
Package ‘camtrapR’
January 25, 2026

Type Package

Title Camera Trap Data Management and Analysis Framework

Version 3.0.2

Date 2026-01-25

Description Management and analysis of camera trap wildlife data through
an integrated workflow. Provides functions for image/video
organization and metadata extraction, species/individual
identification. Creates detection histories for occupancy and spatial
capture-recapture analyses, with support for multi-season studies.
Includes tools for fitting community occupancy models in JAGS and
NIMBLE, and an interactive dashboard for survey data visualization and
analysis. Features visualization of species distributions and activity
patterns, plus export capabilities for GIS and reports. Emphasizes
automation and reproducibility while maintaining flexibility for
different study designs.

License GPL (>= 2)

URL https://github.com/jniedballa/camtrapR,

https://jniedballa.github.io/camtrapR/,

https://groups.google.com/forum/#!forum/camtrapr

BugReports https://groups.google.com/forum/#!forum/camtrapr

Depends R (>= 4.1.0)

Imports data.table, dplyr, DT, generics, ggplot2, leaflet, lubridate,
methods, secr, sf, shiny, shinyBS, shinydashboard, shinyjs,
terra

Suggests abind, bayesplot, callr, coda, corrplot, elevatr, iNEXT,
jsonify, jsonlite, knitr, lattice, magick, mapview, mockery,
nimble, nimbleEcology, overlap, parallel, patchwork, pbapply,
plotly, psych, R.rsp, raster, reshape2, ritis, rjags, rlang,
rmarkdown, RSQLite, rstudioapi, scales, shinyWidgets, stringr,
taxize, tesseract, testthat, tibble, ubms, units, unmarked,
viridisLite, withr, zip

VignetteBuilder R.rsp

1

https://github.com/jniedballa/camtrapR
https://jniedballa.github.io/camtrapR/
https://groups.google.com/forum/#!forum/camtrapr
https://groups.google.com/forum/#!forum/camtrapr

2 Contents

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements ExifTool (https://exiftool.org/)

NeedsCompilation no

Author Juergen Niedballa [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9187-2116>),

Alexandre Courtiol [aut] (ORCID:
<https://orcid.org/0000-0003-0637-2959>),

Rahel Sollmann [aut] (ORCID: <https://orcid.org/0000-0002-1607-2039>),
John Mathai [ctb],
Seth Timothy Wong [ctb] (ORCID:

<https://orcid.org/0000-0001-8083-9268>),
An The Truong Nguyen [ctb] (ORCID:

<https://orcid.org/0009-0000-2861-2672>),
Azlan bin Mohamed [ctb] (ORCID:

<https://orcid.org/0000-0003-3788-4383>),
Andrew Tilker [ctb] (ORCID: <https://orcid.org/0000-0003-3630-8691>),
Roshan Guharajan [ctb] (ORCID: <https://orcid.org/0000-0001-8124-5461>),
Ioannis Alexiou [ctb] (ORCID: <https://orcid.org/0000-0001-5095-4767>),
Andreas Wilting [ctb, ths] (ORCID:

<https://orcid.org/0000-0001-5073-9186>)

Maintainer Juergen Niedballa <camtrapr@gmail.com>

Repository CRAN

Date/Publication 2026-01-25 22:00:13 UTC

Contents
camtrapR-package . 3
activityDensity . 7
activityHistogram . 9
activityOverlap . 11
activityRadial . 13
addCopyrightTag . 16
addToPath . 18
aggregateStations . 19
appendSpeciesNames . 20
cameraOperation . 22
camtraps . 26
camtrapsMultiSeason . 27
checkSpeciesIdentification . 28
checkSpeciesNames . 31
commOccu-class . 33
communityModel . 34
createCovariates . 40
createSpeciesFolders . 45
createStationFolders . 46

https://orcid.org/0000-0002-9187-2116
https://orcid.org/0000-0003-0637-2959
https://orcid.org/0000-0002-1607-2039
https://orcid.org/0000-0001-8083-9268
https://orcid.org/0009-0000-2861-2672
https://orcid.org/0000-0003-3788-4383
https://orcid.org/0000-0003-3630-8691
https://orcid.org/0000-0001-8124-5461
https://orcid.org/0000-0001-5095-4767
https://orcid.org/0000-0001-5073-9186

camtrapR-package 3

detectionHistory . 48
detectionMaps . 54
exifTagNames . 57
filterRecordTable . 59
fit,commOccu-method . 61
fixDateTimeOriginal . 62
getSpeciesImages . 63
imageRename . 65
OCRdataFields . 68
plot_coef,commOccu-method . 71
plot_effects,commOccu-method . 72
PPC.community . 73
PPC.residuals . 77
predict,commOccu-method . 80
readcamtrapDP . 82
readWildlifeInsights . 84
recordTable . 85
recordTableIndividual . 91
recordTableIndividualSample . 96
recordTableIndividualSampleMultiSeason . 97
recordTableSample . 98
recordTableSampleMultiSeason . 99
spatialDetectionHistory . 100
speciesAccum . 105
summary,commOccu-method . 108
surveyDashboard . 109
surveyReport . 112
timeShiftImages . 116
timeShiftTable . 119
writeDateTimeOriginal . 119

Index 122

camtrapR-package Overview of the functions in the camtrapR package

Description

This package provides a streamlined workflow for processing data generated in camera trap-based
wildlife studies and prepares input for further analyses, particularly in occupancy and spatial capture-
recapture frameworks. It suggests a simple data structure and provides functions for managing dig-
ital camera trap photographs (and videos), generating record tables, maps of species richness and
species detections and species activity diagrams. It further helps prepare subsequent analyses by
creating detection/non-detection matrices for occupancy analyses, e.g. in the unmarked or ubms
packages, and capthist objects for spatial capture-recapture analyses in the secr package. In addi-
tion, basic survey statistics are computed. The functions build on one another in a logical sequence.
The only manual input needed is species (and individual) identification, which is achieved by mov-
ing images into species directories or by tagging images in image management software. Besides, a

4 camtrapR-package

table holding basic information about camera trap station IDs, locations and trapping periods must
be created in spreadsheet software.

Details

Image metadata (such as date and time or user-assigned tags) are extracted from the images using
Phil Harvey’s ExifTool (available from https://exiftool.org/) and the information is stored in a
record table. An adjustable criterion for temporal independence of records can be applied. Maps of
species presence and species richness can be generated. Several functions are available for plotting
single- and two-species activity patterns. Information about the camera-specific trapping periods
(and periods of malfunction) are summarized into a matrix about camera trap operability. These,
together with the record table, are used to generate species detection histories for occupancy and
spatial capture-recapture analyses. The user has considerable freedom in generating the detection
histories; sampling occasion length, beginning date and and occasion start times are adjustable. In
addition, trapping effort (i.e. active trap nights per station and occasion) can be computed for use
as a covariate / offset on detection probability.

User support

The camtrapR Google group is an online support and help forum for camtrapR users. You can find
it here: https://groups.google.com/forum/#!forum/camtrapr.

Image organisation and management

The functions in this section set up a directory structure for storing camera trap images and identi-
fying species and individuals from images. They build on one another and can be run in sequential
order as needed.

createStationFolders Create camera trap station directories for raw images
fixDateTimeOriginal Fix DateTimeOriginal Exif metadata tag in Reconyx Hyperfire cameras
OCRdataFields Optical character recognition (OCR) from data fields in images
writeDateTimeOriginal Write values to DateTimeOriginal tag in image metadata
timeShiftImages Apply time shifts to JPEG images
imageRename Copy and rename images based on station ID and image creation date
addCopyrightTag Write a copyright tag into JPEG image metadata
appendSpeciesNames Add or remove species names from image filenames

Species / individual identification

These functions assist in species identification and prepare individual identification of animals.

checkSpeciesNames Check species names against the ITIS taxonomic database
createSpeciesFolders Create directories for species identification
checkSpeciesIdentification Consistency check on species image identification
getSpeciesImages Gather all images of a species in a new directory

https://exiftool.org/
https://groups.google.com/forum/#!forum/camtrapr

camtrapR-package 5

Image data extraction

These function use the directory structure built above (Section ’Image management workflow’) and
a table containing basic information about camera traps and/or stations (IDs, location, trapping
period).

recordTable Create a species record table from camera trap images and videos
recordTableIndividual Create a single-species record table from camera trap images and videos with individual IDs
exifTagNames Return Exif metadata tags and tag names from JPEG images
addToPath Add the directory containing exiftool.exe to PATH temporarily (Windows only)
filterRecordTable Filter existing record table for temporal independence.

Data exploration and visualisation

These plots are generated from the record table and the camera trap table.

detectionMaps Generate maps of species richness and species presence by station, export shapefiles
activityHistogram Single-species diel activity histograms
activityDensity Single-species diel activity kernel density estimation plots
activityRadial Single-species diel activity radial plot
activityOverlap Two-species diel activity overlap plots and estimates

Prepare occupancy and spatial capture-recapture analyses, and summarise surveys

createCovariates Extract covariate values from spatial rasters and prepare rasters for spatial predictions
cameraOperation Create a camera operation matrix
detectionHistory Species detection histories for occupancy analyses (single and multi-season)
spatialDetectionHistory Detection histories of individuals for spatial capture-recapture analyses
surveyReport Create a report about camera trap surveys and species detections
surveyDashboard Shiny dashboard for summarizing and analyzing camera trap survey data

Community (multi-species) occupancy models

communityModel Create a community (multi-species) occupancy model for JAGS or Nimble
commOccu-class commOccu objects
fit,commOccu-method Fit a community (multi-species) occupancy model
predict,commOccu-method Predictions from community occupancy models
summary,commOccu-method Summarize community occupancy model
plot_coef Plot effect sizes of covariates in community occupancy model
plot_effects Plot Marginal Effects of Covariates
PPC.residuals Calculate residuals from MCMC output of occupancy models
PPC.community Calculate community-level posterior predictive checks for occupancy models

6 camtrapR-package

Sample data

camtraps Sample camera trap station information table
recordTableSample Sample species record table
recordTableIndividualSample Single-species record table with individual IDs
camtrapsMultiSeason Sample multi season camera trap station information table
recordTableSampleMultiSeason Sample multi season species record table
recordTableIndividualSampleMultiSeason Single-species multi season record table with individual IDs
timeShiftTable Sample camera trap time shift information

Vignettes

1. Organising raw camera trap images
2. Identifying species and individuals
3. Extracting Data from Camera Trapping Images and Videos
4. Data exploration and visualisation
5. Multi-species occupancy models

Author(s)

Juergen Niedballa

Maintainer:Juergen Niedballa <camtrapr@gmail.com>

References

Niedballa, J., Sollmann, R., Courtiol, A., Wilting, A. (2016): camtrapR: an R package for efficient
camera trap data management. Methods in Ecology and Evolution, 7(12). https://besjournals.
onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12600

camtrapR Google Group https://groups.google.com/forum/#!forum/camtrapr

Phil Harvey’s ExifTool https://exiftool.org/

See Also

overlap unmarked ubms secr wiqid

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr1.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr4.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr5.html
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12600
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12600
https://groups.google.com/forum/#!forum/camtrapr
https://exiftool.org/

activityDensity 7

activityDensity Plot kernel density estimation of single-species activity

Description

The function plots a kernel density estimation of species diel activity using function densityPlot
from package overlap.

Usage

activityDensity(
recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
add.rug = TRUE,
...

)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the species for which to create an kernel density plot of activity

allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides
argument species

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory if writePNG = TRUE?

pngMaxPix integer. image size of png (pixels along x-axis)

add.rug logical. add a rug to the plot?

... additional arguments to be passed to function densityPlot

8 activityDensity

Details

species must be in the speciesCol of recordTable.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly a vector of species record observation times in radians, i.e. scaled to [0, 2π]. If
allSpecies == TRUE, all species’ vectors are returned in an invisible named list.

Author(s)

Juergen Niedballa

References

Martin Ridout and Matthew Linkie (2009). Estimating overlap of daily activity patterns from cam-
era trap data. Journal of Agricultural, Biological and Environmental Statistics, 14(3), 322-337
Mike Meredith and Martin Ridout (2018). overlap: Estimates of coefficient of overlapping for
animal activity patterns. R package version 0.3.2. https://CRAN.R-project.org/package=
overlap

See Also

activityHistogram, activityRadial, activityOverlap https://www.kent.ac.uk/smsas/personal/
msr/overlap.html

Examples

if(requireNamespace("overlap")) {
load record table
data(recordTableSample)

species4activity <- "VTA" # = Viverra tangalunga, Malay Civet

activityDensity(recordTable = recordTableSample,
species = species4activity)

all species at once

activityDensity(recordTable = recordTableSample,
allSpecies = TRUE,
writePNG = FALSE,
plotR = TRUE,

https://CRAN.R-project.org/package=overlap
https://CRAN.R-project.org/package=overlap
https://www.kent.ac.uk/smsas/personal/msr/overlap.html
https://www.kent.ac.uk/smsas/personal/msr/overlap.html

activityHistogram 9

add.rug = TRUE)
}

activityHistogram Plot histogram of single-species activity

Description

The function generates a histogram of species diel activity in 1-hour intervals.

Usage

activityHistogram(
recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
...

)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the single species for which to create a histogram of activity

allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides
argument species

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

... additional arguments to be passed to function hist

10 activityHistogram

Details

Activity is calculated from the time of day of records. The date is ignored.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

It returns invisibly a vector of species record date and time in POSIXlt format. If allSpecies ==
TRUE, all species’ vectors are returned in an invisible named list.

Note

If you have a sufficiently large number of records you may wish to consider using activityDensity
instead. Please be aware that this function (like the other activity... function of this package) use
clock time. If your survey was long enough to see changes in sunrise and sunset times, this may
result in biased representations of species activity.

Author(s)

Juergen Niedballa

See Also

activityDensity, activityRadial, activityOverlap

Examples

load record table
data(recordTableSample)

generate activity histogram
species4activity <- "VTA" # = Viverra tangalunga, Malay Civet

activityHistogram (recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE)

activityOverlap 11

activityOverlap Plot overlapping kernel densities of two-species activities

Description

This function plots kernel density estimates of two species’ diel activity data by calling the function
overlapPlot from package overlap. It further computes the overlap coefficient Dhat1 by calling
overlapEst.

Usage

activityOverlap(
recordTable,
speciesA,
speciesB,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
plotR = TRUE,
writePNG = FALSE,
addLegend = TRUE,
legendPosition = "topleft",
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
add.rug = TRUE,
overlapEstimator = c("Dhat1", "Dhat4", "Dhat5"),
...

)

Arguments

recordTable data.frame. the record table created by recordTable

speciesA Name of species 1 (as found in speciesCol of recordTable)

speciesB Name of species 2 (as found in speciesCol of recordTable)

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

addLegend logical. Add a legend to the plots?

legendPosition character. Position of the legend (keyword)

12 activityOverlap

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

add.rug logical. add a rug to the plot?
overlapEstimator

character. Which overlap estimator to return (passed on to argument type in
overlapEst)

... additional arguments to be passed to function overlapPlot

Details

... can be graphical parameters passed on to function overlapPlot, e.g. linetype, linewidth,
linecol (see example below).

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly the data.frame with plot coordinates returned by overlapPlot.

Note

Please be aware that the function (like the other activity... function of this package) use clock time,
not solar time. If your survey was long enough to see changes in sunrise and sunset times, this may
result in biased representations of species activity.

Author(s)

Juergen Niedballa

References

Mike Meredith and Martin Ridout (2018). overlap: Estimates of coefficient of overlapping for
animal activity patterns. R package version 0.3.2. https://CRAN.R-project.org/package=
overlap
Ridout, M.S. and Linkie, M. (2009) Estimating overlap of daily activity patterns from camera trap
data. Journal of Agricultural, Biological and Environmental Statistics, 14, 322-337.

See Also

activityDensity
https://www.kent.ac.uk/smsas/personal/msr/overlap.html

https://CRAN.R-project.org/package=overlap
https://CRAN.R-project.org/package=overlap
https://www.kent.ac.uk/smsas/personal/msr/overlap.html

activityRadial 13

Examples

if(requireNamespace("overlap")) {

load record table
data(recordTableSample)

define species of interest
speciesA_for_activity <- "VTA" # = Viverra tangalunga, Malay Civet
speciesB_for_activity <- "PBE" # = Prionailurus bengalensis, Leopard Cat

create activity overlap plot (basic)
activityOverlap (recordTable = recordTableSample,

speciesA = "VTA", # = Viverra tangalunga, Malay Civet
speciesB = "PBE", # = Prionailurus bengalensis, Leopard Cat
writePNG = FALSE,
plotR = TRUE

)

create activity overlap plot (prettier and with some overlapPlot arguments set)

activityOverlap (recordTable = recordTableSample,
speciesA = speciesA_for_activity,
speciesB = speciesB_for_activity,
writePNG = FALSE,
plotR = TRUE,
createDir = FALSE,
pngMaxPix = 1000,
linecol = c("black", "blue"),
linewidth = c(5,3),
linetype = c(1, 2),
olapcol = "darkgrey",
add.rug = TRUE,
extend = "lightgrey",
ylim = c(0, 0.25),
main = paste("Activity overlap between ",

speciesA_for_activity, "and",
speciesB_for_activity)

)
}

activityRadial Radial plots of single-species activity

Description

The function generates a radial plot of species diel activity using an adapted version of function
radial.plot from package plotrix (without the need to install the package). Records are aggre-

14 activityRadial

gated by hour. The number of independent events is used as input, which in turn is based on the
argument minDeltaTime in recordTable.

Usage

activityRadial(
recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
byNumber = FALSE,
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
...

)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the species for which to create an kernel density plot of activity

allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides
argument species

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

byNumber logical. If FALSE, plot proportion of records. If TRUE, plot number of records

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

... additional arguments to be passed to function radial.plot

Details

radial.plot was adjusted to show a clockwise 24-hour clock face. It is recommended to set
argument lwd to a value >= 2. You may also wish to add argument rp.type="p" to show a polygon
instead of bars.

activityRadial 15

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly a data.frame containing all information needed to create the plot: radial posi-
tion, lengths, hour (for labels). If allSpecies == TRUE, all species’ data frames are returned in an
invisible named list.

Author(s)

Juergen Niedballa

References

Lemon, J. (2006) Plotrix: a package in the red light district of R. R-News, 6(4): 8-12.
https://CRAN.R-project.org/package=plotrix

See Also

activityDensity, activityHistogram, activityOverlap

Examples

load record table
data(recordTableSample)

species4activity <- "PBE" # = Prionailurus bengalensis, Leopard Cat

activityRadial(recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
plotR = TRUE,
writePNG = FALSE,
lwd = 5

)

plot type = polygon

activityRadial(recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE,
speciesCol = "Species",

https://CRAN.R-project.org/package=plotrix

16 addCopyrightTag

recordDateTimeCol = "DateTimeOriginal",
plotR = TRUE,
writePNG = FALSE,
lwd = 5,
rp.type = "p"

)

addCopyrightTag Write a copyright tag into JPEG image metadata

Description

This function writes a copyright tag into the copyright field of JPEG image Exif metadata. It does
so recursively, so it works both for images that are sorted into subdirectories and unsorted images.
Note that all images in subdirectories of inDir will be tagged. It is not required to run this function
in the camtrapR workflow, but may be desired for data sharing or publishing.

Usage

addCopyrightTag(
inDir,
copyrightTag,
askFirst = TRUE,
keepJPG_original = TRUE,
ignoreMinorErrors = FALSE

)

Arguments

inDir character. Name of the directory containing camera trap images.

copyrightTag character. The tag to be written into the Exif Copyright field

askFirst logical. Ask user to confirm before execution?
keepJPG_original

logical. Keep original JPG files as .JPG_original files (TRUE) or overwrite JPGs
(FALSE)?

ignoreMinorErrors

logical. Ignore minor errors that would cause the function to fail (set TRUE for
images with bad MakerNotes, observed in Panthera V4 cameras)

Details

If askFirst = TRUE, the function will show a menu and asks the user to confirm the action before
execution. Type "1" to write copyright tags and "2" to abort.

addCopyrightTag 17

By default Exiftool creates a copy of each JPG image and preserves the original images (without the
copyright tag) as .JPG_original files. Note that this behaviour will instantly double the number of
images in inDir and the disk space required. If this is not desired, set keepJPG_original = FALSE.

ignoreMinorErrors is useful if copyright tags can’t be updated correctly. This can be caused
by bad MakerNotes and so far was only observed in Panthera V4 cameras. In that case, set
ignoreMinorErrors to TRUE. This will add the "-m" option to the Exiftool call, thereby ignoring
minor errors and warnings and assigning the copyright tag regardless.

Value

An invisible list of Exiftool output.

More importantly, the specified copyright tag is written into the Copyright field of the Exif metadata
of all images in inDir.

Author(s)

Juergen Niedballa

Examples

Not run:

if (Sys.which("exiftool") != ""){ # only run this example if ExifTool is available

copy sample images to temporary directory (so we don't mess around in the package directory)
wd_images_ID <- system.file(file.path("pictures", "sample_images_species_dir"),

package = "camtrapR")
file.copy(from = wd_images_ID, to = tempdir(), recursive = TRUE)
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

define a sample tag
copyrightTagToAdd <- "Your Name (Your Organisation)"

add the tag to the images
addCopyrightTag(inDir = wd_images_ID_copy,

copyrightTag = copyrightTagToAdd)
1 # we choose "YES", i.e., we want to add a copyright tag

you can check the outcome with function exifTagNames

metadat <- exifTagNames(wd_images_ID_copy)
metadat [metadat$tag_name == "Copyright",]
}

End(Not run)

18 addToPath

addToPath Add a directory to PATH temporarily

Description

Temporarily adds a directory to the environmental variable PATH for system calls from within R.
This allows Windows users to store exiftool.exe anywhere on their hard drive and is useful if they
cannot store the file in system directories. It is not needed on Linux or MacOS machines.

Usage

addToPath(directory)

Arguments

directory character. the directory in the file system to add to PATH (e.g. the directory
containing exiftool.exe).

Details

Several functions within this package depend on ExifTool. Under Windows, exiftool.exe cannot be
used if it is not in a directory path specified in PATH. This can be solved by adding the directory
containing exiftool.exe for temporary use within the running R process. It can also be useful in
other contexts besides Exiftool.

