Package ‘crane’

January 21, 2026
Title Supplements the 'gtsummary' Package for Pharmaceutical Reporting
Version 0.3.1

Description Tables summarizing clinical trial results are often complex
and require detailed tailoring prior to submission to a health
authority. The 'crane' package supplements the functionality of the
'etsummary' package for creating these often highly bespoke tables in
the pharmaceutical industry.

License Apache License 2.0

URL https://github.com/insightsengineering/crane,
https://insightsengineering.github.io/crane/

BugReports https://github.com/insightsengineering/crane/issues
Depends gtsummary (>=2.5.0), R (>=4.2)

Imports broom (>= 1.0.8), broom.helpers (>= 1.20.0), cards (>= 0.7.0),
cardx (>=0.3.0), cli (>=3.6.4), cowplot (>= 1.2.0), dplyr (>=
1.1.4), flextable (>= 0.9.7), ggplot2 (>=4.0.0), glue (>=
1.8.0), gt (>=0.11.1), labeling, lifecycle, patchwork, rlang
(>=1.1.5), survival (>= 3.6-4), tidyr (>= 1.3.0)

Suggests ggtext, labelled, magick, parameters, pharmaverseadam,
testthat (>= 3.0.0), webshot2, withr (>= 3.0.1)

Config/Needs/check hms
Config/Needs/website rmarkdown, yaml
Config/testthat/edition 3
Config/testthat/parallel true

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

NeedsCompilation no

Author Daniel D. Sjoberg [aut] (ORCID:
<https://orcid.org/0000-0003-0862-2018>, note: Original creator of
the package),

https://github.com/insightsengineering/crane
https://insightsengineering.github.io/crane/
https://github.com/insightsengineering/crane/issues
https://orcid.org/0000-0003-0862-2018

2 add_blank_rows

Emily de la Rua [aut] (ORCID: <https://orcid.org/0009-0000-8738-5561>),

Davide Garolini [aut] (ORCID: <https://orcid.org/0000-0002-1445-1369>),

Abinaya Yogasekaram [ctb] (ORCID:
<https://orcid.org/0009-0005-2083-1105>),

Joe Zhu [cre] (ORCID: <https://orcid.org/0000-0001-7566-2787>),

F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Joe Zhu <joe.zhu@roche.com>
Repository CRAN
Date/Publication 2026-01-21 07:50:22 UTC

Contents
add_blank rows L e e e 2
add_hierarchical_count_row e e 3
annotate_gg Km L. e e e e e 5
get_cox_pairwise_df 7
S KM . . L e 9
g forest oL e 11
label_roche e 12
modify_header_rm_md 15
modify_zero_recode 16
tbl_baseline_chg 17
tbl_hierarchical_rate_and_count 19
tbl_hierarchical_rate_by_grade 21
tbLIiSting e e e e e 25
tbl_null_report 27
tbl_roche_subgroups 28
tbl_roche_summary L. 29
tblshift e 31
tbl_survfit_quantiles 35
tbl_survfit_times e e e e 38
theme_gtsummary_rocheo 40

Index 42

add_blank_rows Add Blank Row
Description

Add a blank row below each variable group defined by variables or below each specified row_numbers.
A blank row will not be added to the bottom of the table.

NOTE: For HTML flextable output (which includes the RStudio IDE Viewer), the blank rows do
not render. But they will appear when the table is rendered to Word.

https://orcid.org/0009-0000-8738-5561
https://orcid.org/0000-0002-1445-1369
https://orcid.org/0009-0005-2083-1105
https://orcid.org/0000-0001-7566-2787

add_hierarchical _count_row 3

Usage

add_blank_rows(x, variables = NULL, row_numbers = NULL, variable_level = NULL)

Arguments

X (gtsummary)
a ’gtsummary’ table. The table must include a column named 'variable' in
x$table_body.

variables, row_numbers, variable_level
(tidy-select or integer)

* variables: When a table contains variable summaries, use this argument
to add blank rows below the specified variable block.

e row_numbers: Add blank rows after each row number specified.

e variable_level: A single column name in x$table_body and blank rows
will be added after each unique level.

Value

updated ’gtsummary’ table.

Examples
Example 1 ———=-——=———————mmm
Default to every variable used
trial |>
tbl_roche_summary (
by = trt,
include = c(age, marker, grade),
nonmissing = "always"
E
add_blank_rows(variables = everything())
Example 2 -—-—----—-———————-———
trial |>
tbl_roche_summary(
by = trt,
include = c(age, marker, grade),
nonmissing = "always"
) 1>

add_blank_rows(variables = age)

add_hierarchical_count_row
Add row with counts

4 add_hierarchical _count_row

Description

Typically used to add a row with overall AE counts to a table that primarily displays AE rates.

Usage
add_hierarchical_count_row(
X,
label = "Overall total number of events”,
.before = NULL,
.after = NULL,
data_preprocess = identity
)
Arguments
X (gtsummary)
a gtsummary table
label (string)

label for the new row

.before, .after (integer)
Row index where to add the new row. Default is after last row.
data_preprocess
(function or formula)
a function that is applied to x$inputs$data before the total row counts are
tabulated. Default is identity. Tidyverse formula shortcut notation for the
function is accepted. See rlang::as_function() for details.

Value

gtsummary table

Examples

Example 1 ———=-—==———————mmm
cards: :ADAE |>
subset the data for a shorter example table
dplyr::slice(1:10) |>
tbl_hierarchical(
by = "TRTA",
variables = AEDECOD,
denominator = cards::ADSL,

id = "USUBJID",
overall_row = TRUE
) 1>

add_hierarchical_count_row(.after = 1L)

annotate_gg _km 5

annotate_gg_km Annotate Kaplan-Meier Plot

Description

These functions provide capabilities to annotate Kaplan-Meier plots (gg_km()) with additional sum-
mary tables, including median survival times, numbers at risk, and cox proportional hazards results.
The annotations are added using the cowplot package for flexible placement.

Usage

annotate_riskdf(
gg_plt,
fit_km,
title = "Patients at Risk:",
rel_height_plot = 0.75,

xlab = "Days",

)

annotate_surv_med(gg_plt, fit_km, ...)

annotate_coxph(gg_plt, coxph_tbl, ...)

Arguments

gg_plt (ggplot2 or cowplot)
The primary plot object (either a ggplot2 or cowplot object) of the Kaplan-
Meier plot.

fit_km (survfit)
A fitted Kaplan-Meier object of class survfit (from the survival package).
This object contains the necessary survival data used to calculate and generate
the content displayed in the annotation table.

title (string)

A single logical value indicating whether to include a above the table. Defaults
to ""Patients at Risk:"". If NULL, no title is added.

rel_height_plot
(numeric)
A single numeric value defining the relative height of the main Kaplan-Meier
plot area compared to the ’at-risk’ table. This value should be between 0 and 1,
where a value closer to 1 gives the main plot more vertical space. Defaults to
0.75.

xlab (character)
A single character string for the x-axis label on the "at-risk’ table. This typically
represents time (e.g., "Time (Days)").

coxph_tbl

Value

annotate_gg km

Additional arguments passed to the control list for the annotation box. These
arguments override the default values. Accepted arguments include:
* X (numeric): X-coordinate for the box anchor position (0 to 1). Default is
0.29.
* y (numeric): Y-coordinate for the box anchor position (0 to 1). Default is
0.51.
* w (numeric): Width of the annotation box (0 to 1). Default is 0. 4.
* h (numeric): Height of the annotation box (0 to 1). Default is @.125.

(data.frame)

A data frame containing the pre-calculated Cox-PH results, typically from a
function like get_cox_pairwise_df. This data is used to generate the annota-
tion table content.

The function annotate_riskdf returns a cowplot object combining the KM plot and the "Numbers

at Risk’ table.

The function annotate_surv_med returns a cowplot object with the median survival table annota-
tion added, ready for final display or saving.

The function annotate_coxph returns a cowplot object with the Cox-PH table annotation added.

