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1. Overview

B-splines constitute an appealing method for the nonparametric estimation of a range of statistical

objects of interest. In this primer we focus our attention on the estimation of a conditional mean,

i.e. the ‘regression function’.

A ‘spline’ is a function that is constructed piece-wise from polynomial functions. The term

comes from the tool used by shipbuilders and drafters to construct smooth shapes having desired

properties. Drafters have long made use of a bendable strip fixed in position at a number of points

that relaxes to form a smooth curve passing through those points. The malleability of the spline

material combined with the constraint of the control points would cause the strip to take the shape

that minimized the energy required for bending it between the fixed points, this being the smoothest

possible shape. We shall rely on a class of splines called ‘B-splines’ (‘basis-splines’). A B-spline

function is the maximally differentiable interpolative basis function. The B-spline is a generalization

of the Bézier curve (a B-spline with no ‘interior knots’ is a Bézier curve). B-splines are defined by

their ‘order’ m and number of interior ‘knots’ N (there are two ‘endpoints’ which are themselves

knots so the total number of knots will be N + 2). The degree of the B-spline polynomial will be

the spline order m minus one (degree = m− 1).

To best appreciate the nature of B-splines, we shall first consider a simple type of spline, the

Bézier function, and then move on to the more flexible and powerful generalization, the B-spline

itself. We begin with the univariate case in Section 2 where we consider the univariate Bézier

function. In Section 3 we turn to the univariate B-spline function, and then in Section 4 we turn to

the multivariate case where we also briefly mention how one could handle the presence of categorical

predictors.

We presume that interest lies in ‘regression spline’ methodology which differs in a number of

ways from ‘smoothing splines’, both of which are popular in applied settings. The fundamen-

tal difference between the two approaches is that smoothing splines explicitly penalize roughness

and use the data points themselves as potential knots whereas regression splines place knots at

equidistant/equiquantile points. We direct the interested reader to Wahba (1990) for a treatment

of smoothing splines.
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2. Bézier curves

We present an overview of Bézier curves which form the basis for the B-splines that follow. We

begin with a simple illustration, that of a quadratic Bézier curve.

Example 2.1. A quadratic Bézier curve.

A quadratic Bézier curve is the path traced by the function B(x), given points β0,
β1, and β2, where

B(x) = β0(1− x)2 + 2β1(1− x)x+ β2x
2

=
2∑

i=0

βiBi(x), x ∈ [0, 1].

The terms B0(x) = (1−x)2, B1(x) = 2(1−x)x, and B2(x) = x2 are the ‘bases’ which
is this case turn out to be ‘Bernstein polynomials’ (Bernstein 1912). For our purposes
the ‘control points’ βi, i = 0, 1, 2, will be parameters that could be selected by least
squares fitting in a regression setting, but more on that later. Consider the following
simple example where we plot a quadratic Bézier curve with arbitrary control points:
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For this simple illustration we set β0 = 1, β1 = −1, β2 = 2.
Note that the derivative of this curve is

B′(x) = 2(1− x)(β1 − β0) + 2x(β2 − β1),

which is a polynomial of degree one.
This example of a Bézier curve will also be seen to be a ‘second-degree B-spline with

no interior knots’ or, equivalently, ‘a third-order B-spline with no interior knots’.
Using the terminology of B-splines, in this example we have a third-order B-spline
(m = 3) which is of polynomial degree two (m − 1 = 2) having highest derivative of
polynomial degree one (m− 2 = 1).
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2.1. The Bézier curve defined. More generally, a Bézier curve of degree n (order m) is composed

of m = n+ 1 terms and is given by

B(x) =
n∑

i=0

βi

(
n

i

)
(1− x)n−ixi

=

n∑

i=0

βiBi,n(x),(1)

where
(
n
i

)
= n!

(n−i)!i! , which can be expressed recursively as

B(x) = (1− x)

(
n−1∑

i=0

βiBi,n−1(x)

)
+ x

(
n∑

i=1

βiBi−1,n−1(x)

)
,

so a degree n Bézier curve is a linear interpolation between two degree n− 1 Bézier curves.

