws times in
the output. This argument is ignored if funs are provided.

df [logical(1)]
If TRUE (default) the output consists of data.frame objects, and data.table
objects otherwise.

drop [logical(1)]
If TRUE (default), the columns of newdata that are not used by any model for-
mula are dropped from the output. If FALSE, all columns are kept.

... Ignored.

Value

A data.frame containing the fitted values.

See Also

Obtaining predictions predict.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
fitted(gaussian_example_fit, n_draws = 2L)

set.seed(1)
Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

fit <- dynamite(
dformula = obs(LakeHuron ~ 1, "gaussian") + lags(),
data = data.frame(LakeHuron, time = seq_len(length(LakeHuron)), id = 1),
time = "time",
group = "id",
chains = 1,
refresh = 0

)

if (requireNamespace("dplyr") && requireNamespace("tidyr")) {

One-step ahead samples (fitted values) from the posterior
(first time point is fixed due to lag in the model):
f <- dplyr::filter(fitted(fit), time > 2)

gaussian_example 29

ggplot2::ggplot(f, ggplot2::aes(time, LakeHuron_fitted, group = .draw)) +
ggplot2::geom_line(alpha = 0.5) +
observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()

Posterior predictive distribution given the first time point:
p <- dplyr::filter(predict(fit, type = "mean"), time > 2)
ggplot2::ggplot(p, ggplot2::aes(time, LakeHuron_mean, group = .draw)) +

ggplot2::geom_line(alpha = 0.5) +
observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()

}
}

gaussian_example Simulated Data of a Gaussian Response

Description

Simulated data containing a Gaussian response variable y with two covariates. The dataset was
generated from a model with time-varying effects of covariate x and the lagged value of the re-
sponse variable, time-varying intercept, and time-invariant effect of covariate z. The time-varying
coefficients vary according to a spline with 20 degrees of freedom.

Usage

gaussian_example

Format

A data frame with 3000 rows and 5 variables:

y The response variable.

x A continuous covariate.

z A binary covariate.

id Variable defining individuals (1 to 50).

time Variable defining the time point of the measurement (1 to 30).

Source

The data was generated via gaussian_example.R in https://github.com/ropensci/dynamite/
tree/main/data-raw/

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

30 gaussian_example_fit

See Also

Example models categorical_example, categorical_example_fit, gaussian_example_fit,
multichannel_example, multichannel_example_fit

gaussian_example_fit Model Fit for the Simulated Data of a Gaussian Response

Description

A dynamitefit object obtained by running dynamite on the gaussian_example dataset as

set.seed(1)
library(dynamite)
gaussian_example_fit <- dynamite(
obs(y ~ -1 + z + varying(~ x + lag(y)) + random(~1), family = "gaussian") +
random_spec() + splines(df = 20),

data = gaussian_example,
time = "time",
group = "id",
iter = 2000,
warmup = 1000,
thin = 10,
chains = 2,
cores = 2,
refresh = 0,
save_warmup = FALSE,
pars = c("omega_alpha_1_y", "omega_raw_alpha_y", "nu_raw", "nu", "L",
"sigma_nu", "a_y"),

include = FALSE
)

Note the very small number of samples due to size restrictions on CRAN.

Usage

gaussian_example_fit

Format

A dynamitefit object.

Source

The data was generated via gaussian_example_fit.R in https://github.com/ropensci/dynamite/
tree/main/data-raw/

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

get_code 31

See Also

Example models categorical_example, categorical_example_fit, gaussian_example, multichannel_example,
multichannel_example_fit

get_code Extract the Stan Code of the dynamite Model

Description

Returns the Stan code of the model. Mostly useful for debugging or for building a customized
version of the model.

Usage

get_code(x, ...)

S3 method for class 'dynamiteformula'
get_code(x, data, time, group = NULL, blocks = NULL, ...)

S3 method for class 'dynamitefit'
get_code(x, blocks = NULL, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.
data [data.frame, tibble::tibble, or data.table::data.table]

The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

blocks [character()]
Stan block names to extract. If NULL, extracts the full model code.

32 get_data

Value

The Stan model blocks as a character string.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_data(), get_parameter_dims(),
get_parameter_names(), get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
cat(get_code(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
))
same as
cat(dynamite(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id",
debug = list(model_code = TRUE, no_compile = TRUE)

)$model_code)

get_data Extract the Model Data of the dynamite Model

Description

Returns the input data to the Stan model. Mostly useful for debugging.

Usage

get_data(x, ...)

S3 method for class 'dynamiteformula'
get_data(x, data, time, group = NULL, ...)

S3 method for class 'dynamitefit'
get_data(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.

get_parameter_dims 33

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

Value

A list containing the input data to Stan.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_parameter_dims(),
get_parameter_names(), get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
str(get_data(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
))

get_parameter_dims Get Parameter Dimensions of the dynamite Model

Description

Extracts the names and dimensions of all parameters used in the dynamite model. See also get_parameter_types()
and get_parameter_names(). The returned dimensions match those of the stanfit element of
the dynamitefit object. When applied to dynamiteformula objects, the model is compiled and
sampled for 1 iteration to get the parameter dimensions.

34 get_parameter_dims

Usage

get_parameter_dims(x, ...)

S3 method for class 'dynamiteformula'
get_parameter_dims(x, data, time, group = NULL, ...)

