
Package ‘ddpcr’
January 14, 2026

Title Analysis and Visualization of Droplet Digital PCR in R and on
the Web

Version 1.16.0

Description An interface to explore, analyze, and visualize droplet digital PCR
(ddPCR) data in R. This is the first non-proprietary software for analyzing
two-channel ddPCR data. An interactive tool was also created and is available
online to facilitate this analysis for anyone who is not comfortable with
using R.

URL https://github.com/daattali/ddpcr,

https://daattali.com/shiny/ddpcr/

BugReports https://github.com/daattali/ddpcr/issues

Depends R (>= 3.1.0)

Imports DT (>= 0.2), dplyr (>= 0.5.0), ggplot2 (>= 2.2.0), magrittr
(>= 1.5), mixtools (>= 1.0.2), plyr (>= 1.8.1), readr (>=
0.1.0), shiny (>= 0.11.0), shinydisconnect, shinyjs (>= 0.4.0),
tibble, rlang

Suggests ggExtra (>= 0.3.0), graphics, grid (>= 3.2.2), gridExtra (>=
2.0.0), knitr (>= 1.7), rmarkdown, stats, testthat (>= 0.11.0),
utils

License MIT + file LICENSE

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

Author Dean Attali [aut, cre] (ORCID: <https://orcid.org/0000-0002-5645-3493>)

Maintainer Dean Attali <daattali@gmail.com>

Repository CRAN

Date/Publication 2026-01-14 07:50:15 UTC

1

https://github.com/daattali/ddpcr
https://daattali.com/shiny/ddpcr/
https://github.com/daattali/ddpcr/issues
https://orcid.org/0000-0002-5645-3493

2 Contents

Contents

analysis_complete . 3
analyze . 3
clusters . 4
custom_thresholds . 5
ddpcr_plate . 6
fam_positive_pnpp . 6
hex_positive_pnpp . 7
launch . 8
load_plate . 8
name . 9
new_plate . 10
next_step . 11
params . 12
plate_data . 13
plate_meta . 14
plate_types . 15
plot.custom_thresholds . 16
plot.ddpcr_plate . 17
plot.wildtype_mutant_pnpp . 20
pnpp_experiment . 22
reset . 23
sample_data . 24
save_plate . 25
set_default_params . 26
steps . 26
subset.ddpcr_plate . 27
thresholds . 28
type . 29
wells_mutant . 30
wells_negative . 31
wells_positive . 31
wells_success . 32
wells_used . 33
wells_wildtype . 34
well_info . 34
wildtype_mutant_pnpp . 35
x_threshold . 36
x_var . 37
y_threshold . 38

Index 39

analysis_complete 3

analysis_complete Is the analysis complete?

Description

Check if a ddPCR plate has been fully analyzed or if there are remaining steps.

Usage

analysis_complete(plate)

Arguments

plate A ddPCR plate

Value

TRUE if the plate’s analysis has been fully carried out; FALSE otherwise.

See Also

status
analyze

analyze Run analysis on a ddPCR plate

Description

Every ddPCR plate has a set of defined steps that are taken in order, that together constitute "ana-
lyzing" the plate. Calling the analyze function will perform all the analysis steps, which may take
several minutes. Running the analysis will classify the droplets in the plate into clusters (available
via plate_data) and will add variables to the plate metadata (available via plate_meta).

Usage

analyze(plate, restart = FALSE)

Arguments

plate A ddPCR plate

restart If TRUE, then run the analysis from the beginning; othrewise, continue from the
last step that was performed.

4 clusters

Details

This function will run an analysis to completion. If you want to run each step one at a time, use
next_step.

Value

The analyzed ddPCR plate

Note

Most analysis steps result in some progress messages being printed to the screen. You can turn
off these messages by disabling the verbose option with the command options(ddpcr.verbose =
FALSE).

See Also

next_step
plot.ddpcr_plate
new_plate
steps
plate_data
plate_meta

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
plate <- analyze(plate)

End(Not run)

clusters Potential droplet clusters for a plate type

Description

Each ddPCR plate type has a specific set of potential clusters the droplets can be assigned to.

Usage

clusters(plate)

Arguments

plate a ddPCR plate.

Details

See the README for more information on plate types.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

custom_thresholds 5

Value

A character vector with the names of the clusters supported by the plate type.

Examples

Not run:
dir <- sample_data_dir()
new_plate(dir) %>% clusters
new_plate(dir, plate_types$fam_positive_pnpp) %>% clusters

End(Not run)

custom_thresholds Plate type: custom thresholds

Description

The custom_thresholds plate type is used when you want to gate ddPCR droplet data into four
quadrants according to HEX and FAM values that you manually set. All wells in the plate will use
the same threshold values.

Details

Plates with this type have only three analysis steps: INITIALIZE, REMOVE_OUTLIERS, and CLASSIFY
(according to the custom thresholds).

Plates with this type have the following droplet clusters: UNDEFINED, OUTLIER, EMPTY (bottom-left
quadrant), X_POSITIVE (bottom-right quadrant), Y_POSITIVE (top-left quadrant), BOTH_POSITIVE
(top-right quadrant).

See the README for more information on plate types.

See Also

plate_types
x_threshold
y_threshold
thresholds
analyze
remove_outliers
classify_thresholds

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
type(plate)
plate %>% analyze %>% plot

End(Not run)

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

6 fam_positive_pnpp

ddpcr_plate Plate type: ddPCR plate

Description

The default plate type that all other plates inherit from. If you initialize a ddPCR plate without
specifying a plate type, ddpcr_plate will be the plate’s type.