Functions

e annotate_riskdf (): The function annotate_riskdf adds a "Numbers at Risk" table below
a Kaplan-Meier plot (gg_km()) using cowplot: :plot_grid.

e annotate_surv_med(): The annotate_surv_med function adds a median survival time sum-
mary table as an annotation box.

e annotate_coxph(): The function annotate_coxph() adds a Cox Proportional Hazards sum-
mary table created by the function get_cox_pairwise_df () as an annotation box.

See Also

gg_km(), process_survfit(), and get_cox_pairwise_df () for related functionalities.

Examples

Preparing the Kaplan-Meier Plot

use_lung <- survival::lung

use_lung$arm <- factor(sample(c("A", "B", "C"), nrow(use_lung), replace = TRUE))
use_lung$status <- use_lung$status - 1 # Convert status to 0/1

use_lung <- na.omit(use_lung)

formula <- survival::Surv(time, status) ~ arm
fit_kmg@l <- survival::survfit(formula, use_lung)
surv_plot_data <- process_survfit(fit_kmgo1)

plt_kmg@l <- gg_km(surv_plot_data)

get_cox_pairwise_df 7

Annotate Plot with Numbers at Risk Table
annotate_riskdf (plt_kmg@1, fit_kmg01)

Change order of y-axis (arm)

use_lung2 <- use_lung

use_lung2$arm <- factor(use_lung2$arm, levels = c("C", "B", "A"))
fit_kmg@l <- survival::survfit(formula, use_lung2)

annotate_riskdf (plt_kmg@1, fit_kmg@1) # rerun gg_km to change legend order

Annotate Kaplan-Meier Plot with Median Survival Table
annotate_surv_med(plt_kmg0o1, fit_kmgol)

Annotate Kaplan-Meier Plot with Cox-PH Table
coxph_tbl <- get_cox_pairwise_df(formula, data = use_lung, arm = "arm”, ref_group = "A")
annotate_coxph(plt_kmg@1, coxph_tbl)

get_cox_pairwise_df Generate Table of Pairwise Cox-PH and Log-Rank Results

Description

This function performs pairwise comparisons of treatment arms using the Cox Proportional Haz-
ards model and calculates the corresponding log-rank p-value. Each comparison tests a non-
reference group against a specified reference group.

Usage

get_cox_pairwise_df (model_formula, data, arm, ref_group = NULL)

Arguments

model_formula (formula)
A formula object specifying the survival model, typically in the form Surv(time,
status) ~arm+ covariates.

data (data.frame)
A data. frame containing the survival data, including time, status, and the arm
variable.

arm (character)

A single character string specifying the name of the column in data that contains
the grouping/treatment arm variable. This column must be a factor for correct
stratification and comparison.

ref_group (character or NULL)
A single character string specifying the level of the arm variable to be used as
the reference group for all pairwise comparisons. If NULL (the default), the first
unique level of the arm column is automatically selected as the reference group.

8 get_cox_pairwise_df

Details

The function iterates through each unique arm (excluding the reference group). For each iteration,
it filters the data to include only the current comparison arm and the reference arm, and then:

* Fits a Cox model using survival: : coxph.

* Performs a log-rank test using survival: :survdiff.

The Hazard Ratio and its 95% confidence interval are extracted from the Cox model summary, and
the p-value is extracted from the log-rank test.

Value
A data. frame with the results of the pairwise comparisons. The columns include:

e arm: (rownames of the data.frame) The comparison arm (group) being tested against the
reference group.

* hr: The Hazard Ratio (HR) for the comparison arm vs. the reference arm, formatted to two
decimal places.

e ci: The 95% confidence interval for the HR, presented as a string in the format "(lower,
upper)", with values formatted to two decimal places.

* pval: The log-rank p-value for the comparison.

See Also

annotate_gg_km(), gg_km(), and the survival package functions survival: :coxph and survival: :survdiff.

Examples

Example data setup (assuming 'time' is event time, 'status' is event indicator (1=event),
and 'arm' is the treatment group)
library(dplyr) # For better data handling

Prepare data in a modern dplyr-friendly way
surv_data <- survival::lung |>
mutate(
arm = factor(sample(c("A", "B", "C"), n(), replace = TRUE)),
status = status - 1 # Convert status to 0/1
) 1>
filter(if_all(everything(), ~ !is.na(.)))

formula <- survival::Surv(time, status) ~ arm
results_tbl <- get_cox_pairwise_df(
model_formula = formula,
data = surv_data,
arm = "arm”,
ref_group = "A"
)
print(results_tbl)

gg km

gg_km

Kaplan-Meier Plot

Description

This set of functions facilitates the creation of Kaplan-Meier survival plots using ggplot2. Use
process_survfit() to prepare the survival data from a fitted survfit object, and then gg_km()
to generate the Kaplan-Meier plot with various customization options. Additional functions like
annot_surv_med(), annot_cox_ph(), and annotate_riskdf () allow for adding summary tables
and annotations to the plot.

Usage
process_survfit(fit_km, strata_levels = "All", max_time = NULL)
gg_km(
surv_plot_data,
Ity = NULL,
lwd = 0.5,
censor_show = TRUE,

size = 2,

max_time = NULL,
xticks = NULL,

yval = c("Survival”, "Failure"),
ylim = NULL,
font_size = 10,
legend_pos = NULL
)
Arguments
fit_km A fitted Kaplan-Meier object of class survfit.

strata_levels

max_time

surv_plot_data

1ty

(string)
A single character string used as the strata level if the input fit_km object has
no strata (e.g., "AL1").

(numeric)
A single numeric value defining the maximum time point to display on the
X-axis.

(data.frame)
A data frame containing the pre-processed survival data, ready for plotting. This
data should be equivalent to the output of process_survfit.

(numeric or NULL)

A numeric vector of line types (e.g., 1 for solid, 2 for dashed) for the survival
curves, or NULL for ggplot2 defaults. The length should match the number of
arms/groups.

10

lwd

censor_show

size

xticks

yval

ylim

font_size

legend_pos

Details

gg km

(numeric)
A single numeric value specifying the line width for the survival curves.

(logical)
A single logical value indicating whether to display censoring marks on the
plot. Defaults to TRUE.

(numeric)
A single numeric value specifying the size of the censoring marks.

(numeric or NULL)
A numeric vector of explicit x-axis tick positions, or a single numeric value
representing the interval between ticks, or NULL for automatic ggplot?2 scaling.

(character)

A single character string, either "Survival” or "Failure” to plot the corre-
sponding probability.

(numeric)

A numeric vector of length 2 defining the lower and upper limits of the y-axis
(e.g.,c(0, 1)).

(numeric)

A single numeric value specifying the base font size for the plot theme elements.

(numeric or NULL)
A numeric vector of length 2 defining the legend position as (X, y) coordinates
relative to the plot area (ranging from O to 1), or NULL for automatic placement.

Data setup assumes "time" is event time, "status” is event indicator (1 represents an event), while
"arm” is the treatment group.

Value

The function process_survfit returns a data frame containing the survival curve steps, confidence
intervals, and censoring info.

The function gg_km returns a ggplot2 object of the KM plot.

Functions

* process_survfit(): takes a fitted survival::survfit object and processes it into a data frame
suitable for plotting a Kaplan-Meier curve with ggplot2. Time zero is also added to the data.

* gg_km(): creates a Kaplan-Meier survival curve, with support for various customizations like
censoring marks, Confidence Intervals (Cls), and axis control.

Examples

Data preparation for KM plot

use_lung <- survival::lung

use_lung$arm <- factor(sample(c("A", "B", "C"), nrow(use_lung), replace = TRUE))
use_lung$status <- use_lung$status - 1 # Convert status to 0/1

use_lung <- na.omit(use_lung)

g forest 11

Fit Kaplan-Meier model
formula <- survival::Surv(time, status) ~ arm
fit_kmg@l <- survival::survfit(formula, use_lung)

Process survfit data for plotting
surv_plot_data <- process_survfit(fit_kmgo1)
head(surv_plot_data)

Example of making the KM plot
plt_kmg@l <- gg_km(surv_plot_data)

Confidence Interval as Ribbon
plt_kmg@1l +
ggplot2::geom_ribbon(alpha = 0.3, 1ty = @, na.rm = TRUE)

Adding Title and Footnotes
plt_kmgol +
ggplot2::labs(title = "title", caption = "footnotes")

Changing xlab and ylab

plt_kmgo1l +
ggplot2::xlab("Another Day") +
ggplot2::ylab("THE Survival Probability")

g_forest Create a Combined gtsummary Table and Forest Plot

Description

This is the main wrapper function that takes a ’gtsummary’ object, converts it to a “ggplot’ table,
extracts the necessary data, creates a forest plot, and combines the two plots side-by-side using +.
This likely relies on the patchwork package for plot combination.

