
1 Overview

In this work, we describe the basic usage of the hierarchical formulation of the ctsem software for
continuous-time dynamic modelling in R (R Core Team, 2014). This formulation was described in
detail in Driver and Voelkle (2018a), though since then the scope has been expanded to include fre-
quentist (i.e. not Bayesian) maximum likelihood estimation, nonlinear models (such as parameters
that vary over time), and optimization with optional importance sampling. The latter enhance-
ment means that the approach described herein largely supersedes the initial mixed effects approach
based upon OpenMx (Neale et al., 2016), as estimation options now include maximum likelihood,
maximum a posteriori, and fully Bayesian with the Stan software’s (Carpenter et al., 2017; Stan
Development Team, n.d.) Hamiltonian Monte Carlo sampler. The major use case for the OpenMx
based wide formulation is many subjects, few time points, and most or all time intervals consistent
across subjects. This older structural equation formulation is discussed in detail in Driver, Oud,
and Voelkle (2017). Although some of the R commands and functionality are now different in the
newer format, the general concepts discussed in the original work are still relevant background.
Additional material can be found at https://github.com/cdriveraus/ctsem (very quick start
guide on main page), https://github.com/cdriveraus/ctsem/discussions (question and an-
swer), and https://cdriver.netlify.app/ (tutorials and Bayesian quick start). Most recently,
an extensive tutorial is developed at https://osf.io/preprints/psyarxiv/4q9ex_v1.

ctsem allows for specification and fitting of a range of continuous and discrete time models to study
dynamics and processes within a subject, as well as individual differences in these dynamics. The
models may include multiple indicators (dynamic factor analysis), multiple, interrelated, poten-
tially higher order processes, and both time dependent and time independent covariates. Classic
longitudinal models like latent growth curve and latent change score models can be formulated as
special cases. This approach offers some advantages over what could be considered more typical
dynamic modelling approaches, such as vector autoregressive models or latent change score models.
Two important advantages relate to the handling of time, and the treatment of individual differ-
ences. Time information is explicitly incorporated into the model, such that predictions from one
measurement to another relate exactly to the amount of time that has passed, rather than simply
the number of measurements, as is typical in discrete-time models. When the time interval between
all measurements are equal, there is an exact relationship between the discrete and continuous time
form (in many cases), but when they differ, the continuous-time form is typically more appropri-
ate. For more on continuous-time models, see Oud and Jansen (2000); Singer (1993); Voelkle and
Oud (2013). With respect to individual differences, the hierarchical Bayesian approach allows for
individual variation across all model parameters, while making full use of the data from all subjects
to enhance estimation. This has the result that reasonable individual specific parameter estimates
may be obtained with far fewer time points than would be required by single-subject time-series
type modelling approaches. For more on hierarchical Bayesian models, see Gelman, Carlin, Stern,
and Rubin (2014).

This document is structured such that we briefly describe the continuous time dynamic model gov-
erning within subject dynamics, and the hierarchical model governing the distribution of subject
level parameters. A more conceptual overview along with technical details is given in Driver and
Voelkle (2018a). Following, we walk through installing the ctsem software, setting up a data struc-
ture, specifying and fitting the model, followed by summary and plotting functions. Some details
on additional complexity are then provided, including an example model with a more complex
dynamic structure, a discussion of the various options for incorporating stationarity assumptions
into the model, and a walk-through of the various transformations involved in the model.

1

https://github.com/cdriveraus/ctsem
https://github.com/cdriveraus/ctsem/discussions
https://cdriver.netlify.app/
https://osf.io/preprints/psyarxiv/4q9ex_v1

1.1 Subject level latent dynamic model

This section describes the subject level model characterising the system dynamics and measurement
properties. Although we do not describe it explicitly, the corresponding discrete time autoregressive
/ moving average models can be specified and use the same set of parameter matrices we describe.
The subject level dynamics are described by the following stochastic differential equation:

dη(t) =

(

Aη(t) + b + Mχ(t)

)

dt + GdW(t) (1)

Vector η(t) ∈ R
v represents the state of the latent processes at time t. The matrix A ∈ R

v×v

(DRIFT) represents the drift matrix, with auto effects on the diagonal and cross effects on the
off-diagonals characterizing the temporal dynamics of the processes.

The continuous time intercept vector b ∈ R
v (CINT), in combination with A, determines the

long-term level at which the processes fluctuate around.

Time dependent predictors χ(t) represent inputs to the system that vary over time and are inde-
pendent of fluctuations in the system. Equation 1 shows a generalized form for time dependent
predictors, that could be treated a variety of ways dependent on the assumed time course of time
dependent predictors and their effects. We use a simple impulse form shown in Equation 2, in which
the predictors are treated as impacting the processes only at the instant of an observation occasion
u. When necessary, the evolution over time can be modeled by extending the state matrices, for
examples and discussion see Driver and Voelkle (2018b).

χ(t) =
∑

u∈U

xuδ(t − tu) (2)

Here, time dependent predictors xu ∈ R
l (tdpreds) are observed at measurement occasions u ∈ U.

The Dirac delta function δ(t − tu) is a generalized function that is ∞ at 0 and 0 elsewhere, yet has
an integral of 1 (when 0 is in the range of integration). It is useful to model an impulse to a system,
and here is scaled by the vector of time dependent predictors xu. The effect of these impulses on
processes η(t) is then M ∈ R

v×l (TDPREDEFFECT).

W(t) ∈ R
v (DIFFUSION) represents independent Wiener processes, with a Wiener process being

a random-walk in continuous time. dW(t) is meaningful in the context of stochastic differential
equations, and represents the stochastic error term, an infinitesimally small increment of the Wiener
process. Lower triangular matrix G ∈ R

v×v represents the effect of this noise on the change in
η(t). Q, where Q = GG⊤, represents the variance-covariance matrix of the diffusion process in
continuous time.

1.2 Subject level measurement model

The latent process vector η(t) has measurement model:

y(t) = Λη(t) + τ + ϵ(t) where ϵ(t) ∼ N(0c, Θ) (3)

y(t) ∈ R
c is the vector of manifest variables, Λ ∈ R

c×v (LAMBDA) represents the factor load-
ings, and τ ∈ R

c (MANIFESTMEANS) the manifest intercepts. The residual vector ϵ ∈ R
c has

covariance matrix Θ ∈ R
c×c (MANIFESTVAR).

2

1.3 Overview of hierarchical model

Parameters for each subject are first drawn from a simultaneously estimated higher level distribution
over an unconstrained space, then a set of parameter specific transformations are applied so that
a) each parameter conforms to necessary bounds and b) is subject to the desired prior. Following
this, in some cases matrix transformations are applied to generate the continuous time matrices
described. The higher level distribution has a multivariate normal prior (though priors may be
switched off as desired). We provide a brief description here, and an R code example later in this
work, but for the full details see Driver and Voelkle (2018a).