Details

Plates with this type have the following analysis steps: INITIALIZE, REMOVE_FAILURES, REMOVE_OUTLIERS,
REMOVE_EMPTY.

Plates with this type have the following droplet clusters: UNDEFINED, FAILED, OUTLIER, EMPTY.

See the README for more information on plate types.

See Also

plate_types
remove_failures
remove_outliers
remove_empty

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$ddpcr_plate)
type(plate)
plate %>% analyze %>% plot

End(Not run)

fam_positive_pnpp Plate type: FAM-positive PNPP

Description

A ddPCR plate of type fam_positive_pnpp, which can also be expressed as (FAM+)/(FAM+HEX+),
is a subtype of both pnpp_experiment and wildtype_mutant_pnpp. Use this plate type if your
data has three main clusters of droplets: double-negative (empty droplets), FAM+HEX+ (wildtype
droplets) and FAM+HEX- (mutant droplets).

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

hex_positive_pnpp 7

Details

Plates with this type have the following analysis steps: INITIALIZE, REMOVE_FAILURES, REMOVE_OUTLIERS,
REMOVE_EMPTY, CLASSIFY, RECLASSIFY.

Plates with this type have the following droplet clusters: UNDEFINED, FAILED, OUTLIER, EMPTY
(double-negative), RAIN (not empty but not wildtype nor negative), POSITIVE (wildtype), NEGATIVE
(mutant).

See the README for more information on plate types.

See Also

plate_types
wildtype_mutant_pnpp
hex_positive_pnpp
analyze
remove_failures
remove_outliers
remove_empty
classify_droplets
reclassify_droplets

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$fam_positive_pnpp)
type(plate)
plate %>% analyze %>% plot

End(Not run)

hex_positive_pnpp Plate type: HEX-positive PNPP

Description

A ddPCR plate of type hex_positive_pnpp, which can also be expressed as (HEX+)/(FAM+HEX+),
is a subtype of both pnpp_experiment and wildtype_mutant_pnpp. Use this plate type if your
data has three main clusters of droplets: double-negative (empty droplets), FAM+HEX+ (wildtype
droplets) and HEX+FAM- (mutant droplets).

Details

Plates with this type have the following analysis steps: INITIALIZE, REMOVE_FAILURES, REMOVE_OUTLIERS,
REMOVE_EMPTY, CLASSIFY, RECLASSIFY.

Plates with this type have the following droplet clusters: UNDEFINED, FAILED, OUTLIER, EMPTY
(double-negative), RAIN (not empty but not wildtype nor negative), POSITIVE (wildtype), NEGATIVE
(mutant).

See the README for more information on plate types.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types
https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

8 load_plate

See Also

plate_types
wildtype_mutant_pnpp
fam_positive_pnpp
analyze
remove_failures
remove_outliers
remove_empty
classify_droplets
reclassify_droplets

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$hex_positive_pnpp)
type(plate)
plate %>% analyze %>% plot

End(Not run)

launch Run the interactive analysis tool (Shiny app) in a web browser

Description

In addition to the functions provided in this package, the ddpcr package also provides an interactive
tool that can be used to analyze ddPCR data more easily. The tool will be launched in a web browser.

Usage

launch()

load_plate Load a previously saved ddPCR plate

Description

Reloads a plate that has been saved with save_plate.

Usage

load_plate(file)

Arguments

file Name of the file where the plate was saved.

name 9

Value

The plate that was saved in the given file.

See Also

save_plate

Examples

plate <- new_plate(sample_data_dir())
save_plate(plate, "myplate")
plate2 <- load_plate("myplate")
plate3 <- load_plate("myplate.rds")
identical(plate, plate2)
identical(plate, plate3)
unlink("myplate.rds")

name Plate name

Description

Get or set the name of a dataset.

Usage

name(plate)

name(plate) <- value

Arguments

plate A ddpcrPlate

value New name

Value

Plate name

Examples

Not run:
plate <- new_plate(sample_data_dir())
name(plate)
name(plate) <- "foo"
name(plate)

End(Not run)

10 new_plate

new_plate Create a new ddPCR plate

Description

Any ddPCR analysis must start by creating a ddPCR plate object. Use this function to read ddPCR
data into R and create a plate object that can then be analyzed.

Usage

new_plate(dir, type, data_files, meta_file, name, params)

Arguments

dir The directory containing the ddPCR droplet data files, and potentially the plate
results file

type A ddPCR plate type (see plate_types)
data_files If dir is not provided, you can provide a vector of file paths to the ddPCR

droplet data files.
meta_file If dir is not provided, you can provide a file path to the ddPCR results file.
name Name of the dataset. If not provided, the name will be guessed based on the

filenames.
params List of parameters to set for the plate. Only advanced users should consider

using this feature.

Details

See the README for more information on plate types.

Value

A new ddPCR plate object with droplet data loaded that is ready to be analyzed.

Providing ddPCR data

The first step to using the ddpcr package is to get the ddPCR data into R. This package uses as input
the data files that are exported by QuantaSoft. For a dataset with 20 wells, QuantaSoft will create
20 well files (each ending with "_Amplitude.csv") and one results file. The well files are essential
for analysis since they contain the actual droplet data, and the results file is optional because the
only information used from it is the mapping from well IDs to sample names.