Usage
g_forest(tbl)

Arguments
tbl (gtsummary)
A ’gtsummary’ object (e.g., from gtsummary: : tbl_regression()).
Value

A combined ’ggplot’ object (likely a ’patchwork’ object) showing the table on the left and the forest
plot on the right.

12 label roche

See Also
extract_plot_data(), gg_forest_plot()

Examples
tbl <-

trial |>

tbl_roche_subgroups(
rsp = "response”,
by = "trt",
subgroups = c("grade”, "stage"),
~ glm(response ~ trt, data = .x) |>

gtsummary: :tbl_regression(
show_single_row = trt,
exponentiate = TRUE

)

)
Not run:

g_forest(tbl)

End(Not run)

label_roche Formatting percent and p-values

Description

* label_roche_pvalue() returns formatted p-values.

* label_roche_percent() returns formatted percent values. This function only formats per-
centages between 0 and 1.

e label_roche_ratio() returns formatted ratios with values below and above a threshold be-
ing returned as < @.1 and > 999.9, for example, when digits=1.

e label_roche_number () returns formatted numbers.

Usage
style_roche_pvalue(

X’
big.mark = ifelse(decimal.mark == " " " " " "),

decimal.mark = getOption("OutDec"”),

label_roche_pvalue(
big.mark = ifelse(decimal.mark == " " " " " "),
decimal.mark = getOption("OutDec”),

label roche

)

style_roche_percent(
X,
digits = 1,
prefix = "",
suffix = "",
scale = 100,

big.mark = ifelse(decimal.mark ==

non
’

decimal.mark = getOption("OutDec”),

)
label_roche_percent(
digits = 1,
suffix = "",
scale = 100,

big.mark = ifelse(decimal.mark ==

non
’

decimal.mark = getOption("OutDec"”),

)

style_roche_ratio(
X’
digits = 2,
prefix = "",

suffix ,
scale = 1

big.mark = ifelse(decimal.mark ==

non
’

decimal.mark = getOption("OutDec"),

)

label_roche_ratio(
digits = 2,
prefix = "",
suffix = "",
scale = 1,

big.mark = ifelse(decimal.mark ==

non
’

decimal.mark = getOption("OutDec"”),

)

style_roche_number(
X,
digits

:0,
big.mark =

ifelse(decimal.mark ==

n on
’

’

’

’

’

’

n o n

non

non

n on

n o n

13

n n)
’ ’

n ll)
’ ’

n u)
’ ’

n ll)
’ ’

n n)
’ ’

14 label roche

decimal.mark = getOption("OutDec”),
scale = 1,

prefix = ""

suffix = "",

na = "NE",

inf = "NE",

nan = "NE",

)

label_roche_number(
digits = 0,
big.mark = ifelse(decimal.mark == " " " " " "),
decimal.mark = getOption("OutDec"”),
scale = 1,
prefix = "",
suffix = "",
na = "NE",
inf = "NE",
nan = "NE",

Arguments

X (numeric)
Numeric vector

big.mark (string)
Character used between every 3 digits to separate hundreds/thousands/millions/etc.

n o n

Defaultis ", ", except when decimal.mark = ", " when the default is a space.

decimal.mark (string)
The character to be used to indicate the numeric decimal point. Default is "."
or getOption("OutDec")

Arguments passed on to base: : format()

digits (non-negative integer)
Integer or vector of integers specifying the number of decimals to round x. When
vector is passed, each integer is mapped 1:1 to the numeric values in x

prefix (string)
Additional text to display before the number.

suffix (string)
Additional text to display after the number.

scale (scalar numeric)
A scaling factor: x will be multiplied by scale before formatting.

na, inf, nan (NA/string)
scalar to replace NA, infinite, and NaN values with. Default is "NE" for arguments
na, inf, and nan argument.

modify_header_rm_md 15

Value

A character vector of rounded p-values

Examples

p-value formatting
X <- c(0.0000001, 0.123456)

style_roche_pvalue(x)
label_roche_pvalue() (x)

percent formatting
X <- c(0.0008, 0.9998)

style_roche_percent(x)
label_roche_percent () (x)

ratio formatting
X <- c(0.0008, 0.8234, 2.123, 1000)

style_roche_ratio(x)
label_roche_ratio() (x)

number formatting
X <- c(0.0008, 0.8234, 2.123, 1000, NA, Inf, -Inf)

style_roche_number(x)
label_roche_number () (x)

modify_header_rm_md Remove Markdown Syntax from Header

Description
Remove markdown syntax (e.g. double star for bold, underscore for italic, etc) from the headers
and spanning headers of a gtsummary table.

Usage
modify_header_rm_md(x, md = "bold"”, type = "star")

Arguments
X (gtsummary)
A gtsummary table
md (character)
Must be one or more of 'bold' and 'italic'. Defaultis 'bold’.
type (character)

Must be one or more of 'star' and 'underscore'. Defaultis 'star'.

16 modify_zero_recode

Value

gtsummary table

Examples

tbl_roche_summary(
data = cards::ADSL,
include = AGE,

by = ARM,
nonmissing = "always"
) 1>

modify_header_rm_md()

modify_zero_recode Zero Count Recode

Description

This function removes the percentage from cells with zero counts. For example,

0 (0.0%) -—> 0

0 (0%) --> 0

0 (NA%) -—> 0

@ / nn (0%) -=> 0 / nn

@/nn (0.0%) --> @/nn

0/ 0 (N\%) --> 0/ @
Usage

modify_zero_recode(x)

Arguments
X (gtsummary)
a gtsummary table
Details

The function is a wrapper for gtsummary: :modify_post_fmt_fun().

gtsummary: :modify_post_fmt_fun(
X,
fmt_fun = \(x) {
dplyr::case_when(
convert "0 (0%)" OR "0 (0.0%)" OR @ (NA%) to "@"
str_detect(x, "*O\\s\\((?:0(?:\\.0)?|NAY%\\)$") ~ str_remove(x, pattern = "\\s\\((?:0(?:\\.0)?|NA
convert "0 / nn (0%)" OR "@/nn (0.0%)" OR @/@ (NA%) to "@ / nn" OR "@/nn" OR "0/0"

tbl_baseline_chg 17

str_detect(x, pattern ="2(0 ?/) MN\d+[*()I* \\((?:0(?:\\.0)?|NAY%\\)$") ~ str_remove(x, pattern =
.default = x
)
1,

columns = gtsummary::all_stat_cols()

Value

a gtsummary table

Examples

trial |>
dplyr::mutate(trt = factor(trt, levels = c("Drug A", "Drug B", "Drug C"))) |>
tbl_summary(include = trt) |>
modify_zero_recode()

tbl_baseline_chg Change from Baseline

Description

Typical use is tabulating changes from baseline measurement of an Analysis Variable.