The joint-posterior distribution of the model parameters given the data is as follows:

p(Φ, µ, R, β|Y, z) ∝ p(Y|Φ)p(Φ|µ, R, β, z)p(µ, R, β) (4)

Subject specific parameters Φi are determined in the following manner:

Φi = tform

(

µ + Rhi + βzi

)

(5)

hi ∼ N(0, 1) (6)

µ ∼ N(0, 1) (7)

β ∼ N(0, 1) (8)

Φi ∈ R
s is the s length vector of parameters for the dynamic and measurement models of subject

i. µ ∈ R
s parameterizes the means of the raw population distributions of subject level parameters.

R ∈ R
s×s is the matrix square root of the raw population distribution covariance matrix, para-

meterizing the effect of subject specific deviations hi ∈ R
s on Φi. β ∈ R

s×w is the raw effect of
time independent predictors zi ∈ R

w on Φi, where w is the number of time independent predictors.
Yi contains all the data for subject i used in the subject level model – y (process related meas-
urements) and x (time dependent predictors). zi contains time independent predictors data for
subject i. tform is an operator that applies a transform to each value of the vector it is applied to.
The specific transform depends on which subject level parameter matrix the value belongs to, and
the position in that matrix.

At a number of points, we will refer to the parameters prior to the tform function as ’raw’ para-
meters. So for instance ‘raw population standard deviation’ would refer to a diagonal entry of R,
and ‘raw individual parameters for subject i’ would refer to µ + Rhi + βzi. In contrast, without
the ‘raw’ prefix, ‘population means’ would refer to tform(µ), and would typically reflect values the
user is more likely to be interested in, such as the continuous time drift parameters.

1.4 Install software and prepare data

Install ctsem software within R:

install.packages("ctsem")

library("ctsem")

Prepare data in long format, each row containing one time point of data for one subject. We need
a subject id column, named by default "id", though this can be changed in the model specification.

3

Some of the outputs are simpler to interpret if subject id is a sequence of integers from 1 to the
number of subjects, but this is not a requirement. We also need a time column "time", containing
positive numeric values for time, columns for manifest variables (the names of which must be given
in the next step using ctModel), columns for time dependent predictors (these vary over time but
have no model estimated and are assumed to impact latent processes instantly), and columns for
time independent predictors (which predict the subject level parameters, that are themselves time
invariant – thus the values for a particular time independent predictor must be the same across all
observations of a particular subject).

id time Y1 Y2 TD1 TI1 TI2 TI3

6 1 0.594 7.50 12.34 0 -0.0538 -1.36630 -0.207

7 1 0.889 6.83 12.63 1 -0.0538 -1.36630 -0.207

8 1 1.187 7.01 11.91 0 -0.0538 -1.36630 -0.207

101 2 2.482 2.33 1.50 0 NA 1.52461 -0.325

111 2 2.720 3.26 -1.16 0 NA 1.52461 -0.325

121 2 2.904 3.13 -1.34 0 NA 1.52461 -0.325

131 2 3.152 1.42 -1.28 0 NA 1.52461 -0.325

42 3 0.000 7.01 9.67 0 -0.9261 0.00812 0.201

52 3 0.326 7.02 10.09 0 -0.9261 0.00812 0.201

As will be discussed in detail later, default priors for the model are set up with an attempt to be
’weakly informative’ for typical applications in the social sciences, on data that is centered and
scaled. Because of this, we recommend grand mean centering and scaling each variable in the data,
with the exception of time dependent predictors, which should be scaled, but centered such that a
value of zero implies no effect. This exception is because time dependent predictors are modelled as
impulses to the system with no persistence through time, at all times when not observed the value is
then inherently zero. Similarly, we expect a time interval of 1.00 to reflect some ‘moderate change’
in the underlying process. If we wished to model daily hormonal fluctuations, with a number of
measurements each day, a time scale of hours, days, or weeks could be sensible – minutes or years
would likely be problematic. If the data are not adjusted according to these considerations, the
priors themselves should be adjusted, or at least their impact carefully considered – though note
also that an inappropriate scaling of time can also result in numerical difficulties, regardless of
priors.

ctstantestdat[,c('Y1','Y2','TI1','TI2','TI3')] <-

scale(ctstantestdat[,c('Y1','Y2','TI1','TI2','TI3')])

Functions to convert between wide and long formats used by ctsem are available, these are ctWide

ToLong, ctDeintervalise, ctLongToWide, ctIntervalise. For details see the relevant help in R.

1.5 Missing values

Missingness in the manifest variables is handled using the typical filtering / full information max-
imum likelihood approach. Missing values on the covariates – either time dependent or independent
– are somewhat more problematic, and will cause an error by default. Various alternative ap-
proaches are available: In certain cases it may be reasonable to replace missing values with zeros,
or to sample them as part of the model. See the ctStanFit help for more details.

4

1.6 Model specification

Specify model using ctModel(type="ct",...). "ct" specifies a continuous time model in Stan
format, "dt" specifies discrete time, while "omx" is the original ctsem behaviour and prepares an
OpenMx model Driver et al. (discussed in 2017). Other arguments to ctModel include the list
of within-subject parameter matrices, with LAMBDA, the factor loading matrix, the only one
that must be specified. All other matrices are set to the system dimensions implied by LAMBDA
(number of columns representing latent processes, rows representing manifest indicators), and in
general filled with free parameters. The CINT matrix is one exception to this, it is filled with
zero’s by default for identification purposes, and the MANIFESTVAR is another exception, where
only the diagonal is estimated freely. Such parameter matrices can be manually specified using
either numeric values when an element of the model should be fixed, a character string when it
should be estimated, or a character string containing at least one square bracket for deterministic
relations between parameter matrices and or latent states. The following code demonstrates this
by freeing the CINT matrix of latent intercepts, and instead fixing the MANIFESTMEANS matrix
of manifest intercepts. See the help for ctModel, available in R via ?ctModel, for more details.

model<-ctModel(type='ct',

latentNames=c('eta1','eta2'),

manifestNames=c('Y1','Y2'),

CINT=matrix(c('cint1','cint2 |||| TI1'),nrow=2,ncol=1),

MANIFESTMEANS=matrix(c(0,0),nrow=2,ncol=1),

TDpredNames='TD1',

TIpredNames = 'TI1',tipredDefault = FALSE,

LAMBDA=diag(2))

It is possible to simplify the specification of parameter matrices somewhat, by passing a vector of
values and or parameters to be put row-wise (distinct from the R default of column-wise) into a
matrix of the correct size. Singular values can also be used as a fill for the entire matrix. The
above model in this shorter form is specified like:

model<-ctModel(type='ct',

latentNames=c('eta1','eta2'),

manifestNames=c('Y1','Y2'),

CINT=c('cint1','cint2 |||| TI1'),

MANIFESTMEANS=0,

TDpredNames='TD1',

TIpredNames = 'TI1',tipredDefault = FALSE,

LAMBDA=c(1,0,0,1))

The code above specifies a first order bivariate latent process model, with each process measured
by a single, potentially noisy, manifest variable. A single time dependent predictor is included in
the model, as well as a single time independent predictor with effects restricted to only the second
continuous intercept. To see the between and within subject model equations, the ctModelLatex

function can be used on the model object, generating output as shown in Figure 1.