Example 2.2. A quadratic Bézier curve as a linear interpolation between

two linear Bézier curves.

The linear Bézier curve is given by β0(1− x) + β1x, and above we showed that the
quadratic Bézier curve is given by β0(1− x)2 + 2β1(1− x)x+ β2x

2. So, when n = 2
(quadratic), we have

B(x) = (1− x)(β0(1− x) + β1x) + x(β1(1− x) + β2x)

= β0(1− x)2 + 2β1(1− x)x+ β2x
2.

This is essentially a modified version of the idea of taking linear interpolations of linear interpo-

lations of linear interpolations and so on. Note that the polynomials

Bi,n(x) =

(
n

i

)
(1− x)n−ixi

are called ‘Bernstein basis polynomials of degree n’ and are such that
∑n

i=0Bi,n(x) = 1, unlike raw

polynomials.1

The m = n + 1 control points βi, i = 0, . . . , n, are somewhat ancillary to the discussion here,

but will figure prominently when we turn to regression as in a regression setting they will be the

coefficients of the regression model.

1Naturally we define x0 = (1− x)0 = 1, and by ‘raw’ polynomials we simply mean xj , j = 0, . . . , n.
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Example 2.3. The quadratic Bézier curve basis functions.

The figure below presents the bases Bi,n(x) underlying a Bézier curve for i =
0, . . . , 2 and n = 2.
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These bases are B0,2(x) = (1 − x)2, B1,2(x) = 2(1 − x)x, and B2,2(x) = x2 and
illustrate the foundation upon which the Bézier curves are built.

2.2. Derivatives of spline functions. From de Boor (2001) we know that the derivatives of spline

functions can be simply expressed in terms of lower order spline functions. In particular, for the

Bézier curve we have

B(l)(x) =

n−l∑

i=0

β
(l)
i Bi,n−l(x),

where β
(0)
i = βi, 0 ≤ i ≤ n, and

β
(l)
i = (n− l)

(
β
(l−1)
i+1 − β

(l−1)
i

)
/(ti − ti−n+l), 0 ≤ i ≤ n− l.

See Zhou & Wolfe (2000) for details.

We now turn our attention to the B-spline function. This can be thought of as a generalization of

the Bézier curve where we now allow for there to be additional breakpoints called ‘interior knots’.

3. B-splines

3.1. B-spline knots. B-spline curves are composed from many polynomial pieces and are therefore

more versatile than Bézier curves. Consider N + 2 real values ti, called ‘knots’ (N ≥ 0 are called

‘interior knots’ and there are always two endpoints, t0 and tN+1), with

t0 ≤ t1 ≤ · · · ≤ tN+1.

When the knots are equidistant they are said to be ‘uniform’, otherwise they are said to be ‘non-

uniform’. One popular type of knot is the ‘quantile’ knot sequence where the interior knots are the

quantiles from the empirical distribution of the underlying variable. Quantile knots guarantee that
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an equal number of sample observations lie in each interval while the intervals will have different

lengths (as opposed to different numbers of points lying in equal length intervals).

Bézier curves possess two endpoint knots, t0 and t1, and no interior knots hence are a limiting

case, i.e. a B-spline for which N = 0.

3.2. The B-spline basis function. Let t = {ti | i ∈ Z} be a sequence of non-decreasing real

numbers (ti ≤ ti+1) such that2

t0 ≤ t1 ≤ · · · ≤ tN+1.

Define the augmented knot set

t−(m−1) = · · · = t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1 = · · · = tN+m,

where we have appended the lower and upper boundary knots t0 and tN+1 n = m − 1 times (this

is needed due to the recursive nature of the B-spline). If we wanted we could then reset the index

for the first element of the augmented knot set (i.e. t−(m−1)) so that the N + 2m augmented knots

ti are now indexed by i = 0, . . . , N + 2m− 1 (see the example below for an illustration).

For each of the augmented knots ti, i = 0, . . . , N+2m−1, we recursively define a set of real-valued

functions Bi,j (for j = 0, 1, . . . , n, n being the degree of the B-spline basis) as follows:

Bi,0(x) =

{
1 if ti ≤ x < ti+1

0 otherwise.

