Package ‘bspline’

January 27, 2026
Type Package
Title B-Spline Interpolation and Regression
Version 2.5.1

Description Build and use B-splines for interpolation and regression.
In case of regression, equality constraints as well as monotonicity
and/or positivity of B-spline weights can be imposed. Moreover,
knot positions can be on regular grid or be part of
optimized parameters too (in addition to the spline weights).
For this end, 'bspline’ is able to calculate
Jacobian of basis vectors as function of knot positions. User is provided with
functions calculating spline values at arbitrary points. These
functions can be differentiated and integrated to obtain B-splines calculating
derivatives/integrals at any point. B-splines of this package can
simultaneously operate on a series of curves sharing the same set of
knots. 'bspline’ is written with concern about computing
performance that's why the basis and Jacobian calculation is implemented in C++.
The rest is implemented in R but without notable impact on computing speed.

URL https://github.com/MathsCell/bspline

BugReports https://github.com/MathsCell/bspline/issues
License GPL-2

Encoding UTF-8

Imports Rcpp (>=1.0.7), nlsic (>=1.1.0), arrApply
LinkingTo Rcpp, ReppArmadillo

RoxygenNote 7.3.2

Suggests RUnit

Copyright INRAE/INSA/CNRS

NeedsCompilation yes

Author Serguei Sokol [aut, cre]

Maintainer Serguei Sokol <sokol@insa-toulouse.fr>
Repository CRAN

Date/Publication 2026-01-27 16:50:02 UTC

https://github.com/MathsCell/bspline
https://github.com/MathsCell/bspline/issues

2 bcurve

Contents
beurve e 2
bSC . . e 3
DSp . . e e 4
bspline 5
bsppar 6
dbsp . .. e e 7
diffn e 7
dmat . . . L e e 8
IbSp . . e 9
IKNOtS e e e 9
IMAt . . . o L e e e e e 10
Pk . e 11
JACW L o o 11
Par2bsp . . .o 12
PAIT . . o o e e e e e 12
PDSC . . 13
SIDSP . . . e e e e e 14

Index 17

bcurve nD B-curve governed by (x,y,...) control points.
Description

nD B-curve governed by (x,y,...) control points.

Usage

bcurve(xy, n = 3)

Arguments
Xy Real matrix of (x,y,...) coordinates, one control point per row.
n Integer scalar, polynomial order of B-spline (3 by default)
Details

The curve will pass by the first and the last points in *xy’. The tangents at the first and last points
will coincide with the first and last segments of control points. Example of signature is inspired
from this blog.

Value

Function of one argument calculating B-curve. The argument is supposed to be in [0, 1] interval.

https://www.r-bloggers.com/2023/03/little-useless-useful-r-functions-using-xspline-to-create-wacky-signatures/

bsc 3

Examples

simulate doctor's signature ;)

set.seed(71);

xy=matrix(rnorm(16), ncol=2)

tp=seq(0@,1,1len=301)

doc_signtr=bcurve(xy)

plot(doc_signtr(tp), t="1", xaxt='n', yaxt='n', ann=FALSE, frame.plot=FALSE,
xlim=range(xy[,1]1), ylim=range(xy[,2]1))

see where control points are

text(xy, labels=seq(nrow(xy)), col=rgb(0, @, @, 0.25))

join them by segments

lines(bcurve(xy, n=1)(tp), col=rgb(e, 0, 1, 0.25))

randomly curved wire in 3D space
Not run:

if (requireNamespace("rgl”, quietly=TRUE)) {
xyz=matrix(rnorm(24),ncol=3)
tp=seq(0@,1,1len=201)
curv3d=bcurve(xyz)
rgl::plot3d(curv3d(tp), t="1", decorate=FALSE)

}

End(Not run)

bsc Basis matrix and knot Jacobian for B-spline of order 0 (step function)
and higher

Description

This function is analogous but not equivalent to splines:bs() and splines2::bSpline(). Itis
also several times faster.

Usage

bsc(x, xk, n = 3L, cjac = FALSE)

Arguments
X Numeric vector, abscissa points
xk Numeric vector, knots
n Integer scalar, polynomial order (3 by default)
cjac Logical scalar, if TRUE makes to calculate Jacobian of basis vectors as function

of knot positions (FALSE by default)

Details

For n==0, step function is defined as constant on each interval [xk[i]; xk[i+1][,i.e. closed on the
left and open on the right except for the last interval which is closed on the right too. The Jacobian
for step function is considered O in every x point even if in points where x=xk, the derivative is not
defined.

For n==1, Jacobian is discontinuous in such points so for these points we take the derivative from
the right.

Value

Numeric matrix (for cjac=FALSE), each column correspond to a B-spline calculated on x; or List
(for cjac=TRUE) with components

mat basis matrix of dimension nx x nw, where nx is the length of x and nw=nk-n-1 is the number
of basis vectors

jac array of dimension nx x (n+2) x nw where n+2 is the number of support knots for each basis
vector

See Also

[splines::bs()], [splines2::bSpline()]

Examples

x=seq(@, 5, length.out=101)

cubic basis matrix

n=3

m=bsc(x, xk=c(rep(@, nt+1), 1:4, rep(5, nt+1)), n=n)

matplot(x, m, t="1")

stopifnot(all.equal.numeric(c(m), c(splines::bs(x, knots = 1:4, degree = n, intercept = TRUE))))

bsp Calculate B-spline values from their coefficients qw and knots xk

Description

Calculate B-spline values from their coefficients qw and knots xk

Usage

bsp(x, xk, qw, n = 3L)

bspline

Arguments

X

xk
qw

Details

Numeric vector, abscissa points at which B-splines should be calculated. They
are supposed to be non decreasing.