Table 1 shows the basic arguments one may consider and their link to the dynamic model para-
meters. Note that ctModel requires variance covariance matrices (DIFFUSION, T0VAR, MANI-
FESTVAR) to be specified in a matrix square root form, with standard deviations on the diagonal,
covariance related parameters on the lower off diagonal (excluding MANIFESTVAR which should

5

S
u

b
je

c
t

p
a

ra
m

e
te

r
d

is
tr

ib
u

ti
o

n
:

[
T

0
m

_
e
ta

1
i

T
0

m
_

e
ta

2
i

c
in

t1
i

c
in

t2
i

]

︸
︷
︷

︸
ϕ

(
i
)

∼
tf

o
rm

        

N

(
[

ra
w

_
T

0
m

_
e
ta

1
ra

w
_

T
0

m
_

e
ta

2
ra

w
_

c
in

t1
ra

w
_

c
in

t2

]

,

[
ra

w
P

C
o

v
_

1
_

1
ra

w
P

C
o

v
_

2
_

1
ra

w
P

C
o

v
_

3
_

1
ra

w
P

C
o

v
_

4
_

1
ra

w
P

C
o

v
_

2
_

1
ra

w
P

C
o

v
_

2
_

2
ra

w
P

C
o

v
_

3
_

2
ra

w
P

C
o

v
_

4
_

2
ra

w
P

C
o

v
_

3
_

1
ra

w
P

C
o

v
_

3
_

2
ra

w
P

C
o

v
_

3
_

3
ra

w
P

C
o

v
_

4
_

3
ra

w
P

C
o

v
_

4
_

1
ra

w
P

C
o

v
_

4
_

2
ra

w
P

C
o

v
_

4
_

3
ra

w
P

C
o

v
_

4
_

4

]
)

+

[
0 0 0

ra
w

_
c
in

t2
_

T
I1

]

︸
︷
︷

︸
β

[
T

I1
]

︸
︷
︷
︸

z

        

In
it

ia
l

la
te

n
t

st
a

te
:

[
e
ta

1
e
ta

2

]
(

t
0

)

︸
︷
︷
︸

η
(
t

0
)

∼
N

      

[
T

0
m

_
e
ta

1
T

0
m

_
e
ta

2

]

︸
︷
︷

︸

︸
︷
︷
︸

T
0

M
E

A
N

S

,
U

c
o

r
S

D
t
o

C
o

v

{
[

0
.0

0
0

0
0

1
0

0
0

.0
0

0
0

0
1

]
}

︸
︷
︷

︸
Q

∗

t
0

︸
︷
︷
︸

T
0

V
A

R

      

D
e
te

rm
in

is
ti

c
c
h

a
n

g
e
:

d

[
e
ta

1
e
ta

2

]
(

t

)

︸
︷
︷

︸
d

η
(
t

)

=

     

[
d

ri
ft

_
e
ta

1
d

ri
ft

_
e
ta

1
_

e
ta

2
d

ri
ft

_
e
ta

2
_

e
ta

1
d

ri
ft

_
e
ta

2

]

︸
︷
︷

︸
A
︸
︷
︷
︸

D
R

I
F

T

[
e
ta

1
e
ta

2

]
(

t

)

︸
︷
︷
︸

η
(
t

)

+

[
c
in

t1
c
in

t2

]

︸
︷
︷
︸

b
︸
︷
︷
︸

C
I
N

T

+

[
td

_
e
ta

1
_

T
D

1
td

_
e
ta

2
_

T
D

1

]

︸
︷
︷

︸
M
︸
︷
︷
︸

T
D

P
R

E
D

E
F

F
E

C
T

[
T

D
1
]

︸
︷
︷
︸

χ
(
t

)

     

d
t

+

R
a

n
d

o
m

c
h

a
n

g
e
:

U
c
o

r
S

D
t
o

C
h

o
l

{
[

d
iff

_
e
ta

1
0

d
iff

_
e
ta

2
_

e
ta

1
d

iff
_

e
ta

2

]
}

︸
︷
︷

︸
G
︸
︷
︷
︸

D
I
F

F
U

S
I
O

N

d

[
W

1
W

2

]

(t
)

︸
︷
︷
︸

d
W

(
t

)

O
b

se
rv

a
ti

o
n

s:

[
Y

1
Y

2

]

(t
)

︸
︷
︷
︸

Y
(
t

)

=

[
1

0
0

1

]

︸
︷
︷
︸

Λ
︸
︷
︷
︸

L
A

M
B

D
A

[
e
ta

1
e
ta

2

]

(t
)

︸
︷
︷
︸

η
(
t

)

+

[
0 0

]

︸
︷
︷
︸

τ
︸
︷
︷
︸

M
A

N
I
F

E
S

T
M

E
A

N
S

+

O
b

se
rv

a
ti

o
n

n
o

is
e
:

[
m

v
a

rY
1

0
0

m
v

a
rY

2

]

︸
︷
︷

︸
Θ
︸
︷
︷
︸

M
A

N
I
F

E
S

T
V

A
R

[
ϵ

1
ϵ

2

]

(t
)

︸
︷
︷
︸

ϵ
(
t

)

S
y

st
e
m

n
o

is
e

d
is

tr
ib

u
ti

o
n

p
e
r

ti
m

e
st

e
p

:
∆
[

W
j

∈
[1

,
2

]

]
(t

−
u

)
∼

N
(0

,
t

−
u

)
O

b
se

rv
a

ti
o

n
n

o
is

e
d

is
tr

ib
u

ti
o

n
:

[
ϵ

j
∈

[1
,
2

]

]
(t

)
∼

N
(0

,
1

)

N
o

te
:

U
c
o

r
S

D
t
o

C
h

o
l

c
o

n
v

e
rt

s
lo

w
e
r

tr
i

m
a

tr
ix

o
f

st
a

n
d

a
rd

d
e
v

ia
ti

o
n

s
a

n
d

u
n

c
o

n
st

ra
in

e
d

c
o

rr
e
la

ti
o

n
s

to
C

h
o

le
sk

y
fa

c
to

r,

U
c
o

r
S

D
t
o

C
o

v
=

tr
a

n
sp

o
se

d
c
ro

ss
p

ro
d

u
c
t

o
f

U
c
o

rS
D

to
C

h
o

l,
to

g
iv

e
c
o

v
a

ri
a

n
c
e
,

S
e
e

D
ri

v
e
r

&
V

o
e
lk

le
(2

0
1

8
)

p
1

1
.