Value

invisible logical indicating whether directory was added to PATH successfully (in the running R
process).

Note

The directories in PATH can be queried by Sys.getenv("PATH").

Author(s)

Juergen Niedballa

Examples

exiftool_dir <- "C:/Path/To/Exiftool"
addToPath(directory = exiftool_dir)

check if it has been added to PATH
grepl(exiftool_dir, Sys.getenv("PATH"))

aggregateStations 19

aggregateStations Aggregate Camera Trap Table to Station Level

Description

Aggregates a camera trap table from a station-camera (location-deployment) level to a station (loca-
tion) level. This function is useful when modeling or analysis is conducted at the station level, when
multiple cameras were deployed at a single station or a single camera had multiple deployments.

Usage

aggregateStations(
CTtable,
stationCol,
cameraCol = NULL,
setupCol = NULL,
retrievalCol = NULL,
dateFormat = NULL

)

Arguments

CTtable A data frame or ‘sf‘ object representing the camera trap table. Each row typically
represents a unique camera deployment.

stationCol A character string specifying the name of the column in CTtable that contains
the unique station identifiers.

cameraCol A character string specifying the name of the column in CTtable that contains
the unique camera (deployment) identifiers.

setupCol character. name of the column containing camera setup dates in CTtable

retrievalCol character. name of the column containing camera retrieval dates in CTtable

dateFormat character. The format of columns setupCol and retrievalCol (and potential
problem columns) in CTtable. Must be interpretable by either as.Date or the
"orders" argument parse_date_time in lubridate. Can be a date or a date-time.

Details

The aggregation logic handles different column types as follows:

• Station ID (specified by ‘stationCol‘): Remains unique for each row in the output.

• Camera ID (if present): A character vector (comma-separated) of unique camera IDs de-
ployed at that station.

• Setup/Retrieval Dates: The earliest setup date and the latest retrieval date for all deployments
within a station will be retained.

• Numeric Columns: The ‘mean‘ of all values for that station will be calculated.

20 appendSpeciesNames

• Logical Columns: The ‘mean‘ (which effectively calculates the proportion of ‘TRUE‘s) of
all values for that station will be calculated.

• Character Columns (other than Camera ID): A character vector of unique values (comma-
separated) for that station will be created.

• Factor Columns: Similar to character columns, unique levels will be combined.

• Geometry Column (‘sf‘ objects): Centroid (midpoint) of all unique points at a station is
calculated.

It is recommended to inspect the aggregated output carefully, especially for columns with mixed
data types or specific aggregation requirements not covered by the defaults.

Value

A data frame with one row per unique station, containing aggregated information. Spatial informa-
tion (for ‘sf‘ objects) is preserved.

Note

The function is mainly intended for aggregating covariates to station level. It does currently not
handle camera malfunction (via columns ‘ProblemX_from‘ / ‘ProblemX_to‘) and does not provide
proper handling of problem columns. Use cameraOperation to aggregate camera trap tables to
station level for analyses while accounting for camera malfunction / problem periods.

appendSpeciesNames Add or remove species names from JPEG image filenames

Description

Add or remove species names from JPEG image filenames. It makes it easier to find images of a
species.

Usage

appendSpeciesNames(
inDir,
IDfrom,
hasCameraFolders,
metadataSpeciesTag,
metadataHierarchyDelimitor = "|",
removeNames = FALSE,
writecsv = FALSE

)

appendSpeciesNames 21

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

hasCameraFolders

logical. Do the station subdirectories of inDir have camera-subdirectories (e.g.
inDir/StationA/CameraA1; inDir/StationA/CameraA2)?

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").
metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

removeNames logical. remove appended species names?

writecsv logical. write csv table containing old and new file names into inDir?

Details

Species names can be appended or removed from image filenames. Before running the function,
you may want to run checkSpeciesIdentification to detect possible misidentifications. As
an example, the function would change an image file name from "StationA__2015-05-41__20-
59-59(1).JPG" to "StationA__2015-05-41__20-59-59(1)__Species Name.JPG". If species names
were appended several times by accident, they can all be removed by running the function with
removeNames = TRUE

Value

A data.frame containing the old and new file names and directories.

Author(s)

Juergen Niedballa

Examples

Not run:

copy sample images to another location (so we don't mess around in the package directory)
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
file.copy(from = wd_images_ID, to = getwd(), recursive = TRUE)
wd_images_ID_copy <- file.path(getwd(), "sample_images_species_dir")

append species names
SpecNameAppend1 <- appendSpeciesNames(inDir = wd_images_ID_copy,

IDfrom = "directory",
hasCameraFolders = FALSE,
removeNames = FALSE,
writecsv = FALSE)

22 cameraOperation

SpecNameAppend1

remove species names
SpecNameRemove1 <- appendSpeciesNames(inDir = wd_images_ID_copy,

IDfrom = "directory",
hasCameraFolders = FALSE,
removeNames = TRUE,
writecsv = FALSE)

SpecNameRemove1

End(Not run)

cameraOperation Create a camera trap station operation matrix

Description

Construct a matrix of daily camera trap station operation for use in detectionHistory and spatialDetectionHistory,
where it is needed for calculating trapping effort per occasion. It is also used in surveyReport to
calculate the number of trap nights durig a survey. If several cameras were deployed per station,
the matrix can contain camera- or station-specific trap operation information, or information about
sessions during repeated surveys.

Usage

cameraOperation(
CTtable,
stationCol = "Station",
cameraCol,
sessionCol,
setupCol,
retrievalCol,
hasProblems = FALSE,
byCamera,
allCamsOn,
camerasIndependent,
dateFormat = "ymd",
occasionStartTime = 0,
writecsv = FALSE,
outDir

)

Arguments

CTtable data.frame containing information about location and trapping period of camera
trap stations

cameraOperation 23

stationCol character. name of the column specifying Station ID in CTtable

cameraCol character. name of the column specifying Camera ID in CTtable (optional). If
empty, 1 camera per station is assumed.

sessionCol character. name of the column specifying session ID in CTtable (optional).
Use it for creating multi-session / multi-season detection histories (unmarked:
unmarkedMultFrame; secr: capthist)

setupCol character. name of the column containing camera setup dates in CTtable

retrievalCol character. name of the column containing camera retrieval dates in CTtable

hasProblems logical. If TRUE, function will look for columns specifying malfunction periods
in CTtable (naming convention: ProblemX_from and ProblemX_to, where X
is a number)

byCamera logical. If TRUE, camera operation matrix is computed by camera, not by sta-
tion (requires cameraCol)

allCamsOn logical. Takes effect only if cameraCol is defined and if byCamera is FALSE.
If allCamsOn = TRUE, all cameras at a station need to be operational for the
station to be operational (e.g. 1 camera out of 2 malfunctioning renders the
station inoperational). Output values can be 1/0/NA only (all cameras at a station
operational/ at least 1 camera not operational/ no camera set up). If allCamsOn
= FALSE, at least 1 active camera makes a station operational.

camerasIndependent

logical. Return number of active camera traps by station? Only if byCamera
is FALSE and allCamsOn is FALSE. If camerasIndependent is TRUE, output
values will be the number of operational cameras at a station. If camerasIndependent
is FALSE, the value is 1 if at least 1 camera was operational, otherwise 0. In
both cases, values are NA if no camera was set up.

dateFormat character. The format of columns setupCol and retrievalCol (and potential
problem columns) in CTtable. Must be interpretable by either as.Date or the
"orders" argument parse_date_time in lubridate. Can be a date or (since
version 2.1) a date-time.

occasionStartTime

integer. time of day (the full hour) at which to begin occasions. Replaces
occasionStartTime from detectionHistory and spatialDetectionHistory.

writecsv logical. Should the camera operation matrix be saved as a .csv?

outDir character. Directory into which csv is saved

Details

cameraCol is NULL by default, meaning the function assumes there was 1 camera per station in
CTtable. If more than 1 camera was deployed per station, cameraCol needs to be specified to
identify individual cameras within a station. Likewise, sessionCol can be used to if camera trap
stations were operated during multiple sessions / trapping seasons.

dateFormat defaults to "YYYY-MM-DD", e.g. "2014-10-31", but can be any other date format
or date-time also. It can be specified either in the format required by strptime or the ’orders’
argument in parse_date_time in lubridate. In the example above, "YYYY-MM-DD" would be
specified as "%Y-%m-%d" in base R or "ymd" in lubridate.

24 cameraOperation

Since version 2.1, dateFormat can be a date-time. That makes it possible to specify the exact time
cameras were set up / retrieved / malfunctioned / worked again. This information is used to calculate
the daily trapping effort more precisely on days with incomplete effort.

Previously, setup and retrival day were counted as 1, indicating a whole day of effort on those days.
Since version 2.1, setup and retrieval are assumed to have happened at 12 noon (resulting in daily
effort of 0.5 instead of 1). Users can also specify the exact time cameras were set up (by providing
a date-time in the setup / retrieval / problem columns). See vignette 3 for more details.

If hasProblems is TRUE, the function tries to find columns ProblemX_from and ProblemX_to in
CTtable. X is a consecutive number from 1 to n, specifying periods in which a camera or station
was not operational. If hasProblems is FALSE, cameras are assumed to have been operational
uninterruptedly from setup to retrieval (see camtraps for details).

allCamsOn only has an effect if there was more than 1 camera at a station. If TRUE, for the station to
be considered operational, all cameras at a station need to be operational. If FALSE, at least 1 active
camera renders the station operational. Argument camerasIndependent defines if cameras record
animals independently (it thus only has an effect if there was more than 1 camera at a station). This
is the case if an observation at one camera does not increase the probability for detection at another
camera (cameras face different trails at a distance of one another). Non-independence occurs if an
animal is likely to trigger both camers (as would be the case with 2 cameras facing each other).

If camerasIndependent is TRUE, 2 active cameras at a station will result in a station opera-
tion value of 2 in the resulting matrix, i.e., 2 independent trap days at 1 station and day. If
camerasIndependent is FALSE, 2 active cameras will return value 1, i.e., 1 trap night at 1 sta-
tion per day.

Row names depend on the input arguments and contain the station name and potentially session and
camera names (if sessionCol and/or cameraCol are defined).

Naming convention is (since version 1.2) Bold information are from the columns stationCol,
sessionCol and cameraCol in CTtable:

Station
Station__SESS_SessionID
Station__CAM_CameraID
Station__SESS_SessionID__CAM_CameraID

Session are designated with prefix "__SESS_", cameras with prefix "__CAM_". Therefore, these
are reserved words and may not be part of station, session or camera names. Here’s what it may
look like in real life:

Station1
Station1__SESS_2019
Station1__CAM_1024152
Station1__SESS_2019__CAM_1024152

Functions detectionHistory and spatialDetectionHistory recognize these and use the information
accordingly.

Value

A matrix. Row names always indicate Station IDs. If sessionCol and/or cameraCol are defined,
they are contained in the row names also (camera ID only if byCamera = TRUE). Column names are
dates.

cameraOperation 25

Legend: NA: camera(s) not set up, 0: camera(s) not operational, 1 (or higher): number of opera-
tional camera(s) or an indicator for whether the station was operational (depending on camerasIndependent
and allCamsOn)

Note

Setting camerasIndependent according to the sampling situation is important for the functions
detectionHistory and spatialDetectionHistory, if sampling effort (the number of active trap
nights in a occasion) is to be computed and returned.

Author(s)

Juergen Niedballa

Examples

data(camtraps)

no problems/malfunction
camop_no_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = FALSE,
dateFormat = "dmy"

)

with problems/malfunction
camop_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "dmy"

)

The examples above specified dateFormat using lubdridate package, which is more intuitive.
Alternatively one can used in base-R date conversions (strptime) as below:

with problems/malfunction / dateFormat in strptime format
camop_problem_oldformat <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "%d/%m/%Y"

)

26 camtraps

camop_no_problem
camop_problem
camop_problem_oldformat

camtraps Sample camera trap station information

Description

Example camera trap station information table

Usage

data(camtraps)

Format

A data frame with 3 rows and 7 variables

Details

This is a general example of how information about camera trap stations are arranged in camtrapR. It
contains setup and retrieval dates and coordinates. If more than 1 camera was set up at a station (e.g.
2 cameras facing each other), a camera ID column must be added, with camera-specific information
instead of station-specific information. If cameras malfunctioned repeatedly, additional pairs of
problem columns can be added, e.g. "Problem2_from" and "Problem2_to" etc..

The variables are as follows:

Station Camera trap station ID
utm_y y coordinate of station (northing)
utm_x x coordinate of station (easting)
Setup_date camera trap setup date
Retrieval_date camera trap retrieval date
Problem1_from first day of camera malfunction
Problem1_to last day of camera malfunction

Note

The coordinates can be in the units of any coordinate system. UTM was chosen as an example, but it
could be latlong or anything else, too. capthist objects (as created by spatialDetectionHistory
for spatial capture-recapture analyses) expect the unit to be meters.

camtrapsMultiSeason 27

camtrapsMultiSeason Sample multi-season camera trap station information

Description

Example multi-season camera trap station information table

Usage

data(camtrapsMultiSeason)

Format

A data frame with 7 rows and 8 variables

Details

This is a general example of how information about camera trap stations from multiple seasons are
arranged in camtrapR. It contains setup and retrieval dates, coordinates and a season identifier. If
more than 1 camera was set up at a station (e.g. 2 cameras facing each other), a camera ID column
must be added, with camera-specific information instead of station-specific information. If cameras
malfunctioned repeatedly, additional pairs of problem columns can be added, e.g. "Problem2_from"
and "Problem2_to" etc..

Note that season 2010 has an additional station (StationD). This is to simulate a situation where a
station was not set up during an entire season.

The variables are as follows:

Station Camera trap station ID
utm_y y coordinate of station (northing)
utm_x x coordinate of station (easting)
Setup_date camera trap setup date
Retrieval_date camera trap retrieval date
Problem1_from first day of camera malfunction
Problem1_to last day of camera malfunction
session Identified for trapping session / season

Note

The coordinates can be in the units of any coordinate system. UTM was chosen as an example, but it
could be latlong or anything else, too. capthist objects (as created by spatialDetectionHistory
for spatial capture-recapture analyses) expect the unit to be meters. capthist alse require session
information as integer numbers starting with 1.

"Season" and "session" are used synonymously here. secr nomenclature is "session", in unmarked
it is "season".

28 checkSpeciesIdentification

Examples

data were created with the following code:
data(camtraps)

camtraps_season2 <- camtraps

change 2009 to 2010
camtraps_season2[, "Setup_date"] <- gsub("2009", "2010", camtraps_season2[,

"Setup_date"])
camtraps_season2[, "Retrieval_date"] <- gsub("2009", "2010", camtraps_season2[,

"Retrieval_date"])
camtraps_season2[, "Problem1_from"] <- gsub("2009", "2010", camtraps_season2[,

"Problem1_from"])
camtraps_season2[, "Problem1_to"] <- gsub("2009", "2010", camtraps_season2[,

"Problem1_to"])

add an extra station with different dates in session 2010
camtraps_season2 <- rbind(camtraps_season2, NA)
camtraps_season2$Station[4] <- "StationD"
camtraps_season2$utm_y[4] <- 607050
camtraps_season2$utm_x[4] <- 525000
camtraps_season2$Setup_date[4] <- "04/04/2010"
camtraps_season2$Retrieval_date[4] <- "17/06/2010"
camtraps_season2$Problem1_from[4] <- "20/05/2010"
camtraps_season2$Problem1_to[4] <- "30/05/2010"

add season column
camtraps$session <- 2009
camtraps_season2$session <- 2010

combine the tables for 2 seasons
camtrapsMultiSeason <- rbind(camtraps, camtraps_season2)

checkSpeciesIdentification

Consistency check on species image identification

Description

This function serves 2 purposes: 1) it assesses possible misidentification of species and 2) compares
double observer species identification (only if metadata tagging was used for species identification).

Usage

checkSpeciesIdentification(
inDir,
IDfrom,
hasCameraFolders,
metadataSpeciesTag,

checkSpeciesIdentification 29

metadataSpeciesTagToCompare,
metadataHierarchyDelimitor = "|",
maxDeltaTime,
excludeSpecies,
stationsToCheck,
writecsv = FALSE

)

Arguments

inDir character. Directory containing identified camera trap images sorted into station
subdirectories (e.g. inDir/StationA/)

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1" or "inDir/StationA/Camera1/Species1")?

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").
metadataSpeciesTagToCompare

character. A second species ID tag name in image metadata (if IDfrom = "meta-
data"). For comparing double observer species identification.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":"

maxDeltaTime numeric. Maximum time interval between images to be returned (in seconds)

excludeSpecies character. vector of species to exclude from checks
stationsToCheck

character. vector of stations to be checked (optionally)

writecsv logical. Should the resulting data.frame be saved as a .csv?

Details

Within each station, it assesses whether there are images of a species taken within a given time
interval of another species. Often, it is unlikely that different species are encountered within a
very short time intervals at the same location. This type of misidentification can arise easily if some
images belonging to a sequence of images were accidentally moved into different species directories
or tagged incorrectly.

Double observer identification may be desirable to increase reliability of species identification. The
function returns conflicts in species identification between 2 observers. These conflicts can then be
corrected.

Images may accidentally be misidentified by assigning wrong species tags or by moving them into
wrong species directories. Imagine your cameras take sequences of images each time they are
triggered and one image of the sequence is misidentified. The time difference between these images
(that have different species assigned to them) will be very small, usually a few seconds. This
function will return all these images for you to check if they were identified correctly.

30 checkSpeciesIdentification

If multiple observers identify images independently using metadata tagging, their identifications can
be compared by setting metadataSpeciesTagToCompare. Conflicting or missing identifications
will be reported. This feature is only available if images were identified by metadata tagging.

Species like "blank" or "team" can be ignored using excludeSpecies. If only specific stations are
to be checked, stationsToCheck can be set.

Value

A list containing 2 data frames. The first contains a data frame with images file names, directories,
time stamp and species ID that were taken within maxDeltaTime seconds of another species image
at a particular station. The second data frame contains images with conflicting species IDs (if
IDfrom = "metadata" and metadataSpeciesTagToCompare is defined)

Note

The function will not be able to find "isolated" images, i.e. images that were misidentified, but
were not part of a sequence of images. Likewise, if all images of a sequence were misidentified,
they cannot be found either. From version 0.99.0, the function can also handle images identied with
metadata tags.

Author(s)

Juergen Niedballa

Examples

wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

if (Sys.which("exiftool") != ""){ # only run this example if ExifTool is available
check.folders <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
writecsv = FALSE)

check.folders # In the example, 2 different species were photographed within 2 minutes.
}

Not run:
now exclude one of these 2 species
check.folders2 <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
excludeSpecies = "EGY",
writecsv = FALSE)

check.folders2 # the data frame is empty

checkSpeciesNames 31

now we check only one station
check.folders3 <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
stationsToCheck = "StationB",
writecsv = FALSE)

check.folders3 # the data frame is empty

End(Not run)

checkSpeciesNames Check species names against the ITIS taxonomic database

Description

The function checks species names (common or scientific names) provided by the user with the
ITIS taxonomic database (https://www.itis.gov/) via functions from the package taxize. It
returns both common and scientific names, the taxon authors, taxon rank name and status, the TSN
(taxonomic serial numbers) and ITIS urls.

Usage

checkSpeciesNames(speciesNames, searchtype, accepted = TRUE, ask = TRUE)

Arguments

speciesNames character. Vector of species names to check. Either common names or scientific
names.

searchtype character. Type of names specified in speciesNames. One of ’scientific’ or
’common’.

accepted logical. Return only accepted valid names? If TRUE, invalid names are returned
as NA. Set to FALSE to return both accepted and unaccepted names.

ask logical. Should the function be run in interactive mode? If TRUE and more than
one TSN is found for a species, the user is asked to choose one. If FALSE, NA
is returned for multiple matches.

Details

Arguments searchtype, accepted and ask are passed on to get_tsn.

Value

A data.frame with the names supplied by the user, matching common and scientific names, taxon
author and year, taxonomic rank, status, TSNs (taxonomic serial numbers) and ITIS urls.

https://www.itis.gov/

32 checkSpeciesNames

Author(s)

Juergen Niedballa

References

https://www.itis.gov/

Examples

Not run:

species_common <- c("Leopard Cat", "moonrat")

ask = TRUE. Multiple matches for leopard cat will cause menu to pop up asking user input.

species.names.check1 <- checkSpeciesNames(speciesNames = species_common,
searchtype = "common",
accepted = TRUE,
ask = TRUE)

2 # we choose entry 2
species.names.check1

ask = FALSE. Multiple matches for leopard cat will cause NA.

species.names.check2 <- checkSpeciesNames(speciesNames = species_common,
searchtype = "common",
accepted = TRUE,
ask = FALSE)

species.names.check2

search for scientific names

species_scientific <- c("Tragulus", "Prionailurus bengalensis")

species.names.check3 <- checkSpeciesNames(speciesNames = species_scientific,
searchtype = "scientific",
accepted = TRUE,
ask = TRUE)

species.names.check3

End(Not run)

https://www.itis.gov/

commOccu-class 33

commOccu-class commOccu objects

Description

commOccu objects

Value

commOccu object

Slots

modelText JAGS model code as a character vector (made up of code chunks, use cat() to print)

params Parameters to monitor in the model runs

inits_fun Function to create start values for the MCMC chains. It being a function ensures dif-
ferent values in each chain

data List with data needed to run the model (detection & effort matrices, site covariates, number
of species / stations / occasions)

input Input data_list (unchanged)

nimble logical indicator for whether it is a Nimble model

modelFile Path of the text file containing the model code

covariate_info Data frame containing information about covariates. Only used internally in
plot_* and predict methods

model character indicating whether it is a standard "Occupancy" model or Royle-Nichols ("RN")
occupancy model

Note

The data slot is a list of model input data. While the exact content depends on function input, it
can be summarized as:

y array of detection histories. Dimensions are: y[species, station, occasion]
effort_binary matrix of binary (1/0) survey effort. Only used to ensure p = 0 when effort = 0. Dimensions are: effort_binary[station, occasion]
site-occasion covariates The required content of data_list$obsCovs as named matrices with dimensions [station, occasion]
site covariates The required columns of data_list$siteCovs as named vectors (length = number of stations)
M Number of species
J Number of stations
maxocc Number of occasions

For categorical site-occasion covariates, an addition matrix containing an integer representation of
the character matrix with suffix "_integer" is stored in the data slot.