Bi,j+1(x) = αi,j+1(x)Bi,j(x) + [1− αi+1,j+1(x)]Bi+1,j(x),

where

αi,j(x) =





x− ti
ti+j − ti

if ti+j ̸= ti

0 otherwise.

For the above computation we define 0/0 as 0.

Definitions.

Using the notation above:

(1) the sequence t is known as a knot sequence, and the individual term in the sequence is a

knot.

(2) the functions Bi,j are called the i-th B-spline basis functions of degree j, and the recurrence

relation is called the de Boor recurrence relation, after its discoverer Carl de Boor (de Boor

2001).

(3) given any non-negative integer j, the vector space Vj(t) over R, generated by the set of all

B-spline basis functions of degree j is called the B-spline of degree j. In other words, the

B-spline Vj(t) = span{Bi,j(x) | i = 0, 1, . . .} over R.

(4) Any element of Vj(t) is a B-spline function of degree j.

2This description is based upon the discussion found at http://planetmath.org/encyclopedia/BSpline.html.
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The first term B0,n is often referred to as the ‘intercept’. In typical spline implementations

the option intercept=FALSE denotes dropping this term while intercept=TRUE denotes keeping it

(recall that
∑n

i=0Bi,n(x) = 1 which can lead to perfect multicollinearity in a regression setting; also

see Zhou & Wolfe (2000) who instead apply shrinkage methods).

Example 3.4. A fourth-order B-spline basis function with three interior

knots and its first derivative function.

Suppose there are N = 3 interior knots given by (0.25, 0.5, 0.75), the boundary
knots are (0, 1), and the degree of the spline is n = 3 hence the order is m = 4. The
set of all knot points needed to construct the B-spline is

(0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1)

and the number of basis functions is K = N +m = 7. The seven cubic spline basis
functions will be denoted B0,3, . . . , B6,3.

The figure below presents this example of a third degree B-spline with three interior
knots along with its first derivative (the spline derivatives would be required in order
to compute derivatives from the spline regression model).
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To summarize, in this illustration we have an order m = 4 (degree = 3) B-spline
(left) with 4 sub-intervals (segments) using uniform knots (N = 3 interior knots, 5
knots in total (2 endpoint knots)) and its 1st-order derivative (right). The dimension
of B(x) is K = N +m = 7.

See the appendix for R code (R Development Core Team 2011) that implements the B-spline

basis function.

3.3. The B-spline function. A B-spline of degree n (of spline order m = n + 1) is a parametric

curve composed of a linear combination of basis B-splines Bi,n(x) of degree n given by

(2) B(x) =

N+n∑

i=0

βiBi,n(x), x ∈ [t0, tN+1].
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The βi are called ‘control points’ or ‘de Boor points’. For an order m B-spline having N interior

knots there are K = N +m = N + n+ 1 control points (one when j = 0).

The B-spline order m must be at least 2 (hence at least linear, i.e. degree n is at least 1) and the

number of interior knots must be non-negative (N ≥ 0).

See the appendix for R code (R Development Core Team 2011) that implements the B-spline

function.

4. Multivariate B-spline regression

The functional form of parametric regression models must naturally be specified by the user.

Typically practitioners rely on raw polynomials and also often choose the form of the regression

function (i.e. the order of the polynomial for each predictor) in an ad-hoc manner. However,

raw polynomials are not sufficiently flexible for our purposes, particularly because they possess no

interior knots which is where B-splines derive their unique properties. Furthermore, in a regression

setting we typically encounter multiple predictors which can be continuous or categorical in nature,

and traditional splines are for continuous predictors. Below we briefly describe a multivariate kernel

weighted tensor product B-spline regression method (kernel weighting is used to handle the presence

of the categorical predictors). This method is implemented in the R package ‘crs’ (Racine & Nie

2011).