In
d

iv
id

u
a

l
sp

e
c
ifi

c
n

o
ta

ti
o

n
(s

u
b

sc
ri

p
t

i)
o

n
ly

sh
o

w
n

fo
r

su
b

je
c
t

p
a

ra
m

e
te

r
d

is
tr

ib
u

ti
o

n
–

p
o

p
.

m
e
a

n
s

sh
o

w
n

e
ls

e
w

h
e
re

.

F
ig

u
re

1
:

O
u
tp

u
t

fr
om

ct
M

o
d
el

L
at

ex
fu

n
ct

io
n

6

Table 1: ctModel arguments

Argument Sign Default Meaning

LAMBDA Λ n.manifest × n.latent loading matrix relating latent to
manifest variables.

n.manifest c Number of manifest indicators per individual at each
measurement occasion.

n.latent v Number of latent processes.
manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR Q∗

1 free lower tri n.latent × n.latent matrix of latent process ini-
tial covariance, specified with standard deviations on di-
agonal and covariance related parameters on lower tri-
angle.

T0MEANS η1 free n.latent × 1 matrix of latent process means at first time
point, T0.

MANIFESTMEANS τ free n.manifest × 1 matrix of manifest intercepts.
MANIFESTVAR Θ free typically diagonal matrix of var / cov between manifests,

specified with standard deviations on diagonal and zeroes
elsewhere.

DRIFT A free n.latent × n.latent matrix of continuous auto and cross
effects.

CINT b 0 n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free lower triangular n.latent × n.latent matrix containing

standard deviations of latent process on diagonal, and
covariance related parameters on lower off-diagonals.

n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent pre-

dictor names.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time depend-

ent predictors to latent processes.
n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent

predictor names.
PARS free 0×0 Matrix containing additional parameters to be used,

for instance in nonlinear models.

for many casess be diagonal only), and (typically) zeroes on the upper off diagonal. While it is
possible to fix the lower off diagonals of covariance related matrices to non-zero values, in general
this is difficult to interpret because of the necessary matrix transformations, thus we recommend
either to fix to zero, or leave free.

The pars subobject of the created model object (in this case, model$pars) shows the parameter
specification, including both fixed and free parameters, whether the parameters vary across indi-
viduals, how the parameter is transformed from a standard normal distribution (thus setting both
priors and bounds), and whether that parameter is regressed on the time independent predictors.

head(model$pars,4)

matrix row col param value transform indvarying sdscale TI1_effect

1 T0MEANS 1 1 T0m_eta1 NA 10 * param TRUE 1 FALSE

2 T0MEANS 2 1 T0m_eta2 NA 10 * param TRUE 1 FALSE

3 LAMBDA 1 1 <NA> 1 <NA> FALSE NA FALSE

4 LAMBDA 1 2 <NA> 0 <NA> FALSE NA FALSE

By default, intercept related model parameters (T0MEANS, MANIFESTMEANS, CINT) are set

7

to individually varying using a correlated random effects formulation, while other parameters are
fixed across subjects. In contrast to this, when time independent predictors are included (time
invariant covariates), the default (adjustable using the tipredDefault argument to ctModel) that
they affect all free subject level parameters. One may modify the output model to further restrict,
or allow, between subject differences (set some parameters to not vary over individuals), alter
the transformation used to set the prior / bounds, or restrict which effects of time independent
predictors to estimate – see the section on adjusting model specification for details on this.

Priors are not included by default but for those who wish to use Bayesian estimation approaches,
they can be switched on during model fitting using the priors=TRUE argument. For the default of
maximum likelihood the information in this text regarding priors is obviously less relevant, however
some awareness may be useful as a) priors are always used during an initial rough estimation, and
b) although the prior probability is not relevant, some parameters (such as standard deviations)
rely on transformations to ensure they stay within a particular range.

1.7 Model fitting

Once model specification is complete, the model is fit to the data using the ctStanFit function
as shown in the following example. Various options are available for fitting, from a maximum
likelihood approach using optimization, to a fully Bayesian approach via Stan’s Hamiltonian Monte
Carlo sampler. For these examples we will use optimization, though for cases with many random
effects on non-intercept parameters, or missing time independent predictors, optimization may not
always provide the most appropriate results and should be interpreted with care.

For a classic maximum likelihood approach, optimization may be used with the argument (set by
default) priors=FALSE to disable the priors. By default, when optimization concludes, samples
are drawn from the parameter covariance matrix implied by the Hessian to allow for inference and
uncertainty plotting on all aspects of the model (e.g., parameter interactions such as the implied
regression effect for a given time interval). Improvements on this maximum a posteriori, Hessian
based sampling approach can be made by requesting importance sampling (see the optimcontro

l argument of the ?ctStanFit help, which is somewhat slower but generally still faster than full
sampling using Stan’s Hamiltonian Monte Carlo (HMC) – the caveats mentioned above still apply
however, and importance sampling may not work well with many parameters. When importance
sampling is ineffective, this will generally be indicated by errors during the sampling process and
possibly an inability to converge. Stan’s HMC is in general the most robust solution, and can be
obtained by setting optimize=FALSE and priors=TRUE. Note that if random effects are specified
when optimization is used, between subject differences are integrated over. Estimates of the subject
specific parameters can be obtained via the ctStanKalman function.

When optimize=FALSE, Stan’s Hamiltonian Monte Carlo sampler is used. Depending on the data,
model, and number of iterations requested, this can take anywhere from a few minutes to days. Im-
portant arguments when using this approach are chains and iterations which allow specification
of the number of sampling chains, and iterations per chain. Three chains is a reasonable minimum
to support convergence checking, and current experience suggests 300 iterations is often enough to
get an idea of what is going on – more is very likely necessary for robust inference, but how much
more is highly dependent on the data and model. To examine progress while sampling, the plot=

TRUE argument may be used. In some cases, extended warmup / adaptation times can be avoided
(at cost of reduced computational efficiency during the actual sampling) by reducing the maximum
treedepth using the control argument.

8

fit<-ctStanFit(datalong = ctstantestdat, ctstanmodel = model, priors=TRUE)

1.8 Summary

After fitting, the summary function may be used on the fit object, which returns details regarding
the population mean parameters, population standard deviation parameters, population correla-
tions, and the effect parameters of time independent predictors. Additionally, the summary function
outputs a range of matrices regarding correlations between subject level parameters. rawpopcor

r_means reports the posterior mean of the correlation between raw (not yet transformed from
the standard normal scale) parameters. rawpopcorr_sd reports the standard deviation of these
parameters.

summary(fit, timeinterval = 1)

In the summary output, the free population mean parameters under $popmeans are likely one of the
main points of interest. They are returned in the same form that they are input to ctModel - that is,
covariance matrix related parameters are in the form of either standard deviations or a transformed
correlation parameter. Because the latter is difficult to interpret, various parameter matrices are
also returned in the $parmatrices section of the summary. The discrete time matrices reported
here (prefixed by dt, unless a discrete time model was estimated in the first place) are by default
from a time interval of 1, but this can be changed. Asymptotic matrices – those for a time interval
of infinity – are also output in some cases, and prefixed by asym. Covariance related matrices are
reported in covariance form, except where the suffix cor is added to indicate correlations.