34 communityModel

communityModel Create a community (multi-species) occupancy model for JAGS or
Nimble

Description

Flexibly creates complete code and input data for community occupancy models for JAGS amd
Nimble (both standard occupancy models and Royle-Nichols occupancy models), and automatically
sets initial values and parameters to monitor. Supports fixed and random effects of covariates on
detection and occupancy probabilities, using both continuous and categorical covariates (both site
and site-occasion covariates).

Optionally includes data augmentation (fully open community, or up to known maximum number of
species, or no data augmentation). Allows combination of all these parameters for fast and flexible
customization of community occupancy models.

Incidentally, the function can also be used to create model code and input for single-species single-
season occupancy models (it is the special case of the community model with only one species).
Such a model will run slower than proper single-species model JAGS code due to the additional
species loop, but it is possible.

The function returns several derived quantities, e.g. species richness, Bayesian p-values (overall
and by species), Freeman-Tukey residuals for actual and simulated data (by station and total). If
doing data augmentation, metacommunity size and number of unseen species are returned also.

Usage

communityModel(
data_list,
model = c("Occupancy", "RN"),
occuCovs = list(fixed = NULL, independent = NULL, ranef = NULL),
detCovs = list(fixed = NULL, ranef = NULL),
detCovsObservation = list(fixed = NULL, ranef = NULL),
speciesSiteRandomEffect = list(det = FALSE, occu = FALSE),
intercepts = list(det = "ranef", occu = "ranef"),
effortCov = "effort",
richnessCategories = NULL,
augmentation = NULL,
modelFile = NULL,
nimble = FALSE,
keyword_quadratic = "_squared"

)

Arguments

data_list list. Contains 3 slots: ylist, siteCovs, obsCovs. ylist is a list of detection histories
(can be named), e.g. from detectionHistory. siteCovs is a data.frame with
site covariates (optional). obsCovs is a list of site-occasion level covariates (e.g.
site-occasion-specific effort, which is also returned by detectionHistory.

communityModel 35

model character. "Occupancy" for standard occupancy model, or "RN" for the occu-
pancy model of Royle and Nichols (2003), which relates probability of detection
of the species to the number of individuals available for detection at each station

occuCovs list. Up to 3 items named "fixed", "independent", and/or "ranef". Specifies fixed,
independent or random effects of covariates on occupancy probability (continu-
ous or categorical covariates). Independent effects are only supported for con-
tinuous covariates.

detCovs list. Up to 3 items named "fixed", "independent", and/or "ranef". Specifies fixed,
independent or random effects of covariates on detection probability (continuous
or categorical covariates). Independent effects are only supported for continuous
covariates.

detCovsObservation

list. Up to 2 items named "fixed" and/or "ranef". Specifies fixed or random
effects of observation-level covariates on detection probability (continuous or
categorical covariates - categorical must be coded as character matrix)

speciesSiteRandomEffect

list. Two items named "det" and "occu". If TRUE, adds a random effect of
species and station. Only implemented for detection probability.

intercepts list. Two items named "det" and "occu" for detection and occupancy probability
intercepts. Values can be "fixed" (= constant across species), "independent" (=
independent estimates for each species), or "ranef" (= random effect of species
on intercept).

effortCov character. Name of list item in data_list$obsCovs which contains effort. This
does not include effort as a covariate on detection probability, but only uses NA
/ not NA information to create binary effort and ensure detection probabilities p
are 0 when there was no effort (p will be 0 whereever effortCov is NA).

richnessCategories

character. Name of categorical covariate in data_list$siteCovs for which to
calculate separate richness estimates (optional). Can be useful to obtain separate
richness estimates for different areas.

augmentation If NULL, no data augmentation (only use species in data_list$ylist), other-
wise named list or vector with total number of (potential) species. Names: "max-
known" or "full". Example: augmentation = c(maxknown = 30) or augmentation
= c(full = 30)

modelFile character. Text file name to save model to

nimble logical. If TRUE, model code will be for Nimble (incompatible with JAGS). If
FALSE, model code is for JAGS.

keyword_quadratic

character. A suffix in covariate names in the model that indicates a covariate
is a quadratic effect of another covariate which does not carry the suffix in its
name (e.g. if the covariate is "elevation", the quadratic covariate would be "ele-
vation_squared").

Details

For examples of implementation, see Vignette 5: Multi-species occupancy models.

36 communityModel

Fixed effects of covariates are constant across species, whereas random effect covariates differ
between species. Independent effect differ between species and are independent (there is no under-
lying hyperdistribution). Fixed, independent and random effects are allowed for station-level detec-
tion and occupancy covariates (a.k.a. site covariates). Fixed and random effects are also allowed
for station-occasion level covariates (a.k.a. observation covariates). Currently independent effects
are only supported for continuous site covariates, not categorical site covariates or observation-level
covariates.

By default, random effects will be by species. It is however possible to use categorical site covariates
for grouping (continuous|categorical). Furthermore, is is possible to use use nested random effects
of species and another categorical site covariate (so that there is a random effect of species and an
additional random effect of a categorical covariate within each species).

Derived quantities returned by the model are:

Bpvalue Bayesian p-value (overall)
Bpvalue_species Bayesian p-value (by species)
Nspecies Species richness (only in JAGS models)
Nspecies_station Species richness at each sampling locations (only in JAGS models)
Nspecies_Covariate Species richness by categorical covariate (when using richnessCategories, only in JAGS models)
R2 sum of Freeman-Tukey residuals of observed data within each species
new.R2 sum of Freeman-Tukey residuals of simulated data within each species
R3 Total sum of Freeman-Tukey residuals of observed data
new.R3 Total sum of Freeman-Tukey residuals of simulated data
Ntotal Total metacommunity size (= observed species + n0)
n0 Number of unseen species in metacommunity
omega Data augmentation parameter
w Metacommunity membership indicator for each species

Quantities in italic at the bottom are only returned in full data augmentation. Nspecies and
Nspecies_Covariate are only returned in JAGS models (because Nimble models don’t explicitly
return latent occupancy status z).

Value

commOccu object. It is an S4 class containing all information required to run the models. See
commOccu-class for details.

Parameter naming convention

The parameter names are assembled from building blocks. The nomenclature is as follows:

Name Refers to Description
alpha Submodel detection submodel
beta Submodel occupancy submode
0 Intercept denotes the intercepts (alpha0, beta0)
fixed Effect type fixed effects (constant across species)
indep Effect type independent effects (separate for each species)
ranef Effect type random effects (of species and/or other categorical covariates)
cont Covariate type continuous covariates

communityModel 37

categ Covariate type categorical covariates
mean Hyperparameter mean of random effect
sigma Hyperparameter standard deviation of random effect
tau Hyperparameter precision of random effect (used internally, not returned)

For example, a fixed intercept of occupancy (constant across species) is beta0, and a fixed intercept
of detection probability is alpha0.

An occupancy probability intercept with a random effect of species is:

beta0.mean community mean of the occupancy probability intercept

beta0.sigma standard deviation of the community occupancy probability intercept.

beta0[1] occupancy probability intercept of species 1 (likewise for other species).

For effects of site covariates, the pattern is:

submodel.effectType.covariateType.CovariateName.hyperparameter

For example:

beta.ranef.cont.habitat.mean is the mean community effect of the continuous site covariate
’habitat’ on occupancy probability.

beta.ranef.cont.habitat[1] is the effect of continuous site covariate ’habitat’ on occupancy
probability of species 1.

Site-occasion covariates are denoted by ".obs" after the submodel, e.g.:

alpha.obs.fixed.cont.effort is the fixed effect of the continuous observation-level covariate
’effort’ on detection probability

Author(s)

Juergen Niedballa

References

Kéry, M., and J. A. Royle. "Applied hierarchical modelling in ecology - Modeling distribution,
abundance and species richness using R and BUGS." Volume 1: Prelude and Static Models. Else-
vier/Academic Press, 2016.

Examples

Not run:
the example below fits community occupancy models to the sample data in camtrapR
models are fit both in JAGS and Nimble
The data set only contains 5 species and 3 stations, so the results will be nonsense.
It is only a technical demonstration with the camtrapR workflow
for more complete examples, see vignette 5

data("camtraps")

create camera operation matrix
camop_no_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",

38 communityModel

setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
hasProblems = FALSE,
dateFormat = "dmy"

)

data("recordTableSample")

make list of detection histories
species_to_include <- unique(recordTableSample$Species)

DetHist_list <- detectionHistory(
recordTable = recordTableSample,
camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
species = species_to_include,
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur"

)

create some fake covariates for demonstration
sitecovs <- camtraps[, c(1:3)]
sitecovs$elevation <- c(300, 500, 600)

scale numeric covariates
sitecovs[, c(2:4)] <- scale(sitecovs[,-1])

bundle input data for communityModel
data_list <- list(ylist = DetHist_list$detection_history,

siteCovs = sitecovs,
obsCovs = list(effort = DetHist_list$effort))

create community model for JAGS
modelfile1 <- tempfile(fileext = ".txt")
mod.jags <- communityModel(data_list,

occuCovs = list(fixed = "utm_y", ranef = "elevation"),
detCovsObservation = list(fixed = "effort"),
intercepts = list(det = "ranef", occu = "ranef"),
modelFile = modelfile1)

summary(mod.jags)

fit in JAGS
fit.jags <- fit(mod.jags,

communityModel 39

n.iter = 1000,
n.burnin = 500,
chains = 3)

summary(fit.jags)

response curves (= marginal effect plots)
plot_effects(mod.jags,

fit.jags,
submodel = "state")

plot_effects(mod.jags,
fit.jags,
submodel = "det")

effect sizes plot
plot_coef(mod.jags,

fit.jags,
submodel = "state")

plot_coef(mod.jags,
fit.jags,
submodel = "det")

create community model for Nimble
modelfile2 <- tempfile(fileext = ".txt")
mod.nimble <- communityModel(data_list,

occuCovs = list(fixed = "utm_x", ranef = "utm_y"),
detCovsObservation = list(fixed = "effort"),
intercepts = list(det = "ranef", occu = "ranef"),
modelFile = modelfile2,
nimble = TRUE) # set nimble = TRUE

load nimbleEcology package
currently necessary to do explicitly, to avoid additional package dependencies
require(nimbleEcology)

fit uncompiled model in Nimble
fit.nimble.uncomp <- fit(mod.nimble,

n.iter = 10,
chains = 1)

fit compiled model in Nimble
fit.nimble.comp <- fit(mod.nimble,

n.iter = 5000,
n.burnin = 2500,
chains = 3,
compile = TRUE)

parameter summary statistics
summary(fit.nimble.comp)

response curves (= marginal effect plots)
plot_effects(mod.nimble,

fit.nimble.comp,

40 createCovariates

submodel = "state")
plot_effects(mod.nimble,

fit.nimble.comp,
submodel = "det")

effect sizes plot
plot_coef(mod.nimble,

fit.nimble.comp,
submodel = "state")

plot_coef(mod.nimble,
fit.nimble.comp,
submodel = "det")

traceplots
plot(fit.nimble.comp)

End(Not run)

createCovariates Extract covariate values from spatial rasters and prepare rasters for
spatial predictions

Description

This function extracts covariate values from spatial raster data (e.g. for use in modelling) and
prepares these covariates for use in spatial predictions.

It accepts a camera trap table containing spatial information, along with either a directory containing
covariate raster files, a character vector specifying the file paths of these covariate rasters, or direct
SpatRaster objects from the terra package.

Additionally, users can provide parameters to control how covariates are extracted, and how they
are aggregated to prediction rasters.

The function can also download elevation data and calculate terrain metrics if requested.

The function generates prediction rasters based on a provided template or creates one automatically
if no template is provided.

The function returns a list containing the camera trap dataset with extracted covariate values (e.g
for use in occupancy modelling), and prediction rasters ready for spatial modeling.

Usage

createCovariates(
CTtable,
directory,
filenames,
rasters,

createCovariates 41

buffer_ct = 0,
bilinear = FALSE,
buffer_aoi = 1000,
raster_template = NULL,
resolution = NULL,
append = TRUE,
formats = ".tif",
recursive = FALSE,
download_elevation = FALSE,
elevation_zoom = 10,
terrain_measures = NULL,
standardize_na = FALSE,
scale_covariates = FALSE

)

Arguments

CTtable sf object as defined by the sf package. Essentially a camera trap data frame with
spatial information.

directory character. The directory containing the covariate rasters.

filenames character (optionally named). A vector of file paths of covariate rasters. If it is
named the covariates will be named according to the names. If unnamed the file
names will be used as covariate names.

rasters SpatRaster object or list of SpatRaster objects. Direct input of rasters from the
terra package instead of reading from disk.

buffer_ct numeric. A value (in meters) by which to buffer the point locations in CTtable
for extraction of covariate values.

bilinear logical. If TRUE, extract covariate values with bilinear interpolation (nearest 4
raster cells). If FALSE, extract value at the cell the point falls in. Only relevant if
buffer_ct is 0.

buffer_aoi numeric. A value (in meters) by which to buffer the overall camera trapping grid
to ensure that prediction rasters are larger than the camera trapping grid.

raster_template

SpatRaster. A SpatRaster (as defined in the terra package) to use as template
for the creation of prediction rasters.

resolution numeric. Spatial resolution of prediction rasters in the units of the coordinate
reference system. Ignored if raster_template is provided.

append logical. If TRUE, add the extracted covariates to the existing CTtable. If FALSE,
return only the extracted covariate values without the existing CTtable.

formats character. Possible file formats for raster data (must include the dot). Defaults
to .tif files.

recursive logical. If TRUE, search for raster files recursively in subdirectories when a di-
rectory is provided. Defaults to FALSE.

download_elevation

logical. If TRUE, download elevation data from AWS. Defaults to FALSE.

42 createCovariates

elevation_zoom numeric. Zoom level for elevation data download (6-12). Higher values provide
more detail but longer download times. Zoom 12 corresponds to ~20m pixel
resolution, 11 to ~40m, 10 to ~80m, and so on (resolution halves with each
decrease in zoom level). Defaults to 9.

terrain_measures

character. Vector of terrain metrics to calculate from elevation data. Options in-
clude "slope" (slope in degrees), "aspect" (compass direction in degrees), "TRI"
(Terrain Ruggedness Index, measuring elevation difference between adjacent
cells), "TPI" (Topographic Position Index, comparing cell elevation to mean of
surrounding cells), and "roughness" (difference between max and min of sur-
rounding cells). Defaults to NULL (no terrain metrics).

standardize_na logical. Logical. If TRUE, ensures all layers in the prediction raster have identical
NA patterns by setting a cell to NA in all bands if it’s NA in any band. This
creates consistency for spatial predictions across covariates but may lose data in
covariates.

scale_covariates

logical. If TRUE, scale numeric covariates and return both original and scaled
versions of data and prediction rasters. Scaling is performed using R’s scale
function. Defaults to FALSE.

Details

The input camera trap table must be an sf object (a data frame with a geometry column specifying
the spatial information). For details on how to convert an exising camera trap table to sf, see the ex-
amples below. The input rasters can be in different coordinate systems. During covariate extraction
the CTtable is projected to each raster’s coordinate system individually. For the prediction raster all
input rasters are either resampled or reprojected to a consistent coordinate system.

When recursive = TRUE and a directory is provided, the function will search for raster files in all
subdirectories. In this case, the subdirectory names are used as covariate names, and only one raster
file per subdirectory is allowed.

When download_elevation = TRUE, the function will download elevation data from AWS using
the elevatr package. The elevation_zoom parameter controls the level of detail, with values
between 6 and 12. Higher zoom levels provide finer resolution but require longer download times
and may consume significant memory. Approximate resolutions: zoom 12 = ~20m, 11 = ~40m, 10
= ~80m, etc.

If terrain_measures is specified, the function calculates the requested terrain metrics from the el-
evation data using terra::terrain() with the default 3x3 neighborhood. Available terrain metrics
include "slope", "aspect", "TRI" (Terrain Ruggedness Index), "TPI" (Topographic Position Index),
and "roughness".

When using scale_covariates = TRUE, the function returns both original and scaled versions of
the data and prediction rasters. #’ The function uses R’s scale() function to perform centering and
scaling, and includes the scaling parameters in the returned metadata.

Warning about Categorical Covariates: This function does not explicitly handle categorical
rasters. All raster values are treated as numeric, which can be problematic when scaling is applied.
The function attempts to identify "likely categorical" variables (numeric variables with few unique
integer values) and will provide warnings, but it cannot automatically handle them correctly for
scaling.

createCovariates 43

When using scaled covariates with categorical variables in models:

• Use CTtable_scaled for numeric predictors
• Use CTtable (original) for categorical predictors
• Similarly, use predictionRaster_scaled for numeric predictors in spatial predictions
• Use predictionRaster for categorical predictors in spatial predictions

Future versions may implement proper categorical raster handling with RAT (Raster Attribute
Table) support.

Value

When scale_covariates = FALSE, a list containing three elements:

An sf object representing the camera trap data frame with extracted covariate values.

CTtablepredictionRaster A SpatRaster object containing covariate raster layers

originalRaster A list of the original input rasters
When scale_covariates = TRUE, a list containing six elements:

CTtable The original sf object with unscaled covariate values

CTtable_scaled The sf object with scaled numeric covariate values

predictionRaster The original unscaled prediction raster

predictionRaster_scaled The prediction raster with scaled numeric layers

originalRaster A list of the original input rasters

scaling_params A list containing center and scale information of numeric covariates

Examples

Not run:
load camera trap table
data(camtraps)

create sf object
camtraps_sf <- st_as_sf(camtraps,

coords = c("utm_x", "utm_y"),
crs = 32650)

extract covariates (with 100m buffer around cameras)
doesn't run because 'directory' is only a placeholder

covariates <- createCovariates(camtraps_sf,
"path/to/covariate_rasters",
buffer_ct = 100,
buffer_aoi = 1000,
resolution = 100)

extract covariates with elevation data (this code runs)

covariates_elev <- createCovariates(camtraps_sf,
buffer_ct = 100,

44 createCovariates

buffer_aoi = 1000,
resolution = 100,
download_elevation = TRUE,
elevation_zoom = 11,
terrain_measures = c("slope", "aspect", "TRI"))

Note that if local rasters are available they can be extracted alongside
elevation data in a single function call

camera trap table with extracted covariate values
camtraps_sf_cov <- covariates_elev$CTtable

covariate raster layer
r_cov <- covariates_elev$predictionRaster
plot(r_cov)

Use SpatRaster objects directly as input
r1 <- rast("elevation.tif")
r2 <- rast("landcover.tif")
raster_list <- list(elevation = r1, landcover = r2)

covariates_direct <- createCovariates(camtraps_sf,
rasters = raster_list,
buffer_ct = 100,
resolution = 100)

Scale numeric covariates for modeling
covariates_scaled <- createCovariates(camtraps_sf,

rasters = raster_list,
buffer_ct = 100,
resolution = 100,
scale_covariates = TRUE)

Use scaled data with categorical variables
Mix and match from original and scaled outputs for tabular data
model_data <- covariates_scaled$CTtable_scaled # Use scaled numeric covariates
model_data$landcover <- covariates_direct$CTtable$landcover # Use original categorical covariate

Mix and match for prediction rasters
Create combined prediction raster (scaled numeric variables & original categorical variables)
Extract scaled elevation layer
elev_scaled <- covariates_scaled$predictionRaster_scaled$elevation

Extract original landcover layer (categorical)
landcover_orig <- covariates_direct$predictionRaster$landcover

Combine into a new SpatRaster for predictions
prediction_raster <- c(elev_scaled, landcover_orig)
names(prediction_raster) <- c("elevation", "landcover")

Use this combined raster for spatial predictions
plot(prediction_raster)

createSpeciesFolders 45

End(Not run)

createSpeciesFolders Create species directories for species identification

Description

This function creates species subdirectories within station directories. They can be used for species
identification by manually moving images into the respective species directories. The function can
also delete empty species directories (if species were not detected at sites). It is not necessary to run
this function if animals will be identified by metadata tagging.

Usage

createSpeciesFolders(inDir, hasCameraFolders, species, removeFolders = FALSE)

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

hasCameraFolders

logical. Do the station directories in inDir have camera-subdirectories (e.g.
inDir/StationA/CameraA1; inDir/StationA/CameraA2)?

species character. names of species directories to be created in every station (or sta-
tion/camera) subdirectory of inDir

removeFolders logical. Indicating whether to create (TRUE) or remove (FALSE) species direc-
tories .

Details

This function should be run after imageRename. Empty directories can be created as containers for
species identification if images are identified with the drag & drop method. After species identi-
fication is complete, empty species directories can be deleted using removeFolders = TRUE. The
function will delete only directories which are specified in species. If hasCameraFolders was
set to TRUE in function imageRename, hasCameraFolders must be set to TRUE here too. Species
directories will then be created within each camera subdirectory of each station directory. if the
user wishes to identify species by metadata tagging, running this function is not needed.

Value

A data.frame with directory names and an indicator for whether directories were created or
deleted.

Author(s)

Juergen Niedballa

46 createStationFolders

Examples

Not run:

create dummy directories for tests
(normally, you'd use directory containing renamed, unsorted images)

this will be used as inDir
wd_createDirTest <- file.path(getwd(), "createSpeciesFoldersTest")

now we create 2 station subdirectories
dirs_to_create <- file.path(wd_createDirTest, c("StationA", "StationB"))
sapply(dirs_to_create, FUN = dir.create, recursive = TRUE)

species names for which we want to create subdirectories
species <- c("Sambar Deer", "Bay Cat")

create species subdirectories
SpecFolderCreate1 <- createSpeciesFolders (inDir = wd_createDirTest,

species = species,
hasCameraFolders = FALSE,
removeFolders = FALSE)

SpecFolderCreate1

check if directories were created
list.dirs(wd_createDirTest)

delete empty species directories
SpecFolderCreate2 <- createSpeciesFolders (inDir = wd_createDirTest,

species = species,
hasCameraFolders = FALSE,
removeFolders = TRUE)

SpecFolderCreate2

check if species directories were deleted
list.dirs(wd_createDirTest)

End(Not run)

createStationFolders Create camera trap station directories for raw camera trap images

Description

This function creates camera trap station directories, if needed with camera subdirectories. They
can be used as an initial directory structure for storing raw camera trap images.

createStationFolders 47

Usage

createStationFolders(inDir, stations, cameras, createinDir)

Arguments

inDir character. Directory in which station directories are to be created

stations character. Station IDs to be used as directory names within inDir

cameras character. Camera trap IDs to be used as subdirectory names in each station
directory (optionally)

createinDir logical. If inDir does not exist, create it?