The easiest way to use your ddPCR data with this package is to Export the data from QuantaSoft
into some directory, and providing that directory as the dir argument. This way, this package
will automatically find all the data files as well as the results file. Alternatively, you can provide
the data files (well files) manually as a list of filenames using the data_files argument. If you
use the data_files argument instead of dir, you can also optionally provide the results file as the
meta_file argument. If no results file is provided then the wells will not be mapped to their sample
names.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

next_step 11

Plate parameters

Every plate has a set of default parameters that are used in the analysis. You can see all the parame-
ters of a plate with the params function. If you want to provide different values for some parameters
when initializing a plate, you can do that with the params argument. This is considered an advanced
feature.

For example, if you inspect the parameters of any ddPCR plate, you will see that by defalt the
random seed used by default is 8. If you want to create a new plate that uses a different random
seed, you could do so like this:

plate <- new_plate(sample_data_dir(), params = list('GENERAL' = list('RANDOM_SEED' = 10)))
plate

Most numeric parameters that are used in the algorithms of the analysis steps can be modified in
a similar fashion. This can be used to fine-tune the analysis of a plate if you require different
parameters.

See Also

plate_types
type
reset
analyze
plot.ddpcr_plate
params

Examples

Not run:
plate <- new_plate(sample_data_dir())

End(Not run)

next_step Run the next step in an analysis

Description

Every ddPCR plate has a set of defined steps that are taken in order, that together constitute "ana-
lyzing" the plate. Calling the next_step function will run the next step in the analysis, which may
take several minutes. If you want to run all the remaining steps at once, use analyze instead.

Usage

next_step(plate, n = 1)

12 params

Arguments

plate A ddPCR plate

n The number of steps to run

Value

The ddPCR plate after running the next step

See Also

plot.ddpcr_plate
analyze
steps
plate_data
plate_meta

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
plate <- next_step(plate)

End(Not run)

params Plate parameters

Description

Every ddPCR plate object has adjustable parameters associated with it. Each parameter belongs
to a category of parameters, and has a unique name. For example, there are general parameters
(category ’GENERAL’) that apply to the plate as a whole, and each analysis step has its own set of
parameters that are used for the algorithm in that step.

You can either view all parameters of a plate by not providing any arguments, view all parame-
ters in a category by providing the category, or view the value of a specific parameter by providing
both the category and the parameter name.

Usage

params(plate, category, name)

params(plate, category, name) <- value

plate_data 13

Arguments

plate A ddPCR plate

category Category of parameters

name Parameter name

value New parameter value

Details

Setting new parameter values should only be done by advanced users. Note that if you change any
parameters, you need to re-run the analysis in order for the parameter changes to take effect.

Tip: it can be easier to visually inspect the parameters by wrapping the return value in a str().

Warning: Do not directly set the GENERAL-X_VAR or GENERAL-Y_VAR parameters. Instead,
use x_var or y_var.

Value

If no category is provided, return all parameters. If a category is provided, return all parameters in
that category. If both a category and a name are provided, return the value of the specific parameter.

See Also

x_var

Examples

Not run:
plate <- new_plate(sample_data_dir())

retrieving plate parameters
str(params(plate))
str(params(plate, 'GENERAL'))
params(plate, 'GENERAL', 'RANDOM_SEED')

setting plate parameters
params(plate, 'GENERAL', 'RANDOM_SEED') <- 10
str(params(plate, 'GENERAL'))

End(Not run)

plate_data Plate data (droplets data)

14 plate_meta

Description

The main piece of information in every ddPCR plate is the droplets data, which contains the fluores-
cence intensities for every single droplet in every well. After a ddPCR plate gets analyzed, this data
also includes the assigned cluster for each droplet. The plate data may be useful programatically,
but it’s not very useful to a human, so if you want to visualize the plate data you should instead plot
it using plot.ddpcr_plate.

Usage

plate_data(plate)

Arguments

plate A ddPCR plate

Value

A dataframe containing all the droplets in the plate, along with the assigned cluster of each droplet.

See Also

plate_meta
plot.ddpcr_plate

Examples

Not run:
plate <- new_plate(sample_data_dir())
plate_data(plate)

End(Not run)

plate_meta Plate metadata

Description

The metadata is a collection of variables that describe each well in the plate. The metadata of
an unanalyzed plate only contains basic information about each well, such as the sample name,
whether the well was used, and the number of droplets in the well. Analyzing a plate adds many
more variables to the metadata, such as the number of empty droplets, the number of outliers, the
template concentration, and more.

Usage

plate_meta(plate, only_used = FALSE)

plate_types 15

Arguments

plate A ddPCR plate

only_used If TRUE, only return metadata for wells that are used in this plate (wells that have
any data)

Value

A dataframe containing the plate metadata

See Also

plate_data plot.ddpcr_plate

Examples

Not run:
plate <- new_plate(sample_data_dir())
plate %>% plate_meta(only_used = TRUE)
plate %>% analyze %>% plate_meta(only_used = TRUE)

End(Not run)

plate_types Supported plate types

Description

Each ddPCR plate has a plate type which determines what type of analysis to run on the data.
plate_types is a list containing the plate types that are supported. If no plate type is specified, the
default assumed type is ddpcr_plate.

The most useful built-in plate types are: fam_positive_pnpp, hex_positive_pnpp, custom_thresholds.

For full details on the differences between plate types or to learn how to add a new plate type,
see the package README.