It is possible to represent the results for the within subject model using the Latex representation,
running ctModelLatex(fit) will show this.

The function ctStanContinuousPars can be used to return the population level parameter matrices
in matrix form. Here we return the 97.5 quantile for each of the elements in the matrices:

ctStanContinuousPars(fit,calcfunc = quantile, calcfuncargs = list(probs=.975))

1.9 Plotting

The plot function outputs a sequence of plots, all generated by specific functions. The name of
the specific function appears in a message in the R console, checking the help for each specific
function and running them separately will allow more customization of plots. Depending on model
specifications and fitting, not all plots are available. Some of the plots, such as the trace, density,
and interval, are generated by the relevant rstan function and are hopefully self explanatory. The
plots specific to the hierarchical continuous time dynamic model are as follows:

try({

ctStanDiscretePars(fit, plot=TRUE, indices = 'CR')

})

Figure 2 shows the dynamic regression coefficients (between latent states at different time points)
that are implied by the model for particular time intervals, as well as the uncertainty (default is

9

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time interval

C
oe

ffi
ci

en
t

Effect

eta2.eta1

eta1.eta2

Temporal regressions | independent shock of 1.0

Figure 2: Discrete-time cross-effect dynamics of the estimated system for a range of time
intervals, with 95% credible intervals.

95% credible interval) of these coefficients. In this case the estimates are of the cross regression
effects, obtained by sampling from all subjects data, but specific subjects, as well as specific indices
of the effects (e.g., indices = ’AR’ or indices = rbind(c(2,1))’ can be specified. The mapping of
subject id to the internal sequential integer representation can be found via fit$setup$idmap .

The relation between posteriors and priors for variables of interest can also be plotted as follows –
note that the rows argument of the shown code is not necessary, but if only particular parameter
plots are desired the rows corresponding to specific parameters of fit$setup$popsetup can be
specified.

ctStanPlotPost(obj = fit, rows=3)

Shown in Figure 3 are approximate density plots based on the post-warmup samples drawn. For
each parameter that has individual variation specified, three plots are shown. These are: 1) the
population mean posterior compared to the prior; 2) the posterior (available only with sampling)
versus prior distribution of subject level parameters along with the population mean prior; 3) and
then the population standard deviation posterior compared to the prior.

1.10 Model prediction plots

One means of assessing model performance is to view plots of the observed time series alongside
the model predicted time series. ctsem includes functionality to output prior (based on all prior
observations) and updated (based on all prior and current observations) expectations and covari-
ances from the Kalman filter, based on specific subjects models. Examples of such are depicted in
Figure 4, where we see observed, predicted, and smoothed scores for a selected subject from our
sample. If we wanted to predict unobserved states in the future, we would need only to specify the
appropriate timerange (prediction into earlier times is possible but makes little sense unless the
model is restricted to stationarity). For help with these plots, see ?ctKalman and ?ctKalmanPlot

(arguments for the latter are passed via ctKalman, as below).

10

Pop. Mean
drift_eta1

−3 −2 −1 0

0.0

0.5

1.0

1.5

2.0

Par.Value

D
en

si
ty Posterior

Prior

Figure 3: Prior and posterior densities relevant to the first variables manifest intercept.

ctKalman(fit, subjects=c(2,4,5), kalmanvec=c('y', 'yprior'),

plot=TRUE, timestep=.01)

Y1 Y2

0 1 2 3 0 1 2 3

−3

−2

−1

0

1

2

−2

−1

0

1

2

3

Time

V
ar

ia
bl

e

Subject 2 4 5

Figure 4: Predictions for three subjects over two processes. Uncertainty shown is a 95% credible
interval comprising both process and measurement error.

1.11 Time independent predictor effect plots

Because time independent predictors give a linear effect prior to any necessary transformations,
the effects necessarily become non-linear when applied to bounded parameters, which can make

11

them difficult to conceptualise. To aid with this, a visual summary of the full range of effects can
be seen using the ctStanTIpredeffects function, as follows:

ctStanTIpredeffects(fit, plot = TRUE, whichpars=c('dtDRIFT[2,1]','CINT'),

timeinterval = .5, whichTIpreds = 1, includeMeanUncertainty = TRUE)

−0.6

−0.4

−0.2

0.0

0.2

−2 −1 0 1 2
TI1

P
ar

am
et

er dtDRIFT[2,1]

CINT[1,1]

CINT[2,1]

Figure 5: Expectations for individuals parameter values change depending on their score on time
independent predictors.

Figure 5 shows how the expectation for an individuals parameter value is likely to change depending
on the value they have for the time independent predictor specified. In this example, the discrete
time drift effects for a time interval of 0.5, as well as the continuous intercepts parameters, are
shown. Only one of these has a non-zero effect, because the others were not included in our
model. Multiple predictors can be specified, and the combined effect based on observed predictor
combinations will be shown, but this will likely make no sense unless there is a deterministic relation
between the two – this can be useful for including linear and quadratic effects, for instance, wherein
the first predictor is linear, and the second quadratic. The nsamples and nsubjects parameters
specify how many different parameter samples, and predictor values, are used – higher values take
longer to compute, but give smoother / more accurate plots.

2 Additional details

2.1 Detailed model specification

While the defaults are hopefully useful in many cases, they should not be blindly relied upon.
Plotting the original prior implied by the model, making a change to the transform, and plotting

12

the resulting prior, are shown here – in this case we will adjust the prior for the auto effect of
our first latent process, captured by row 1 and column 1 of the DRIFT matrix, to also allow
positive values, implying an explosive process wherein a change in one direction promotes further
change in that direction. To achieve this, we change from the default -(2 * log1p(exp(2 * pa

ram))) (a scaled ‘softplus’ function that works well for parameters that need either an upper or
lower boundary), to a simpler transform wherein we just shift and scale the raw, standard normal,
parameter. In this case we also set a negative offset because we still believe negative values are more
likely for the drift auto-effect, and we also start by allowing for unobserved individual differences
by adjusting the $indvarying column of the parameter list (in order to visualise differences in the
resulting distributions). One consideration when altering priors in this manner is that the starting
values for sampling are taken from around the median of the distribution. The following code
shows two approaches to changing a parameter specification. The first is done after initial model
specification by directly editing the model object, the second is done during model specification by
specifying one or more of parameter name, transformation, TRUE or FALSE for random effects, a
positive numeric for the prior standard deviation of the random effects relative to the prior for the
mean, then TRUE or FALSE for any time independent predictors. These elements are input in an
ordered sequence separated by the | character, such that in order to specify individual variation (for
example), the parameter name and transform must also be specified, but any subsequent elements
will assume default values. The example only sets the first two elements, with the rest assuming
defaults.

drift_eta1

−15 −10 −5 0

0

5

10

Par.Value

D
en

si
ty

Default prior

drift_eta1

−10 −5 0 5

0.00

0.05

0.10

0.15

0.20

Par.Value

D
en

si
ty

Modified prior

Pop. mean prior Subject prior
rawmean ~ N(−1,0.1)

Subject prior
rawmean ~ N(1,0.1)

Figure 6: Prior distribution density plots.