Usage

tbl_baseline_chg(
data,
baseline_level,
denominator,
by = NULL,
digits = NULL,
id = "USUBJID",
visit = "AVISIT",
visit_number = "AVISITN",
analysis_variable = "AVAL",
change_variable = "CHG"

)

S3 method for class 'tbl_baseline_chg'
add_overall(
X,
last = FALSE,
col_label = "All Participants \n(N = {style_roche_number(n)3})",

18 tbl_baseline_chg

Arguments
data (data.frame)
A data frame.

baseline_level (string)
String identifying baseline level in the visit variable.

denominator (string)
Data set used to compute the header counts (typically ADSL).
by (tidy-select)

A single column from data. Summary statistics will be stratified by this vari-
able. Default is NULL.

digits (formula-list-selector)
Specifies how summary statistics are rounded. Values may be either integer(s) or
function(s). If not specified, default formatting is assigned via assign_summary_digits().
See below for details.
id (string)
String identifying the unique subjects. Default is 'USUBJID'.
visit (string)
String for the visit variable. Default is 'AVISIT'. If there are more than one
entry for each visit and subject, only the first row is kept.
visit_number (string)
String identifying the visit or analysis sequence number. Default is ' AVISITN'.
analysis_variable
(string)
String identifying the analysis values. Default is 'AVAL'.
change_variable
(string)
String identifying the change from baseline values. Default is 'CHG'.
X (tbl_summary, tbl_svysummary, tbl_continuous, tbl_custom_summary)
A stratified *gtsummary’ table
last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

col_label (string)
String indicating the column label. Defaultis "**0Overallx* \nN = {style_number (N)}"

These dots are for future extensions and must be empty.

Value

a gtsummary table

Examples

theme_gtsummary_roche ()

df <- cards::ADLB |>

tbl_hierarchical_rate_and_count 19

dplyr::mutate(AVISIT = trimws(AVISIT)) |>
dplyr::filter(
AVISIT != "End of Treatment”,

PARAMCD == "SODIUM"
)
tbl_baseline_chg(
data = df,
baseline_level = "Baseline”,
by = "TRTA",
denominator = cards::ADSL
)
tbl_baseline_chg(
data = df,
baseline_level = "Baseline”,
by = "TRTA",
denominator = cards::ADSL
) 1>

add_overall(last = TRUE, col_label = "All Participants”)

tbl_hierarchical_rate_and_count
Hierarchical Rates and Counts

Description

A mix of adverse event rates (from gtsummary: : tbl_hierarchical ()) and counts (from gtsummary: : tbl_hierarchical _
The function produces additional summary rows for the higher level nesting variables providing
both rates and counts.

When a hierarchical summary is filtered, the summary rows no longer provide useful/consistent in-
formation. When creating a filtered summary, use gtsummary: : tbl_hierarchical() orgtsummary::tbl_hierarchical_
directly, followed by a call to gtsummary: :filter_hierarchical().

Usage

tbl_hierarchical_rate_and_count(
data,
variables,
denominator,
by = NULL,
id = "USUBJID",
label = NULL,
digits = NULL,
sort = NULL,
label_overall_rate = "Total number of participants with at least one adverse event”,
label_overall_count = "Overall total number of events”,

20

label_rate
label_count

)

tbl hierarchical rate _and_count

"Total number of participants with at least one adverse event”,

"Total number of events”

S3 method for class 'tbl_hierarchical_rate_and_count'

add_overall(

X’

last = FALSE,

col_label = "All Participants \n(N = {style_roche_number(N)})",

Arguments

data

variables

denominator

by

id

label

digits

sort

(data.frame)
a data frame.

(tidy-select)

Hierarchical variables to summarize. Must be 2 or 3 variables. Typical inputs
are c (AEBODSYS, AEDECOD) for an SOC/AE summary or c (AEBODSYS, AEHLT,
AEDECOD) for an SOC/HLT/AE summary.

Variables must be specified in the nesting order.

(data.frame, integer)

used to define the denominator and enhance the output. The argument is required
for tbl_hierarchical() and optional for tbl_hierarchical_count(). The
denominator argument must be specified when id is used to calculate event
rates.

(tidy-select)
a single column from data. Summary statistics will be stratified by this variable.
Default is NULL.

(tidy-select)
argument used to subset data to identify rows in data to calculate event rates in
tbl_hierarchical().

(formula-list-selector)

used to override default labels in hierarchical table, e.g. 1ist (AESOC = "System
Organ Class”). The default for each variable is the column label attribute,
attr(., 'label'). If no label has been set, the column name is used.

(formula-list-selector)

Specifies how summary statistics are rounded. Values may be either integer(s)
or function(s). If a theme is applied, the digits specifications of the theme is
applied.

Optional arguments passed to gtsummary: :sort_hierarchical(sort).

label_overall_rate

(string)
String for the overall rate summary. Defaultis "Total number of participants
with at least one adverse event”.

tbl_hierarchical_rate_by_grade 21

label_overall_count
(string)
String for the overall count summary. Default is "Overall total number of
events”.

label_rate (string)
String for the rate summary. Default is "Overall total number of events”.
"Total number of participants with at least one adverse event".

label_count (string)
String for the overall count summary. Default is "Total number of events”.

X (tbl_hierarchical_rate_and_count)
a stratified ’tbl_hierarchical_rate_and_count’ table

last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

col_label (string)
String indicating the column label. Defaultis "**0verallx* \nN = {style_number (N)}"

These dots are for future extensions and must be empty.

Value

a gtsummary table

Examples

Example 1 -——-=--=—--——————————
cards::ADAE[c(1, 2, 3, 8, 16), 1 |>
tbl_hierarchical_rate_and_count(
variables = c(AEBODSYS, AEDECOD),
denominator = cards::ADSL,
by = TRTA
) 1>
add_overall(last = TRUE)

tbl_hierarchical_rate_by_grade
AE Rates by Highest Toxicity Grade

Description

A wrapper function for gtsummary: :tbl_hierarchical() to calculate rates of highest toxicity
grades with the options to add rows for grade groups and additional summary sections at each
variable level.

Only the highest grade level recorded for each subject will be analyzed. Prior to running the func-
tion, ensure that the toxicity grade variable (grade) is a factor variable, with factor levels ordered
lowest to highest.

Grades will appear in rows in the order of the factor levels given, with each grade group appearing
prior to the first level in its group.

22

Usage

tbl_hierarchical_rate_by_grade

tbl_hierarchical_rate_by_grade(

data,
variables,

denominator,

by = NULL,

id = "USUBJID",
include_overall = everything(),

statistic

everything() ~ "{n} ({p3}%)",
label = NULL,

digits = NULL,
sort = "alphanumeric”,
filter = NULL,
grade_groups = list(),
grades_exclude = NULL,
keep_zero_rows = FALSE

)

S3 method for class 'tbl_hierarchical_rate_by_grade'

add_overall(
X,

last = FALSE,

col_label = "**Qverallx**x \nN = {style_number(N)3}",

statistic

NULL,

digits = NULL,

Arguments

data

variables

denominator

by

id

(data.frame)
a data frame.

(tidy-select)

A character vector or tidy-selector of 3 columns in data specifying a system
organ class variable, an adverse event terms variable, and a toxicity grade level
variable, respectively.

(data.frame, integer)

used to define the denominator and enhance the output. The argument is required
for tbl_hierarchical() and optional for tbl_hierarchical_count(). The
denominator argument must be specified when id is used to calculate event
rates.

(tidy-select)
a single column from data. Summary statistics will be stratified by this variable.
Default is NULL.

(tidy-select)

argument used to subset data to identify rows in data to calculate event rates in
tbl_hierarchical().

tbl_hierarchical_rate_by_grade 23

include_overall
(tidy-select)
Variables from variables for which an overall section at that hierarchy level
should be computed. An overall section at the SOC variable level will have
label "- Any adverse events -". An overall section at the AE term variable
level will have label "- Overall -". If the grade level variable is included it has

no effect. The default is everything().

statistic (formula-list-selector)
used to specify the summary statistics to display for all variables in tbl_hierarchical().
The default is everything() ~ "{n} ({p})".

label (formula-list-selector)
used to override default labels in hierarchical table, e.g. 1ist (AESOC = "System
Organ Class”). The default for each variable is the column label attribute,
attr(., 'label'). If no label has been set, the column name is used.

digits (formula-list-selector)
specifies how summary statistics are rounded. Values may be either integer(s) or
function(s). If not specified, default formatting is assigned via 1label_style_number ()
for statistics n and N, and 1label_style_percent(digits=1) for statistic p.

sort (formula-list-selector, string)
a named list, a list of formulas, a single formula where the list element is a
named list of functions (or the RHS of a formula), or a string specifying the
types of sorting to perform at each hierarchy level. If the sort method for any
variable is not specified then the method will default to "descending”. If a
single unnamed string is supplied it is applied to all hierarchy levels. For each
variable, the value specified must be one of:

* "alphanumeric” - at the specified hierarchy level, groups are ordered al-
phanumerically (i.e. A to Z) by variable_level text.