Details

The empty directories serve as containers for saving raw camera trap images. If more than 1 camera
was set up at a station, specifying cameras is required in order to keep images from different
cameras separate. Otherwise, generic filenames (e.g., IMG0001.JPG) from different cameras may
lead to accidental overwriting of images if images from these cameras are saved in one station
directory.

Value

A data.frame with station (and possibly camera) directory names and an indicator for whether
they were created successfully.

Author(s)

Juergen Niedballa

Examples

Not run:

create dummy directory for tests (this will be used as inDir)
(normally, you'd set up an empty directory, e.g. .../myStudy/rawImages)
wd_createStationDir <- file.path(tempdir(), "createStationFoldersTest")

now we load the sample camera trap station data frame
data(camtraps)

create station directories in wd_createStationDir
StationFolderCreate1 <- createStationFolders (inDir = wd_createStationDir,

stations = as.character(camtraps$Station),
createinDir = TRUE)

StationFolderCreate1

check if directories were created
list.dirs(wd_createStationDir)

48 detectionHistory

End(Not run)

detectionHistory Species detection histories for occupancy analyses

Description

This function generates species detection histories that can be used in single-species occupancy
analyses with packages unmarked and ubms, as well as multi-species/community occupancy mod-
els via communityModel. It generates detection histories in different formats, with adjustable occa-
sion length and occasion start time.

Usage

detectionHistory(
recordTable,
species,
camOp,
output = c("binary", "count"),
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
occasionLength,
minActiveDaysPerOccasion,
maxNumberDays,
day1 = "survey",
buffer,
includeEffort = TRUE,
scaleEffort = FALSE,
occasionStartTime = "deprecated",
datesAsOccasionNames = FALSE,
timeZone,
writecsv = FALSE,
outDir,
unmarkedMultFrameInput

)

Arguments

recordTable data.frame. the record table created by recordTable

species character. species name(s) for which to compute detection histories. Can be
either a single species name (for use with unmarked/ubms) or a vector of mul-
tiple species names (for input to communityModel)

camOp The camera operation matrix as created by cameraOperation

detectionHistory 49

output character. Return binary detections ("binary") or counts of detections ("count")

stationCol character. name of the column specifying Station ID in recordTable

speciesCol character. name of the column specifying species in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. Format of column recordDateTimeCol in recordTable

occasionLength integer. occasion length in days
minActiveDaysPerOccasion

integer. minimum number of active trap days for occasions to be included (op-
tional)

maxNumberDays integer. maximum number of trap days per station (optional)

day1 character. When should occasions begin: station setup date ("station"), first day
of survey ("survey"), a specific date (e.g. "2015-12-31")?

buffer integer. Makes the first occasion begin a number of days after station setup.
(optional)

includeEffort logical. Compute trapping effort (number of active camera trap days per station
and occasion)?

scaleEffort logical. scale and center effort matrix to mean = 0 and sd = 1?
occasionStartTime

(DEPRECATED) integer. time of day (the full hour) at which to begin occa-
sions. Please use argument occasionStartTime in cameraOperation instead.

datesAsOccasionNames

If day1 = "survey", occasion names in the detection history will be composed
of first and last day of that occasion.

timeZone character. Must be a value returned by OlsonNames

writecsv logical. Should the detection history be saved as a .csv?

outDir character. Directory into which detection history .csv file is saved
unmarkedMultFrameInput

logical. Return input for multi-season occupancy models in unmarked (argu-
ment "y" in unmarkedMultFrame?

Details

The function creates species detection matrices in two possible formats: detection-by-date or detection-
by-occasion. The start of detection histories is controlled by day1:

• "station": Each station’s history begins on its setup day

• "survey": All stations begin on the first day of the survey

• A specific date (e.g., "2015-12-31"): All stations begin on this date

Dates must be in "YYYY-MM-DD" format if specified directly.

Two output formats are available via the output parameter:

50 detectionHistory

• "binary": Records detection (1) or non-detection (0)
• "count": Records the number of detections per occasion

The includeEffort parameter determines how camera operation affects the output:

• If FALSE: Periods when cameras were not operational or only partly operational appear as NA
in the detection history. This may lose species record from incomplete occasions.

• If TRUE: Incomplete occasions are retained. Outputs contain a separate effort matrix that can
be used as an observation covariate in occupancy models.

It is generally advisable to include effort as a covariate to account for uneven sampling effort.
occasionLength controls how many days are aggregated into each sampling occasion. Note that
occasionStartTime has moved to cameraOperation to ensure proper calculation of daily effort.
The values of stationCol in recordTable must be matched by the row names of camOp (case-
insensitive), otherwise an error is raised.
For date/time formatting, recordDateTimeFormat accepts two syntax styles:

• Base R style (using %): e.g., "%Y-%m-%d %H:%M:%S"
• lubridate style: e.g., "ymd HMS"

lubridate will be used if there are no "%" characters in recordDateTimeFormat. The default and
recommended format is "YYYY-MM-DD HH:MM:SS" (e.g., "2014-09-30 22:59:59").
For multi-season studies where sessionCol was used in cameraOperation, the function automati-
cally detects this structure. Set unmarkedMultFrameInput = TRUE to format output for unmarkedMultFrame,
with rows representing sites and columns ordered by season-major, occasion-minor (e.g., season1-
occasion1, season1-occasion2, etc.).

Value

If a single species is provided (typical for unmarked/ubms analyses), returns a list with either 1, 2
or 3 elements depending on the value of includeEffort and scaleEffort:

detection_history

A species detection matrix
effort A matrix giving the number of active camera trap days per station and occasion

(= camera trapping effort). Only returned if includeEffort = TRUE
effort_scaling_parameters

Scaling parameters of the effort matrix. Only returned if includeEffort and
scaleEffort are TRUE

If multiple species are provided (for use with communityModel), returns a similar list structure but
with detection_history containing a named list of detection matrices, one for each species. The
effort matrix is identical for all species and thus returned only once.

Warning

Setting output = "count" returns a count of detections, not individuals. These counts are not suit-
able for abundance modeling (e.g., N-mixture models) as they do not represent individual animals.
For important information about the timeZone parameter, please refer to the "Data Extraction"
vignette (vignette("DataExtraction") or online at https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.pdf).

https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf

detectionHistory 51

Author(s)

Juergen Niedballa

Examples

define image directory
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

load station information
data(camtraps)

create camera operation matrix
camop_no_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
hasProblems = FALSE,
dateFormat = "dmy"

)

Not run:
if (Sys.which("exiftool") != ""){ # only run this function if ExifTool is available
recordTableSample <- recordTable(inDir = wd_images_ID,

IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur"

)
}

End(Not run)
data(recordTableSample) # load the record history, as created above

compute detection history for a species

without trapping effort
DetHist1 <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

52 detectionHistory

DetHist1 # this is a list with 1 element
DetHist1$detection_history # this is the contained detection/non-detection matrix

with effort / using base R to define recordDateTimeFormat
DetHist2 <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

DetHist2$detection_history # detection history (alternatively, use: DetHist2[[1]])
DetHist2$effort # effort (alternatively, use: DetHist2[[2]])

with effort / using lubridate package to define recordDateTimeFormat
DetHist2_lub <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

DetHist2_lub$detection_history # detection history (alternatively, use: DetHist2_lub[[1]])
DetHist2_lub$effort # effort (alternatively, use: DetHist2_lub[[2]])

multi-season detection history

load multi-season data
data(camtrapsMultiSeason)
data(recordTableSampleMultiSeason)

multi-season camera operation matrix
camop_season <- cameraOperation(CTtable = camtrapsMultiSeason,

stationCol = "Station",
setupCol = "Setup_date",
sessionCol = "session",

detectionHistory 53

retrievalCol = "Retrieval_date",
hasProblems = TRUE,
dateFormat = "dmy"

)

multi-season detection history
DetHist_multi_season <- detectionHistory(recordTable = recordTableSampleMultiSeason,

camOp = camop_season,
stationCol = "Station",
speciesCol = "Species",
species = "VTA",
occasionLength = 10,
day1 = "station",
recordDateTimeCol = "DateTimeOriginal",
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "UTC",
unmarkedMultFrameInput = TRUE

)

DetHist_multi_season

Multi-species example for community occupancy analysis with communityModel()
DetHist_multi_species <- detectionHistory(recordTable = recordTableSample,

species = c("VTA", "PBE", "EGY"), # multiple species
camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
occasionLength = 7,
day1 = "station",
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

bundle input data for communityModel
data_list <- list(ylist = DetHist_multi_species$detection_history,

siteCovs = camtraps,
obsCovs = list(effort = DetHist_multi_species$effort))

Not run:

create community model
mod.jags <- communityModel(data_list,

...) # model specification

End(Not run)

54 detectionMaps

detectionMaps Generate maps of observed species richness and species presences by
station

Description

Generates maps of observed species richness and species presence by species and station. Output
can be R graphics, PNG graphics or a shapefile for use in GIS software.

Usage

detectionMaps(
CTtable,
recordTable,
Xcol,
Ycol,
backgroundPolygon,
stationCol = "Station",
speciesCol = "Species",
speciesToShow,
richnessPlot = TRUE,
speciesPlots = TRUE,
addLegend = TRUE,
printLabels = FALSE,
smallPoints,
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createPlotDir = FALSE,
pngMaxPix = 1000,
writeShapefile = FALSE,
shapefileName,
shapefileDirectory,
shapefileProjection

)

Arguments

CTtable data.frame. contains station IDs and coordinates

recordTable data.frame. the record table created by recordTable

Xcol character. name of the column specifying x coordinates in CTtable

Ycol character. name of the column specifying y coordinates in CTtable

backgroundPolygon

SpatialPolygons or SpatialPolygonsDataFrame. Polygon to be plotted in the
background of the map (e.g. project area boundary)

stationCol character. name of the column specifying station ID in CTtable and recordTable

detectionMaps 55

speciesCol character. name of the column specifying species in recordTable

speciesToShow character. Species to include in the maps. If missing, all species in recordTable
will be included.

richnessPlot logical. Generate a species richness plot?

speciesPlots logical. Generate plots of all species number of independent events?

addLegend logical. Add legends to the plots?

printLabels logical. Add station labels to the plots?

smallPoints numeric. Number by which to decrease point sizes in plots (optional).

plotR logical. Create plots in R graphics device?

writePNG logical. Create PNGs of the plots?

plotDirectory character. Directory in which to save the PNGs

createPlotDir logical. Create plotDirectory?

pngMaxPix integer. number of pixels in pngs on the longer side

writeShapefile logical. Create a shapefile from the output?

shapefileName character. Name of the shapefile to be saved. If empty, a name will be generated
automatically.

shapefileDirectory

character. Directory in which to save the shapefile.
shapefileProjection

character. A character string of projection arguments to use in the shapefile.

Details

The column name stationCol must be identical in CTtable and recordTable and station IDs
must match.

Shapefile creation depends on the packages sf. Argument shapefileProjection must be a valid
argument of st_crs (one of (i) character: a string accepted by GDAL, (ii) integer, a valid EPSG
value (numeric), or (iii) an object of class crs. If shapefileProjection is undefined, the resulting
shapefile will lack a coordinate reference system.

Value

An invisible data.frame with station coordinates, numbers of events by species at each station and
total species number by station. In addition and optionally, R graphics or png image files.

Author(s)

Juergen Niedballa

References

A great resource for coordinate system information is https://spatialreference.org/. Use the
Proj4 string as shapefileProjection argument.

https://spatialreference.org/

56 detectionMaps

Examples

load station information
data(camtraps)

load record table
data(recordTableSample)

create maps
Mapstest <- detectionMaps(CTtable = camtraps,

recordTable = recordTableSample,
Xcol = "utm_x",
Ycol = "utm_y",
stationCol = "Station",
speciesCol = "Species",
writePNG = FALSE,
plotR = TRUE,
printLabels = TRUE,
richnessPlot = TRUE,
addLegend = TRUE

)

with a polygon in the background, and for one species only

make a dummy polygon for the background
library(sf)

Sr1 = st_polygon(list(cbind(c(521500,526500,527000, 521500, 521500),
c(607500, 608000, 603500, 603500, 607500))))

aoi <- data.frame(name = "My AOI")
st_geometry(aoi) <- st_geometry(Sr1)
st_crs(aoi) <- 32650 # assign CRS: UTM50N

Mapstest2 <- detectionMaps(CTtable = camtraps,
recordTable = recordTableSample,
Xcol = "utm_x",
Ycol = "utm_y",
backgroundPolygon = aoi, # this was added
speciesToShow = c("PBE", "VTA"), # this was added
stationCol = "Station",
speciesCol = "Species",
writePNG = FALSE,
plotR = TRUE,
printLabels = TRUE,
richnessPlot = TRUE,
addLegend = TRUE

)

exifTagNames 57

exifTagNames Show Exif metadata of JPEG images or other image or video formats

Description

The function will return metadata values, metadata tag names and group names of Exif metadata of
JPEG images or other formats.

Usage

exifTagNames(
inDir,
whichSubDir = 1,
fileName,
returnMetadata = "DEPRECATED",
returnTagGroup = "DEPRECATED"

)

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

whichSubDir integer or character. Either number or name of subdirectory of inDir in which
to look for an image

fileName character. A filename, either the file name of an image in inDir or a full path
with file name (in which case inDir is not needed)

returnMetadata deprecated and ignored

returnTagGroup deprecated and ignored

Details

Many digital cameras record information such as ambient temperature or moon phase under maker-
specific tag names in Exif metadata of JPEG images. In addition, many technical information are
stored in Exif metadata. In order to extract those information from images and add them to the
record tables created by the functions recordTable and recordTableIndividual, the tag names
must be known so they can be passed to these functions via the additionalMetadataTags argu-
ment.

By default the function returns both metadata tag names and the metadata group they belong to
(via argument returnTagGroup). This is helpful to unambiguously address specific metadata tags,
because different groups can contain tags of identical names, which may cause problems execut-
ing the functions recordTable and recordTableIndividual. The format is "GROUP:tag", e.g.
"EXIF:Flash".

58 exifTagNames

Value

A data frame containing three columns: metadata tag group, tag name, and values.

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

See Also

recordTable

Examples

Not run:

wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

specify directory, camtrapR will automatically take first image from first subdirectory
exifTagNames(inDir = wd_images_ID)

specify subdirectory by name, camtrapR will use first image
exifTagNames(inDir = wd_images_ID,

whichSubDir = "StationA")

specifying fileName only (line break due to R package policy)
exifTagNames(fileName = file.path(wd_images_ID, "StationC", "TRA",

"StationC__2009-05-02__00-10-00(1).JPG"))

specify inDir and fileName
exifTagNames(inDir = wd_images_ID,

fileName = file.path("StationC", "TRA", "StationC__2009-05-02__00-10-00(1).JPG"))

it also works this way
exifTagNames(inDir = file.path(wd_images_ID, "StationC", "TRA"),

fileName = "StationC__2009-05-02__00-10-00(1).JPG")

with tagged sample images
wd_images_ID_tagged <- system.file("pictures/sample_images_indiv_tag", package = "camtrapR")
exifTagNames(inDir = wd_images_ID_tagged)

End(Not run)

https://exiftool.org/

filterRecordTable 59

filterRecordTable Filter species record table for temporal independence

Description

Filter species record table for temporal independence

Usage

filterRecordTable(
recordTable,
minDeltaTime = 0,
deltaTimeComparedTo,
speciesCol = "Species",
stationCol,
cameraCol,
camerasIndependent,
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
removeDuplicateRecords = TRUE,
exclude,
timeZone,
writecsv = FALSE,
outDir,
eventSummaryColumn,
eventSummaryFunction,
quiet = FALSE

)

Arguments

recordTable data frame as created by recordTable.

minDeltaTime integer. Time difference between records of the same species at the same station
to be considered independent (in minutes)

deltaTimeComparedTo

character. For two records to be considered independent, must the second one
be at least minDeltaTime minutes after the last independent record of the same
species ("lastIndependentRecord"), or minDeltaTime minutes after the last
record ("lastRecord")?

speciesCol character. name of the column specifying species in recordTable

stationCol character. Name of the camera trap station column. Assuming "Station" if un-
defined.

cameraCol character. Name of the column specifying cameras in recordTable (optional).
camerasIndependent

logical. If TRUE, species records are considered to be independent between cam-
eras at a station.

60 filterRecordTable

recordDateTimeCol

character. Name of the column specifying date and time in recordTable.
recordDateTimeFormat

character. Format of column recordDateTimeCol in recordTable
removeDuplicateRecords

logical. If there are several records of the same species at the same station (also
same camera if cameraID is defined) at exactly the same time, show only one?

exclude character. Vector of species names to be excluded from the record table

timeZone character. Must be a value returned by OlsonNames

writecsv logical. Should the record table be saved as a .csv?

outDir character. Directory to save csv to. If NULL and writecsv = TRUE, recordTable
will be written to inDir.

eventSummaryColumn

character. A column in the record table (e.g. from a metadata tag) by to sum-
marise non-independent records (those within minDeltaTime of a given record)
with a user-defined function (eventSummaryFunction)

eventSummaryFunction

character. The function by which to summarise eventSummaryColumn of non-
independent records, e.g. "sum", "max" (optional)

quiet logical. If TRUE, suppress printing of progress.

Value

A data frame containing species records and additional information about stations, date, time, fil-
tered for temporal independence.

Author(s)

Juergen Niedballa

Examples

if (Sys.which("exiftool") != ""){ # only run example if ExifTool is available

set directory with camera trap images in station directories
wd_images_ID_species <- system.file("pictures/sample_images_species_dir",

package = "camtrapR")

create record table without temporal filtering
rec_table <- recordTable(inDir = wd_images_ID_species,

IDfrom = "directory",
minDeltaTime = 0,
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur",
removeDuplicateRecords = TRUE
)

filter for 60 minutes temporal independence
rec_table_filt <- filterRecordTable(recordTable = rec_table,

fit,commOccu-method 61

minDeltaTime = 60,
stationCol = "Station",
deltaTimeComparedTo = "lastIndependentRecord")

nrow(rec_table)
nrow(rec_table_filt)

}

fit,commOccu-method Fit a community (multi-species) occupancy model

Description

Convenience function for fitting community occupancy models (defined in a commOccu object) in
JAGS or Nimble.

Usage

S4 method for signature 'commOccu'
fit(
object,
n.iter = 100,
thin = 1,
n.burnin = n.iter/2,
n.adapt = 0,
chains = 3,
inits = NULL,
compile = TRUE,
WAIC = FALSE,
quiet = FALSE,
...

)

Arguments

object commOccu object

n.iter number of iterations to monitor

thin thinning interval for monitors

n.burnin burnin length. Defaults to half of n.iter.

n.adapt Length of adaptive phase

chains number of MCMC chains to run

inits named list. Initial values to use. If NULL (default), the values from the inits
function in object are used.

compile logical. If Nimble model, compile model with compileNimble before running
model?

62 fixDateTimeOriginal

WAIC logical. Return WAIC (only Nimble models)

quiet if TRUE messages and progress bar will be suppressed

... additional arguments to pass to runMCMC (only relevant for Nimble)

Details

Models will be fit either in JAGS or Nimble, depending on the decision made in the nimble argu-
ment in communityModel.

For Nimble, compilation is strongly recommended for long model runs. Uncompiled models can
run extremely slow. Compilation itself can take a while also, and requires that Rtools is available
on the system.

This is a convenience function only which hides some of the configuration options. If you require
more control over model fitting, you can run all steps individually. See vignette 5 for details.

Value

A coda::mcmc.list

fixDateTimeOriginal Fix DateTimeOriginal Exif metadata tag in Reconyx Hyperfire cam-
eras

Description

Some camera models don’t store the date/time information in the standard Exif metadata tag. Con-
sequently, camtrapR cannot find that information. This function uses Exiftool to update the Date-
TimeOriginal metadata tag in all images within a directory to make them readable with camtrapR
(and other software).

Usage

fixDateTimeOriginal(inDir, recursive = TRUE)

Arguments

inDir character. Name of the directory containing images to be fixed

recursive logical. Recursively find images in subdirectories of inDir?

Details

Some Reconyx Hyperfire cameras (e.g. HC500) are known to show this problem.

Value

Returns invisibly the messages returned by the Exiftool call (warnings etc.).

getSpeciesImages 63

Warning

Please make a backup of your images before running this function.

Author(s)

Juergen Niedballa

References

This function uses the code from:
Tobler, Mathias (2015). Camera Base Version 1.7 User Guide https://www.atrium-biodiversity.
org/tools/camerabase/files/CameraBaseDoc1.7.pdf

Examples

Not run:
a hypothetical example

wd_images_hyperfire <- "C:/Some/Directory"

fixDateTimeOriginal(inDir = wd_images_hyperfire,
recursive = TRUE)

End(Not run)

getSpeciesImages Collect all images of a species

Description

This function will fetch all images of a particular species from all camera trap stations and copies
these images to a new location. The images which are to be copied are found in one of 2 possible
ways, 1) by providing an existing record table (created with recordTable) or 2) by reading species
IDs from species directories or from metadata (calling ExifTool). Earlier in the workflow, i.e.,
before running this function, images should have been renamed (with imageRename) to give images
unique file names based on station ID and date/time.