#Manual change after model specification

model$pars$indvarying[7] <- TRUE

p <- plot(model, rows=7,rawpopsd=1, plot=FALSE)

print(p[[1]] + ggplot2::theme(legend.position = "none"))

model$pars$transform[7]<- '2 * param -1'

13

#Change during model specification

model<-ctModel(type='ct',

DRIFT = matrix(c('drift_eta1_eta1 | 2 * param -1 | TRUE',

'dr21','dr12','dr22'),2,2),

latentNames=c('eta1','eta2'),

manifestNames=c('Y1','Y2'),

TDpredNames='TD1',

TIpredNames=c('TI1'),

LAMBDA=diag(2))

plot(model, rows=7,rawpopsd=1)

Figure 6 shows the prior distribution for the population mean of DRIFT[1,1] in black, as well as
two possible priors for the subject level parameters, conditional on our specified raw population
standard deviation of 1. The blue prior results from assuming the population mean is one standard
deviation lower than the mean of its prior, and the red one standard deviation higher.

In addition to adjusting the prior for the population mean, the prior for the extent of individual
variation around that mean can also be adjusted. Amongst other circumstances, this prior may
need to be reduced when limited time points are available, to ensure adequate regularisation. Here
we change the scaling factor of the individual variation for all parameters, from 1.0 to 3.0, and
demonstrate the effect of this using the previously adjusted auto effect. In this case, we do not fix
the popsd when plotting, which now gives the distribution of individual variation over all possible
values for the population (pop) sd parameter – the marginal distribution of Figure 7 has a very
different shape to the conditional distribution of Figure 6, but the effect of the change in sdscale

parameter could be seen in both cases.

drift_eta1

−5.0 −2.5 0.0 2.5

0.0

0.2

0.4

0.6

Par.Value

D
en

si
ty

Default sdscale (1.0)

drift_eta1

−5.0 −2.5 0.0 2.5

0.0

0.2

0.4

0.6

Par.Value

D
en

si
ty

Modified sdscale (3.0)

Pop. mean prior Subject prior
rawmean ~ N(−1,0.1)

Subject prior
rawmean ~ N(1,0.1)

Figure 7: Prior distribution density plots of auto-effects, with default (left) and adjusted (right)
scale parameter for population standard deviation.

14

plot(model, rows=7)

model$pars$sdscale<- .1

plot(model, rows=7)

It can be helpful to completely eliminate individual variation in some parameters, particularly since
unnecessary between subject effects will slow sampling and hinder appropriate regularization, but
be aware of the many parameter dependencies in these models – restricting one parameter may
lead to genuine variation in the restricted parameter expressing itself elsewhere. Here we only allow
for individual variation in the DRIFT and MANIFESTMEANS parameters.

model$pars$indvarying[!(model$pars$matrix %in% c('DRIFT','MANIFESTMEANS'))] <- FALSE

model$pars$indvarying[(model$pars$matrix %in% c('DRIFT','MANIFESTMEANS'))] <- TRUE

Also similarly restrict which parameters to include time independent predictor effects for. In
general, when random effects are allowed, population mean estimates should not depend greatly
on whether covariate effects are included or not. If random effects are restricted (which they
are by default) for computational or theoretical reasons, population estimates will often be more
dependent on the covariates included and the parameters that are affected. Here, we first restrict
the tipredeffects on all parameters, and free them only for the drift parameters.

model$pars[,c('TI1_effect','TI2_effect','TI3_effect')] <- FALSE

model$pars[model$pars$matrix == 'DRIFT',

c('TI1_effect','TI2_effect','TI3_effect')] <- TRUE

An alternative approach to specifying the tipredeffects is in the initial model specification, using
the ‘|’ separator notation. The following shows an example where the DRIFT[1,1] parameter is
influenced by covariates TI1 and TI3, DRIFT[1,2] is influenced by TI2, and there are no other time
independent predictor effects (because tipredDefault=FALSE)

model<-ctModel(type='ct', tipredDefault = FALSE,

DRIFT = matrix(c(

'drift_eta1_eta1||||TI1,TI3','dr21||||TI2',

'dr12','dr22'),2,2),

latentNames=c('eta1','eta2'),

manifestNames=c('Y1','Y2'),

TDpredNames='TD1',

TIpredNames=c('TI1'),

LAMBDA=diag(2))

2.2 Accessing Stan model code

For diagnosing problems or modifying the model in ways not achievable via the ctsem model
specification, one can use ctsem to generate the Stan code and then work directly with that, simply
by specifying the argument fit=FALSE to the ctStanFit function, and accessing the $stanmodel

text subobject. Any altered code can be passed back into ctStanFit by using the stanmodeltex

t argument, which can be convenient for setting up the data in particular.

15

2.3 Using Rstan functions

The standard rstan output functions such as summary and extract are also available whenever Stan’s
sampler is used, and the shinystan package provides an excellent browser based interface. The stan
fit object is stored under the $stanfit subobject of the ctStanFit output. The parameters which
are likely to be of most interest in the output are prefixed by pop_ for pop (population) mean, and
popsd for pop standard deviation. Any pop parameters are returned in the form of the continuous
time matrix equations (or discrete time when estimated as such). Subject specific parameters
are denoted by the matrix they are from, then the first index represents the subject id, followed
by standard matrix notation. For example, the 2nd row and 1st column of the DRIFT matrix
for subject 8 is DRIFT[8,2,1]. Parameters in such matrices are returned in the form used for
internal calculations – that is, variance covariance matrices are returned as such, rather than the
lower-triangular standard deviation and correlation matrices required for input.

2.4 Oscillating, single subject example - sunspots data

To demonstrate fitting more complicated higher order processes and oscillations, we use the sunspots
data available within R, which has previously been fit by various authors including Tómasson
(2013). We have used the same CARMA(2,1) model and obtained similar estimates. For more on
CARMA modelling and more detail on this sunspots example, see Oud, Voelkle, and Driver (2018).