S3 method for class 'dynamitefit'
get_parameter_dims(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.
data [data.frame, tibble::tibble, or data.table::data.table]

The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

Value

A named list with all parameter dimensions of the input model.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_names(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
get_parameter_dims(multichannel_example_fit)

get_parameter_names 35

get_parameter_names Get Parameter Names of the dynamite Model

Description

Extracts all parameter names of used in the dynamitefit object.

Usage

get_parameter_names(x, types = NULL, ...)

S3 method for class 'dynamitefit'
get_parameter_names(x, types = NULL, ...)

Arguments

x [dynamitefit]
The model fit object.

types [character()]
Extract only names of parameter of a certain type. See get_parameter_types().

... Ignored.

Details

The naming of parameters generally follows style where the name starts with the parameter type
(e.g. beta for time-invariant regression coefficient), followed by underscore and the name of the
response variable, and in case of time-invariant, time-varying or random effect, the name of the
predictor. An exception to this is spline coefficients omega, which also contain the number denoting
the knot number.

Value

A character vector with parameter names of the input model.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(),
get_parameter_types(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
get_parameter_names(multichannel_example_fit)

36 get_priors

get_parameter_types Get Parameter Types of the dynamite Model

Description

Extracts all parameter types of used in the dynamitefit object. See as.data.frame.dynamitefit()
for explanations of different types.

Usage

get_parameter_types(x, ...)

S3 method for class 'dynamitefit'
get_parameter_types(x, ...)

Arguments

x [dynamitefit]
The model fit object.

... Ignored.

Value

A character vector with all parameter types of the input model.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(),
get_parameter_names(), ndraws.dynamitefit(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
get_parameter_types(multichannel_example_fit)

get_priors Get Prior Definitions of a dynamite Model

Description

Extracts the priors used in the dynamite model as a data frame. You can then alter the priors by
changing the contents of the prior column and supplying this data frame to dynamite function
using the argument priors. See vignettes for details.

get_priors 37

Usage

get_priors(x, ...)

S3 method for class 'dynamiteformula'
get_priors(x, data, time, group = NULL, ...)

S3 method for class 'dynamitefit'
get_priors(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model in long format. Supported
column types are integer, logical, double, and factor. Columns of type
character will be converted to factors. Unused factor levels will be dropped.
The data can contain missing values which will simply be ignored in the estima-
tion in a case-wise fashion (per time-point and per channel). Input data is con-
verted to channel specific matrix representations via stats::model.matrix.lm().

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

Value

A data.frame containing the prior definitions.

Note

Only the prior column of the output should be altered when defining the user-defined priors for
dynamite.

See Also

Model fitting dynamice(), dynamite(), update.dynamitefit()

38 hmc_diagnostics

Examples

data.table::setDTthreads(1) # For CRAN
d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
get_priors(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
)

hmc_diagnostics HMC Diagnostics for a dynamite Model

Description

Prints the divergences, saturated treedepths, and low E-BFMI warnings.

Usage

hmc_diagnostics(x, ...)

S3 method for class 'dynamitefit'
hmc_diagnostics(x, ...)

Arguments

x [dynamitefit]
The model fit object.

... Ignored.

Value

Returns x (invisibly). data.table::setDTthreads(1) # For CRAN hmc_diagnostics(gaussian_example_fit)

See Also

Model diagnostics lfo(), loo.dynamitefit(), mcmc_diagnostics()

lags 39

lags Add Lagged Responses as Predictors to Each Channel of a dynamite
Model

Description

Adds the lagged value of the response of each channel specified via dynamiteformula() as a
predictor to each channel. The added predictors can be either time-varying or time-invariant.

Usage

lags(k = 1L, type = c("fixed", "varying", "random"))

Arguments

k [integer()]
Values lagged by k units of time of each observed response variable will be
added as a predictor for each channel. Should be a positive (unrestricted) integer.

type [integer(1)]
Either "fixed" or "varying" which indicates whether the coefficients of the
added lag terms should vary in time or not.

Value

An object of class lags.

See Also

Model formula construction dynamite(), dynamiteformula(), lfactor(), random_spec(), splines()

Examples

data.table::setDTthreads(1) # For CRAN
obs(y ~ -1 + varying(~x), family = "gaussian") +

lags(type = "varying") + splines(df = 20)

A two-channel categorical model with time-invariant predictors
here, lag terms are specified manually
obs(x ~ z + lag(x) + lag(y), family = "categorical") +

obs(y ~ z + lag(x) + lag(y), family = "categorical")

The same categorical model as above, but with the lag terms
added using 'lags'
obs(x ~ z, family = "categorical") +

obs(y ~ z, family = "categorical") +
lags(type = "fixed")

40 lfactor

lfactor Define a Common Latent Factor for the dynamite Model.

Description

This function can be used as part of a dynamiteformula() to define a common latent factor com-
ponent. The latent factor is modeled as a spline similarly as a time-varying intercept, but instead of
having equal effect on each group, there is an additional loading variable for each group so that in
the linear predictor we have a term λiψt for each group i.