Usage

getSpeciesImages(
species,
recordTable,
speciesCol = "Species",
stationCol = "Station",
inDir,
outDir,
createStationSubfolders = FALSE,

https://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
https://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf

64 getSpeciesImages

IDfrom,
metadataSpeciesTag,
metadataHierarchyDelimitor = "|"

)

Arguments

species character. Species whose images are to be fetched

recordTable data frame. A data frame as returned by function recordTable. If you specify
this argument, do not specify inDir

speciesCol character. Name of the column specifying species ID in recordTable. Only
required if recordTable is defined

stationCol character. Name of the column specifying station ID in recordTable. Only
required if recordTable is defined

inDir character. Directory containing identified (species level) camera trap images
sorted into station subdirectories (e.g. inDir/StationA/). If you specify this ar-
gument, do not specify recordTable.

outDir character. Directory in which to save species images. A species subdirectory
will be created in outDir automatically.

createStationSubfolders

logical. Save images in station directories within the newly created species di-
rectory in outDir?

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")? Only required if inDir is defined.

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").
Only required if inDir is defined.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":" (if IDfrom = "metadata"). Only
required if inDir is defined and IDfrom = "metadata".

Details

The function finds the images to be copied by either consulting a record table created with recordTable
or by reading species IDs from images. The former is considerable faster because ExifTool is not
called, but requires images to be in precisely the location given by the columns Directory and
FileName in recordTable. To use this feature, provide the function with a record table in argu-
ment recordTable.

If you’d rather read species IDs from images within the function (to make sure all file paths are
correct), images need to be in the directory structure required by the package, e.g.

> inDir/Station/Species

or

> inDir/Station/Camera/Species

if using species directories for species IDs, and

imageRename 65

> inDir/Station

or

> inDir/Station/Camera

if reading IDs from species metadata tags. In the latter case, only station directories are needed. In
any case, the argument species must match species IDs (either the speciesCol in recordTable,
species directory names or species metadata tags).

Before running the function, first rename the images using function imageRename to provide unique
file names and prevent several images from having the same name (if generic names like "IMGP0001.jpg"
are used). The function will not copy images if there are duplicate filenames to prevent overwriting
images unintentionally.

Value

A data.frame with old and new directories and file names and the copy status (copy_ok; TRUE if
copying was successful, FALSE if not).

Author(s)

Juergen Niedballa

Examples

Not run:
define image directory
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

species_to_copy <- "VTA" # = Viverra tangalunga, Malay Civet

specImagecopy <- getSpeciesImages(species = species_to_copy,
inDir = wd_images_ID,
outDir = wd_images_ID_copy,
createStationSubfolders = FALSE,
IDfrom = "directory"
)

End(Not run)

imageRename Copy and rename images based on camera trap station ID and cre-
ation date

66 imageRename

Description

The function renames and copies raw camera trap images into a new location where they can be
identified. Images are renamed with camera trap station ID, camera ID (optional), creation date and
a numeric identifier for images taken within one minute of each other at a given station. Station ID
and camera ID are derived from the raw image directory structure. The creation date is extracted
from image metadata using ExifTool.

Usage

imageRename(
inDir,
outDir,
hasCameraFolders,
keepCameraSubfolders,
createEmptyDirectories = FALSE,
copyImages = FALSE,
writecsv = FALSE,
video

)

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

outDir character. Directory into which the renamed images will be copied
hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1")?

keepCameraSubfolders

logical. Should camera directories be preserved as subdirectories of outDir
(e.g. "outDir/StationA/CameraA1")?

createEmptyDirectories

logical. If station or camera directories are empty, should they be copied never-
theless (causing empty directories in outDir, but preserving the whole directory
structure)?

copyImages logical. Copy images to outDir?

writecsv logical. Save a data frame with a summary as a .csv? The csv will be saved in
outDir.

video list. Contains information on how to handle video data (optional). See details.

Details

Setting up the correct raw image directory structure is necessary for running the function suc-
cessfully. inDir is the main directory that contains camera trap station subdirectories (e.g. in-
Dir/StationA). If one camera was deployed per station and no camera subdirectories are used within
station directories, hasCameraFolders can be set to FALSE. If more than one camera was deployed
at stations, there must be subdirectories for the individual camera traps within the station directories

imageRename 67

(e.g. "inDir/StationA/CameraA1" and "inDir/StationA/CameraA2"). Even if only some stations had
multiple cameras, all station will need camera subdirectories. The argument hasCameraFolders
must be TRUE. Within the camera subdirectories, the directory structure is irrelevant.

Renaming of images follows the following pattern: If hasCameraFolders is TRUE, it is: "Sta-
tionID__CameraID__Date__Time(Number).JPG", e.g. "StationA__CameraA1__2015-01-31__18-
59-59(1).JPG". If hasCameraFolders is FALSE, it is: "StationID__Date__Time(Number).JPG",
e.g. "StationA__2015-01-31__18-59-59(1).JPG".

The purpose of the number in parentheses is to prevent assigning identical file names to images
taken at the same station (and camera) in the same second, as can happen if cameras take sequences
of images. It is a consecutive number given to all images taken at the same station by the same
camera within one minute. The double underscore "__" in the image file names is for splitting
and extracting information from file names in other functions (e.g. for retrieving camera IDs in
recordTable if camera subdirectories are not preserved (keepCameraSubfolders = FALSE)).

The function finds all JPEG images (optionally, also videos) and extracts the image timestamp
from the image metadata using ExifTool (digiKam database for videos) and copies the images
with new file names into outDir, where it will set up a directory structure based on the station
IDs and, if required by keepCameraSubfolders = TRUE, camera IDs (e.g. outDir/StationA/ or out-
Dir/StationA/CameraA1).

copyImages can be set to FALSE to simulate the renaming and check the file names of the renamed
images without copying. If you are handling large number of images (>e.g., 100,000), the function
may take some time to run.

Argument video is a named list 4 items (file_formats, dateTimeTag, (db_directory, db_filename).
Video date/time is read from video metadata stored in the digiKam database. Hence, inDir must
be in your digiKam database.

The items of argument video are:

file_formats The video formats to extract (include "jpg" if you want .JPG image metadata)
dateTimeTag the metadata tag to extract date/time from (use exifTagNames to find out which tag is suitable)
db_directory The directory containing digiKam database
db_filename The digiKam database file in db_directory

See the examples in recordTable for for how to specify the argument video.

Value

A data.frame with original directory and file names, new directory and file names and an indicator
for whether images were copied successfully.

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

https://exiftool.org/

68 OCRdataFields

Examples

Not run:

"trial" run. create a table with file names after renaming, but don't copy images.

first, find sample image directory in package directory:
wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")

because copyImages = FALSE, outDir does not need to be defined
renaming.table <- imageRename(inDir = wd_images_raw,

hasCameraFolders = FALSE,
copyImages = FALSE,
writecsv = FALSE

)

a real example in which images are copied and renamed

define raw image location
wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")

define destination for renamed images
wd_images_raw_renamed <- file.path(tempdir(), "raw_images_renamed")

now we have to define outDir because copyImages = TRUE
renaming.table2 <- imageRename(inDir = wd_images_raw,

outDir = wd_images_raw_renamed,
hasCameraFolders = FALSE,
copyImages = TRUE,
writecsv = FALSE

)

show output files
list.files(wd_images_raw_renamed, recursive = TRUE)

output table
renaming.table2

End(Not run)

OCRdataFields Optical character recognition (OCR) from data fields in digital images

OCRdataFields 69

Description

Extracts information from the data fields in camera trap images (not the metadata). Many cam-
era traps include data fields in camera trap images, often including date and time of images, and
sometimes other information. This function extracts the information from these fields using optical
character recognition provided by the package tesseract after reading images using the package
magick.

Usage

OCRdataFields(inDir, geometries, invert = FALSE)

Arguments

inDir character. Directory containing camera trap images (or subdirectories contain-
ing images)

geometries list. A (possibly named) list of geometry strings defining the image area(s) to
extract.

invert logical. Invert colors in the image? Set to TRUE if text in data field is white on
black background. Leave if FALSE if text is black in white background.

Details

Normally all these information should be in the image metadata. This function is meant as a last
resort if image metadata are unreadable or were removed from images. OCR is not perfect and may
misidentify characters, so check the output carefully.

The output of this function can be used in writeDateTimeOriginal to write date/time into the
DateTimeOriginal tag in image metadata, making these images available for automatic processing
with recordTable and other functions that extract image metadata.

This function reads all images in inDir (including subdirectories), crops them to the geometries
in the "geometries" list, and performs optical character recognition (OCR) on each of these fields
(leveraging the magick and tesseract packages).

Geometries are defined with geometry_area from magick. See geometry for details on how to
specify geometries with geometry_area. The format is: "widthxheight+x_off+y_off", where:

width width of the area of interest

height height of the area of interest

x_off offset from the left side of the image

y_off offset from the top of the image

Units are pixels for all fields. digiKam can help in identifying the correct specification for geome-
tries. Open the Image Editor, left-click and draw a box around the data field of interest. Ensure the
entire text field is included inside the box, but nothing else. Now note two pairs of numbers at the
bottom of the window, showing the offsets and box size as e.g.:

"(400, 1800) (300 x 60)"

This corresponds to the geometry values as follows:

"(x_off, y_off) (width x height)"

70 OCRdataFields

Using these values, you’d run:

geometry_area(x_off = 400, y_off = 1800, width = 300, height = 60)

and receive

"300x60+400+1800"

as your geometry.

OCR in tesseract has problems with white font on black background. If that is the case in your im-
ages, set invert to TRUE to invert the image and ensure OCR uses black text on white background.

Even then, output will not be perfect. Error rates in OCR depend on multiple factors, including the
text size and font type used. We don’t have control over these, so check the output carefully and
edit as required.

Value

A data.frame with original directory and file names, and additional columns for the OCR data of
each extracted geometry.

Author(s)

Juergen Niedballa

See Also

writeDateTimeOriginal

Examples

Not run:
dontrun is to avoid forcing users to install additional dependencies

wd_images_OCR <- system.file("pictures/full_size_for_ocr", package = "camtrapR")

library(magick)

define geometries
geometry1 <- geometry_area(x_off = 0, y_off = 0, width = 183, height = 37)
geometry2 <- geometry_area(x_off = 196, y_off = 0, width = 200, height = 17)
geometry3 <- geometry_area(x_off = 447, y_off = 0, width = 63, height = 17)
geometry4 <- geometry_area(x_off = 984, y_off = 0, width = 47, height = 17)
geometry5 <- geometry_area(x_off = 0, y_off = 793, width = 320, height = 17)

combine geometries into list
geometries <- list(date = geometry1,

time = geometry2,
sequence_id = geometry3,
temperature = geometry4,
camera_model = geometry5)

df_image_data <- OCRdataFields(inDir = wd_images_OCR,

plot_coef,commOccu-method 71

geometries = geometries,
invert = TRUE)

df_image_data

note the mistake in "camera_model"
it should be "PC850", not "PC8S0O"
date and time are correct though

End(Not run)

plot_coef,commOccu-method

Plot effect sizes of covariates in community occupancy model

Description

Plot effect sizes for all species in a community (multi-species) occupancy model. Currently only
supports continuous covariates, not categorical covariates.

Usage

S4 method for signature 'commOccu'
plot_coef(
object,
mcmc.list,
submodel = "state",
speciesSubset,
ordered = TRUE,
combine = FALSE,
outdir,
level = c(outer = 0.95, inner = 0.75),
colorby = "significance",
scales = "free_y",
community_lines = FALSE,
...

)

Arguments

object commOccu object

mcmc.list mcmc.list. Output of fit called on a commOccu object

submodel character. Submodel to get plots for. Can be "det" or "state"

speciesSubset character. Species to include in coefficient plots.

72 plot_effects,commOccu-method

ordered logical. Order species in plot by median effect (TRUE) or by species name
(FALSE)

combine logical. Combine multiple plots into one plot (via facets)?

outdir character. Directory to save plots to (optional)

level numeric. Probability mass to include in the uncertainty interval (two values
named "outer" and "inner", in that order). Second value (= inner interval) will
be plotted thicker.

colorby character. Whether to color estimates by "significance" (of the effect esti-
mates), or "Bayesian p-value" (of the species). Currently allows only "significance".

scales character. Passed to facet_grid. Can be "free" to scale x axes of effect
estimates independently, or "free_y" to scale all x axes identically.

community_lines

logical. Add faint vertical lines to the plot indicating median community effect
(solid line) and its confidence interval (first value from level).

... additional arguments for ggsave - only relevant if outdir is defined.

Details

Users who wish to create their own visualizations can use the data stored in the ggplot output. It is
accessed via e.g. output$covariate_name$data

Value

A list of ggplot objects (one list item per covariate).

plot_effects,commOccu-method

Plot Marginal Effects of Covariates

Description

Plot marginal effect plots (= response curves if covariates are continuous) for all species in a com-
munity (multi-species) occupancy model. Takes into account species-specific intercepts (if any).
Currently only supports continuous covariates, not categorical covariates.

Usage

S4 method for signature 'commOccu'
plot_effects(
object,
mcmc.list,
submodel = "state",
response = "occupancy",
speciesSubset,
draws = 1000,

PPC.community 73

outdir,
level = 0.95,
keyword_quadratic = "_squared",
...

)

Arguments

object commOccu object

mcmc.list mcmc.list. Output of fit called on a commOccu object

submodel character. Submodel to get plots for. Can be "det" (detection submodel) or
"state" (occupancy submodel)

response character. response type on y axis. Only relevant for submodel = "state".
Default is "occupancy", can be set to "abundance" for Royle-Nichols models

speciesSubset character. Species to include in effect plots.

draws integer. Number of draws from the posterior to use when generating the plots.
If fewer posterior samples than specified in draws are available, all posterior
samples are used.

outdir character. Directory to save plots to (optional)

level numeric. Probability mass to include in the uncertainty interval.
keyword_quadratic

character. A suffix in covariate names in the model that indicates a covariate
is a quadratic effect of another covariate which does not carry the suffix in its
name (e.g. if the covariate is "elevation", the quadratic covariate would be "ele-
vation_squared").

... additional arguments for ggsave - only relevant if outdir is defined

Details

Users who wish to create their own visualizations can use the data stored in the ggplot output. It is
accessed via e.g. output$covariate_name$data

Value

A list of ggplot objects (one list item per covariate).

PPC.community Calculate Community-Level Posterior Predictive Checks for Occu-
pancy Models

Description

A wrapper function that applies Posterior Predictive Checks (PPC) across multiple species in a com-
munity occupancy model (from communityModel. It calculates species-specific and community-
level Bayesian p-values to assess model fit. The function accepts both predict output format and
list format for model parameters.

74 PPC.community

Usage

PPC.community(
p,
psi,
y,
input_format = c("predict", "lists"),
K = NULL,
model = c("Occupancy", "RN"),
zhat = NULL,
z.cond = TRUE,
type = c("FT", "PearChi2", "Deviance"),
return.residuals = TRUE,
show_progress = TRUE,
...

)

Arguments

p Either a 4D array [stations, species, iterations, occasions] from predict or a list
of 3D arrays [iterations, stations, occasions], one per species

psi Either a 3D array [stations, species, iterations] from predict or a list of 2D
arrays [iterations, stations], one per species

y List of detection histories, one matrix/vector per species

input_format Character indicating format of p and psi ("predict" or "lists")

K Number of occasions as either a scalar or site vector. Calculated automatically
if y is a list of matrices.

model Character indicating model type ("Occupancy" or "RN")

zhat List of z estimate matrices, one per species (optional). Each matrix should fol-
low the format specified in PPC.residuals.

z.cond Logical. If TRUE, new data is conditioned on estimated z (testing only detec-
tion model fit). If FALSE, generates new z for each posterior sample (testing
complete model).

type Character indicating residual type ("FT", "PearChi2", or "Deviance")
return.residuals

Logical. If TRUE, returns species-specific residuals along with Bayesian p-
values. If FALSE, returns only the p-values.

show_progress Logical; whether to show a progress bar during computation (if package pbapply
is available)

... Additional arguments passed to PPC.residuals.

Details

This function extends the single-species PPC analysis to the community level by:

• Applying residual calculations to each species in the community

PPC.community 75

• Aggregating results to assess community-level model fit

• Providing both species-specific and community-level diagnostics

This function provides flexibility in input formats to accommodate different workflows:

• Direct output from camtrapR’s predict() function (4D/3D arrays)

• Lists of species-specific arrays (for custom workflows)

Value

If return.residuals=TRUE, returns a list containing:

• bp_values - Data frame with species-specific and community-level Bayesian p-values

• species_results - List containing the complete PPC.residuals output for each species

If return.residuals=FALSE, returns only the data frame of Bayesian p-values.

Author(s)

Rahel Sollmann

See Also

PPC.residuals for details on the underlying single-species calculations

Examples

Not run:

Create and fit model
data("camtraps")

create camera operation matrix
camop_no_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
hasProblems = FALSE,
dateFormat = "dmy"

)

data("recordTableSample")

make list of detection histories
species_to_include <- unique(recordTableSample$Species)

DetHist_list <- detectionHistory(
recordTable = recordTableSample,
camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",

76 PPC.community

species = species_to_include,
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur"

)

create some fake covariates for demonstration
sitecovs <- camtraps[, c(1:3)]
sitecovs$elevation <- c(300, 500, 600)

scale numeric covariates
sitecovs[, c(2:4)] <- scale(sitecovs[,-1])

bundle input data for communityModel
data_list <- list(ylist = DetHist_list$detection_history,

siteCovs = sitecovs,
obsCovs = list(effort = DetHist_list$effort))

create community model for JAGS
modelfile1 <- tempfile(fileext = ".txt")
mod.jags <- communityModel(data_list,

occuCovs = list(fixed = "utm_y", ranef = "elevation"),
detCovsObservation = list(fixed = "effort"),
intercepts = list(det = "ranef", occu = "ranef"),
modelFile = modelfile1)

summary(mod.jags)

fit in JAGS
fit.jags <- fit(mod.jags,

n.iter = 1000,
n.burnin = 500,
chains = 3)

summary(fit.jags)

create predictions for p and psi
draws <- 100

p <- predict(object = mod.jags,
mcmc.list = fit.jags,
type = "p_array",
draws = draws)

output is in order [station, species, draw, occasion]

psi <- predict(object = mod.jags,

PPC.residuals 77

mcmc.list = fit.jags,
type = "psi_array",
draws = draws)

output is in order [station, species, draw]

ppc_comm <- PPC.community(
p = p,
psi = psi,
y = mod.jags@input$ylist,
model = "Occupancy",
type = "FT")

Bayesian p-values
ppc_comm$BP

str(ppc_comm$residuals)

get individual species PPC results
ppc_species <- ppc_comm$residuals[[1]] # first species

plot(apply(ppc_species$res.obs, 2, mean), apply(ppc_species$res.new, 2, mean),
xlab = "Observed residuals",
ylab = "Predicted residuals"
)

abline(0,1) # diagonal line is not visible due to tiny data set

End(Not run)

PPC.residuals Calculate Residuals from MCMC Output of Occupancy Models

Description

Posterior Predictive Check (PPC) function that calculates Freeman-Tukey (FT) residuals, Pearson"s
Chi-squared residuals, or deviance from MCMC output of occupancy models. This function com-
pares observed data to simulated data from the posterior distribution to assess model fit.

Usage

PPC.residuals(
y,
p,
psi,
model = c("Occupancy", "RN"),
type = c("FT", "PearChi2", "Deviance"),

78 PPC.residuals

K = NULL,
z.cond = TRUE,
zhat = NULL,
nmax = 20,
return.residuals = TRUE,
return.z = TRUE

)

Arguments

y Observations as either a site vector or site by occasion matrix. For matrix format,
use NA for unsampled occasions.

p Array of posterior samples for detection probability (p). Dimensions should be
iterations by sites (by occasion optionally). For RN models, p should represent
individual-level detection (not conditional on local abundance).

psi Array of posterior samples for occupancy probability (psi). Dimensions should
be iterations by sites. For RN models, psi should represent expected abundance

model Character indicating model type: either "Occupancy" or "RN" (Royle-Nichols).

type Type of residual to calculate: "FT" (Freeman Tukey), "PearChi2" (Pearson Chi-
squared), or "Deviance" (not technically a residual).

K Number of occasions as either a scalar or site vector. Calculated automatically
if y is a matrix.

z.cond Logical. If TRUE, new data is conditioned on estimated z (testing only detec-
tion model fit). If FALSE, generates new z for each posterior sample (testing
complete model).

zhat Optional matrix with same dimensions as psi containing estimates of z from the
same model. If not provided, will be generated internally.

nmax Maximum site-level abundance (default = 20). Only used if model="RN". Higher
values increase computation time. Warning given if set too low.

return.residuals

Logical. If TRUE (default), returns residuals along with Bayesian p-value.

return.z Logical. If TRUE, returns z values conditional on y, and unconditional z’s if
z.cond = FALSE. Note: if zhat is provided, the returned conditional-on-y z val-
ues will be identical to those provided.

Details

This function helps assess model fit for occupancy models using various types of residuals:

Types of Residuals:

• Freeman-Tukey (FT):

Rj = (
√
yj −

√
E(yj))

2

Measures the squared difference between the square root of observed detections and the
square root of expected detections at each site.

PPC.residuals 79

• Pearson Chi-squared:

Rj =

(
yj − E(yj)√
V ar(yj)

)2

Measures the squared difference between observed and expected detections, standardized by
the theoretical variance calculated from the model parameters.

• Deviance:
Rj = −2 log[yj |θj ,Kj]

Measures the contribution of each site to the overall model likelihood, quantifying the dis-
crepancy between observed data and model predictions based on likelihood ratios

Where:

• yj is the number of detections of the species at site j, out of Kj repeated surveys
• E(yj) = Kjpjzj , with pj = species detection probability and zj = occupancy state (1 if

occupied, 0 otherwise)
• V ar(yj) = pjzj(1− pjzj)Kj

• For Royle-Nichols occupancy models, the term pjzj is replaced with 1− (1− rj)
Nj , where

rj = individual detection probability and Nj = local abundance
• For Deviance, θj is either occupancy and species detection probability at site j (ψj , pj)

for regular occupancy models, or expected abundance and individual detection probability
(λj , rj) for Royle-Nichols occupancy models

Bayesian P-values: The function calculates Bayesian p-values as a measure of model fit. These
values:

• Range from 0 to 1
• Values close to 0.5 suggest good model fit
• Values close to 0 or 1 suggest poor fit
• Are calculated by comparing observed residuals to residuals from simulated data

Conditional vs Unconditional Assessment: The z.cond parameter allows for two types of model
assessment:

• z.cond = TRUE: Tests only the detection component of the model, fixing occupancy/abundance
to estimates from the model, rather than generating them anew

• z.cond = FALSE: Tests the complete model, including both occupancy and detection compo-
nents

Value

If return.residuals=TRUE (default), returns a list containing:

• res.obs - residuals for observed data

• res.new - residuals for newly generated data

• BP - Bayesian p-value

If return.residuals=FALSE, returns only the Bayesian p-value.