#get data

sunspots<-sunspot.year

sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]

id <- 1

time <- 1749:1924

datalong <- cbind(id, time, sunspots)

#setup model

ssmodel <- ctModel(type='ct',

manifestNames='sunspots',

latentNames=c('ss_level', 'ss_velocity'),

LAMBDA=c(1, 'ma1| log(1+(exp(param)))'),

DRIFT=c(0, 1,

'a21 | -log(1+exp(param))','a22'),

MANIFESTMEANS=c('m1|param * 10 + 44'),

MANIFESTVAR=diag(0,1), #As per original spec

CINT=0,

DIFFUSION=c(0, 0,

0, "diffusion"))

#fit

ssfit <- ctStanFit(datalong, ssmodel)

#output

summary(ssfit)$popmeans

mean sd 2.5% 50% 97.5%

T0m_ss_level 26.226 12.8958 0.429 25.797 53.505

T0m_ss_velocity 16.398 22.5792 -29.816 16.821 60.243

ma1 0.652 0.1936 0.337 0.635 1.092

a21 -0.362 0.0497 -0.468 -0.358 -0.276

16

a22 -0.339 0.1059 -0.588 -0.328 -0.171

diffusion 15.776 2.9900 10.557 15.713 21.939

m1 44.305 3.3755 37.785 44.401 51.227

2.5 Non-linearities

The dynamic model that arises normally out of a typical ctsem model specification is linear, as
the dynamic system and measurement matrices (DRIFT, MANIFESTVAR, etc.) do not vary over
time. This can be changed by making certain elements of the matrices depend on the current state
of the system. This is done by setting the element to a character string containing the reference to
‘state’, and the specific state. In a simple univariate, first order linear system, the DRIFT matrix
would be 1 × 1 and contain a character string such as ‘drift11’, indicating we want to estimate the
parameter called ‘drift11’ for the DRIFT matrix. This parameter could however be made state
dependent by specifying the DRIFT matrix element as a function of one or more parameters and
latent states. Careful thought regarding the required model structure and restrictions is necessary.
Here, we modify the oscillatorysunspots example from earlier, such that the oscillation damping
factor is no longer constant but depends on the current level of sunspot activity. It is possible
to reference the current states of the process by using the appropriate latent variable name, and
additional parameters may be included so long as they are also specified in the PARS model element.
Whenever a latent variable or additional parameter is referenced, additional formulas that are valid
in the Stan language are also possible to use – "exp(ss_level)" takes the exponent of the current
state of the sunspot level latent variable, and would ensure positivity of the result, for instance. In
the following example -log1p_exp is used to ensure negativity using a more linear transform than
the exponential.

sunspots<-sunspot.year

sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]

id <- 1

time <- 1749:1924

datalong <- data.frame(id, time, sunspots)

m <- ctModel(type='ct',

manifestNames='sunspots',

latentNames=c('ss_level', 'ss_velocity'),

LAMBDA=c(1, 'ma1|log(1+exp(param))'),

DRIFT=c(0, 1,

'-log1p_exp(freqintercept + freqbylevel * ss_level)','a22'),

MANIFESTMEANS=c('m1|param * 10 + 44'),

MANIFESTVAR=diag(0,1), #As per original spec

CINT=0,

DIFFUSION=c(0, 0,

0, "diffusion"),

PARS=c('freqintercept', 'freqbylevel'))

ssfitnl <- ctStanFit(datalong, m)

17

2.6 Population standard deviations - understanding the transforms

This section is intended as a helper to those trying to work through the various transformations
found in the model. Internally, we sample parameters that we refer to as the ‘raw’ parameters –
these parameters have no bounds and are typically drawn from normal distributions. Both raw pop-
ulation mean and subject specific deviation parameters are drawn from normal(0, 1) distributions.
Depending on the specific parameter, various transformations may be applied to set appropriate
bounds and priors. The raw population standard deviation for these raw parameters is sampled (by
default) from a normal(0, 1) distribution called rawpopsdbase, which is by default transformed via
an exponential function – this ensures the parameters are positive and the prior for the standard
deviation is a lognormal distribution. This distribution can be altered via the model subobjects r

awpopsdbase, rawpopsdbaselowerbound, and rawpopsdtransform. This distribution can also be
scaled on a per parameter basis by the sdscale multiplier in the model specification, which defaults
to 1. The following script shows a didactic sequence of sampling and transformation for a model
with a single parameter, the auto effect of the drift matrix, and 3 subjects. Although we sample the
priors themselves here, this is merely to reflect the prior and enable understanding and plotting.
Note also that because we are only displaying the procedure for a single parameter here, we simplify
things somewhat by avoiding calculations to determine the square root of the population covariance
matrix – with only one individually varying parameter, it is simply the standard deviation.

#set plotting parameters

par(mfrow=c(2,2), lwd=3, yaxs='i', mgp=c(1.8,.5,0),

mar=c(3,3,3,1)+.1)

bw=.03

n <- 999999 #number of samples to draw to from prior for plotting purposes

nsubjects <- 4 #number of subjects

#parameter specific transform

tform <- function(x) -log(exp(-1.5 * x) + 1) #default drift auto effect transform

#raw pop sd transform

sdscale <- 1 #default

rawsdtform <- function(x) exp(x * 2 -2) * sdscale #default

#sd approximation function

sdapprox <- function(means,sds,tform) {

for(i in 1:length(means)){

sds[i] <- ((tform(means[i]+sds[i]*3) - tform(means[i]-sds[i]*3))/6 +

(tform(means[i]+sds[i]) - tform(means[i]-sds[i]))/2) /2

}

return(sds)

}

#raw population mean parameters

rawpopmeans_prior <- rnorm(n, 0, 1) #prior distribution for rawpopmeans

rawpopmeans_sample <- -.3 #hypothetical sample

sdscale <- 1 #default

#population mean parameters after parameter specific transform

popmeans_prior <- tform(rawpopmeans_prior)

popmeans_sample <- tform(rawpopmeans_sample)

18

#plot pop means

plot(density(rawpopmeans_prior), ylim=c(0,1), xlim=c(-5,2),

xlab='Parameter value', main='Population means')

points(density(popmeans_prior, bw=bw),col=2,type='l')

segments(y0=0,y1=.5,x0=c(rawpopmeans_sample,popmeans_sample),lty=3,col=1:2)

legend('topleft',c('Raw pop. mean prior', 'Pop. mean prior',

'Raw pop. mean sample', 'Pop. mean sample'),lty=c(1,1,3,3), col=1:2, bty='n')

#population standard deviation parameters

rawpopsd_prior <- rawsdtform(rnorm(n, 0, 1)) #raw population sd prior

popsd_prior <- sdapprox(rawpopmeans_prior,rawpopsd_prior,tform)

#sample population standard deviation posterior

rawpopsd_sample <- rawsdtform(.9) #hypothetical sample

popsd_sample <- sdapprox(means=rawpopmeans_sample, #transform sample to actual pop sd

sds=rawpopsd_sample,tform=tform)

#plot pop sd

plot(density(rawpopsd_prior,from=-.2,to=10,na.rm=TRUE, bw=bw), xlab='Parameter value',

xlim=c(-.1,3), ylim=c(0,2), main='Population sd')

points(density(popsd_prior,from=-.2,to=10,na.rm=TRUE, bw=bw),type='l', col=2)

segments(y0=0,y1=1,x0=c(rawpopsd_sample, popsd_sample), col=1:2,lty=3)

legend('topright',c('Raw pop. sd prior','Pop. sd prior',

'Raw pop. sd sample','Pop. sd sample'), col=1:2, lty=c(1,1,3,3),bty='n')