* "descending” - at the specified hierarchy level, count sums are calculated
for each row and rows are sorted in descending order by sum. If sort is
"descending” for a given variable and n is included in statistic for the
variable then n is used to calculate row sums, otherwise p is used. If neither
n nor p are present in x for the variable, an error will occur.

Defaults to everything() ~ "descending".

filter (expression)
An expression that is used to filter rows of the table. Filter will be applied to the
second variable (adverse event terms) specified via variables. See the Details
section below for more information.

grade_groups (named list)
A named list of grade groups for which rates should be calculated. Grade groups
must be mutually exclusive, i.e. each grade cannot be assigned to more than one
grade group. Each grade group must be specified in the list as a character vector
of the grades included in the grade group, named with the corresponding name
of the grade group, e.g. "Grade 1-2" =c("1", "2").

grades_exclude (character)
A vector of grades to omit individual rows for when printing the table. These
grades will still be used when computing overall totals and grade group totals.

24 tbl_hierarchical_rate_by_grade

For example, to avoid duplication, if a grade group is defined as "Grade 5" =
"5", the individual rows corresponding to grade 5 can be excluded by setting
grades_exclude = "5".

keep_zero_rows (logical)
Whether rows containing zero rates across all columns should be kept. If FALSE,
this filter will be applied prior to any filters specified via the filter argument
which may still remove these rows. Defaults to FALSE.

X (tbl_hierarchical_rate_by_grade)
A gtsummary table of class 'tbl_hierarchical_rate_by_grade'.

last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

col_label (string)
String indicating the column label. Defaultis "**0Overallxx \nN = {style_number (N)}"

These dots are for future extensions and must be empty.

Details

When using the filter argument, the filter will be applied to the second variable from variables,
i.e. the adverse event terms variable. If an AE does not meet the filtering criteria, the AE overall
row as well as all grade and grade group rows within an AE section will be excluded from the table.
Filtering out AEs does not exclude the records corresponding to these filtered out rows from being
included in rate calculations for overall sections. If all AEs for a given SOC have been filtered out,
the SOC will be excluded from the table. If all AEs are filtered out and the SOC variable is included
in include_overall the - Any adverse events - section will still be kept.

See gtsummary: :filter_hierarchical() for more details and examples.

Value

a gtsummary table of class "tbl_hierarchical_rate_by_grade".

Examples

theme_gtsummary_roche()
ADSL <- cards::ADSL
ADAE_subset <- cards::ADAE |>
dplyr::filter(
AESOC %in% unique(cards::ADAE$AESOC)[1:5],
AETERM %in% unique(cards: :ADAE$AETERM)[1:10]
)

grade_groups <- list(
"Grade 1-2" = c("1", "2"),
"Grade 3-4" = c("3", "4"),
"Grade 5" = "5"

)

Example 1 -----------——---——mo oo
tbl_hierarchical_rate_by_grade(

tbl_listing 25

ADAE_subset,

variables = c(AEBODSYS, AEDECOD, AETOXGR),

denominator = ADSL,

by = TRTA,

label = list(
AEBODSYS = "MedDRA System Organ Class”,
AEDECOD = "MedDRA Preferred Term”,
AETOXGR = "Grade”

)?
grade_groups = grade_groups,
grades_exclude = "5"
)
Example 2 -----------——---mmmo oo

Filter: Keep AEs with an overall prevalence of greater than 10%
tbl_hierarchical_rate_by_grade(
ADAE_subset,
variables = c(AEBODSYS, AEDECOD, AETOXGR),
denominator = ADSL,
by = TRTA,
grade_groups = list("Grades 1-2" = c("1", "2"), "Grades 3-5" = c("3", "4", "5")),
filter = sum(n) / sum(N) > @.10
) 1>
add_overall(last = TRUE)

tbl_listing Create listings from a data frame

Description

This function creates a listing from a data frame. Common uses rely on few pre-processing steps,
such as ensuring unique values in key columns or split by rows or columns. They are described in
the note section.

Usage

tbl_listing(
data,
split_by_rows = list(),
split_by_columns = list(),
add_blank_rows = list()

remove_duplicate_keys(x, keys = NULL, value = NA)

Arguments

data (data.frame)
a data frame containing the data to be displayed in the listing.

26

tbl_listing

split_by_rows, split_by_columns, add_blank_rows

keys

value

Note

(named list)

* split_by_rows: Named list of arguments that are passed to gtsummary: : tbl_split_by_rows().
e split_by_columns: Named list of arguments that are passed to gtsummary: : tbl_split_by_colum
¢ add_blank_rows: Named list of arguments that are passed to crane: :add_blank_rows().
add_blank_rows() is applied after table splitting and applied to each table
individually.
Variable names passed in these named lists must be character vectors, tidyse-
lect/unquoted syntax is not accepted.
(tbl_listingor list)
atbl_listing object or alist of tbl_listing objects.
(tidy-select)
columns to highlight for duplicate values. If NULL, nothing is done.

(string)
string to use for blank values. Defaults to NA. It should not be changed.

Common pre-processing steps for the data frame that may be common:

* Unique values - this should be enforced in pre-processing by users.

* NA values - they are not printed by default in {gtsummary}. You can make them explicit if
they need to be displayed in the listing. See example 3.

* Sorting key columns and moving them to the front. See the examples pre-processing.

Splitting the listing:

* Split by rows - you can split the data frame by rows by using split_by_rows parameter. You
can use the same parameters used in gtsummary: : tbl_split_by_rows(). See example 4.

* Split by columns - you can split the data frame by columns by using split_by_columns pa-
rameter. Use the same parameters from gtsummary: :tbl_split_by_rows(). See example

5.

Examples

Load the trial dataset
trial_data <- trial |>

dplyr:
dplyr::
dplyr:
dplyr:
dplyr::

Example 1

:select(trt, age, marker, stage) |>

filter(stage %in% c("T2", "T3")) |>

:slice_head(n = 2, by = c(trt, stage)) |> # downsampling
:arrange(trt, stage) |> # key columns should be sorted
relocate(trt, stage) # key columns should be first

out <- tbhl_listing(trial_data)

out

out |> remove_duplicate_keys(keys = "trt")

tbl_null_report 27

Example 2 --—----—----mmmmmmmm oo
make NAs explicit
trial_data_na <- trial_data |>
mutate(across(everything(), ~ tidyr::replace_na(labelled::to_character(.), "-")))
tbl_listing(trial_data_na)

Example 3 --—----—---mmmmmmmmm oo

Add blank rows for first key column

1st <- tbl_listing(trial_data_na, add_blank_rows = list(variable_level = "trt"))
1st

Can add them also manually in post-processing
1st |> add_blank_rows(row_numbers = seq(2))

Example 4 —------——mmmmmmmmmmmmmmmmmmmoo
Split by rows

list_lst <- tbl_listing(trial_data, split_by_rows = list(row_numbers = c(2, 3, 4)))
list_1st[[2]]

Example 5 ———-—-—-—-—-———m

Split by columns

show_header_names(1st)

grps <- list(c("trt", "stage", "age"), c("trt"”, "stage”, "marker"))
list_lst <- tbl_listing(trial_data, split_by_columns = list(groups = grps))
list_1st[[2]1]

Example 6 -—-—--——-———-———————-———
Split by rows and columns
list_lst <- tbl_listing(trial_data,
split_by_rows = list(row_numbers = c(2, 3, 4)), split_by_columns = list(groups = grps)
)
length(list_lst) # 8 tables are flatten out
list_1st[[2]]

Example 7 ------------—---—mmo oo
Hide duplicate columns in post-processing
out <- list_lIst |>
remove_duplicate_keys(keys = c("trt"”, "stage"))

out[[2]]

tbl_null_report Creates null report

Description

This function creates a null report for tables or listings without any statistics.