See Also

new_plate
fam_positive_pnpp
hex_positive_pnpp
custom_thresholds
pnpp_experiment
wildtype_mutant_pnpp
ddpcr_plate
type

https://github.com/daattali/ddpcr

16 plot.custom_thresholds

Examples

Not run:
dir <- sample_data_dir()
new_plate(dir, type = plate_types$ddpcr_plate)
new_plate(dir, type = plate_types$custom_thresholds)
new_plate(dir, type = plate_types$fam_positive_pnpp)

End(Not run)

plot.custom_thresholds

Plot a ddPCR plate of type custom thresholds

Description

Same plot as plot.ddpcr_plate but with a few extra features that are specific to plates with custom
thresholds. Take a look at plot.ddpcr_plate to see all supported parameters and more informa-
tion.

Usage

S3 method for class 'custom_thresholds'
plot(
x,
wells,
samples,
...,
show_thresholds = TRUE,
col_thresholds = "black",
show_drops_empty = TRUE,
col_drops_x_positive = "green3",
col_drops_y_positive = "blue",
col_drops_both_positive = "orange"

)

Arguments

x A ddPCR plate.

wells Only plot selected wells. Supports range notation, see subset.ddpcr_plate.

samples Only plot selected samples.

... Parameters to pass to plot.ddpcr_plate.
show_thresholds

If TRUE, show the thresholds.

col_thresholds The colour of the threshold lines.
show_drops_empty

Whether or not to show the droplets defined as empty.

plot.ddpcr_plate 17

col_drops_x_positive

The colour to use for droplets that are in the X+Y- quadrant.
col_drops_y_positive

The colour to use for droplets that are in the X-Y+ quadrant.
col_drops_both_positive

The colour to use for droplets that are in the X+Y+ quadrant.

Value

A ggplot2 plot object.

See Also

plot.ddpcr_plate
custom_thresholds

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
plate %>% set_thresholds(c(5500, 8000)) %>% analyze %>% plot

End(Not run)

plot.ddpcr_plate Plot a ddPCR plate

Description

Plot the data of a ddPCR plate. A plate can be plotted throughout any stage of the analysis, and
the most up-to-date data will be shown. For example, a plot performed after initializing a plat will
show all the raw data, but a plot performed after analyzing a plate will show information such as
empty drops and failed wells.

Usage

S3 method for class 'ddpcr_plate'
plot(
x,
wells,
samples,
superimpose = FALSE,
show_full_plate = FALSE,
show_drops = TRUE,
show_drops_empty = FALSE,
show_drops_outlier = FALSE,
show_failed_wells = TRUE,
col_drops = "black",

18 plot.ddpcr_plate

col_drops_undefined = col_drops,
col_drops_failed = col_drops,
col_drops_empty = col_drops,
col_drops_outlier = "orange",
bg_plot = "transparent",
bg_failed = "#111111",
bg_unused = "#FFFFFF",
alpha_drops = 0.2,
alpha_drops_outlier = 1,
alpha_bg_failed = 0.7,
xlab = x_var(plate),
ylab = y_var(plate),
title = NULL,
show_grid = FALSE,
show_grid_labels = FALSE,
drops_size = 1,
text_size_title = 14,
text_size_row_col = 12,
text_size_axes_labels = 12,
text_size_grid_labels = 12,
...

)

Arguments

x A ddPCR plate.

wells Only plot selected wells. Supports range notation, see subset.ddpcr_plate.

samples Only plot selected samples.

superimpose If TRUE, show all wells superimposed in one plot; otherwise, show wells in a
grid.

show_full_plate

If TRUE, show full 96-well plate; otherwise, show only plate rows and columns
that are used.

show_drops Whether or not to show the droplets. Setting to FALSE is not useful if the droplets
are the only thing shown in the plot, but it can be useful if there is other infor-
mation depicated in the plot, such as any background colours or text that may
appear in each well.

show_drops_empty

Whether or not to show the droplets defined as empty. See ’Droplet visibility
options’ below.

show_drops_outlier

Whether or not to show the droplets defined as outliers. See ’Droplet visibility
options’ below.

show_failed_wells

Whether or not to include wells that are deemed as failed ddPCR runs.

col_drops The default colour to use for any droplet.

plot.ddpcr_plate 19

col_drops_undefined

The colour to use for droplets that have not been analyzed yet. See ’Droplet
visibility options’ below.

col_drops_failed

The colour to use for droplets in failed wells. See ’Droplet visibility options’
below.

col_drops_empty

The colour to use for empty droplets. See ’Droplet visibility options’ below.
col_drops_outlier

The colour to use for outlier droplets. See ’Droplet visibility options’ below.

bg_plot The background colour for the plot.

bg_failed The background colour to use for failed wells.

bg_unused The background colour to use for unused wells.

alpha_drops The transparency of droplets.
alpha_drops_outlier

The transparency of outlier droplets. See ’Droplet visibility options’ below.
alpha_bg_failed

The transparency of the background of failed wells.

xlab The label on the X axis.

ylab The label on the Y axis.

title The title for the plot.

show_grid Whether or not to show grid lines.
show_grid_labels

Whether or not to show numeric labels for the grid lines along the axes.

drops_size Size of droplets.
text_size_title

Text size of the title.
text_size_row_col

Text size of the row and column labels.
text_size_axes_labels

Text size of the X/Y axis labels.
text_size_grid_labels

Text size of the numeric grid line labels.

... Ignored.

Value

A ggplot2 plot object.

Droplet visibility options

To make it easier to support any plate type with any types of droplet clusters, there are three cate-
gories of special parameters that can always be used:

show_drops_* Whether or not to show a specific group of droplets.

20 plot.wildtype_mutant_pnpp

col_drops_* What colour to use for a specific group of droplets.

alpha_drops_* What transparency to use for a specific group of droplets.

The * in the parameter name can be replaced by the name of any droplet cluster. Use the clusters
function to find out what clusters the droplets in a plate can be assigned to.