Usage

lfactor(
responses = NULL,
nonzero_lambda = TRUE,
correlated = TRUE,
noncentered_psi = FALSE,
flip_sign = TRUE

)

Arguments

responses [character()]
Names of the responses that the factor should affect. Default is all responses
defined with obs except categorical responses, which do not (yet) support the
factor component.

nonzero_lambda [logical()]
If TRUE (the default), assumes that the mean of factor loadings is nonzero or not.
Should be a logical vector matching the length of responses or a single logical
value in case responses is NULL. See details.

correlated [logical()]
If TRUE (the default), the latent factors are assumed to be correlated between
channels.

noncentered_psi

[logical(1)]
If TRUE, uses a noncentered parametrization for spline coefficients of all the
factors. The number of knots is based splines() call. Default is FALSE.

flip_sign [logical(1)]
If TRUE (default), try to avoid multimodality due to sign-switching by defining
the sign of λ and ψ based on the mean of ω1, . . . , ωD coefficients. This only
affects channels with nonzero_lambda = FALSE. If the true mean of ωs is close
to zero, this might not help, in which case it is better to set flip_sign = FALSE
and post-process the samples in other ways (or use only one chain and/or suitable
initial values). This argument is common to all factors.

lfo 41

Value

An object of class latent_factor.

See Also

Model formula construction dynamite(), dynamiteformula(), lags(), random_spec(), splines()

Examples

data.table::setDTthreads(1) # For CRAN
three channel model with common factor affecting for responses x and y
obs(y ~ 1, family = "gaussian") +

obs(x ~ 1, family = "poisson") +
obs(z ~ 1, family = "gaussian") +
lfactor(
responses = c("y", "x"), nonzero_lambda = c(TRUE, FALSE),
correlated = TRUE, noncentered_psi = FALSE

)

lfo Approximate Leave-Future-Out (LFO) Cross-validation

Description

Estimates the leave-future-out (LFO) information criterion for dynamite models using Pareto smoothed
importance sampling.

Usage

lfo(x, ...)

S3 method for class 'dynamitefit'
lfo(x, L, verbose = TRUE, k_threshold = 0.7, ...)

Arguments

x [dynamitefit]
The model fit object.

... Additional arguments passed to rstan::sampling() or the $sample() method
of the CmdStanModel object, such as chains and cores (parallel_chains in
cmdstanr).

L [integer(1)]
Positive integer defining how many time points should be used for the initial fit.

verbose [logical(1)]
If TRUE (default), print the progress of the LFO computations to the console.

k_threshold [numeric(1)]
Threshold for the Pareto k estimate triggering refit. Default is 0.7.

42 lfo

Details

For multichannel models, the log-likelihoods of all channels are combined. For models with groups,
expected log predictive densities (ELPDs) are computed independently for each group, but the re-
estimation of the model is triggered if Pareto k values of any group exceeds the threshold.

Value

An lfo object which is a list with the following components:

• ELPD
Expected log predictive density estimate.

• ELPD_SE
Standard error of ELPD. This is a crude approximation which does not take into account
potential serial correlations.

• pareto_k
Pareto k values.

• refits
Time points where model was re-estimated.

• L
L value used in the LFO estimation.

• k_threshold
Threshold used in the LFO estimation.

References

Paul-Christian Bürkner, Jonah Gabry, and Aki Vehtari (2020). Approximate leave-future-out cross-
validation for Bayesian time series models, Journal of Statistical Computation and Simulation,
90:14, 2499-2523.

See Also

Model diagnostics hmc_diagnostics(), loo.dynamitefit(), mcmc_diagnostics()

Examples

data.table::setDTthreads(1) # For CRAN

Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

this gives warnings due to the small number of iterations
out <- suppressWarnings(
lfo(gaussian_example_fit, L = 20, chains = 1, cores = 1)

)
out$ELPD
out$ELPD_SE
plot(out)

}

loo.dynamitefit 43

loo.dynamitefit Approximate Leave-One-Out (LOO) Cross-validation

Description

Estimates the leave-one-out (LOO) information criterion for dynamite models using Pareto smoothed
importance sampling with the loo package.

Usage

S3 method for class 'dynamitefit'
loo(x, separate_channels = FALSE, thin = 1L, ...)

Arguments

x [dynamitefit]
The model fit object.

separate_channels

[logical(1)]
If TRUE, computes LOO separately for each channel. This can be useful in diag-
nosing where the model fails. Default is FALSE, in which case the likelihoods of
different channels are combined, i.e., all channels of are left out.

thin [integer(1)]
Use only every thin posterior sample when computing LOO. This can be ben-
eficial with when the model object contains large number of samples. Default is
1 meaning that all samples are used.

... Ignored.

Value

An output from loo::loo() or a list of such outputs (if separate_channels was TRUE).

References

Aki Vehtari, Andrew, Gelman, and Johah Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432.

See Also

Model diagnostics hmc_diagnostics(), lfo(), mcmc_diagnostics()

Examples

data.table::setDTthreads(1) # For CRAN

Please update your rstan and StanHeaders installation before running
on Windows

44 mcmc_diagnostics

if (!identical(.Platform$OS.type, "windows")) {
this gives warnings due to the small number of iterations
suppressWarnings(loo(gaussian_example_fit))
suppressWarnings(loo(gaussian_example_fit, separate_channels = TRUE))

}

mcmc_diagnostics Diagnostic Values of a dynamite Model

Description

Prints HMC diagnostics and lists parameters with smallest effective sample sizes and largest Rhat
values. See hmc_diagnostics() and posterior::default_convergence_measures() for de-
tails.

Usage

mcmc_diagnostics(x, ...)

S3 method for class 'dynamitefit'
mcmc_diagnostics(x, n = 3L, ...)

Arguments

x [dynamitefit]
The model fit object.