28 tbl_roche_subgroups

Usage
tbl_null_report(
label = "No observations met the reporting criteria for this output.”
)
Arguments
label (string)
label to display in the header of the null report. It defaults to "No observations
met the reporting criteria for this output.”
Examples

tbl_null_report(label = "No data available for the selected criteria.")

tbl_roche_subgroups Subgroup Analyses

Description

Function adapted from gtforester: :tbl_subgroups().

Usage

tbl_roche_subgroups(data, rsp, by, subgroups, .tbl_fun)

Arguments
data (data.frame, survey.design)
a data frame or survey object
rsp (tidy-select)
Variable to use in responder rate calculations.
by (tidy-select)
Variable to make comparison between groups.
subgroups (tidy-select)
Variables to perform stratified analyses for.
.tbl_fun (function) A function or formula. If a function, it is used as is. If a formula,
e.g. ~ .x%>% tbl_summary() %>% add_p(), it is converted to a function. The
stratified data frame is passed to this function.
Value

a ’gtsummary’ table

tbl_roche_summary 29

Examples
tbl <-
trial |>
tbl_roche_subgroups(
rsp = "response”,
by = "trt",
subgroups = c("grade"”, "stage"),
.tbl_fun =
~ glm(response ~ trt, data = .x) |>
tbl_regression(
show_single_row = trt,
exponentiate = TRUE
)
)
tbl
tbl_roche_summary Roche Summary Table
Description

This is a thin wrapper of gtsummary: : tbl_summary() with the following differences:

¢ Default summary type for continuous variables is 'continuous2'.

* Number of non-missing observations, when requested, is added for each variable and placed
on the row under the variable label/header.

e The tbl_summary(missingx) arguments have been renamed to tbl_roche_summary(nonmissingx)
with updated default values.

¢ The default footnotes from tb1l_summary () are removed.

e Cells with "0 (0.0%)" are converted to "@" with gtsummary: :modify_post_fmt_fun().

Usage

tbl_roche_summary(
data,
by = NULL,
label = NULL,
statistic = list(gtsummary::all_continuous() ~ c("{mean} ({sd})", "{median}",
"{min} - {max}"), gtsummary::all_categorical() ~ "{n} ({p}%)"),
digits = NULL,
type = NULL,
value = NULL,
nonmissing = c("no”, "always"”, "ifany"),
nonmissing_text = "n",
nonmissing_stat = "{N_nonmiss}",

30 tbl_roche_summary

sort = gtsummary::all_categorical (FALSE) ~ "alphanumeric”,
percent = c("column”, "row", "cell"),
include = everything()

)

Arguments
data (data.frame)
A data frame.
by (tidy-select)

A single column from data. Summary statistics will be stratified by this vari-
able. Default is NULL.

label (formula-list-selector)
Used to override default labels in summary table, e.g. list(age = "Age, years").
The default for each variable is the column label attribute, attr(., 'label').
If no label has been set, the column name is used.

statistic (formula-list-selector)
Specifies summary statistics to display for each variable. The defaultis 1ist(all_continuous()
~"{median} ({p253}, {p75})", all_categorical() ~ "{n} ({p}%)"). See
below for details.

digits (formula-list-selector)
Specifies how summary statistics are rounded. Values may be either integer(s) or
function(s). If not specified, default formatting is assigned via assign_summary_digits().
See below for details.

type (formula-list-selector)
Specifies the summary type. Accepted value are c("continuous”, "continuous2”,
"categorical”, "dichotomous”). If not specified, default type is assigned via
assign_summary_type(). See below for details.

value (formula-list-selector)
Specifies the level of a variable to display on a single row. The gtsummary type
selectors, e.g. all_dichotomous(), cannot be used with this argument. Default
is NULL. See below for details.

nonmissing, nonmissing_text, nonmissing_stat
Arguments dictating how and if missing values are presented:

e nonmissing: must be one of c("always”, "ifany", "no")

* nonmissing_text: string indicating text shown on non-missing row. De-
fault is "n"”

* nonmissing_stat: statistic to show on non-missing row. Defaultis "{N_nonmiss}".
Possible values are N_nonmiss, N_miss, N_obs, p_nonmiss p_miss.

sort (formula-list-selector)
Specifies sorting to perform for categorical variables. Values must be one of
c("alphanumeric”, "frequency”). Default is all_categorical (FALSE) ~
"alphanumeric”.

percent (string)
Indicates the type of percentage to return. Must be one of c("”column”,
"cell”). Default is "column”.

n n

row”,

tbl_shift 31

In rarer cases, you may need to define/override the typical denominators. In

these cases, pass an integer or a data frame. Refer to the ?cards: :ard_tabulate(denominator)
help file for details. When a data frame is passed, this data frame is used to cal-

culate header counts.

include (tidy-select)
Variables to include in the summary table. Default is everything().

Value

a’gtsummary’ table

Examples

Example 1 -----------—mmmm oo
trial |>
tbl_roche_summary(
by = trt,
include = c(age, grade),
nonmissing = "always"”
) 1>
add_overall()

tbl_shift Shift Table

Description

Typical use is tabulating post-baseline measurement stratified by the baseline measurement.

Usage

tbl_shift(
data,
variable,
strata = NULL,
by = NULL,
data_header = NULL,
strata_location = c("new_column”, "header"),
strata_label = "{strata}”,
header = "{level} \nN = {n}",

label = NULL,
nonmissing = "always”,
nonmissing_text = "Total”,

)

S3 method for class 'tbl_shift'
add_overall(

32 tbl_shift

X’
col_label = "All Participants \n(N = {style_roche_number(n)})",
last = FALSE,
)
Arguments
data (data.frame)
A data frame.
variable (tidy-select)
Variable to tabulate. Typically the post-baseline grade.
strata (tidy-select)
Stratifying variable. Typically the baseline grade.
by (tidy-select)
Variable to report results by. Typical value is the treatment arm.
data_header (data.frame)

Data frame used to calculate the Ns in the table header. Only include the
columns needed to merge with data: these are typically the 'USUBJID' and
the treatment arm only, e.g ADSL[c("USUBJID", "ARM")1].

strata_location
(string)
Specifies the location where the individual stratum levels will be printed. Must
be one of c("new_column”, "header”). "new_column": stratum labels are
placed in a new column to the left of the tabulated results. "header": stratum
labels are placed in a header row above the tabulations.

strata_label (string)
A glue-string that inserts stratum level. Default is '{strata}', and {n} is also
available to insert.

header (string)
String that is passed to gtsummary: :modify_header(all_stat_cols() ~ header).

label (formula-list-selector)
Used to specify the labels for the strata and variable columns. Default is to
use the column label attribute.

nonmissing, nonmissing_text, ...
Argument passed to tbl_roche_summary(). See details below for call details
to tbl_roche_summary().

X (tbl_shift)
Object of class 'tbl_shift'.

col_label (string)
String indicating the column label. Defaultis "All Participants \nN = {style_roche_number(n)}"

last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

tbl_shift 33

Details

Broadly, this function is a wrapper for chunk below with some additional calls to gt summary: :modify_x()
function to update the table’s headers, indentation, column alignment, etc.

gtsummary: :tbl_strata2(
data = data,
strata = strata,
~ tbl_roche_summary(.x, include = variable, by = by)

Value

a’’gtsummary’ table

Examples

library(dplyr, warn.conflicts = FALSE)

subsetting ADLB on one PARAM, and the highest grade
adlb <- pharmaverseadam::adlb |>
select("USUBJID", "TRT@1A", "PARAM", "PARAMCD", "ATOXGRH", "BTOXGRH", "VISITNUM") [>
mutate(TRTO1A = factor(TRTQ1A)) |>
filter (PARAMCD %in% c("CHOLES", "GLUC")) |>
slice_max(by = c(USUBJID, PARAMCD), order_by = ATOXGRH, n = 1L, with_ties = FALSE) |>
labelled: :set_variable_labels(
BTOXGRH = "Baseline \nNCI-CTCAE Grade",
ATOXGRH = "Post-baseline \nNCI-CTCAE Grade"