For example, the default clusters that exist in a plain ddpcr_plate are "UNDEFINED", "FAILED",
"OUTLIER", and "EMPTY". This means that if you want to hide the empty drops and make the
transparency of drops in failed wells 0.5, you could add the two parameters show_drops_empty =
FALSE and alpha_drops_failed = 0.5. Note that letter case is not important. If another plate type
defines a new clsuter of type "MUTANT" and you want to show these drops in red, you can add the
parameter col_drops_mutant = "red".

Note that some of the more common combinations of these parameters are defined by default (for
example, col_drops_failed is defined in the list of parameters), but these three parameter cate-
gories will work for any cluster type.

Extending ddpcr_plate

If you create your own plate type, this default plot function might be enough if there is no extra
information you want to display in a plot. If you do need to provide a more customized plot function,
it can be a good idea to use the output from this plot function as a basis and only add the code that
is necessary to append to the plot. See plot.custom_thresholds as an example of how to extend
this plot function.

Examples

Not run:
plate <- new_plate(sample_data_dir())
plot(plate)
plate <- plate %>% analyze
plot(plate)
plot(plate, "A01:C05", show_drops_empty = TRUE, col_drops_empty = "red")

End(Not run)

plot.wildtype_mutant_pnpp

Plot a ddPCR plate of type wildtype/mutant PNPP

Description

Same plot as plot.pnpp_experiment but with a few extra features that are specific to wild-
type/mutant PNPP plates. Take a look at plot.pnpp_experiment to see all supported parameters
and more information.

plot.wildtype_mutant_pnpp 21

Usage

S3 method for class 'wildtype_mutant_pnpp'
plot(
x,
wells,
samples,
...,
col_drops_mutant = "purple3",
col_drops_wildtype = "green3",
col_drops_rain = "black",
show_mutant_freq = TRUE,
text_size_mutant_freq = 4,
alpha_drops_low_mutant_freq = 0.5,
show_low_high_mut_freq = TRUE,
bg_mutant = "purple3",
bg_wildtype = "green3",
alpha_bg_low_high_mut_freq = 0.1

)

Arguments

x A ddPCR plate.

wells Only plot selected wells. Supports range notation, see subset.ddpcr_plate.

samples Only plot selected samples.

... Parameters to pass to plot.pnpp_experiment.
col_drops_mutant

The colour to use for mutant droplets.
col_drops_wildtype

The colour to use for wildtype droplets.

col_drops_rain The colour to use for rain droplets.
show_mutant_freq

If TRUE, show the mutant frequency as a percentage on each well.
text_size_mutant_freq

Text size of the printed mutant frequencies.
alpha_drops_low_mutant_freq

Transparency of mutant droplets in wells with mostly wildtype droplets. In wells
where there are very few mutant droplets, it might be useful to make them more
visible by increasing their transparency.

show_low_high_mut_freq

Differentiate between wells with a high vs low mutant frequency by having a
different background colour to the well.

bg_mutant The background colour for wells that have a significant mutant cluster.

bg_wildtype The background colour for wells that have mostly wildtype drops.
alpha_bg_low_high_mut_freq

The transparency value for bg_mutant and bg_wildtype.

22 pnpp_experiment

Value

A ggplot2 plot object.

See Also

plot.ddpcr_plate
plot.pnpp_experiment
wildtype_mutant_pnpp

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$fam_positive_pnpp) %>% analyze
wells_wildtype(plate)
plot(plate)
plate <- plate %>% analyze
plot(plate)
plot(plate, "A01:C05", col_drops_rain = "blue")

End(Not run)

pnpp_experiment Plate type: PNPP experiment

Description

PNPP stands for "Positive-Negative;Positive-Positive", which is a reflection of the clusters of non-
empty droplets in the wells. Use this plate type when your ddPCR data has three main clusters:
double-negative (FAM-HEX-; empty droplets), double-positive (FAM+HEX+; represent the "PP"
in PNPP), and singly-positive (either FAM+HEX- or HEX+FAM-; represent the "NP" in PNPP).

Details

Every pnpp_experiment plate must define which dimension is its positive dimension. The posi-
tive dimension is defined as the dimension that corresponds to the dye that has a high fluoresence
intensity in all non-empty droplets. The other dimension is defined as the variable dimension. For
example, assuming the HEX dye is plotted along the X axis and the FAM dye is along the Y axis, a
FAM+/FAM+HEX+ plate will have "Y" as its positive dimension because both non-empty clusters
have FAM+ droplets. Similarly, a HEX+/FAM+HEX+ plate will have "X" as its positive dimension.

The positive dimension must be set in order to use a pnpp_experiment. It is not recommended
to use this type directly; instead you should use one of the subtypes (fam_positive_pnpp or
hex_positive_pnpp). If you do use this type directly, you must set the positive dimension with
positive_dim.

Plates with this type have the following analysis steps: INITIALIZE, REMOVE_FAILURES, REMOVE_OUTLIERS,
REMOVE_EMPTY, CLASSIFY, RECLASSIFY.

Plates with this type have the following droplet clusters: UNDEFINED, FAILED, OUTLIER, EMPTY
(double-negative), RAIN, POSITIVE, NEGATIVE.

See the README for more information on plate types.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

reset 23

See Also

plate_types
fam_positive_pnpp
hex_positive_pnpp
wildtype_mutant_pnpp
positive_dim
wells_positive
wells_negative
analyze
remove_failures
remove_outliers
remove_empty
classify_droplets
reclassify_droplets

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$pnpp_experiment)
type(plate)

End(Not run)

reset Reset a plate

Description

Reset a ddPCR plate object back to its original state. After resetting a plate, all the analysis progress
will be lost, but the original droplet data and plate metadata will be kept. Two common reasons to
reset a plate are either to restart the analysis, or to re-analyze the plate as a different plate type.