... Ignored.

n [integer(1)]
How many rows to print in parameter-specific convergence measures. The de-
fault is 3. Should be a positive (unrestricted) integer.

Value

Returns x (invisibly).

See Also

Model diagnostics hmc_diagnostics(), lfo(), loo.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
mcmc_diagnostics(gaussian_example_fit)

multichannel_example 45

multichannel_example Simulated Multivariate Panel Data

Description

A simulated multichannel data containing multiple individuals with multiple response variables of
different distributions.

Usage

multichannel_example

Format

A data frame with 3000 rows and 5 variables:

id Variable defining individuals (1 to 50).

time Variable defining the time point of the measurement (1 to 20).

g Response variable following gaussian distribution.

p Response variable following Poisson distribution.

b Response variable following Bernoulli distribution.

Source

The data was generated via multichannel_example.R in https://github.com/ropensci/dynamite/
tree/main/data-raw/

See Also

Example models categorical_example, categorical_example_fit, gaussian_example, gaussian_example_fit,
multichannel_example_fit

multichannel_example_fit

Model Fit for the Simulated Multivariate Panel Data

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

46 multichannel_example_fit

Description

A dynamitefit object obtained by running dynamite on the multichannel_example dataset as

set.seed(1)
library(dynamite)
f <- obs(g ~ lag(g) + lag(logp), family = "gaussian") +
obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
aux(numeric(logp) ~ log(p + 1))

multichannel_example_fit <- dynamite(
f,
data = multichannel_example,
time = "time",
group = "id",
chains = 1,
cores = 1,
iter = 2000,
warmup = 1000,
init = 0,
refresh = 0,
thin = 5,
save_warmup = FALSE

)

Note the small number of samples due to size restrictions on CRAN.

Usage

multichannel_example_fit

Format

A dynamitefit object.

Source

THe data was generated via multichannel_example_fit.R in https://github.com/ropensci/
dynamite/tree/main/data-raw/

See Also

Example models categorical_example, categorical_example_fit, gaussian_example, gaussian_example_fit,
multichannel_example

https://github.com/ropensci/dynamite/tree/main/data-raw/
https://github.com/ropensci/dynamite/tree/main/data-raw/

ndraws.dynamitefit 47

ndraws.dynamitefit Return the Number of Posterior Draws of a dynamitefit Object

Description

Return the Number of Posterior Draws of a dynamitefit Object

Usage

S3 method for class 'dynamitefit'
ndraws(x)

Arguments

x [dynamitefit]
The model fit object.

Value

Number of posterior draws as a single integer value.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(),
get_parameter_names(), get_parameter_types(), nobs.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
ndraws(gaussian_example_fit)

nobs.dynamitefit Extract the Number of Observations Used to Fit a dynamite Model

Description

Extract the Number of Observations Used to Fit a dynamite Model

Usage

S3 method for class 'dynamitefit'
nobs(object, ...)

48 plot.dynamitefit

Arguments

object [dynamitefit]
The model fit object.

... Not used.

Value

Total number of non-missing observations as an integer.

See Also

Model outputs as.data.frame.dynamitefit(), as.data.table.dynamitefit(), as_draws_df.dynamitefit(),
coef.dynamitefit(), confint.dynamitefit(), dynamite(), get_code(), get_data(), get_parameter_dims(),
get_parameter_names(), get_parameter_types(), ndraws.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
nobs(gaussian_example_fit)

plot.dynamitefit Plots for dynamitefit Objects

Description

Produces the traceplots and the density plots of the model parameters. Can also be used to plot the
time-varying and time-invariant parameters of the model along with their posterior intervals. See
the plot_type argument for details on available plots.

Usage

S3 method for class 'dynamitefit'
plot(
x,
plot_type = c("default", "trace", "dag"),
types = NULL,
parameters = NULL,
responses = NULL,
groups = NULL,
times = NULL,
level = 0.05,
alpha = 0.5,
facet = TRUE,
scales = c("fixed", "free"),
n_params = NULL,
...

)

plot.dynamitefit 49

Arguments

x [dynamitefit]
The model fit object.

plot_type [character(1)]
What type of plot to draw? The default is "default" which draws posterior
means and intervals of the parameters selected by types or parameters. If
both "types" and parameters are NULL, all parameters are drawn up to the
maximum specified by n_params. Option "trace" instead draws posterior den-
sities and traceplots of the parameters. Option "dag" instead plots the directed
acyclic graph of the model formula, see plot.dynamiteformula() for the ar-
guments available for this option.

types [character(1)]
Types of the parameter for which the plots should be drawn. Possible options can
be found with the function get_parameter_types(). Ignored if the argument
parameters is supplied.

parameters [charecter()]
Parameter name(s) for which the plots should be drawn. Possible options can
be found with the function get_parameter_names(). The default is all param-
eters, limited by n_params.

responses [character()]
Response(s) for which the plots should be drawn. Possible options are unique(x$priors$response).
Default is all responses. Ignored if the argument parameters is supplied.

groups [character(1)]
Group name(s) for which the plots should be drawn for group-specific parame-
ters.

times [double()]
Time point(s) for which the plots should be drawn for time-varying parameters.
By default, all time points are included, up to the maximum number of parame-
ters specified by n_params starting from the first non-fixed time point.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

alpha [numeric(1)]
Opacity level for geom_ribbon. Default is 0.5.

facet [logical(1)]
Should the time-invariant parameters be plotted separately (TRUE) or in a single
plot (FALSE)?

scales [character(1)]
Should y-axis of the panels be "fixed" (the default) or "free"? See ggplot2::facet_wrap().

n_params [integer()]
A single value or a vector of length 2 specifying the maximum number of param-
eters to plot. If a single value is provided, the same limit is used for all param-
eters. If a vector is supplied, the first element defines the maximum number of
time-invariant parameters to plot and the second the maximum number of time-
varying parameters to plot. The defaults values are 20 for time-invariant param-
eters and 3 for time-varying parameters. The default value is 5 for plot_type
== "trace".