80 predict,commOccu-method

Warning

This is a beta version of the function. While it has been tested extensively, not all possible data
configurations may have been captured in testing. This is particularly true for:

• Deviance calculations (type = "Deviance")
• Royle-Nichols models (model = "RN")

If you encounter issues with the function, please contact the package developers.

Note

FT and Chi-squared residuals have been extensively tested. Deviance calculations have undergone
less testing and are only available for scenarios with constant detection probability across occasions.
FT and Chi-squared residuals can handle varying detection probabilities.

Author(s)

Rahel Sollmann

References

Sollmann, Rahel. Occupancy models and the "good fit, bad prediction" dilemma. Ecology (submit-
ted)

predict,commOccu-method

Predictions from community occupancy models

Description

Create (spatial) predictions of species occupancy and species richness from community occupancy
models and spatial rasters or covariate data frames.

Usage

S4 method for signature 'commOccu'
predict(
object,
mcmc.list,
type,
draws = 1000,
level = 0.95,
interval = c("none", "confidence"),
x = NULL,
aoi = NULL,
speciesSubset,
batch = FALSE,
seed = NULL

)

predict,commOccu-method 81

Arguments

object commOccu object

mcmc.list mcmc.list. Output of fit called on a commOccu object

type character. "psi" for species occupancy estimates, "richness" for species rich-
ness estimates, "pao" for percentage of area occupied (by species), "psi_array"
for raw occupancy probabilities in an array. For Royle-Nichols models, "abun-
dance" for species abundance, or "lambda_array" for raw species abundance
estimates in an array. "p_array" for raw detection probabilities in an array.

draws Number of draws from the posterior to use when generating the plots. If fewer
than draws are available, they are all used

level Probability mass to include in the uncertainty interval

interval Type of interval calculation. Can be "none" or "confidence" (can be abbrevi-
ated). Calculation can be slow for type = "psi" with many cells and posterior
samples.

x SpatRaster, data.frame or NULL. Must be scaled with same parameters as site
covariates used in model, and have same names. If NULL, use site covariate
data frame from model input (commOccu object in parameter object)

aoi SpatRaster with same dimensions as x (if x is a SpatRaster), indicating the area
of interest (all cells with values are AOI, all NA cells are ignored). If NULL,
predictions are made for all cells.

speciesSubset species to include in richness estimates. Can be index number or species names.

batch logical or numeric. If FALSE, all raster cells / data frame rows will be pro-
cessed at once (can be memory intensive). If TRUE, computation is conducted
in batches of 1000. If numeric, it is the desired batch size.

seed numeric. Seed to use in set.seed for reproducible results (ensures that draws
are identical).

Details

Processing can be very memory-intensive. If memory is insufficient, use the batch parameter. This
can enable processing for higher numbers of draws or very large rasters / data frames.

Value

A SpatRaster or data.frame, depending on x (for type = "psi", "abundance", "richness". If type =
"pao", a list. If type = "psi_array" or "lambda_array", a 3D-array [site, species, draw]. If type =
"p_array", a 4D-array [site, species, draw, occasion].

82 readcamtrapDP

readcamtrapDP Convert Camtrap DP format data to camtrapR format

Description

This function converts camera trap data from the Camtrap DP standard format to the format used
by camtrapR. Camtrap DP is an open standard for the FAIR exchange and archiving of camera trap
data, structured in a simple yet flexible data model consisting of three tables: Deployments, Media,
and Observations.

Usage

readcamtrapDP(
deployments_file = "deployments.csv",
media_file = "media.csv",
observations_file = "observations.csv",
datapackage_file = "datapackage.json",
min_gap_hours = 24,
removeNA = FALSE,
removeEmpty = FALSE,
remove_bbox = TRUE,
add_file_path = FALSE,
filter_observations = NULL

)

Arguments

deployments_file

character. Path to deployments.csv file

media_file character. Path to media.csv file
observations_file

character. Path to observations.csv file
datapackage_file

character. Path to datapackage.json file

min_gap_hours numeric. Minimum gap in hours to consider as a camera interruption (default:
24)

removeNA logical. Whether to remove columns with only NA values

removeEmpty logical. Whether to remove columns with only empty values

remove_bbox logical. Whether to remove bounding box columns in the observation table

add_file_path logical. Whether to add file path from media table to the observation table
filter_observations

Controls which observation types to include. NULL or FALSE keeps all obser-
vations (default), TRUE keeps only animal observations, or provide a character
vector of specific observation types to include.

readcamtrapDP 83

Details

Camtrap DP is a standardized format developed under the umbrella of the Biodiversity Informa-
tion Standards (TDWG) that facilitates data exchange between different camera trap platforms and
systems. It supports a wide range of camera deployment designs, classification techniques, and
analytical use cases.

While the ’camtrapdp’ package (available on CRAN) provides general functionality for reading,
manipulating, and transforming Camtrap DP data, this function specifically converts Camtrap DP
data directly into the format required by camtrapR, producing the CTtable and recordTable objects
that camtrapR functions expect.

This function reads the three primary tables from a Camtrap DP dataset:

• Deployments: Information about camera trap placements
• Observations: Classifications derived from the media files
• Media: Information about the media files (images/videos) recorded

The Media table is only read if the add_file_path parameter is set to TRUE.

The function converts these into two primary camtrapR data structures:

• CTtable: Contains deployment information including station ID, setup/retrieval dates, camera
operation problems, camera setup, and more

• recordTable: Contains observation records with taxonomic and temporal information

Additional features include:

• Parsing of deploymentTags and deploymentGroups (in deployments) and observationTags (in
observations)

• Extraction of taxonomic information from metadata
• Handling of deployment intervals and gaps

Value

List containing three elements:

• CTtable: Data frame with camera trap deployment information in camtrapR format
• recordTable: Data frame with species records in camtrapR format
• metadata: List containing project metadata extracted from datapackage.json

Note

Camtrap DP was developed as a consensus of a long, in-depth consultation process with camera
trap data management platforms and major players in the field of camera trapping. It builds upon
the earlier Camera Trap Metadata Standard (CTMS) but addresses its limitations.

The Camtrap DP standard structures data in a way that supports both media-based observations
(using a single media file as source) and event-based observations (considering an event with a
specified duration as source). For the purpose of this function, both are treated to be equivalent.
Event-based observations are converted to a single timestamp in the recordTable (using the event
start time).

Consider using the ’camtrapdp’ package (Desmet et al., 2024) for more general operations on Cam-
trap DP data before converting to camtrapR format with this function.

84 readWildlifeInsights

References

Bubnicki, J.W., Norton, B., Baskauf, S.J., et al. (2023). Camtrap DP: an open standard for the FAIR
exchange and archiving of camera trap data. Remote Sensing in Ecology and Conservation, 10(3),
283-295.

Desmet, P., Govaert, S., Huybrechts, P., Oldoni, D. (2024). camtrapdp: Read and Manipulate Cam-
era Trap Data Packages. R package version 0.3.1. https://CRAN.R-project.org/package=camtrapdp

See Also

read_camtrapdp in the ’camtrapdp’ package for reading Camtrap DP data check_camtrapdp in
the ’camtrapdp’ package for validating Camtrap DP data

Examples

Not run:
Read a Camtrap DP dataset
camtrap_data <- readcamtrapDP(

deployments_file = "path/to/deployments.csv",
media_file = "path/to/media.csv",
observations_file = "path/to/observations.csv",
datapackage_file = "path/to/datapackage.json"

)

alternatively, set the working directory only
setwd("path/to/camtrapdp_data")
camtrap_data <- readcamtrapDP() # uses default file names

Extract components
ct_table <- camtrap_data$CTtable
record_table <- camtrap_data$recordTable
metadata <- camtrap_data$metadata

End(Not run)

readWildlifeInsights Import Wildlife Insights data to camtrapR

Description

This function imports camera trap data from Wildlife Insights into a format compatible with cam-
trapR. It can read data from a directory containing CSV files, from a ZIP file, or from individual
CSV files.

recordTable 85

Usage

readWildlifeInsights(
directory = NULL,
zipfile = NULL,
deployment_file = NULL,
image_file = NULL

)

Arguments

directory character. Path to folder containing CSV files exported from Wildlife Insights.

zipfile character. Path to a ZIP file exported from Wildlife Insights.
deployment_file

character. Path to the deployments CSV file.

image_file character. Path to the images CSV file.

Value

A list containing three elements:

CTtable The full camera trap table, based on deployments.csv

CTtable_aggregated An aggregated version of the camera trap table, with one row per station

recordTable The record table, based on images.csv with additional columns from deployments.csv

Examples

Not run:
Reading from a directory
wi_data <- readWildlifeInsights(directory = "path/to/csv/files")

Reading from a ZIP file
wi_data <- readWildlifeInsights(zipfile = "path/to/wildlife_insights_export.zip")

Reading from separate CSV files
wi_data <- readWildlifeInsights(deployment_file = "path/to/deployments.csv",

image_file = "path/to/images.csv")

End(Not run)

recordTable Generate a species record table from camera trap images and videos

Description

Generates a record table from camera trap images or videos. Images/videos must be sorted into
station directories at least. The function can read species identification from a directory structure
(Station/Species or Station/Camera/Species) or from image metadata tags.

86 recordTable

Usage

recordTable(
inDir,
IDfrom,
cameraID,
camerasIndependent,
exclude,
minDeltaTime = 0,
deltaTimeComparedTo,
timeZone,
stationCol,
writecsv = FALSE,
outDir,
metadataHierarchyDelimitor = "|",
metadataSpeciesTag,
additionalMetadataTags,
removeDuplicateRecords = TRUE,
returnFileNamesMissingTags = FALSE,
eventSummaryColumn,
eventSummaryFunction,
video

)

Arguments

inDir character. Directory containing station directories. It must either contain images
in species subdirectories (e.g. inDir/StationA/SpeciesA) or images with species
metadata tags (without species directories, e.g. inDir/StationA).

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

cameraID character. Where should the function look for camera IDs: ’filename’, ’direc-
tory’. ’filename’ requires images renamed with imageRename. ’directory’ re-
quires a camera subdirectory within station directories (station/camera/species).
Can be missing.

camerasIndependent

logical. If TRUE, species records are considered to be independent between cam-
eras at a station.

exclude character. Vector of species names to be excluded from the record table

minDeltaTime integer. Time difference between records of the same species at the same station
to be considered independent (in minutes)

deltaTimeComparedTo

character. For two records to be considered independent, must the second one
be at least minDeltaTime minutes after the last independent record of the same
species ("lastIndependentRecord"), or minDeltaTime minutes after the last
record ("lastRecord")?

timeZone character. Must be a value returned by OlsonNames

recordTable 87

stationCol character. Name of the camera trap station column. Assuming "Station" if un-
defined.

writecsv logical. Should the record table be saved as a .csv?
outDir character. Directory to save csv to. If NULL and writecsv = TRUE, recordTable

will be written to inDir.
metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

metadataSpeciesTag

character. In custom image metadata, the species ID tag name.
additionalMetadataTags

character. Additional camera model-specific metadata tags to be extracted. (If
possible specify tag groups as returned by exifTagNames)

removeDuplicateRecords

logical. If there are several records of the same species at the same station (also
same camera if cameraID is defined) at exactly the same time, show only one?

returnFileNamesMissingTags

logical. If species are assigned with metadata and images are not tagged, return
a few file names of these images as a message?

eventSummaryColumn

character. A column in the record table (e.g. from a metadata tag) by to sum-
marise non-independent records (those within minDeltaTime of a given record)
with a user-defined function (eventSummaryFunction)

eventSummaryFunction

character. The function by which to summarise eventSummaryColumn of non-
independent records, e.g. "sum", "max" (optional)

video list. Contains information on how to handle video data (optional). See details.

Details

The function can handle a number of different ways of storing images, and supports species identifi-
cation by moving images into species directories as well as metadata tagging. In every case, images
need to be stored into station directories. If images are identified by moving them into species direc-
tories, a camera directory is optional: "Station/Species/XY.JPG" or "Station/Camera/Species/XY.JPG".
Likewise, if images are identified using metadata tagging, a camera directory can be used option-
ally: "Station/XY.JPG" or "Station/Camera/XY.JPG".

If images are identified by metadata tagging, metadataSpeciesTag specifies the metadata tag group
name that contains species identification tags. metadataHierarchyDelimitor is "|" for images
tagged in DigiKam and images tagged in Adobe Bridge / Lightroom with the default settings. It is
only necessary to change it if the default was changed in these programs.

minDeltaTime is a criterion for temporal independence of species recorded at the same station. Set-
ting it to 0 will make the function return all records. Setting it to a higher value will remove records
that were taken less than minDeltaTime minutes after the last record (deltaTimeComparedTo =
"lastRecord") or the last independent record (deltaTimeComparedTo = "lastIndependentRecord").

removeDuplicateRecords determines whether duplicate records (identical station, species, date/time,
(and camera if applicable)) are all returned (FALSE) or collapsed into a single unique record
(TRUE).

88 recordTable

camerasIndependent defines if the cameras at a station are to be considered independent. If TRUE,
records of the same species taken by different cameras are considered independent (e.g. if they face
different trails). Use FALSE if both cameras face each other and possibly TRUE).

exclude can be used to exclude "species" directories containing irrelevant images (e.g. "team",
"blank", "unidentified"). stationCol can be set to match the station column name in the camera
trap station table (see camtraps).

Many digital images contain Exif metadata tags such as "AmbientTemperature" or "MoonPhase"
that can be extracted if specified in metadataTags. Because these are manufacturer-specific and not
standardized, function exifTagNames provides a vector of all available tag names. Multiple names
can be specified as a character vector as: c(Tag1,Tag2, ...). The metadata tags thus extracted
may be used as covariates in modelling species distributions.

eventSummaryColumn and eventSummaryFunction can be used to extract summary statistics for
independent sampling events. For example, you assigned a "count" tag to your images, indicat-
ing the number of individuals in a picture. In a sequence of pictures taken within 1 minute,
most pictures show one individual, but one image shows two individuals. You tagged the im-
ages accordingly (count = 1 or count = 2) and run recordTable. Set eventSummaryColumn =
"count" and eventSummaryFunction = "max" to obtain the maximum number of count in all
images within minDeltaTime minutes of a given record. The results is in a new column, in this ex-
ample count_max. You can also calculate several statistics at the same time, by supplying vectors of
values, e.g. eventSummaryColumn = c("count", "count", "camera") and eventSummaryFunction
= c("min", "max", "unique") to get minimum and maximum count and all unique camera IDs for
that event. Note that eventSummaryColumn and eventSummaryFunction must be of same length.

Argument video is a named list with 2 or 4 items. 2 items (file_formats, dateTimeTag) are
always required, and are sufficent if IDfrom = "directory". In that case, no digiKam tags will be
returned. To return digiKam tags, two additional items are required (db_directory, db_filename).
This is essential when using IDfrom = "metadata". When using IDfrom = "directory", it is op-
tional, but allows to extract metadata tags assigned to videos in digiKam. This workaround is nec-
essary because digiKam tags are not written into video metadata, but are only saved in the digiKam
database. So in contrast to JPG images, they can not be extracted with ExifTool. It also requires
that inDir is in your digiKam database.

The items of argument video are:

file_formats The video formats to extract (include "jpg" if you want .JPG image metadata)
dateTimeTag the metadata tag to extract date/time from (use exifTagNames to find out which tag is suitable)
db_directory The directory containing digiKam database (optional if IDfrom = "directory")
db_filename The digiKam database file in db_directory (optional if IDfrom = "directory")

See the examples below for for how to specify the argument video.

Value

A data frame containing species records and additional information about stations, date, time and
(optionally) further metadata.

recordTable 89

Warning

Custom image metadata must be organised hierarchically (tag group - tag; e.g. "Species" - "Leopard
Cat"). Detailed information on how to set up and use metadata tags can be found in vignette 2:
Species and Individual Identification.

Custom image metadata tags must be written to the images. The function cannot read tags from
.xmp sidecar files. Make sure you set the preferences accordingly. In DigiKam, go to Settings/Configure
digiKam/Metadata. There, make sure "Write to sidecar files" is unchecked.

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.pdf)).

Note

The results of a number of other function will depend on the output of this function (namely on the
arguments exclude for excluding species and minDeltaTime/ deltaTimeComparedTo for temporal
independence):

detectionMaps
detectionHistory
activityHistogram
activityDensity
activityRadial
activityOverlap
activityHistogram
surveyReport

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

Examples

Not run: # the examples take too long to pass CRAN tests

set directory with camera trap images in station directories
wd_images_ID_species <- system.file("pictures/sample_images_species_dir",

package = "camtrapR")

if (Sys.which("exiftool") != ""){ # only run these examples if ExifTool is available

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://exiftool.org/

90 recordTable

rec_table1 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
writecsv = FALSE,
additionalMetadataTags = c("EXIF:Model", "EXIF:Make")

)
note argument additionalMetadataTags: it contains tag names as returned by function exifTagNames

rec_table2 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
exclude = "UNID",
writecsv = FALSE,
timeZone = "Asia/Kuala_Lumpur",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make", "NonExistingTag"),
eventSummaryColumn = "EXIF:Make",
eventSummaryFunction = "unique"
)

note the warning that the last tag in "additionalMetadataTags" ("NonExistingTag") was not found

any(rec_table1$Species == "UNID") # TRUE
any(rec_table2$Species == "UNID") # FALSE

here's how the removeDuplicateRecords argument works

rec_table3a <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 0,
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur",
removeDuplicateRecords = FALSE

)

rec_table3b <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 0,
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur",
removeDuplicateRecords = TRUE

)

anyDuplicated(rec_table3a[, c("Station", "Species", "DateTimeOriginal")]) # got duplicates
anyDuplicated(rec_table3b[, c("Station", "Species", "DateTimeOriginal")]) # no duplicates

after removing duplicates, both are identical:
whichAreDuplicated <- which(duplicated(rec_table3a[,c("Station", "Species", "DateTimeOriginal")]))
all(rec_table3a[-whichAreDuplicated,] == rec_table3b)

recordTableIndividual 91

extracting species IDs from metadata

wd_images_ID_species_tagged <- system.file("pictures/sample_images_species_tag",
package = "camtrapR")

rec_table4 <- recordTable(inDir = wd_images_ID_species_tagged,
IDfrom = "metadata",
metadataSpeciesTag = "Species",
exclude = "unidentified")

Including videos
sample videos are not included in package

with videos, IDfrom = "directory", not extracting digiKam metadata

rec_table4 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
video = list(file_formats = c("jpg", "mp4"),

dateTimeTag = "QuickTime:CreateDate")
)

with videos, IDfrom = "metadata", extracting digiKam metadata

rec_table5 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "metadata",
metadataSpeciesTag = "Species",
video = list(file_formats = c("jpg", "mp4", "avi", "mov"),

dateTimeTag = "QuickTime:CreateDate",
db_directory = "C:/Users/YourName/Pictures",
db_filename = "digikam4.db")

)

} else {
show function output if ExifTool is not available
message("ExifTool is not available. Cannot test function. Loading recordTableSample instead")
data(recordTableSample)
}

End(Not run)

recordTableIndividual Generate a single-species record table with individual identification
from camera trap images or videos

92 recordTableIndividual

Description

The function generates a single-species record table containing individual IDs, e.g. for (spatial)
capture-recapture analyses. It prepares input for the function spatialDetectionHistory.

Usage

recordTableIndividual(
inDir,
hasStationFolders,
IDfrom,
cameraID,
camerasIndependent,
minDeltaTime = 0,
deltaTimeComparedTo,
timeZone,
stationCol,
writecsv = FALSE,
outDir,
metadataHierarchyDelimitor = "|",
metadataIDTag,
additionalMetadataTags,
removeDuplicateRecords = TRUE,
returnFileNamesMissingTags = FALSE,
eventSummaryColumn,
eventSummaryFunction,
video

)

Arguments

inDir character. Directory containing images of individuals. Must end with species
name (e.g. ".../speciesImages/Clouded Leopard")

hasStationFolders

logical. Does inDir have station subdirectories? If TRUE, station IDs will be
taken from directory names. If FALSE, they will be taken from image filenames
(requires images renamed with imageRename).

IDfrom character. Read individual ID from image metadata ("metadata") of from direc-
tory names ("directory")?

cameraID character. Should the function look for camera IDs in the image file names? If
so, set to ’filename’. Requires images renamed with imageRename. If missing,
no camera ID will be assigned and it will be assumed there was 1 camera only
per station.

camerasIndependent

logical. If TRUE, cameras at a station are assumed to record individuals inde-
pendently. If FALSE, cameras are assumed to be non-independent (e.g. in pairs).
Takes effect only if there was more than 1 camera per station and cameraID =
"filename".

recordTableIndividual 93

minDeltaTime numeric. time difference between observation of the same individual at the same
station/camera to be considered independent (in minutes)

deltaTimeComparedTo

character. For two records to be considered independent, must the second one
be at least minDeltaTime minutes after the last independent record of the same
individual ("lastIndependentRecord"), or minDeltaTime minutes after the
last record ("lastRecord")?

timeZone character. Must be a value returned by OlsonNames

stationCol character. Name of the camera trap station column in the output table.

writecsv logical. Should the individual record table be saved as a .csv file?

outDir character. Directory to save csv file to. If NULL and writecsv = TRUE, the
output csv will be written to inDir.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

metadataIDTag character. In custom image metadata, the individual ID tag name.
additionalMetadataTags

character. additional camera model-specific metadata tags to be extracted. (If
possible specify tag groups as returned by exifTagNames)

removeDuplicateRecords

logical. If there are several records of the same individual at the same station
(also same camera if cameraID is defined) at exactly the same time, show only
one?

returnFileNamesMissingTags

logical. If species are assigned with metadata and images are not tagged, return
a few file names of these images as a message?

eventSummaryColumn

character. A column in the record table (e.g. from a metadata tag) by to sum-
marise non-independent records (those within minDeltaTime of a given record)
with a user-defined function (eventSummaryFunction)

eventSummaryFunction

character. The function by which to summarise eventSummaryColumn of non-
independent records, e.g. "sum", "max" (optional)

video list. Contains information on how to handle video data (optional). See details.