4.1. Multivariate knots, intervals, and spline bases. In general we will have q predictors,

X = (X1, . . . , Xq)
T . We assume that each Xl, 1 ≤ l ≤ q, is distributed on a compact interval [al, bl],

and without loss of generality, we take all intervals [al, bl] = [0, 1]. Let Gl = G
(ml−2)
l be the space

of polynomial splines of order ml. We note that Gl consists of functions ϖ satisfying (i) ϖ is a

polynomial of degree ml − 1 on each of the sub-intervals Ijl,l, jl = 0, . . . , Nl; (ii) for ml ≥ 2, ϖ is

ml − 2 times continuously differentiable on [0, 1].

Pre-select an integer Nl = Nn,l. Divide [al, bl] = [0, 1] into (Nl + 1) sub-intervals Ijl,l =

[tjl,l, tjl+1,l), jl = 0, . . . , Nl − 1, INl,l = [tNl,l, 1], where {tjl,l}
Nl

jl=1 is a sequence of equally-spaced

points, called interior knots, given as

t−(ml−1),l = · · · = t0,l = 0 < t1,l < · · · < tNl,l < 1 = tNl+1,l = · · · = tNl+ml,l,

in which tjl,l = jlhl, jl = 0, 1 . . . , Nl+1, hl = 1/ (Nl + 1) is the distance between neighboring knots.

Let Kl = Kn,l = Nl +ml, where Nl is the number of interior knots and ml is the spline order,

and let Bl (xl) = {Bjl,l (xl) : 1−ml ≤ jl ≤ Nl}
T be a basis system of the space Gl.
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We define the space of tensor-product polynomial splines by G = ⊗q
l=1Gl. It is clear that G is a

linear space of dimension Kn =
∏q

l=1Kl. Then3

B (x) =
[{

Bj1,...,jq (x)
}N1,...,Nq

j1=1−m1,...,jq=1−mq

]
Kn×1

= B1 (x1)⊗ · · · ⊗Bq (xq)

is a basis system of the space G, where x =(xl)
q
l=1. Let B =

[
{B (X1) , . . . ,B (Xn)}

T
]
n×Kn

.

4.2. Spline regression. In what follows we presume that the reader is interested in the unknown

conditional mean in the following location-scale model,

(3) Y = g (X,Z) + σ (X,Z) ε,

where g(·) is an unknown function, X =(X1, . . . , Xq)
T is a q-dimensional vector of continuous

predictors, and Z = (Z1, . . . , Zr)
T is an r-dimensional vector of categorical predictors. Letting

z = (zs)
r
s=1, we assume that zs takes cs different values in Ds ≡ {0, 1, . . . , cs − 1}, s = 1, . . . , r, and

let cs be a finite positive constant. Let
(
Yi,X

T
i ,Z

T
i

)n
i=1

be an i.i.d copy of
(
Y,XT,ZT

)
. Assume for

1 ≤ l ≤ q, each Xl is distributed on a compact interval [al, bl], and without loss of generality, we

take all intervals [al, bl] = [0, 1].

In order to handle the presence of categorical predictors, we define

l (Zs, zs, λs) =

{
1,when Zs = zs

λs, otherwise.
,

L (Z, z, λ) =
r∏

s=1

l (Zs, zs, λs) =
r∏

s=1

λ1(Zs ̸=zs)
s ,(4)

where l(·) is a variant of Aitchison and Aitken’s univariate categorical kernel function (Aitchison &

Aitken 1976), L(·) is a product categorical kernel function, and λ = (λ1, λ2, . . . , λr)
T is the vector of

bandwidths for each of the categorical predictors. See Ma et al. (under revision) and Ma & Racine

(2013) for further details.

We estimate β (z) by minimizing the following weighted least squares criterion,

β̂ (z) = arg min
β∈RKn

n∑

i=1

{
Yi − B (Xi)

T β
}2

L (Zi, z, λ) .