50 plot.dynamiteformula

... Arguments passed to plot.dynamiteformula() when using plot_type = "dag".

Value

A ggplot object.

See Also

Drawing plots plot.dynamiteformula()

Examples

data.table::setDTthreads(1) # For CRAN
plot(gaussian_example_fit, type = "beta")

plot.dynamiteformula Plot the Model Structure as a Directed Acyclic Graph (DAG)

Description

Plot a snapshot of the model structure at a specific time point with a window of the highest-order
lag dependency both into the past and the future as a directed acyclic graph (DAG). Only response
variables are shown in the plot. This function can also produce a TikZ code of the DAG to be used
in reports and publications.

Usage

S3 method for class 'dynamiteformula'
plot(
x,
show_auxiliary = TRUE,
show_covariates = FALSE,
tikz = FALSE,
vertex_size = 0.25,
label_size = 18,
...

)

Arguments

x [dynamiteformula]
The model formula.

show_auxiliary [logical(1)]
Should deterministic auxiliary responses be shown in the plot? If FALSE, the
vertices corresponding to such responses will be projected out. The default is
TRUE.

plot.lfo 51

show_covariates

[logical(1)]
Should unmodeled covariates be shown in the plot? The defaults is FALSE.

tikz [logical(1)]
Should the DAG be returned in TikZ format? The default is FALSE returning a
ggplot object instead.

vertex_size [double(1)]
The size (radius) of the vertex circles used in the ggplot DAG. (The vertical
and horizontal distances between vertices in the grid are 1, for reference.)

label_size [double(1)]
Font size (in points) to use for the vertex labels in the ggplot DAG.

... Not used..

Value

A ggplot object, or a character string if tikz = TRUE.

See Also

Drawing plots plot.dynamitefit()

Examples

data.table::setDTthreads(1) # For CRAN
multichannel_formula <- obs(g ~ lag(g) + lag(logp), family = "gaussian") +

obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
aux(numeric(logp) ~ log(p + 1))

A ggplot
plot(multichannel_formula)
TikZ format
plot(multichannel_formula, tikz = TRUE)

plot.lfo Diagnostic Plot for Pareto k Values from LFO

Description

Plots Pareto k values per each time point (with one point per group), together with a horizontal line
representing the used threshold.

Usage

S3 method for class 'lfo'
plot(x, ...)

52 predict.dynamitefit

Arguments

x [lfo]
Output of the lfo method.

... Ignored.

Value

A ggplot object.

Examples

data.table::setDTthreads(1) # For CRAN

Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

This gives warnings due to the small number of iterations
plot(suppressWarnings(
lfo(gaussian_example_fit, L = 20, chains = 1, cores = 1)

))
}

predict.dynamitefit Predict Method for a dynamite Model

Description

Obtain counterfactual predictions for a dynamitefit object.

Usage

S3 method for class 'dynamitefit'
predict(
object,
newdata = NULL,
type = c("response", "mean", "link"),
funs = list(),
impute = c("none", "locf", "nocb"),
new_levels = c("none", "bootstrap", "gaussian", "original"),
global_fixed = FALSE,
n_draws = NULL,
thin = 1,
expand = TRUE,
df = TRUE,
drop = TRUE,
...

)

predict.dynamitefit 53

Arguments

object [dynamitefit]
The model fit object.

newdata [data.frame]
Data used in predictions. Predictions are computed for missing (NA) values in
the response variable columns, and non-missing values are assumed fixed. If
NULL (default), the data used in model estimation is used for predictions as well,
after all values in the response variable columns after the first fixed time point
are converted to NA values. Missing values in predictor columns can be imputed
(argument impute). There should be no new time points that were not present in
the data that were used to fit the model. New group levels can be included, but if
the model contains random effects, an option for the random effects for the new
levels must be chosen (argument new_levels). If the grouping variable of the
original data is missing, it is assumed that all observations in newdata belong to
the first group in the original data. New group levels are not allowed for models
using latent factors.

type [character(1)]
Type of prediction, "response" (default), "mean", or "link".

funs [list()]
A named list whose names should correspond to the response variables of the
model. Each element of funs should be a a named list of functions that will be
applied to the corresponding predicted type of the channel over the individuals
for each combination of the posterior draws and time points. In other words,
the resulting predictions will be averages over the individuals. The functions
should take the corresponding type variable values as their only argument. If
funs is empty, the full individual level values are returned instead. Note that
this argument can only be used if there are multiple individuals (i.e., group was
not NULL in the dynamite call).

impute [character(1)]
Which imputation scheme to use for missing exogenous predictor values. Cur-
rently supported options are no imputation: "none" (default), last observation
carried forward: "locf", and next observation carried backward: "nocb".

new_levels [character(1)]
Defines if and how to sample the random effects for observations whose group
level was not present in the original data. The options are:

• "none" (the default) which will signal an error if new levels are encoun-
tered.