)

adsl <- pharmaverseadam: :adsl[c("USUBJID", "TRTQ1A")] |>
filter(TRTQ1A != "Screen Failure")

Example 1 ———==—==———————mm e

tabulate baseline grade by worst grade

tbl_shift(

data = filter(adlb, PARAMCD %in% "CHOLES"),
strata = BTOXGRH,
variable = ATOXGRH,

by = TRTO1A,
data_header = adsl
)
Example 2 -——----—-—-----mmmmmmm oo
same as Ex1, but with the stratifying variable levels in header rows
adlb |>

filter (PARAMCD %in% "CHOLES") [|>
labelled: :set_variable_labels(
BTOXGRH = "Baseline NCI-CTCAE Grade",
ATOXGRH = "Post-baseline NCI-CTCAE Grade”
) 1>
tbl_shift(
data = ,

34 tbl_shift

strata = BTOXGRH,

variable = ATOXGRH,
strata_location = "header”,
by = TRTQ1A,

data_header = adsl

)

Example 3 -----------——---mmmo oo
same as Ex2, but with two labs
adlb [>
labelled: :set_variable_labels(
BTOXGRH = "Baseline NCI-CTCAE Grade”,
ATOXGRH = "Post-baseline NCI-CTCAE Grade"
e
tbl_strata_nested_stack(
strata = PARAM,
~ X >
tbl_shift(
strata = BTOXGRH,
variable = ATOXGRH,

strata_location = "header”,
by = TRTO1A,
data_header = adsl
)
) 1>

Update header with Lab header and indentation (the '\U@0A@' character adds whitespace)
modify_header(
label = "Lab \n\U0QAQ\UQQAQ\UQOAQ\UQOAD
Baseline NCI-CTCAE Grade \n\UQQAQ\UQ0AQ\U0QAQ\UROAQ\UGOAD\UOOAR\UQOAD\UORAD
Post-baseline NCI-CTCAE Grade”

Example 4 --—-----—--————————————
Include the treatment variable in a new column
filter(adlb, PARAMCD %in% "CHOLES") |>
right_join(
pharmaverseadam: :ads1[c("USUBJID", "TRTQ1A")] |>

filter(TRTQ1A != "Screen Failure"),
by = c("USUBJID", "TRT@1A")
N
tbl_shift(

strata = TRTO1A,

variable = BTOXGRH,

by = ATOXGRH,

header = "{level}",

strata_label = "{strata}, N={n}",

label = 1ist(TRTQ1A = "Actual Treatment”),

percent = "cell”,
nonmissing = "no"
) 1>

modify_spanning_header(all_stat_cols() ~ "Worst Post-baseline NCI-CTCAE Grade")

tbl_survfit_quantiles 35

tbl_survfit_quantiles Survival Quantiles

Description

Create a gtsummary table with Kaplan-Meier estimated survival quantiles. If you must further
customize the way these results are presented, see the Details section below for the full details.

Usage
tbl_survfit_quantiles(
data,
y = "survival::Surv(time = AVAL, event = 1 - CNSR, type = 'right', origin =0)",
by = NULL,
header = "Time to event”,
estimate_fun = label_roche_number(digits = 1, na = "NE"),
method.args = list(conf.int = 0.95)

)

S3 method for class 'tbl_survfit_quantiles'
add_overall(
X,
last = FALSE,
col_label = "All Participants \nN = {style_roche_number(N)3}",

)
Arguments
data (data.frame)
A data frame
y (string or expression)

A string or expression with the survival outcome, e.g. survival::Surv(time,
status). The default value is survival: :Surv(time = AVAL, event =1 - CNSR,
type = "right”, origin=20).

by (tidy-select)
A single column from data. Summary statistics will be stratified by this vari-
able. Default is NULL, which returns results for the unstratified model.

header (string)
String for the header of the survival quantile chunks. Defaultis "Time to event”.

estimate_fun (function)
Function used to round and format the estimates in the table. Default is 1abel_roche_number (digits
=1).

method. args (named list)
Named list of arguments that will be passed to survival::survfit().

36 tbl_survfit_quantiles

Note that this list may contain non-standard evaluation components, and must
be handled similarly to tidyselect inputs by using rlang’s embrace operator {{ .
}} or !'lenquo() when programming with this function.

X (tbl_survfit_quantiles)
A stratified ’tbl_survfit_quantiles’ object.

last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

col_label (string)
String indicating the column label. Defaultis "*x0Overallx*x \nN = {style_number (N)}"

These dots are for future extensions and must be empty.

Value

a gtsummary table

ARD-first

This function is a helper for creating a common summary. But if you need to modify the appearance
of this table, you may need to build it from ARDs.

Here’s the general outline for creating this table directly from ARDs.

1. Create an ARD of survival quantiles using cardx: :ard_survival_survfit().
2. Construct an ARD of the minimum and maximum survival times using cards: :ard_summary ().

3. Combine the ARDs and build summary table with gtsummary: : tbl_ard_summary().

get the survival quantiles with 95% CI
ard_surv_quantiles <-
cardx::ard_survival_survfit(
X = cards::ADTTE,
y = survival::Surv(time = AVAL, event = 1 - CNSR, type = 'right', origin = 0),
variables = "TRTA",
probs = c(0.25, 0.50, 0.75)
E
modify the shape of the ARD to look like a
'continuous' result to feed into “tbl_ard_summary()"
dplyr: :mutate(
stat_name = paste@(.data$stat_name, 100 * unlist(.data$variable_level)),
variable_level = list(NULL)
)

get the min/max followup time
ard_surv_min_max <-
cards: :ard_summary(
data = cards::ADTTE,
variables = AVAL,
by = "TRTA”,

tbl_survfit_quantiles 37

statistic = everything() ~ cards::continuous_summary_fns(c("min", "max"))

)

stack the ARDs and pass them to ~tbl_ard_summary()"
cards: :bind_ard(

ard_surv_quantiles,

ard_surv_min_max

) 1>
tbl_ard_summary(
by = "TRTA”,
type = list(prob = "continuous2", AVAL = "continuous"),

statistic = list(
prob = c("{estimate50}", "({conf.low503}, {conf.high503})", "{estimate25}, {estimate75}"),
AVAL = "{min} to {max}"

),
label = list(
prob = "Time to event”,
AVAL = "Range"”
)
) 1>

directly modify the labels in the table to match spec
modify_table_body(
~ x>
dplyr::mutate(
label = dplyr::case_when(
.data$label == "Survival Probability” ~ "Median”,
.data$label == "(CI Lower Bound, CI Upper Bound)" ~ "95% CI",
.data$label == "Survival Probability, Survival Probability" ~ "25% and 75%-ile",
.default = .data$label

)
)
) 1>
update indentation to match spec
modify_indent(columns = "label”, rows = label == "95% CI”, indent = 8L) |>
modify_indent(columns = "label”, rows = .data$label == "Range", indent = 4L) |>

remove default footnotes
remove_footnote_header(columns = all_stat_cols())

Examples

Example 1 --—----——--——mmmmmmm oo
tbl_survfit_quantiles(
data = cards::ADTTE,

by = "TRTA",
estimate_fun = label_roche_number(digits = 1, na = "NE")
) 1>

add_overall(last = TRUE, col_label = "#xAll Participants*x \nN = {n}")

Example 2: unstratified analysis -----------

38 tbl_survfit_times

tbl_survfit_quantiles(data = cards::ADTTE)

tbl_survfit_times Survival Times

Description

Create a gtsummary table with Kaplan-Meier estimated survival estimates and specified times.