Details

The function can handle a number of different ways of storing images and videos. In every case,
images need to be stored in a species directory first (e.g. using function getSpeciesImages). Sta-
tion subdirectories are optional. Camera subdirectories are not supported. This directory structure
can be created easily with function getSpeciesImages.

As with species identification, individuals can be identified in 2 different ways: by moving images
into individual directories ("Species/Station/Individual/XY.JPG" or "Species/Individual/XY.JPG")
or by metadata tagging (without the need for individual directories: "Species/XY.JPG" or "Species/Station/XY.JPG").

minDeltaTime is a criterion for temporal independence of records of an individual at the same
station/location. Setting it to 0 will make the function return all records. camerasIndependent

94 recordTableIndividual

defines if the cameras at a station are to be considered independent (e.g. FALSE if both cameras
face each other and possibly TRUE if they face different trails). stationCol is the station column
name to be used in the resulting table. Station IDs are read from the station directory names if
hasStationFolders = TRUE. Otherwise, the function will try to extract station IDs from the image
filenames (requires images renamed with imageRename.

If individual IDs were assigned with image metadata tags, metadataIDTag must be set to the name
of the metadata tag group used for individual identification. metadataHierarchyDelimitor is
"|" for images tagged in DigiKam and images tagged in Adobe Bridge/ Lightroom with the de-
fault settings. Manufacturer-specific Exif metadata tags such as "AmbientTemperature" or "Moon-
Phase" can be extracted if specified in additionalMetadataTags. Multiple names can be spec-
ified as a character vector as: c(Tag1, Tag2, ...). Because they are not standardized, function
exifTagNames provides a vector of all available tag names. The metadata tags thus extracted may
be used as individual covariates in spatial capture-recapture models.

eventSummaryColumn and eventSummaryFunction can be used to extract summary statistics for
independent sampling events. For example, you assigned a "count" tag to your images, indicat-
ing the number of individuals in a picture. In a sequence of pictures taken within 1 minute,
most pictures show one individual, but one image shows two individuals. You tagged the im-
ages accordingly (count = 1 or count = 2) and run recordTable. Set eventSummaryColumn =
"count" and eventSummaryFunction = "max" to obtain the maximum number of count in all
images within minDeltaTime minutes of a given record. The results is in a new column, in this ex-
ample count_max. You can also calculate several statistics at the same time, by supplying vectors of
values, e.g. eventSummaryColumn = c("count", "count", "camera") and eventSummaryFunction
= c("min", "max", "unique") to get minimum and maximum count and all unique camera IDs for
that event. Note that eventSummaryColumn and eventSummaryFunction must be of same length.

Argument video is analogous to recordTable, a named list with 2 or 4 items. 2 items (file_formats,
dateTimeTag) are always required, and are sufficent if IDfrom = "directory". In that case, no
digiKam tags will be returned. To return digiKam tags, two additional items are required (db_directory,
db_filename). This is essential when using IDfrom = "metadata". When using IDfrom = "directory",
it is optional, but allows to extract metadata tags assigned to videos in digiKam. This workaround
is necessary because digiKam tags are not written into video metadata, but are only saved in the
digiKam database. So in contrast to JPG images, they can not be extracted with ExifTool. It also
requires that inDir is in your digiKam database.

The items of argument video are:

file_formats The video formats to extract (include "jpg" if you want .JPG image metadata)
dateTimeTag the metadata tag to extract date/time from (use exifTagNames to find out which tag is suitable)
db_directory The directory containing digiKam database (optional if IDfrom = "directory")
db_filename The digiKam database file in db_directory (optional if IDfrom = "directory")

See the example below for for how to specify the argument video.

Value

A data frame containing species records with individual IDs and additional information about sta-
tions, date, time and (optionally) further metadata.

recordTableIndividual 95

Warning

Be sure to read the section on individual identification in the package vignette (https://CRAN.
R-project.org/package=camtrapR/vignettes/camtrapr2.pdf).

Af you use image metadata tags for identification, the tags must be written to the image metadata.
The function cannot read tags from .xmp sidecar files. Make sure you set the preferences of your im-
age management software accordingly. In DigiKam, go to Settings/Configure digiKam/Metadata.
There, make sure "Write to sidecar files" is unchecked.

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.pdf)).

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

Examples

Not run: # the examples run too long to pass CRAN tests

wd_images_ID_individual <- system.file("pictures/sample_images_indiv_tag/LeopardCat",
package = "camtrapR")

missing space in species = "LeopardCat" is because of CRAN package policies
note argument additionalMetadataTags: contains tag names as returned by function exifTagNames

if (Sys.which("exiftool") != ""){ # only run these examples if ExifTool is available

rec_table_pbe <- recordTableIndividual(inDir = wd_images_ID_individual,
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
hasStationFolders = FALSE,
IDfrom = "metadata",
camerasIndependent = FALSE,
writecsv = FALSE,
metadataIDTag = "individual",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make"),
timeZone = "Asia/Kuala_Lumpur"

)

extracting some example summary stats too
a nonsensical example, get all unique cameras with which the event was photographed

rec_table_pbe2 <- recordTableIndividual(inDir = wd_images_ID_individual,
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.pdf
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://exiftool.org/

96 recordTableIndividualSample

hasStationFolders = FALSE,
IDfrom = "metadata",
camerasIndependent = FALSE,
writecsv = FALSE,
metadataIDTag = "individual",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make"),
timeZone = "Asia/Kuala_Lumpur",
eventSummaryColumn = "EXIF:Make",
eventSummaryFunction = "unique"

)

Video example (the sample data don't contain a video, this is hypothetical)
with JPG, video mp4, avi, mov, ID = metadata

rec_table_ind_video <- recordTableIndividual(inDir = wd_images_ID_individual,
hasStationFolder = FALSE,
IDfrom = "metadata",
metadataIDTag = "individual",
video = list(file_formats = c("jpg", "mp4", "avi", "mov"),

dateTimeTag = "QuickTime:CreateDate",
db_directory = "C:/Users/YourName/Pictures",
db_filename = "digikam4.db")

)

} else {
show function output if ExifTool is not available
message("ExifTool is not available. Cannot test function. Loading recordTableSample instead")
data(recordTableSample)
}

End(Not run)

recordTableIndividualSample

Sample single-species record table with custom metadata from camera
trap images

Description

Sample single-species record table with individual IDs from the tagged sample images in the pack-
age. Generated with function recordTableIndividual.

Usage

data(recordTableIndividualSample)

recordTableIndividualSampleMultiSeason 97

Format

A data frame with 21 rows and 17 variables

Details

The variables are as follows:

Station Camera trap station ID
Species Species ID
Individual Individual ID
DateTimeOriginal Date and time as extracted from image
Date record date
Time record time of day
delta.time.secs time difference to first species record at a station (seconds)
delta.time.mins time difference to first species record at a station (minutes)
delta.time.hours time difference to first species record at a station (hours)
delta.time.days time difference to first species record at a station (days)
Directory Image directory
FileName image filename
HierarchicalSubject content of the HierarchicalSubject image metadata tag
Model camera model extracted from image metadata
Make camera make extracted from image metadata
metadata_Species content of custom image metadata tag "Species" (see HierarchicalSubject)
metadata_individual content of custom image metadata tag "individual" (see HierarchicalSubject)

recordTableIndividualSampleMultiSeason

Sample single-species multi-season record table with custom metadata
from camera trap images

Description

Sample single-species multi-season record table with individual IDs from the tagged sample images
in the package. Generated with function recordTableIndividual, then duplicated to simulate a
second year.

Usage

data(recordTableIndividualSampleMultiSeason)

Format

A data frame with 31 rows and 17 variables

98 recordTableSample

Details

The variables are as follows:

Station Camera trap station ID
Species Species ID
Individual Individual ID
DateTimeOriginal Date and time as extracted from image
Date record date
Time record time of day
delta.time.secs time difference to first species record at a station (seconds)
delta.time.mins time difference to first species record at a station (minutes)
delta.time.hours time difference to first species record at a station (hours)
delta.time.days time difference to first species record at a station (days)
Directory Image directory
FileName image filename
HierarchicalSubject content of the HierarchicalSubject image metadata tag
Model camera model extracted from image metadata
Make camera make extracted from image metadata
metadata_Species content of custom image metadata tag "Species" (see HierarchicalSubject)
metadata_individual content of custom image metadata tag "individual" (see HierarchicalSubject)

Examples

example data were created as follows:
data(recordTableIndividualSample)

recordTableIndividualSample_season2 <- recordTableIndividualSample[1:10,]
recordTableIndividualSample_season2$DateTimeOriginal <- gsub("2009", "2010",

recordTableIndividualSample_season2$DateTimeOriginal)
recordTableIndividualSampleMultiSeason <- rbind(recordTableIndividualSample,

recordTableIndividualSample_season2)

recordTableSample Sample species record table from camera trap images

Description

Sample species record table from camera trap images generated from the sample images in the
package with the function recordTable .

Usage

data(recordTableSample)

Format

A data frame with 39 rows and 11 variables

recordTableSampleMultiSeason 99

Details

The variables are as follows:

Station Camera trap station ID
Species Species ID
DateTimeOriginal Date and time as extracted from image
Date record date
Time record time of day
delta.time.secs time difference to first species record at a station (seconds)
delta.time.mins time difference to first species record at a station (minutes)
delta.time.hours time difference to first species record at a station (hours)
delta.time.days time difference to first species record at a station (days)
Directory Image directory
FileName image filename

recordTableSampleMultiSeason

Sample multi-season species record table from camera trap images

Description

Sample multi-season species record table from camera trap images generated from the sample im-
ages in the package with the function recordTable. Season 2009 is the same as recordTableSample,
season 2010 was simulated by adding 1 year to these records.

Usage

data(recordTableSampleMultiSeason)

Format

A data frame with 78 rows and 11 variables

Details

The variables are as follows:

Station Camera trap station ID
Species Species ID
DateTimeOriginal Date and time as extracted from image
Date record date
Time record time of day
delta.time.secs time difference to first species record at a station (seconds)
delta.time.mins time difference to first species record at a station (minutes)
delta.time.hours time difference to first species record at a station (hours)

100 spatialDetectionHistory

delta.time.days time difference to first species record at a station (days)
Directory Image directory
FileName image filename

Examples

data were created with the following code:

data(recordTableSample)
recordTableSample_season2 <- recordTableSample

substitute 2009 with 2010
recordTableSample_season2$DateTimeOriginal <- gsub("2009", "2010",

recordTableSample_season2$DateTimeOriginal)
combine with season 2009
recordTableSampleMultiSeason <- rbind(recordTableSample, recordTableSample_season2)

spatialDetectionHistory

Generate a capthist object for spatial capture-recapture analyses
from camera-trapping data

Description

This function generates spatial detection histories of individuals of a species for spatial capture-
recapture analyses with package secr. Data are stored in a capthist object. The capthist object
contains detection histories, camera-trap station location and possibly individual and station-level
covariates. Detection histories can have adjustable occasion length and occasion start time (as in
the function detectionHistory).

Usage

spatialDetectionHistory(
recordTableIndividual,
species,
camOp,
CTtable,
output = c("binary", "count"),
stationCol = "Station",
speciesCol = "Species",
sessionCol,
Xcol,
Ycol,
stationCovariateCols,
individualCol,
individualCovariateCols,
recordDateTimeCol = "DateTimeOriginal",

spatialDetectionHistory 101

recordDateTimeFormat = "ymd HMS",
occasionLength,
minActiveDaysPerOccasion,
occasionStartTime = "deprecated",
maxNumberDays,
day1,
buffer,
includeEffort = TRUE,
scaleEffort = FALSE,
binaryEffort = FALSE,
timeZone,
makeRMarkInput

)

Arguments

recordTableIndividual

data.frame. the record table with individual IDs created by recordTableIndividual

species character. the species for which to compute the detection history

camOp The camera operability matrix as created by cameraOperation

CTtable data.frame. contains station IDs and coordinates. Same as used in cameraOperation.

output character. Return individual counts ("count") or binary observations ("binary")?

stationCol character. name of the column specifying Station ID in recordTableIndividual
and CTtable

speciesCol character. name of the column specifying species in recordTableIndividual

sessionCol character. name of the column specifying session IDs, either in recordTableIndividual
or in CTtable. See ’Details’ for more information. Session ID values must be a
sequence of integer numbers beginning with 1 (i.e., 1,2,3,...).

Xcol character. name of the column specifying x coordinates in CTtable

Ycol character. name of the column specifying y coordinates in CTtable

stationCovariateCols

character. name of the column(s) specifying station-level covariates in CTtable

individualCol character. name of the column specifying individual IDs in recordTableIndividual

individualCovariateCols

character. name of the column(s) specifying individual covariates in recordTableIndividual

recordDateTimeCol

character. name of the column specifying date and time in recordTableIndividual

recordDateTimeFormat

format of column recordDateTimeCol in recordTableIndividual

occasionLength integer. occasion length in days
minActiveDaysPerOccasion

integer. minimum number of active trap days for occasions to be included (op-
tional)

102 spatialDetectionHistory

occasionStartTime

(DEPRECATED) integer. time of day (the full hour) at which to begin occa-
sions. Please use argument occasionStartTime in cameraOperation instead.

maxNumberDays integer. maximum number of trap days per station (optional)

day1 character. When should occasions begin: station setup date ("station"), first day
of survey ("survey"), a specific date (e.g. "2015-12-31")?

buffer integer. Makes the first occasion begin a number of days after station setup.
(optional)

includeEffort logical. Include trapping effort (number of active camera trap days per station
and occasion) as usage in capthist object?

scaleEffort logical. scale and center effort matrix to mean = 0 and sd = 1? Currently not
used. Must be FALSE.

binaryEffort logical. Should effort be binary (1 if >1 active day per occasion, 0 otherwise)?

timeZone character. Must be a value returned by OlsonNames

makeRMarkInput logical. If FALSE, output will be a data frame for RMark. If FALSE or not speci-
fied, a secr capthist object

Details

The function creates a capthist object by combining three different objects: 1) a record table of
identified individuals of a species, 2) a camera trap station table with station coordinates and 3) a
camera operation matrix computed with cameraOperation. The record table must contain a column
with individual IDs and optionally individual covariates. The camera trap station table must contain
station coordinates and optionally station-level covariates. The camera operation matrix provides
the dates stations were active or not and the number of active stations.

day1 defines if each stations detection history will begin on that station’s setup day (day1 = "station")
or if all station’s detection histories have a common origin (the day the first station was set up if
day1 = "survey" or a fixed date if, e.g. day1 = "2015-12-31").

includeEffort controls whether an effort matrix is computed or not. If TRUE, effort will be
used for object usage information in a traps. binaryEffort makes the effort information binary.
scaleEffort is currently not used and must be set to FALSE. The reason is that usage can only be
either binary, or nonnegative real values, whereas scaling effort would return negative values.

The number of days that are aggregated is controlled by occasionLength. occasionStartTime
will be removed from the function. It has moved to cameraOperation, to ensure daily effort is
computed correctly and takes the occasion start time into account. another hour than midnight (the
default). This may be relevant for nocturnal animals, in which 1 whole night would be considered
an occasion.

Output can be returned as individual counts per occasion (output = "count") or as binary observa-
tion (output = "binary").

Argument sessionCol can be used to a create multi-session capthist object. There are two differ-
ent ways in which the argument is interpreted. It depends on whether a column with the name you
specify in argument sessionCol exists in recordTableIndividual or in CTtable. If sessionCol
is found in recordTableIndividual, the records will be assigned to the specified sessions, and it
will be assumed that all camera trap station were used in all sessions. Alternatively, if sessionCol
is found inCTtable, it will be assumed that only a subset of stations was used in each session, and

spatialDetectionHistory 103

the records will be assigned automatically (using the station IDs to identify which session they be-
long into). In both cases, session information must be provided as a sequence of integer numbers
beginnign with 1, i.e., you provide the session number directly in sessionCol. See session for
more information about sessions in secr.

capthist objects (as created by spatialDetectionHistory for spatial capture-recapture analy-
ses) expect the units of coordinates (Xcol and col in CTtable) to be meters. Therefore, please use
a suitable coordinate system (e.g. UTM).

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Output depends on argument makeRMarkInput:

list("makeRMarkInput = FALSE")

A capthist object
list("makeRMarkInput = TRUE")

A data frame for use in RMark

Warning

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.pdf)).

Author(s)

Juergen Niedballa

See Also

secr RMark

Examples

data(recordTableIndividualSample)
data(camtraps)

create camera operation matrix (with problems/malfunction)
camop_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,

https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf

104 spatialDetectionHistory

hasProblems = TRUE,
dateFormat = "dmy"

)

sdh <- spatialDetectionHistory(recordTableIndividual = recordTableIndividualSample,
species = "LeopardCat",
camOp = camop_problem,
CTtable = camtraps,
output = "binary",
stationCol = "Station",
speciesCol = "Species",
Xcol = "utm_x",
Ycol = "utm_y",
individualCol = "Individual",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
occasionLength = 10,
day1 = "survey",
includeEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur"

)

missing space in species = "LeopardCat" was introduced by recordTableIndividual
(because of CRAN package policies.
In your data you can have spaces in your directory names)

summary(sdh)
plot(sdh, tracks = TRUE)

multi-season capthist object
see vignette "3. Extracting Data from Camera Trapping Images, creating occupancy & secr input"

data(camtrapsMultiSeason)
camtrapsMultiSeason$session[camtrapsMultiSeason$session == 2009] <- 1
camtrapsMultiSeason$session[camtrapsMultiSeason$session == 2010] <- 2

data(recordTableIndividualSampleMultiSeason)

create camera operation matrix (with problems/malfunction)
camop_session <- cameraOperation(CTtable = camtrapsMultiSeason,

stationCol = "Station",
setupCol = "Setup_date",
sessionCol = "session",
retrievalCol = "Retrieval_date",
hasProblems = TRUE,
dateFormat = "dmy"

)

sdh_multi <- spatialDetectionHistory(recordTableIndividual = recordTableIndividualSampleMultiSeason,
species = "LeopardCat",
output = "binary",
camOp = camop_session,
CTtable = camtrapsMultiSeason,

speciesAccum 105

stationCol = "Station",
speciesCol = "Species",
sessionCol = "session",
Xcol = "utm_x",
Ycol = "utm_y",
individualCol = "Individual",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
occasionLength = 10,
day1 = "survey",
includeEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur",
stationCovariateCols = "utm_y", # example
individualCovariateCols = "Individual" # example

)

summary(sdh_multi)
plot(sdh_multi, tracks = TRUE)

speciesAccum Species Accumulation Curves for Camera Trap Data

Description

Generates species accumulation, rarefaction and extrapolation curves from camera trap data using
the iNEXT package (Chao et al. 2014). The function creates sampling effort-based accumulation
curves with sampling units being either camera trap stations or days.

Note that these curves are based on observed detections only and do not account for imperfect
detection. Species may be present but not detected, leading to underestimation of true species
richness. For analyses that explicitly account for imperfect detection, consider using occupancy-
based approaches (see communityModel).

Usage

speciesAccum(
CTtable,
recordTable,
speciesCol,
recordDateTimeCol,
recordDateTimeFormat = "ymd HMS",
setupCol,
dateFormat = "ymd",
stationCol,
assemblageCol = NULL,
q = 0,
x_unit = c("station", "survey_day", "station_day"),
knots = 40,

106 speciesAccum

conf = 0.95,
nboot = 50,
endpoint = NULL

)

Arguments

CTtable data.frame containing the camera trap deployment information.

recordTable data.frame containing the camera trap records.

speciesCol character. Name of the column specifying species names in recordTable
recordDateTimeCol

character. Name of the column containing date and time information in recordTable
recordDateTimeFormat

character. Format of column recordDateTimeCol in recordTable

setupCol character. Name of the column containing camera setup dates in CTtable

dateFormat character. Format of column setupCol in CTtable

stationCol character. Name of the column containing station IDs in both tables

assemblageCol character. Optional. Name of column in recordTable for grouping data into
separate assemblages

q numeric. The order of diversity measure. Default is 0 (species richness)

x_unit character. Whether to use "station" or "day" as sampling unit. Default is "sta-
tion"

knots numeric. number of values along x axis for which values are computed

conf numeric. confidence interval

nboot numeric. number of replications

endpoint integer. Sample size used as endpoint for rarefaction/extrapolation (in iNEXT)

Details

The function provides three types of curves:

• Sample-size-based rarefaction/extrapolation curve

• Sample completeness curve

• Coverage-based rarefaction/extrapolation curve

While these curves provide useful insights into sampling completeness and species richness pat-
terns, they should be interpreted with caution in camera trap studies. Unlike occupancy models,
they do not account for:

• Imperfect detection (species present but not detected)

• Variation in detection probability among species

• Spatial variation in species occurrence

• Temporal variation in species activity

speciesAccum 107

Value

An object of class "iNEXT" containing:

• DataInfo - data information

• iNextEst - diversity estimates for rarefied and extrapolated samples

• AsyEst - asymptotic diversity estimates

Note

Requires package iNEXT.

Author(s)

Juergen Niedballa

References

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M.
(2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation
in species diversity studies. Ecological Monographs, 84(1), 45-67.

See Also

surveyDashboard for interactive species accumulation analysis

Examples

Not run:
Basic usage with stations as sampling units
result <- speciesAccum(

CTtable = cams,
recordTable = recs,
speciesCol = "Species",
recordDateTimeCol = "DateTime",
setupCol = "Setup_date",
stationCol = "Station",
q = 0,
x_unit = "station"

)

Plot results
ggiNEXT(result, type = 1) # Sample-size-based R/E curve
ggiNEXT(result, type = 2) # Sample completeness curve
ggiNEXT(result, type = 3) # Coverage-based R/E curve

With assemblage grouping and days as sampling units
result_by_assemblage <- speciesAccum(

CTtable = cams,
recordTable = recs,
speciesCol = "Species",
recordDateTimeCol = "DateTime",

108 summary,commOccu-method

setupCol = "Setup_date",
stationCol = "Station",
assemblageCol = "Season",
q = 0,
x_unit = "day"

)

End(Not run)

summary,commOccu-method

Summarize community occupancy model

Description

Gives an overview of the number of species, stations and occasions in a commOccu object. Also
returns covariates.