• "bootstrap" which will randomly draw from the posterior samples of the
random effects across all original levels.

• "gaussian" which will randomly draw from a Gaussian distribution using
the posterior samples of the random effects standard deviation (and corre-
lation matrix if applicable).

• "original" which will randomly match each new level to one of the orig-
inal levels. The posterior samples of the random effects of the matched
levels will then be used for the new levels.

This argument is ignored if the model does not contain random effects.

54 predict.dynamitefit

global_fixed [logical(1)]
If FALSE (the default), the first non-fixed time point is counted from the the
first non-NA observation for each group member separately. Otherwise, the first
non-fixed time point is counted from the first time point globally. If there are no
groups, then the options are equivalent.

n_draws [integer(1)]
Number of posterior samples to use, default is NULL which uses all samples with-
out permuting (with chains concatenated). If n_drawsis smaller than ndraws(object),
a random subset of n_draws posterior samples are used.

thin [integer(1)]
Use only every thin posterior sample. This can be beneficial with when the
model object contains large number of samples. Default is 1 meaning that all
samples are used.

expand [logical(1)]
If TRUE (the default), the output is a single data.frame containing the original
newdata and the predicted values. Otherwise, a list is returned with two com-
ponents, simulated and observed, where the first contains only the predicted
values, and the second contains the original newdata. Setting expand to FALSE
can help conserve memory because newdata is not replicated n_draws times in
the output. This argument is ignored if funs are provided.

df [logical(1)]
If TRUE (default) the output consists of data.frame objects, and data.table
objects otherwise.

drop [logical(1)]
If TRUE (default), the columns of newdata that are not used by any model for-
mula are dropped from the output. If FALSE, all columns are kept.

... Ignored.

Details

Note that forecasting (i.e., predictions for time indices beyond the last time index in the original
data) is not supported by the dynamite package. However, such predictions can be obtained by
augmenting the original data with NA values before model estimation.

Value

A data.frame containing the predicted values or a list of two data.frames. See the expand
argument for details. Note that the .draw column is not the same as .draw from as.data.frame
and as_draws methods as predict uses permuted samples. A mapping between these variables
can be done using information in object$stanfit@sim$permutation.

See Also

Obtaining predictions fitted.dynamitefit()

predict.dynamitefit 55

Examples

data.table::setDTthreads(1) # For CRAN
out <- predict(gaussian_example_fit, type = "response", n_draws = 2L)
head(out)

using summary functions
sumr <- predict(multichannel_example_fit, type = "mean",

funs = list(g = list(m = mean, s = sd), b = list(sum = sum)),
n_draws = 2L)

head(sumr$simulated)

Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

Simulate from the prior predictive distribution

f <- obs(y ~ lag(y) + varying(~ -1 + x), "gaussian") +
splines(df = 10, noncentered = TRUE)

Create data with missing observations
Note that due to the lagged term in the model,
we need to fix the first time point
d <- data.frame(y = c(0, rep(NA, 49)), x = rnorm(50), time = 1:50)

Suppress warnings due to the lack of data
suppressWarnings(

priors <- get_priors(f, data = d, time = "time")
)

Modify default priors which can produce exploding behavior when used
without data
priors$prior <- c(

"normal(0, 1)",
"normal(0.6, 0.1)",
"normal(-0.2, 0.5)",
"normal(0.2, 0.1)",
"normal(0.5, 0.1)"

)

Samples from the prior conditional on the first time point and x
fit <- dynamite(

dformula = f,
data = d,
time = "time",
verbose = FALSE,
priors = priors,
chains = 1

)

Simulate new data
pp <- predict(fit)

56 print.lfo

ggplot2::ggplot(pp, ggplot2::aes(time, y_new, group = .draw)) +
ggplot2::geom_line(alpha = 0.1) +
ggplot2::theme_bw()

}

print.lfo Print the results from the LFO

Description

Prints the summary of the leave-future-out cross-validation.

Usage

S3 method for class 'lfo'
print(x, ...)

Arguments

x [lfo]
Output of the lfo method.

... Ignored.

Value

Returns x invisibly.

Examples

data.table::setDTthreads(1) # For CRAN

Please update your rstan and StanHeaders installation before running
on Windows
if (!identical(.Platform$OS.type, "windows")) {

This gives warnings due to the small number of iterations
suppressWarnings(lfo(gaussian_example_fit, L = 20))

}

random_spec 57

random_spec Additional Specifications for the Group-level Random Effects of the
DMPM

Description

This function can be used as part of dynamiteformula() to define whether the group-level random
effects should be modeled as correlated or not.

Usage

random_spec(correlated = TRUE, noncentered = TRUE)

Arguments

correlated [logical(1)]
If TRUE (the default), correlations of random effects are modeled as multivariate
normal.

noncentered [logical(1)]
If TRUE (the default), use a noncentered parameterization for random effects.
Try changing this if you encounter divergences or other problems in sampling.

Details

With a large number of time points random intercepts can become challenging sample with default
priors. This is because with large group sizes the group-level intercepts tend to be behave similarly
to fixed group-factor variable so the model becomes overparameterized given these and the common
intercept term. Another potential cause for sampling problems is relatively large variation in the
intercepts (large sigma_nu) compared to the sampling variation (sigma) in the Gaussian case.

Value

An object of class random_spec.