#individual level parameters

#marginal individual level parameters (given all possible values for mean and sd)

rawindparams_margprior <- rawpopmeans_prior + rawpopsd_prior * rnorm(n, 0, 1)

indparams_margprior <- tform(rawindparams_margprior)

plot(density(rawindparams_margprior,from=-10,to=10,bw=bw), xlab='Parameter value',

xlim=c(-5,2), ylim=c(0,1), main='Marginal dist. individual parameters')

points(density(indparams_margprior,from=-10,to=.2,bw=bw),type='l',col=2)

legend('topleft',c('Raw individual parameters prior','Individual parameters prior'),

col=1:2,lty=1,bty='n')

#conditional individual level parameters (given sampled values for mean and sd)

rawindparams_condprior<- rawpopmeans_sample + rawpopsd_sample * rnorm(n,0,1)

rawindparams_condsample<- rawpopmeans_sample + rawpopsd_sample * rnorm(nsubjects,0,1)

indparams_condprior<- tform(rawindparams_condprior)

indparams_condsample<- tform(rawindparams_condsample)

plot(density(rawindparams_condprior), xlab='Parameter value', xlim=c(-5,2),

ylim=c(0,1), main='Conditional dist. individual parameters')

points(density(indparams_condprior),type='l',col=2)

segments(y0=0,y1=.5,x0=c(rawindparams_condsample, indparams_condsample),

col=rep(1:2,each=nsubjects),lty=3, lwd=2)

legend('topleft',c('Raw ind. pars. prior','Ind. pars. prior',

'Raw ind. pars. samples','Ind. pars. samples'), col=1:2, lty=c(1,1,3,3),bty='n')

19

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Population means

Parameter value

D
en

si
ty

Raw pop. mean prior
Pop. mean prior
Raw pop. mean sample
Pop. mean sample

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Population sd

Parameter value

D
en

si
ty

Raw pop. sd prior
Pop. sd prior
Raw pop. sd sample
Pop. sd sample

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal dist. individual parameters

Parameter value

D
en

si
ty

Raw individual parameters prior
Individual parameters prior

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional dist. individual parameters

Parameter value

D
en

si
ty

Raw ind. pars. prior
Ind. pars. prior
Raw ind. pars. samples
Ind. pars. samples

Figure 8: Depiction of the prior distributions and sampling process through which individual
specific parameters are determined. Note that the population sd is strictly positive, however the
density plots involve some smoothing."

In the top left of Figure 8, we can see the prior distribution of population means for, in this case,
a diagonal (auto effect) of the drift matrix. The prior for the raw population distribution is a
standard normal, while for the actual population distribution it is definitely not normal. We draw
a hypothetical sample from the raw distribution, and show the resulting transformed value. To the
right, the prior distribution of the raw population standard deviation is shown. This raw distribu-
tion is the same for all parameter types, but the resulting prior distribution of population standand
deviations is also dependent on the parameter specific transform (although in this particular case
the raw and actual population sd priors are almost the same). This dependency is most easily
understood if one considers the case where the parameter specific transformation simply multiplied
the raw parameter by 2 – if we sampled a raw population sd of 1.5, the actual population sd sample
would be 3.0. With nonlinear transformations, the dependency is not so easily calculated, and
we use a sigma point approximation (?), as shown in the code, when it is necessary to plot or
summarise the population sd. The lower left plot shows the prior distribution for individual level
parameters, marginalising over the priors for population means and standard deviations. This plot
is very similar to the means plot directly above it, just somewhat more spread out due to the addi-
tional variation included. Things get more interesting when we look at the lower right plot – here,
we see the prior distributions for individual level parameters, conditional on the values sampled

20

in the top row of plots. Along with the prior distribution, in this lower right plot we also draw
samples for 4 subjects, showing both the raw individual parameter, and the individual parameter
after the necessary transforms.

3 Conclusion

With this work, we have described the basics of the hierarchical continuous time dynamic model,
and provided detailed discussion on the usage of the R package ctsem (Driver et al., 2017) for
fitting such models to data. While the approach is necessarily somewhat complex, we believe it
offers many interesting possibilities for understanding within-subject dynamics and their relation to
between-subject differences, and hope that the overview of the software provided here encourages
new and interesting applications of the model..

References

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., . . . Riddell, A.
(2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76 (1).
doi: 10.18637/jss.v076.i01

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation
Modeling with R package ctsem. Journal of Statistical Software, 77 (5), 1–35. doi: 10.18637/
jss.v077.i05

Driver, C. C., & Voelkle, M. C. (2018a). Hierarchical Bayesian continuous time dynamic modeling.
Psychological Methods, 23 (4), 774–799. doi: 10.1037/met0000168

Driver, C. C., & Voelkle, M. C. (2018b). Understanding the time course of interventions with
continuous time dynamic models. In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.),
Continuous time modeling in the behavioral and related sciences (pp. 79–109). New York:
Springer International Publishing.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (Vol. 2).
Chapman & Hall/CRC Boca Raton, FL, USA.

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., . . . Boker,
S. M. (2016, June). OpenMx 2.0: Extended structural equation and statistical modeling.
Psychometrika, 81 (2), 535–549. doi: 10.1007/s11336-014-9435-8

Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data
by means of SEM. Psychometrika, 65 (2), 199–215. doi: 10.1007/BF02294374

Oud, J. H. L., Voelkle, M. C., & Driver, C. C. (2018). SEM based CARMA time series models
for arbitrary N. Multivariate Behavioral Research, 53 , 36–56. doi: 10.1080/00273171.2017
.1383224

R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.

Singer, H. (1993, September). Continuous-time dynamical systems with sampled data, errors of
measurement and unobserved components. Journal of Time Series Analysis, 14 (5), 527–545.
doi: 10.1111/j.1467-9892.1993.tb00162.x

Stan Development Team. (n.d.). RStan: The R interface to Stan.

Tómasson, H. (2013, November). Some computational aspects of Gaussian CARMA modelling.
Statistics and Computing, 25 (2), 375–387. doi: 10.1007/s11222-013-9438-9

21

Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time
intervals for oscillating and non-oscillating processes. British Journal of Mathematical and

Statistical Psychology, 66 (1), 103–126. doi: 10.1111/j.2044-8317.2012.02043.x

22

	Overview
	Subject level latent dynamic model
	Subject level measurement model
	Overview of hierarchical model
	Install software and prepare data
	Missing values
	Model specification
	Model fitting
	Summary
	Plotting
	Model prediction plots
	Time independent predictor effect plots

	Additional details
	Detailed model specification
	Accessing Stan model code
	Using Rstan functions
	Oscillating, single subject example - sunspots data
	Non-linearities
	Population standard deviations - understanding the transforms

	Conclusion