Usage

S4 method for signature 'commOccu'
summary(object, ...)

Arguments

object commOccu object

... currently ignored

Details

The summary method is very basic and still work in progress.

Value

Model summary printed to console

surveyDashboard 109

surveyDashboard Survey Dashboard for Camera Trap Data Analysis

Description

A comprehensive Shiny dashboard for analyzing camera trap survey data. The dashboard provides
interactive visualization, data exploration, and analysis tools including:

• Data import from CSV files, Wildlife Insights exports, or camtrapDP format

• Interactive maps for camera locations and species detections

• Species activity pattern analysis

• Covariate extraction and analysis tools

• Single-species and community occupancy modeling

• Spatial prediction capabilities

Usage

surveyDashboard(
CTtable = NULL,
recordTable = NULL,
stationCol = NULL,
cameraCol = NULL,
xcol = NULL,
ycol = NULL,
crs = NULL,
setupCol = NULL,
retrievalCol = NULL,
hasProblems = FALSE,
CTdateFormat = "ymd",
camerasIndependent = NULL,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
timeZone = "UTC",
exclude = NULL

)

Arguments

CTtable A data.frame containing the camera trap deployment information.

recordTable A data.frame containing the camera trap records.

stationCol The column name containing the camera trap station ID

cameraCol The column name containing the camera trap IDs (optional, only if 2 or more
cameras per station)

110 surveyDashboard

xcol The column name containing the X coordinate of the camera trap station.

ycol The column name containing the Y coordinate of the camera trap station.

crs The coordinate reference system (CRS) of the camera trap data. Must be a valid
argument to st_crs

setupCol The column name containing the camera trap deployment date (and time).

retrievalCol The column name containing the camera trap retrieval date (optionally date-
time).

hasProblems A logical indicating whether there are periods of cameras malfunctioning

CTdateFormat The date format of the camera trap deployment and retrieval date and time (de-
fault: "ymd").

camerasIndependent

logical. If multiple camera per station, are they independent?

speciesCol The column name containing the species names
recordDateTimeCol

The column name containing the record date and time
recordDateTimeFormat

The date/time format of recordDateTimeCol

timeZone Time zone of records in recordTable

exclude Species to be excluded from the data set

Details

The dashboard includes several major components:

Data Import & Management:

• CSV file import with column mapping

• Wildlife Insights data import (zip, CSV, or directory)

• camtrap DP data import

• Study area import from shapefile

• Save/restore functionality for app state

• Export functionality to save data from dashboard

Data Processing:

• Flexible station filtering with multiple criteria

• Temporal record filtering with independence criteria

• Filtering species records by species name

• Automated covariate extraction from local rasters or online elevation data

• Covariate correlation analysis with visualization

• Species accumulation curves

Basic Analysis:

• Basic summary statistics

surveyDashboard 111

• Interactive overview and species detection maps

• Activity pattern analysis (single species and two-species overlap)

• Camera operation visualization

Occupancy Modeling:

• Basic workflow for simple model specification (linear effects)

• Support for both unmarked and ubms packages

• Automated detection history creation

• Model comparison and selection

• Response curves and spatial predictions

Community Occupancy Modeling:

• Flexible species selection with filtering

• Support for fixed, random, and independent effects

• Species-site random effects

• Effort handling on detection

• MCMC diagnostics and convergence assessment

• Species occupancy, richness and PAO predictions

Value

A Shiny dashboard application for camera trap survey data analysis

Note

• Interactive maps with multiple basemap options

• Covariate scaling is performed automatically if requested (includes automatic scaling of pre-
diction rasters)

• The app state can be saved and restored

Current limitations include:

- supports only single-season data - no support for spatial capture-recapture models (or anything
related to individual IDs)

Author(s)

Juergen Niedballa

112 surveyReport

Examples

Not run:

Start the dashboard without parameters
This opens the application with a welcome screen where data can be imported
surveyDashboard()

Basic usage with minimal parameters

data("camtraps")
data("recordTableSample")

surveyDashboard(
CTtable = camtraps,
recordTable = recordTableSample,
xcol = "utm_x",
ycol = "utm_y",
crs = "epsg:32650", # = UTM50N
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTdateFormat = "dmy"

)

End(Not run)

surveyReport Create a report about a camera trapping survey and species detections

Description

This function creates a report about a camera trapping survey and species records. It uses a camera
trap station information table and a record table (generated with recordTable) as input. Output
tables can be saved and a zip file for simple data sharing can be created easily.

Usage

surveyReport(
recordTable,
CTtable,
camOp,
speciesCol = "Species",
stationCol = "Station",
cameraCol,
setupCol,
retrievalCol,

surveyReport 113

CTDateFormat = "ymd",
CTHasProblems = "deprecated",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
Xcol,
Ycol,
sinkpath,
makezip

)

Arguments

recordTable data.frame containing a species record table as given by recordTable

CTtable data.frame containing information about location and trapping period of camera
trap stations (equivalent to camtraps

camOp camera operation matrix created with cameraOperation

speciesCol character. name of the column specifying Species ID in recordTable

stationCol character. name of the column specifying Station ID in CTtable and recordTable

cameraCol character. name of the column specifying Camera ID in CTtable and recordTable

setupCol character. name of the column containing camera setup dates in CTtable

retrievalCol character. name of the column containing camera retrieval dates in CTtable

CTDateFormat character. The format of columns setupCol and retrievalCol (and potential
problem columns) in CTtable. Must be interpretable by either as.Date or the
"orders" argument parse_date_time in lubridate.

CTHasProblems deprecated (since version 2.1)
recordDateTimeCol

character. The name of the column containing date and time of records in
recordTable

recordDateTimeFormat

character. The date/time format of column recordDateTimeCol in recordTable.

Xcol character. name of the column specifying x coordinates in CTtable. Used to
create detection maps if makezip is TRUE. (optional)

Ycol character. name of the column specifying y coordinates in CTtable. Used to
create detection maps if makezip is TRUE. (optional)

sinkpath character. The directory into which the survey report is saved (optional)

makezip logical. Create a zip file containing tables, plots and maps in sinkpath?

Details

dateFormat defaults to "YYYY-MM-DD", e.g. "2014-10-31". It can be specified either in the
format required by strptime or the ’orders’ argument in parse_date_time in lubridate. In the
example above, "YYYY-MM-DD" would be specified as "%Y-%m-%d" or "ymd".

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in

114 surveyReport

lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Note: as of version 2.1, argument CTHasProblems is deprecated and defunct. Please use camOp
instead to provide information about periods of camera activity and malfunction. If camOp is not
provided the legacy version of surveyReport (from camtrapR 2.0.3) will be run with a warning.

Value

An invisible list containing 5 data.frames.

survey_dates station and image date ranges, number of total and active trap days (calendar
days and taking into account independent effort of multiple cameras, if applica-
ble), number of cameras per station

species_by_station

species numbers by station
events_by_species

number of events and stations by species
events_by_station

number of events for every species by station (only species that were recorded)
events_by_station2

number of events for all species at all stations (including species that were not
recorded)

The output will be saved to a .txt file if sinkpath is defined.

If makezip is TRUE, a zip file will be created in sinkpath. It contains single-species activity plots,
detection maps (if Xcol and Ycol are defined), the survey report tables, the record table and the
camera trap station table, and an example R script.

Author(s)

Juergen Niedballa

See Also

recordTable

Examples

data(camtraps)
data(recordTableSample)

since version 2.1, camera operation matrix is required as input

camop_no_problem <- cameraOperation(CTtable = camtraps,
stationCol = "Station",
setupCol = "Setup_date",

surveyReport 115

retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = FALSE,
dateFormat = "dmy"

)

reportTest <- surveyReport (recordTable = recordTableSample,
CTtable = camtraps,
camOp = camop_no_problem,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "dmy",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS")

class(reportTest) # a list with
length(reportTest) # 5 elements

reportTest[[1]] # camera trap operation times and image date ranges
reportTest[[2]] # number of species by station
reportTest[[3]] # number of events and number of stations by species
reportTest[[4]] # number of species events by station
reportTest[[5]] # number of species events by station including 0s (non-observed species)

with camera problems

camop_problem <- cameraOperation(CTtable = camtraps,
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "dmy"

)

reportTest_problem <- surveyReport (recordTable = recordTableSample,
CTtable = camtraps,
camOp = camop_problem,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "dmy",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS")

reportTest_problem$survey_dates

116 timeShiftImages

Not run:
run again with sinkpath defined
reportTest <- surveyReport (recordTable = recordTableSample,

CTtable = camtraps,
camOp = camop_no_problem,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "dmy",,
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
sinkpath = getwd())

have a look at the text file
readLines(list.files(getwd(), pattern = paste("survey_report_", Sys.Date(), ".txt", sep = ""),
full.names = TRUE))

End(Not run)

timeShiftImages Apply time shifts to JPEG image metadata

Description

Change the values of digital timestamps in image metadata using ExifTool. If date/time of images
were set incorrectly, they can be corrected easily in batch mode for further analyses. Please, always
make a backup of your data before using this function to avoid data loss or damage. This is be-
cause ExifTool will make a copy of your images and applies the time shifts to the copies. The file
extension of the original images (.JPG) will be renamed to ".JPG_original".

Usage

timeShiftImages(
inDir,
hasCameraFolders,
timeShiftTable,
stationCol,
cameraCol,
timeShiftColumn,
timeShiftSignColumn,
undo = FALSE,
ignoreMinorErrors = FALSE

)

timeShiftImages 117

Arguments

inDir character. Name of directory containing station directories with images
hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1")?

timeShiftTable data.frame containing information about station-/camera-specific time shifts.

stationCol character. name of the column specifying Station ID in timeShiftTable

cameraCol character. name of the column specifying Camera ID in timeShiftTable (op-
tional)

timeShiftColumn

character. The name of the column containing time shift values in timeShiftTable

timeShiftSignColumn

character. The name of the column with the direction of time shifts in timeShiftTable.
Can only be "-" or "+".

undo logical. Undo changes and restore the original images? Please be careful, this
deletes any edited images if TRUE

ignoreMinorErrors

logical. Ignore minor errors that would cause the function to fail (set TRUE for
images with bad MakerNotes, observed in Panthera V4 cameras)

Details

timeShiftTable is a data frame with columns for station ID, camera ID (optional), time shift value
and direction of time shift (for an example see timeShiftTable). Images in inDir must be sorted
into station directories. If hasCameraFolders = TRUE, the function expects camera subdirectories
in the station directories and will only apply time shifts to the camera subdirectories specified by
CameraCol in timeShiftTable. If hasCameraFolders = FALSE, shifts will be applied to the whole
station directory (including potential subdirectories).

The values of timeShiftColumn must adhere to the following pattern: "YYYY:mm:dd HH:MM:SS"
("year:month:day hour:minute:second"). Examples: "1:0:0 0:0:0" is a shift of exactly 1 year and
"0:0:0 12:10:01" 12 hours and 10 minutes and 1 second. Note that stating "00" may cause problems,
so use "0" instead if an entry is zero.

timeShiftSignColumn signifies the direction of the time shift. "+" moves image dates into the
future (i.e. the image date lagged behind the actual date) and "-" moves image dates back (if the
image dates were ahead of actual time).

ExifTool stores the original images as .JPG_original files in the original file location. By setting
undo = TRUE, any JPG files in the directories specified by timeShiftTable will be deleted and the
original JPEGs will be restored from the JPG_original files. Please make a backup before using
undo.

Years can have 365 or 366 days, and months 28 to 31 days. Here is how the function handles these
(from the exiftool help page): "The ability to shift dates by Y years, M months, etc, conflicts with
the design goal of maintaining a constant shift for all time values when applying a batch shift. This
is because shifting by 1 month can be equivalent to anything from 28 to 31 days, and 1 year can be
365 or 366 days, depending on the starting date. The inconsistency is handled by shifting the first

118 timeShiftImages

tag found with the actual specified shift, then calculating the equivalent time difference in seconds
for this shift and applying this difference to subsequent tags in a batch conversion."

ignoreMinorErrors is useful if image timestamps are not updated correctly (entries in column
"n_images" of the output are "... files weren’t updated due to errors"). This can be caused by
bad MakerNotes and so far was only observed in Panthera V4 and V6 cameras. In that case, set
ignoreMinorErrors to TRUE. This will add the "-m" option to the Exiftool call, thereby ignoring
minor errors and warnings and applying the time shift nevertheless.

Value

A data.frame containing the information about the processed directories and the number of im-
ages.

Author(s)

Juergen Niedballa

References

https://exiftool.org/#shift

Examples

Not run:

copy sample images to temporary directory (so we don't mess around in the package directory)
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
file.copy(from = wd_images_ID, to = tempdir(), recursive = TRUE)
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

data(timeShiftTable)

timeshift_run <- timeShiftImages(inDir = wd_images_ID_copy,
timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign",
undo = FALSE

)

timeshift_undo <- timeShiftImages(inDir = wd_images_ID_copy,
timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign",
undo = TRUE

https://exiftool.org/#shift

timeShiftTable 119

)

End(Not run)

timeShiftTable Sample camera trap time shift table

Description

Sample camera trap time shift table

Usage

data(timeShiftTable)

Format

A data frame with 2 rows and 4 variables

Details

If image Exif metadata timestamps are wrong systematically (e.g. because camera system time was
not set after changing batteries), it can be corrected using a data.frame in the following format
using function timeShiftImages. For details on data format, please see timeShiftImages.

The variables are as follows:

Station Camera trap station ID
camera Camera trap ID (optional)
timeshift time shift amount to be applied
sign direction of time shift

writeDateTimeOriginal Write values to DateTimeOriginal tag in image metadata

Description

This function assigns values to the DateTimeOriginal tag in image’s EXIF metadata using Exiftool.
It can be used when the original DateTimeOriginal values in the metadata were lost for what-
ever reason. In order to first read the Date/Time values from the data fields in the images, see
the function OCRdataFields. After running OCRdataFields and checking its output you can run
writeDateTimeOriginal.

120 writeDateTimeOriginal

Usage

writeDateTimeOriginal(DateTimeOriginal, fileNames, parallel, overwrite = FALSE)

Arguments

DateTimeOriginal

character. DateTimeOriginal values to write into EXIF:DateTimeOriginal tag of
the files in fileNames.

fileNames character. Full file names (including directories) of images to process.

parallel A parallel cluster object. Specify if you wish to run this function in parallel.
Provide a cluster object (output of makeCluster()) - optional.

overwrite logical. Overwrite existing files (TRUE) or create new files while saving the
original data as jpg_original files as a backup (FALSE)?

Details

The first value in DateTimeOriginal will be assigned to the first image in fileNames, and so
on. Both DateTimeOriginal and fileNames can be obtained from the output of OCRdataFields.
DateTimeOriginal uses the standard "YYYY-MM-SS HH:MM:SS"" notation. If the values ex-
tracted via OCRdataFields are in a different format you’ll need to reformat them first. Please
provide them as character. Also, before using this function, make sure that the date/time values
read by OCRdataFields are correct (sometimes OCR misreads values, so check carefully).

Parallel processing is advised since the function is rather slow (due to calling Exiftool separately on
every, so about 1 second per image). If you know how to batch-assign DateTimeOriginal values in
one Exiftool call, please let me know.

The function only works on JPG images, not video files.

Value

Invisible NULL. The actual output is the JPG images which now have a DateTimeOriginal tag.

Author(s)

Juergen Niedballa

See Also

OCRdataFields

Examples

Not run:
dontrun is to avoid forcing users to install additional dependencies

wd_images_OCR <- system.file("pictures/full_size_for_ocr", package = "camtrapR")

library(magick)

writeDateTimeOriginal 121

define geometries
geometry1 <- geometry_area(x_off = 0, y_off = 0, width = 183, height = 37)
geometry2 <- geometry_area(x_off = 196, y_off = 0, width = 200, height = 17)
geometry3 <- geometry_area(x_off = 447, y_off = 0, width = 63, height = 17)
geometry4 <- geometry_area(x_off = 984, y_off = 0, width = 47, height = 17)
geometry5 <- geometry_area(x_off = 0, y_off = 793, width = 320, height = 17)

combine geometries into list
geometries <- list(date = geometry1,

time = geometry2,
sequence_id = geometry3,
temperature = geometry4,
camera_model = geometry5)

df_image_data <- OCRdataFields(inDir = wd_images_OCR,
geometries = geometries,
invert = TRUE)

df_image_data

library(parallel)
library(lubridate)

prepare DateTimeOriginal column (ymd_hms() automatically respects the PM indicator)
df_image_data$DateTimeOriginal <- paste(df_image_data$date, df_image_data$time)
df_image_data$DateTimeOriginal <- as.character(ymd_hms(df_image_data$DateTimeOriginal))

create cluster (3 cores)
cl <- makeCluster(3)

assign new DateTimeOriginal
writeDateTimeOriginal(DateTimeOriginal = df_image_data$DateTimeOriginal,

fileNames = df_image_data$filename_full,
parallel = cl)

stopCluster(cl)

End(Not run)

Index

∗ datasets
camtraps, 26
camtrapsMultiSeason, 27
recordTableIndividualSample, 96
recordTableIndividualSampleMultiSeason,

97
recordTableSample, 98
recordTableSampleMultiSeason, 99
timeShiftTable, 119

∗ package
camtrapR-package, 3

activityDensity, 5, 7, 10, 12, 15, 89
activityHistogram, 5, 8, 9, 15, 89
activityOverlap, 5, 8, 10, 11, 15, 89
activityRadial, 5, 8, 10, 13, 89
addCopyrightTag, 4, 16
addToPath, 5, 18
aggregateStations, 19
appendSpeciesNames, 4, 20

cameraOperation, 5, 20, 22, 48–50, 101, 102,
113

camtrapR (camtrapR-package), 3
camtrapR-package, 3
camtraps, 6, 24, 26, 88, 113
camtrapsMultiSeason, 6, 27
capthist, 23, 26, 27, 100, 102, 103
check_camtrapdp, 84
checkSpeciesIdentification, 4, 21, 28
checkSpeciesNames, 4, 31
commOccu-class, 5, 33
communityModel, 5, 34, 48, 50, 62, 73, 105
compileNimble, 61
createCovariates, 5, 40
createSpeciesFolders, 4, 45
createStationFolders, 4, 46

densityPlot, 7

detectionHistory, 5, 22, 23, 25, 34, 48, 89,
100

detectionMaps, 5, 54, 89

exifTagNames, 5, 57, 67, 87, 88, 93, 94

facet_grid, 72
filterRecordTable, 5, 59
fit,commOccu-method, 5, 61
fixDateTimeOriginal, 4, 62

geometry, 69
get_tsn, 31
getSpeciesImages, 4, 63, 93
ggsave, 72, 73

hist, 9

imageRename, 4, 45, 63, 65, 65, 86, 92, 94
iNEXT, 106

OCRdataFields, 4, 68, 119, 120
OlsonNames, 49, 60, 86, 93, 102
overlapEst, 11, 12
overlapPlot, 11, 12

parse_date_time, 8, 10, 12, 15, 19, 23, 103,
113, 114

plot_coef, 5
plot_coef (plot_coef,commOccu-method),

71
plot_coef,commOccu-method, 71
plot_effects, 5
plot_effects

(plot_effects,commOccu-method),
72

plot_effects,commOccu-method, 72
PPC.community, 5, 73
PPC.residuals, 5, 74, 75, 77
predict, 73, 74
predict (predict,commOccu-method), 80

122

INDEX 123

predict,commOccu-method, 5, 80

radial.plot, 13, 14
read_camtrapdp, 84
readcamtrapDP, 82
readWildlifeInsights, 84
recordTable, 5, 7, 9, 11, 14, 48, 54, 57–59,

63, 64, 67, 69, 85, 94, 98, 99,
112–114

recordTableIndividual, 5, 57, 91, 96, 97,
101

recordTableIndividualSample, 6, 96
recordTableIndividualSampleMultiSeason,

6, 97
recordTableSample, 6, 98, 99
recordTableSampleMultiSeason, 6, 99
runMCMC, 62

secr, 100
session, 103
sf, 42
spatialDetectionHistory, 5, 22, 23, 25–27,

92, 100, 103
speciesAccum, 105
st_crs, 55, 110
strptime, 8, 10, 12, 15, 23, 103, 113, 114
summary,commOccu-method, 5, 108
surveyDashboard, 5, 107, 109
surveyReport, 5, 22, 89, 112

timeShiftImages, 4, 116, 119
timeShiftTable, 6, 117, 119
traps, 102

unmarked, 48
unmarkedMultFrame, 23, 49
usage, 102

writeDateTimeOriginal, 4, 69, 70, 119

	camtrapR-package
	activityDensity
	activityHistogram
	activityOverlap
	activityRadial
	addCopyrightTag
	addToPath
	aggregateStations
	appendSpeciesNames
	cameraOperation
	camtraps
	camtrapsMultiSeason
	checkSpeciesIdentification
	checkSpeciesNames
	commOccu-class
	communityModel
	createCovariates
	createSpeciesFolders
	createStationFolders
	detectionHistory
	detectionMaps
	exifTagNames
	filterRecordTable
	fit,commOccu-method
	fixDateTimeOriginal
	getSpeciesImages
	imageRename
	OCRdataFields
	plot_coef,commOccu-method
	plot_effects,commOccu-method
	PPC.community
	PPC.residuals
	predict,commOccu-method
	readcamtrapDP
	readWildlifeInsights
	recordTable
	recordTableIndividual
	recordTableIndividualSample
	recordTableIndividualSampleMultiSeason
	recordTableSample
	recordTableSampleMultiSeason
	spatialDetectionHistory
	speciesAccum
	summary,commOccu-method
	surveyDashboard
	surveyReport
	timeShiftImages
	timeShiftTable
	writeDateTimeOriginal
	Index