See Also

Model formula construction dynamite(), dynamiteformula(), lags(), lfactor(), splines()

Examples

data.table::setDTthreads(1) # For CRAN
two channel model with correlated random effects for responses x and y
obs(y ~ 1 + random(~1), family = "gaussian") +

obs(x ~ 1 + random(~1 + z), family = "poisson") +
random_spec(correlated = TRUE)

58 splines

splines Define the B-splines Used for the Time-varying Coefficients of the
Model.

Description

This function can be used as part of dynamiteformula() to define the splines used for the time-
varying coefficients δ.

Usage

splines(
df = NULL,
degree = 3L,
lb_tau = 0,
noncentered = FALSE,
override = FALSE

)

Arguments

df [integer(1)]
Degrees of freedom, i.e., the total number of spline coefficients. See splines::bs().
Note that the knots are always defined as an equidistant sequence on the interval
starting from the first non-fixed time point to the last time point in the data. See
dynamiteformula() for more information on fixed time points. Should be an
(unrestricted) positive integer.

degree [integer(1)]
See splines::bs(). Should be an (unrestricted) positive integer.

lb_tau [numeric()]
Hard constraint(s) on the lower bound of the standard deviation parameters τ of
the random walk priors. Can be useful in avoiding divergences in some cases.
See also the noncentered argument. Can be a single positive value, or vector
defining the lower bound separately for each channel, even for channels without
varying effects. The ordering is based on the order of channel definitions in the
dynamiteformula object.

noncentered [logical()]
If TRUE, use a noncentered parameterization for the spline coefficients. Default
is FALSE. Try changing this if you encounter divergences or other problems in
sampling for example when simulating from prior predictive distribution. Can
be a single logical value, or vector of logical values, defining the parameteriza-
tion separately for each channel, even for channels without varying effects.

override [logical(1)]
If FALSE (the default), an existing definition for the splines will not be overridden
by another call to splines(). If TRUE, any existing definitions will be replaced.

update.dynamitefit 59

Value

An object of class splines.

See Also

Model formula construction dynamite(), dynamiteformula(), lags(), lfactor(), random_spec()

Examples

data.table::setDTthreads(1) # For CRAN
Two channel model with varying effects, with explicit lower bounds for the
random walk prior standard deviations, with noncentered parameterization
for the first channel and centered for the second channel.
obs(y ~ 1, family = "gaussian") + obs(x ~ 1, family = "gaussian") +

lags(type = "varying") +
splines(
df = 20, degree = 3, lb_tau = c(0, 0.1),
noncentered = c(TRUE, FALSE)

)

update.dynamitefit Update a dynamite Model

Description

Note that using a different backend for the original model fit and when updating can lead to an error
due to different naming in cmdstanr and rstan sampling arguments.

Usage

S3 method for class 'dynamitefit'
update(
object,
dformula = NULL,
data = NULL,
priors = NULL,
recompile = NULL,
...

)

Arguments

object [dynamitefit]
The model fit object.

dformula [dynamiteformula]
Updated model formula. By default the original formula is used.

60 update.dynamitefit

data [data.frame, tibble::tibble, or data.table::data.table]
Data for the updated model. By default original data is used.

priors [data.frame]
Updated priors. By default the priors of the original model are used.

recompile [logical(1)]
Should the model be recompiled? If NULL (default), tries to avoid recompilation.
Recompilation is forced when the model formula or the priors are changed, or if
the new data contains missing values in a channel which did not contain missing
values in the original data. Recompilation is also forced in case the backend
previous or new backend is cmdstanr.

... Additional parameters to dynamite.

Value

An updated dynamitefit object.

See Also

Model fitting dynamice(), dynamite(), get_priors()

Examples

data.table::setDTthreads(1) # For CRAN
Not run:
re-estimate the example fit without thinning:
As the model is compiled on Windows, this will fail on other platforms
if (identical(.Platform$OS.type, "windows")) {

fit <- update(gaussian_example_fit, thin = 1)
}

End(Not run)

Index

∗ datasets
categorical_example, 11
categorical_example_fit, 12
gaussian_example, 29
gaussian_example_fit, 30
multichannel_example, 45
multichannel_example_fit, 45

∗ diagnostics
hmc_diagnostics, 38
lfo, 41
loo.dynamitefit, 43
mcmc_diagnostics, 44

∗ examples
categorical_example, 11
categorical_example_fit, 12
gaussian_example, 29
gaussian_example_fit, 30
multichannel_example, 45
multichannel_example_fit, 45

∗ fitting
dynamice, 15
dynamite, 18
get_priors, 36
update.dynamitefit, 59

∗ formulas
dynamite, 18
dynamiteformula, 23
lags, 39
lfactor, 40
random_spec, 57
splines, 58

∗ output
as.data.frame.dynamitefit, 4
as.data.table.dynamitefit, 7
as_draws_df.dynamitefit, 9
coef.dynamitefit, 13
confint.dynamitefit, 14
dynamite, 18
get_code, 31

get_data, 32
get_parameter_dims, 33
get_parameter_names, 35
get_parameter_types, 36
ndraws.dynamitefit, 47
nobs.dynamitefit, 47