Usage

reset(plate, type, params, keep_type = FALSE, keep_params = FALSE)

Arguments

plate A ddPCR plate

type A ddPCR plate type (see plate_types)

params List of parameters to set for the plate. Only advanced users should consider
using this feature. See new_plate for usage.

keep_type If TRUE then use keep the same plate type as plate

keep_params If TRUE then keep the same plate parameters of plate

24 sample_data

Value

A new unanalyzed ddPCR plate

See Also

plate_types
new_plate

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
plate <- reset(plate, type=plate_types$fam_positive_pnpp)

End(Not run)

sample_data Get sample data

Description

These functions return sample data files or folders and can be used to load ddPCR plates with sam-
ple data. They are used primarily in the documentation examples, but you can also use them for
learning purposes. There are two sample datasetes: a small dataset and a large dataset. The small
dataset contains the full raw data, but the large dataset only includes the processed data because the
raw data would be too large.

sample_data_dir: get the directory of the small or large sample dataset
sample_data_file: get path to one of the data files in the small sample dataset
sample_results_file: get path to the results file of the small sample dataset
sample_plate: get the ddpcr plate object containing the data of the small or large dataset

Usage

sample_data_dir()

sample_data_file()

sample_results_file()

sample_plate(size = c("small", "large"))

Arguments

size The dataset to retrieve, either "small" or "large"

save_plate 25

Examples

plate1 <- new_plate(dir = sample_data_dir())
plate2 <- new_plate(data_files = sample_data_file(), meta_file = sample_results_file())
plate3 <- sample_plate()

save_plate Save a ddPCR plate

Description

Saves a plate to a file, including all its data, parameters, and current analysis state. The file can be
read back later using load_plate. The file is not human-readable - if you want to save the droplets
data or the metadata of a plate, then first retrieve the data using plate_data or plate_meta and
save it with write.csv.

Usage

save_plate(plate, file)

Arguments

plate Plate object to save.

file Name of the file where the plate will be saved.

Value

The given plate, unchanged.

See Also

load_plate

Examples

plate <- new_plate(sample_data_dir())
save_plate(plate, "myplate")
unlink("myplate.rds")

26 steps

set_default_params Reset plate parameters to their defaults

Description

Use this function to reset a ddPCR plate’s parameters back to their default values.

Usage

set_default_params(plate)

Arguments

plate A ddPCR plate.

Value

The plate with the parameters set to the plate type’s default values.

See Also

params

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
x_var(plate) <- "VIC"
plate <- set_default_params(plate)

End(Not run)

steps Analysis steps of a ddPCR plate

Description

Every ddPCR plate type has an ordered set of steps that are run to analyze the data. You can run all
the steps with analyze or run the analysis step by step with next_step. The order of the steps in
the list is the order in which they are run on the dataset.

Usage

steps(plate)

subset.ddpcr_plate 27

Arguments

plate a ddPCR plate.

Value

A named character vector, where every name is the human-readable name of an analysis step, and
every value is the name of the function used to perform the step.

See Also

analyze
next_step

Examples

Not run:
dir <- sample_data_dir()
new_plate(dir) %>% steps
new_plate(dir, plate_types$fam_positive_pnpp) %>% steps

End(Not run)

subset.ddpcr_plate Subsetting a ddPCR plate

Description

Select specific wells or samples from a ddPCR plate.

Usage

S3 method for class 'ddpcr_plate'
subset(x, wells, samples, targets_ch1, targets_ch2, ...)

Arguments

x The ddPCR plate to subset from.

wells Vector or range notation of wells to select (see Range Notation section for more
information).

samples Vector of sample names to select.

targets_ch1 Vector of target names in channel 1 to select.

targets_ch2 Vector of target names in channel 2 to select.

... Ignored

28 thresholds

Details

Keeps only data from the selected wells. If sample names are provided instead of well IDs, then
any well corresponding to any of the sample names will be kept. Either well IDs or sample names
must be provided, but not both.

Value

Plate with data only from the specified wells/samples.

Range notation

The most basic way to select wells is to provide a vector of wells such as c("B03", "C12"). When
selecting wells, a special range notation is supported to make it easier to select many wells: use
a colon (:) to specify a range of wells, and use a comma (,) to add another well or range. When
specifying a range, all wells in the rectangular area between the two wells are selected. For exam-
ple, B04:D06 is equivalent to B04, B05, A05, C04, C05, C06, D04, D05, D06. You can combine
multiple ranges in one selection; see the Examples section below. Note that this notation is only
supported for the wells parameter, but not for the samples parameter.