Let Lz = diag {L (Z1, z, λ) , . . . , L (Zn, z, λ)} be a diagonal matrix with L (Zi, z, λ), 1 ≤ i ≤ n as

the diagonal entries. Then β̂ (z) can be written as

(5) β̂ (z) =
(
n−1

B
TLzB

)−1 (
n−1

B
TLzY

)
,

3The notation here may throw off those used to sums of the form
∑n

i=1
, n > 0 (i.e. sum indices that are positive

integers), so consider a simple illustration that may defuse this issue. Suppose there are no interior knots (N = 0)

and we consider a quadratic (degree n equal to two hence the ‘spline order’ is three). Then
∑N

i=1−m
contains three

terms having indices i = −2,−1, 0. In general the number of terms is the number the number of interior knots N

plus the spline order m, which we denote K = N +m. We could alternatively sum from 1 to N +m, or from 0 to
N + m − 1 of from 0 to N + n (the latter being consistent with the Bézier curve definition in (1) and the B-spline
definition in (2)).
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where Y =(Y1, . . . , Yn)
T. g (x, z) is estimated by ĝ (x, z) = B (x)T β̂ (z).

See the appendix for R code (R Development Core Team 2011) that implements the B-spline

basis function and then uses least squares to construct the regression model for a simulated data

generating process.
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Appendix A. Sample R code for constructing B-splines

The following code uses recursion to compute the B-spline basis and B-spline function. Then a

simple illustration demonstrates how one could immediately compute a least-squares fit using the

B-spline. In the spirit of recursion, it has been said that “To iterate is human; to recurse divine.”

(L. Peter Deutsch).

R Code for Implementing B-spline basis functions and the B-spline itself.

## $Id: spline_primer.Rnw,v 1.30 2015/01/20 10:53:40 jracine Exp jracine $

## April 23 2011. The code below is based upon an illustration that

## can be found in http://www.stat.tamu.edu/~sinha/research/note1.pdf

## by Dr. Samiran Sinha (Department of Statistics, Texas A&M). I am

## solely to blame for any errors and can be contacted at

## racinej@mcmaster.ca (Jeffrey S. Racine).

## This function is a (simplified) R implementation of the bs()

## function in the splines library and illustrates how the Cox-de Boor

## recursion formula is used to construct B-splines.

basis <- function(x, degree, i, knots) {

if(degree == 0){

B <- ifelse((x >= knots[i]) & (x < knots[i+1]), 1, 0)

} else {

if((knots[degree+i] - knots[i]) == 0) {

alpha1 <- 0

} else {

alpha1 <- (x - knots[i])/(knots[degree+i] - knots[i])

}

if((knots[i+degree+1] - knots[i+1]) == 0) {

alpha2 <- 0

} else {

alpha2 <- (knots[i+degree+1] - x)/(knots[i+degree+1] - knots[i+1])

}

B <- alpha1*basis(x, (degree-1), i, knots) + alpha2*basis(x, (degree-1), (i+1), knots)

}

return(B)

}

bs <- function(x, degree=3, interior.knots=NULL, intercept=FALSE, Boundary.knots = c(0,1)) {

if(missing(x)) stop("You must provide x")

if(degree < 1) stop("The spline degree must be at least 1")

Boundary.knots <- sort(Boundary.knots)

interior.knots.sorted <- NULL

if(!is.null(interior.knots)) interior.knots.sorted <- sort(interior.knots)

knots <- c(rep(Boundary.knots[1], (degree+1)), interior.knots.sorted, rep(Boundary.knots[2], (degree+1)))

K <- length(interior.knots) + degree + 1

B.mat <- matrix(0,length(x),K)

for(j in 1:K) B.mat[,j] <- basis(x, degree, j, knots)

if(any(x == Boundary.knots[2])) B.mat[x == Boundary.knots[2], K] <- 1

if(intercept == FALSE) {

return(B.mat[,-1])

} else {

return(B.mat)

}

}

## A simple illustration that computes and plots the B-spline bases.
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par(mfrow = c(2,1))

n <- 1000

x <- seq(0, 1, length=n)

B <- bs(x, degree=5, intercept = TRUE, Boundary.knots=c(0, 1))

matplot(x, B, type="l", lwd=2)

## Next, simulate data then construct a regression spline with a

## prespecified degree (in applied settings we would want to choose

## the degree/knot vector using a sound statistical approach).

dgp <- sin(2*pi*x)

y <- dgp + rnorm(n, sd=.1)

model <- lm(y~B-1)

plot(x, y, cex=.25, col="grey")

lines(x, fitted(model), lwd=2)

lines(x, dgp, col="red", lty=2)