Usage
tbl_survfit_times(
data,
times,
y = "survival::Surv(time = AVAL, event = 1 - CNSR, type = 'right', origin =0)",
by = NULL,

label = "Time {time}",
statistic = c("{n.risk}", "{estimate}", "({conf.low}, {conf.high})"),
estimate_fun = label_roche_number(digits = 1, scale = 100),
method.args = list(conf.int = 0.95)

)

S3 method for class 'tbl_survfit_times'
add_difference_row(
X,
reference,
statistic = c("{estimate}”, "({conf.low}, {conf.high})", "{p.value}"),
conf.level = 0.95,
pvalue_fun = label_roche_pvalue(),
estimate_fun = label_roche_number(digits = 2, scale = 100),

)

S3 method for class 'tbl_survfit_times'
add_overall(
X?
last = FALSE,
col_label = "All Participants \nN = {style_roche_number(N)}",

)
Arguments
data (data.frame)
A data frame
times (numeric)

a vector of times for which to return survival probabilities.

tbl_survfit_times 39

y (string or expression)
A string or expression with the survival outcome, e.g. survival::Surv(time,
status). The default value is survival: :Surv(time = AVAL, event =1 - CNSR,
type = "right"”, origin =0).

by (tidy-select)
A single column from data. Summary statistics will be stratified by this vari-
able. Default is NULL, which returns results for the unstratified model.

label (string)
Label to appear in the header row. Default is "Time {time}", where the glue
syntax injects the time estimate into the label.

statistic (character)
Character vector of the statistics to report. May use any of the following statis-
tics: c(n.risk, estimate, std.error, conf.low, conf.high), Defaultis c("{n.risk}",
"{estimate}", "({conf.low}, {conf.high})")

Statistics available to include when using add_difference_row() are: "estimate”,

non n o n non

"std.error”, "statistic”, "conf.low"”, "conf.high”, "p.value".

estimate_fun (function)
Function used to style/round the c(estimate, conf.low, conf.high) statis-
tics.

method. args (named list)
Named list of arguments that will be passed to survival: :survfit().

Note that this list may contain non-standard evaluation components, and must
be handled similarly to tidyselect inputs by using rlang’s embrace operator {{ .
}} or !lenquo() when programming with this function.

X (tbl_survfit_times)
A stratified ’tbl_survfit_times’ object

reference (string)
Value of the tbl_survfit_times(by) variable value that is the reference for
each of the difference calculations. For factors, use the character level. The
reference column will appear as the leftmost column in the table.

conf.level (numeric)
a scalar in the interval (@, 1) indicating the confidence level. Default is 0.95

pvalue_fun (function)
Function to round and format the p. value statistic. Defaultis 1abel_roche_pvalue().
The function must have a numeric vector input, and return a string that is the
rounded/formatted p-value (e.g. pvalue_fun = label_style_pvalue(digits
=3)).

These dots are for future extensions and must be empty.

last (scalar logical)
Logical indicator to display overall column last in table. Default is FALSE, which
will display overall column first.

col_label (string)
String indicating the column label. Defaultis "**0Overallxx \nN = {style_number (N)}"

40 theme_gtsummary_roche

Details

When the statistic argument is modified, the statistic labels will likely also need to be updated.
To change the label, call the modify_table_body() function to directly update the underlying
x$table_body data frame.

Value

a gtsummary table

Methods (by generic)

e add_difference_row(tbl_survfit_times): Adds survival differences between groups as
additional rows to tables created by tbl_survfit_times().

Difference statistics are calculated using cardx::ard_survival_survfit_diff() for all
tbl_survfit_times(times) variable values, using survfit formula:

survival::survfit(y ~ by, data = data)

where y, by and data are the inputs of the same names to the tbl_survfit_times() object
X.

Pairwise differences are calculated relative to the specified by variable’s specified reference
level.

Examples

Example 1 ——-—=------——————m
tbl_survfit_times(

data = cards::ADTTE,

by = "TRTA",

times = c(30, 60),

label = "Day {time}"
) 1>

add_overall()
Example 2 - Survival Differences -----------
tbl_survfit_times(

data = cards::ADTTE,

by = "TRTA",

times = c(30, 60),

label = "Day {time}"
) 1>

add_difference_row(reference = "Placebo")

theme_gtsummary_roche Roche Theme

theme_gtsummary_roche 41

Description
A gtsummary theme for Roche tables

* flextable- and gt-printed tables are styled with reduced padding and font size.

» Uses label_roche_pvalue() as the default formatting function for all p-values.

* Uses label_roche_percent() as the default formatting function for all percent values.
* Font size defaults are 8 points for all the table by the footers that are 7 points.

¢ Border defaults to flextable: : fp_border_default(width =0.5).

* The add_overall(col_label) default value has been updated.

e The results from gtsummary: : tbl_hierarchical () and gtsummary: :tbl_hierarchical_count()
are now post-processed with gtsummary: : remove_footnote_header(), crane: :modify_zero_recode(),
and crane: :modify_header_rm_md().

Usage

theme_gtsummary_roche(
font_size = NULL,
print_engine = c("flextable”, "gt", "kable", "kable_extra”, "huxtable”, "tibble"),
set_theme = TRUE

)

Arguments

font_size (scalar numeric)
Numeric font size for compact theme. Default is 13 for gt tables, and 8 for all
other output types

print_engine String indicating the print method. Must be one of "gt", "kable", "kable_extra",
"flextable”, "tibble"”

set_theme (scalar logical)
Logical indicating whether to set the theme. Default is TRUE. When FALSE the
named list of theme elements is returned invisibly

Value

theme list

Examples

theme_gtsummary_roche ()

tbl_roche_summary (

trial,

by = trt,

include = c(age, grade),
nonmissing = "always”

)

reset_gtsummary_theme()

Index

?cards::ard_tabulate(denominator), 31/

add_blank_rows, 2
add_difference_row.tbl_survfit_times
(tbl_survfit_times), 38
add_hierarchical_count_row, 3
add_overall.tbl_baseline_chg

(tbl_baseline_chg), 17

add_overall.tbl_hierarchical_rate_and_count
(tbl_hierarchical_rate_and_count),

19

add_overall.tbl_hierarchical_rate_by_grade
(tbl_hierarchical_rate_by_grade),

21
add_overall.tbl_shift (tbl_shift), 31
add_overall.tbl_survfit_quantiles
(tbl_survfit_quantiles), 35
add_overall.tbl_survfit_times
(tbl_survfit_times), 38
annotate_coxph (annotate_gg_km), 5
annotate_gg_km, 5
annotate_riskdf (annotate_gg_km), 5
annotate_surv_med (annotate_gg_km), 5

cardx::ard_survival_survfit_diff(), 40
extract_plot_data(), 12

g_forest, 11

get_cox_pairwise_df, 7
get_cox_pairwise_df(), 6
gg_forest_plot(), 12

gg_km, 9

gg_km(), 5, 6
gtsummary::filter_hierarchical(), 24
gtsummary: :tbl_hierarchical(), 21
gtsummary: :tbl_regression(), 11
gtsummary: :tbl_split_by_rows(), 26
gtsummary: :tbl_summary(), 29

label_roche, 12

label_roche_number (label_roche), 12
label_roche_percent (label_roche), 12
label_roche_pvalue (label_roche), 12
label_roche_pvalue(), 39
label_roche_ratio (label_roche), 12

modify_header_rm_md, 15
modify_zero_recode, 16

process_survfit (gg_km), 9
process_survfit(), 6

remove_duplicate_keys (tbl_listing), 25

style_roche_number (label_roche), 12
style_roche_percent (label_roche), 12
style_roche_pvalue (label_roche), 12
style_roche_ratio (label_roche), 12
survival: :survfit, 10

tbl_baseline_chg, 17
tbl_hierarchical_rate_and_count, 19
tbl_hierarchical_rate_by_grade, 21
tbl_listing, 25

tbl_null_report, 27
tbl_roche_subgroups, 28
tbl_roche_summary, 29

tbl_shift, 31
tbl_survfit_quantiles, 35
tbl_survfit_times, 38
thbl_survfit_times(), 40
theme_gtsummary_roche, 40

	add_blank_rows
	add_hierarchical_count_row
	annotate_gg_km
	get_cox_pairwise_df
	gg_km
	g_forest
	label_roche
	modify_header_rm_md
	modify_zero_recode
	tbl_baseline_chg
	tbl_hierarchical_rate_and_count
	tbl_hierarchical_rate_by_grade
	tbl_listing
	tbl_null_report
	tbl_roche_subgroups
	tbl_roche_summary
	tbl_shift
	tbl_survfit_quantiles
	tbl_survfit_times
	theme_gtsummary_roche
	Index