Examples

plate <- new_plate(sample_data_dir())
plate %>% wells_used
plate %>% subset("C01") %>% wells_used
plate %>% subset(c("C01", "F05")) %>% wells_used
plate %>% subset("C01, F05") %>% wells_used
plate %>% subset("C01:F05") %>% wells_used
plate %>% subset("C01:F05, A01") %>% wells_used
plate %>% subset("A01:C03") %>% wells_used
plate %>% subset("A01:C05") %>% wells_used
plate %>% subset("A01, A05:F05") %>% wells_used
plate %>% subset("A01, A05:C05, F05") %>% wells_used
plate %>% subset("A01:A05, C01:C05, F05") %>% wells_used
plate %>% subset(samples = "Dean") %>% wells_used
plate %>% subset(samples = c("Dean", "Mike")) %>% wells_used

thresholds Get/set the thresholds

Description

For ddPCR plates of type custom_thresholds, get or set the thresholds that divide the four droplet
quadrants.

type 29

Usage

thresholds(plate)

thresholds(plate) <- value

set_thresholds(plate, value)

Arguments

plate A ddPCR plate.

value The new thresholds as a 2-element numeric vector

Value

The current thresholds

See Also

custom_thresholds
x_threshold
y_threshold

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
thresholds(plate)
thresholds(plate) <- c(5500, 8000)
set_thresholds(plate, c(5500, 8000))

End(Not run)

type Plate type

Description

Get the type of a ddPCR plate. See the README for more information on plate types.

Usage

type(plate, all = FALSE)

Arguments

plate A ddPCR plate

all If FALSE, show only the most specific plate type; otherwise, show all inherited
(implicit) types as well.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

30 wells_mutant

Value

A character vector with the plate type(s).

See Also

plate_types

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$fam_positive_pnpp)
type(plate)
type(plate, TRUE)

End(Not run)

wells_mutant Get mutant wells

Description

After a ddPCR plate of type wildtype_mutant_pnpp has been analyzed, get the wells that were
deemed as mutant.

Usage

wells_mutant(plate)

Arguments

plate A ddPCR plate.

Value

Character vector with well IDs of mutant wells

See Also

wildtype_mutant_pnpp
wells_wildtype

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$fam_positive_pnpp) %>% analyze
wells_mutant(plate)

End(Not run)

wells_negative 31

wells_negative Get negative wells

Description

After a ddPCR plate of type pnpp_experiment has been analyzed, get the wells that were not
deemed as having mostly positive droplets.

Usage

wells_negative(plate)

Arguments

plate A ddPCR plate.

Value

Character vector with well IDs of negative wells

See Also

pnpp_experiment
wells_positive

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$pnpp_experiment) %>% analyze
wells_negative(plate)

End(Not run)

wells_positive Get positive wells

Description

After a ddPCR plate of type pnpp_experiment has been analyzed, get the wells that were deemed
as having mostly positive droplets.

Usage

wells_positive(plate)

32 wells_success

Arguments

plate A ddPCR plate.

Value

Character vector with well IDs of positive wells

See Also

pnpp_experiment
wells_negative

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$pnpp_experiment) %>% analyze
wells_positive(plate)

End(Not run)

wells_success Get successful/failed wells

Description

Get a list of wells that had successful or failed ddPCR runs. One of the analysis steps for ddPCR
plates includes identifying failed wells, which are wells where the ddPCR run was not successful
and did not produce useful droplet data.

Usage

wells_success(plate)

wells_failed(plate)

Arguments

plate A ddPCR plate

Value

List of wells that had a successful/failed ddPCR run.

See Also

remove_failures

wells_used 33

Examples

Not run:
dir <- sample_data_dir()
plate <- new_plate(dir) %>% analyze
plate %>% wells_success
plate %>% wells_failed

End(Not run)

wells_used Get wells used in a ddPCR plate

Description

Get a list of the wells that have any data in a ddPCR plate.

Usage

wells_used(plate)

Arguments

plate A ddPCR plate

Value

List of wells that have any data in the given plate.

See Also

subset.ddpcr_plate

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
wells_used(plate)
plate <- subset(plate, "A01:C05")
wells_used(plate)

End(Not run)

34 well_info

wells_wildtype Get wildtype wells

Description

After a ddPCR plate of type wildtype_mutant_pnpp has been analyzed, get the wells that were
deemed as wildtype.

Usage

wells_wildtype(plate)

Arguments

plate A ddPCR plate.

Value

Character vector with well IDs of wildtype wells

See Also

wildtype_mutant_pnpp
wells_mutant

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$fam_positive_pnpp) %>% analyze
wells_wildtype(plate)

End(Not run)

well_info Get metadata info of a well

Description

Each ddPCR plate has associated metadata that stores infromation for every well. Use this function
to retrieve any metadata information for a single well or for a list of wells.

Usage

well_info(plate, well_ids, var)

wildtype_mutant_pnpp 35

Arguments

plate A ddPCR plate

well_ids A character vecotr of well IDs denoting the wells to get information for

var The metadata variable to get (to see a list of all possible metadata variables, use
names(plate_meta(plate)))

Value

A character vector with the wanted metadata variable value for each well.

See Also

plate_meta

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
well_info(plate, "A01", "drops")

End(Not run)

wildtype_mutant_pnpp Plate type: wildtype/mutant PNPP

Description

A plate of type wildtype_mutant_pnpp is a subtype of pnpp_experiment that assumes the double-
positive cluster denotes wildtype and the other non-empty cluster denotes mutant droplets. There are
two plate types that are subtypes of wildtype_mutant_pnpp: fam_positive_pnpp and hex_positive_pnpp.
It is not recommended to use this type directly; instead you should use one of the subtypes.

Details

Plates with this type have the following analysis steps: INITIALIZE, REMOVE_FAILURES, REMOVE_OUTLIERS,
REMOVE_EMPTY, CLASSIFY, RECLASSIFY.

Plates with this type have the following droplet clusters: UNDEFINED, FAILED, OUTLIER, EMPTY
(double-negative), RAIN (not empty but not wildtype nor negative), POSITIVE (wildtype), NEGATIVE
(mutant).