∗ plotting
plot.dynamitefit, 48
plot.dynamiteformula, 50

∗ prediction
fitted.dynamitefit, 27
predict.dynamitefit, 52

+.dynamiteformula (dynamiteformula), 23

as.data.frame.dynamitefit, 4, 9, 11, 14,
15, 22, 32–36, 47, 48

as.data.frame.dynamitefit(), 7, 9, 10, 18,
20, 36

as.data.table
(as.data.table.dynamitefit), 7

as.data.table.dynamitefit, 7, 7, 11, 14,
15, 22, 32–36, 47, 48

as_draws (as_draws_df.dynamitefit), 9
as_draws.dynamitefit(), 6
as_draws_df (as_draws_df.dynamitefit), 9
as_draws_df.dynamitefit, 7, 9, 9, 14, 15,

22, 32–36, 47, 48
aux (dynamiteformula), 23

categorical_example, 11, 12, 30, 31, 45, 46
categorical_example_fit, 11, 12, 30, 31,

45, 46
coef.dynamitefit, 7, 9, 11, 13, 15, 22,

32–36, 47, 48
confint.dynamitefit, 7, 9, 11, 14, 14, 22,

32–36, 47, 48

dynamice, 15, 22, 37, 60
dynamite, 7, 9, 11, 14, 15, 18, 18, 26, 32–37,

39, 41, 47, 48, 57, 59, 60

61

62 INDEX

dynamite(), 3, 9, 15, 31, 32, 34, 37
dynamite-deprecated, 22
dynamite-package, 3
dynamiteformula, 22, 23, 39, 41, 57, 59
dynamiteformula(), 3, 16, 18, 19, 31, 32, 34,

37, 39, 40, 57, 58

fitted.dynamitefit, 27, 54
formula.dynamitefit (dynamite), 18

gaussian_example, 11, 12, 29, 31, 45, 46
gaussian_example_fit, 11, 12, 30, 30, 45, 46
get_code, 7, 9, 11, 14, 15, 22, 31, 33–36, 47,

48
get_data, 7, 9, 11, 14, 15, 22, 32, 32, 34–36,

47, 48
get_parameter_dims, 7, 9, 11, 14, 15, 22, 32,

33, 33, 35, 36, 47, 48
get_parameter_names, 7, 9, 11, 14, 15, 22,

32–34, 35, 36, 47, 48
get_parameter_names(), 10, 33, 49
get_parameter_types, 7, 9, 11, 14, 15, 22,

32–35, 36, 47, 48
get_parameter_types(), 5, 8, 10, 13, 33, 35,

49
get_priors, 18, 22, 36, 60
get_priors(), 16, 19
ggplot2::facet_wrap(), 49

hmc_diagnostics, 38, 42–44
hmc_diagnostics(), 44

lags, 22, 26, 39, 41, 57, 59
lags(), 26
lfactor, 22, 26, 39, 40, 57, 59
lfo, 38, 41, 43, 44
loo (loo.dynamitefit), 43
loo.dynamitefit, 38, 42, 43, 44
loo::loo(), 43

mcmc_diagnostics, 38, 42, 43, 44
mice::mice(), 15, 17
multichannel_example, 11, 12, 30, 31, 45, 46
multichannel_example_fit, 11, 12, 30, 31,

45, 45

ndraws (ndraws.dynamitefit), 47
ndraws.dynamitefit, 7, 9, 11, 14, 15, 22,

32–36, 47, 48

nobs.dynamitefit, 7, 9, 11, 14, 15, 22,
32–36, 47, 47

obs (dynamiteformula), 23

plot.dynamitefit, 48, 51
plot.dynamitefit(), 23
plot.dynamiteformula, 50, 50
plot.dynamiteformula(), 49, 50
plot.lfo, 51
plot_betas (dynamite-deprecated), 22
plot_deltas (dynamite-deprecated), 22
plot_lambdas (dynamite-deprecated), 22
plot_nus (dynamite-deprecated), 22
plot_psis (dynamite-deprecated), 22
posterior::default_convergence_measures(),

44
predict.dynamitefit, 28, 52
predict.dynamitefit(), 27
print.dynamitefit (dynamite), 18
print.dynamiteformula

(dynamiteformula), 23
print.lfo, 56

random_spec, 22, 26, 39, 41, 57, 59
random_spec(), 26
rstan::rstan_options(), 17, 20
rstan::sampling(), 16, 17, 19–21, 41

splines, 22, 26, 39, 41, 57, 58
splines::bs(), 58
stats::model.matrix.lm(), 16, 19, 31, 33,

34, 37
summary.dynamitefit (dynamite), 18

tibble::formatting, 18, 20

update.dynamitefit, 18, 22, 37, 59

	dynamite-package
	as.data.frame.dynamitefit
	as.data.table.dynamitefit
	as_draws_df.dynamitefit
	categorical_example
	categorical_example_fit
	coef.dynamitefit
	confint.dynamitefit
	dynamice
	dynamite
	dynamite-deprecated
	dynamiteformula
	fitted.dynamitefit
	gaussian_example
	gaussian_example_fit
	get_code
	get_data
	get_parameter_dims
	get_parameter_names
	get_parameter_types
	get_priors
	hmc_diagnostics
	lags
	lfactor
	lfo
	loo.dynamitefit
	mcmc_diagnostics
	multichannel_example
	multichannel_example_fit
	ndraws.dynamitefit
	nobs.dynamitefit
	plot.dynamitefit
	plot.dynamiteformula
	plot.lfo
	predict.dynamitefit
	print.lfo
	random_spec
	splines
	update.dynamitefit
	Index