See the README for more information on plate types.

https://github.com/daattali/ddpcr#advanced-topic-3-creating-new-plate-types

36 x_threshold

See Also

plate_types
fam_positive_pnpp
hex_positive_pnpp
pnpp_experiment
analyze
remove_failures
remove_outliers
remove_empty
classify_droplets
reclassify_droplets

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$wildtype_mutant_pnpp)
type(plate)

End(Not run)

x_threshold Get/set the X threshold

Description

For ddPCR plates of type custom_thresholds, get or set the threshold along the X axis that divides
the droplet quadrants.

Usage

x_threshold(plate)

x_threshold(plate) <- value

Arguments

plate A ddPCR plate.

value The new X threshold

Value

The current X threshold

See Also

custom_thresholds
y_threshold
thresholds

x_var 37

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
x_threshold(plate)
x_threshold(plate) <- 5500
plot(plate)

End(Not run)

x_var Get/set the X/Y variable (dye name)

Description

By default, the dye visualized along the X axis is HEX and the dye visualized along the Y axis is
FAM. You can use these functions to get or set these values if your plate uses different dyes.

Usage

x_var(plate)

y_var(plate)

x_var(plate) <- value

y_var(plate) <- value

Arguments

plate A ddPCR plate

value New dye name

Details

The X/Y variables are simply parameters in the plate, which can also be accessed or changed us-
ing params. You should use these functions to change the X/Y variable rather than changing the
parameters directly.

Value

Dye name

See Also

params

38 y_threshold

Examples

Not run:
plate <- new_plate(sample_data_dir())
x_var(plate)
x_var(plate) <- "VIC"
x_var(plate)

End(Not run)

y_threshold Get/set the Y threshold

Description

For ddPCR plates of type custom_thresholds, get or set the threshold along the Y axis that divides
the droplet quadrants.

Usage

y_threshold(plate)

y_threshold(plate) <- value

Arguments

plate A ddPCR plate.

value The new Y threshold

Value

The current Y threshold

See Also

custom_thresholds
x_threshold
thresholds

Examples

Not run:
plate <- new_plate(sample_data_dir(), type = plate_types$custom_thresholds)
y_threshold(plate)
y_threshold(plate) <- 8000
plot(plate)

End(Not run)

Index

∗ datasets
plate_types, 15

analysis_complete, 3
analyze, 3, 3, 5, 7, 8, 11, 12, 23, 26, 27, 36

classify_droplets, 7, 8, 23, 36
classify_thresholds, 5
clusters, 4, 20
custom_thresholds, 5, 15, 17, 29, 36, 38

ddpcr_plate, 6, 15

fam_positive_pnpp, 6, 8, 15, 22, 23, 35, 36

hex_positive_pnpp, 7, 7, 15, 22, 23, 35, 36

launch, 8
load_plate, 8, 25

name, 9
name<- (name), 9
new_plate, 4, 10, 15, 23, 24
next_step, 4, 11, 26, 27

params, 11, 12, 26, 37
params<- (params), 12
plate_data, 3, 4, 12, 13, 15, 25
plate_meta, 3, 4, 12, 14, 14, 25, 35
plate_types, 5–8, 10, 11, 15, 23, 24, 30, 36
plot.custom_thresholds, 16, 20
plot.ddpcr_plate, 4, 11, 12, 14–17, 17, 22
plot.pnpp_experiment, 20–22
plot.wildtype_mutant_pnpp, 20
pnpp_experiment, 6, 7, 15, 22, 31, 32, 35, 36
positive_dim, 22, 23

reclassify_droplets, 7, 8, 23, 36
remove_empty, 6–8, 23, 36
remove_failures, 6–8, 23, 32, 36
remove_outliers, 5–8, 23, 36

reset, 11, 23

sample_data, 24
sample_data_dir (sample_data), 24
sample_data_file (sample_data), 24
sample_plate (sample_data), 24
sample_results_file (sample_data), 24
save_plate, 8, 9, 25
set_default_params, 26
set_thresholds (thresholds), 28
status, 3
steps, 4, 12, 26
subset.ddpcr_plate, 16, 18, 21, 27, 33

thresholds, 5, 28, 36, 38
thresholds<- (thresholds), 28
type, 11, 15, 29

well_info, 34
wells_failed (wells_success), 32
wells_mutant, 30, 34
wells_negative, 23, 31, 32
wells_positive, 23, 31, 31
wells_success, 32
wells_used, 33
wells_wildtype, 30, 34
wildtype_mutant_pnpp, 6–8, 15, 22, 23, 30,

34, 35
write.csv, 25

x_threshold, 5, 29, 36, 38
x_threshold<- (x_threshold), 36
x_var, 13, 37
x_var<- (x_var), 37

y_threshold, 5, 29, 36, 38
y_threshold<- (y_threshold), 38
y_var, 13
y_var (x_var), 37
y_var<- (x_var), 37

39

	analysis_complete
	analyze
	clusters
	custom_thresholds
	ddpcr_plate
	fam_positive_pnpp
	hex_positive_pnpp
	launch
	load_plate
	name
	new_plate
	next_step
	params
	plate_data
	plate_meta
	plate_types
	plot.custom_thresholds
	plot.ddpcr_plate
	plot.wildtype_mutant_pnpp
	pnpp_experiment
	reset
	sample_data
	save_plate
	set_default_params
	steps
	subset.ddpcr_plate
	thresholds
	type
	wells_mutant
	wells_negative
	wells_positive
	wells_success
	wells_used
	wells_wildtype
	well_info
	wildtype_mutant_pnpp
	x_threshold
	x_var
	y_threshold
	Index