Numeric vector, knots of the B-splines. They are supposed to be non decreasing.

Numeric vector or matrix, coefficients of B-splines. NROW(gqw) must be equal to
length(xk)-n-1 where n is the next parameter

Integer scalar, polynomial order of B-splines, by default cubic splines are calcu-
lated.

This function does nothing else than calculate a dot-product between a B-spline basis matrix cal-
culated by bsc() and coefficients qw. If qw is a matrix, each column corresponds to a separate set
of coefficients. For x values falling outside of xk range, the B-splines values are set to 0. To get a
function calculating spline values at arbitrary points from xk and qw, cf. par2bsp().

Value

Numeric matrix (column number depends on qw dimensions), B-spline values on x.

See Also
[bsc], [par2bsp]

bspline

bspline: build and use B-splines for interpolation and regression.

Description

Build and use B-splines for interpolation and regression. In case of regression, equality constraints
as well as monotonicity requirement can be imposed. Moreover, knot positions (not only spline
coefficients) can be part of optimized parameters too. User is provided with functions calculating
spline values at arbitrary points. This functions can be differentiated to obtain B-splines calculating
derivatives at any point. B-splines of this package can simultaneously operate on a series of curves
sharing the same set of knots. ’bspline’ is written with concern about computing performance that’s
why the basis calculation is implemented in C++. The rest is implemented in R but without notable
impact on computing speed.

bspline functions

bsc: basis matrix (implemented in C++)

bsp: values of B-spline from its coefficients

dbsp: derivative of B-spline

par2bsp: build B-spline function from parameters

bsppar: retrieve B-spline parameters from its function

6 bsppar

smbsp: build smoothing B-spline
fitsmbsp: build smoothing B-spline with optimized knot positions

diffn: finite differences

Author(s)

Maintainer: Serguei Sokol <sokol@insa-toulouse.fr>

See Also

Useful links:

* https://github.com/MathsCell/bspline

* Report bugs at https://github.com/MathsCell/bspline/issues

bsppar Retrieve parameters of B-splines

Description

Retrieve parameters of B-splines

Usage

bsppar (f)

Arguments

f Function, B-splines such that returned by par3bsp(), smbsp(), ...

Value

List having components: n - polynomial order, qw - coefficients, xk - knots

https://github.com/MathsCell/bspline
https://github.com/MathsCell/bspline/issues

dbsp 7

dbsp Derivative of B-spline

Description

Derivative of B-spline

Usage

dbsp(f, nderiv = 1L, same_xk = FALSE)

Arguments
f Function, B-spline such as returned by smbsp() or par2bsp()
nderiv Integer scalar >= 0, order of derivative to calculate (1 by default)
same_xk Logical scalar, if TRUE, indicates to calculate derivative on the same knot grid
as original function. In this case, coefficient number will be incremented by 2.
Otherwise, extreme knots are removed on each side of the grid and coefficient
number is maintained (FALSE by default).
Value

Function calculating requested derivative

Examples

x=seq(@., 1., length.out=11L)

y=sin(2*pi*x)

f=smbsp(x, y, nki=2L)

d_f=dbsp(f)

xf=seq(@., 1., length.out=101) # fine grid for plotting
plot(xf, d_f(xf)) # derivative estimated by B-splines
lines(xf, 2.*pixcos(2*xpi*xf), col="blue") # true derivative
xk=bsppar (d_f") $xk

points(xk, d_f(xk), pch="x", col="red") # knot positions

diffn Finite differences

Description

Calculate dy/dx where x,y are first and the rest of columns in the entry matrix *'m’

Usage
diffn(m, ndiff = 1L)

8 dmat

Arguments

m 2- or more-column numeric matrix

ndiff Integer scalar, order of finite difference (1 by default)
Value

Numeric matrix, first column is midpoints of x, the second and following are dy/dx

dmat Differentiation matrix of B-spline

Description

Calculate matrix for obtaining coefficients of first-derivative B-spline. They can be calculated as
dqw=Md %*% qw. Here, dqw are coefficients of the first derivative, Md is the matrix returned by this
function, and qw are the coefficients of differentiated B-spline.

Usage

dmat(ngw = NULL, xk = NULL, n = NULL, f = NULL, same_xk = FALSE, nderiv = 1L)

Arguments
naw Integer scalar, row number of qw matrix (i.e. degree of freedom of a B-spline)
xk Numeric vector, knot positions
n Integer scalar, B-spline polynomial order
f Function from which previous parameters can be retrieved. If both f and any
of previous parameters are given then explicitly set parameters take precedence
over those retrieved from f.
same_xk Logical scalar, the same meaning as in dbsp
nderiv Integer scalar, order of differentiation (default 1)
Value

Numeric matrix of size nqw-1 x ngw

ibsp 9

ibsp Indefinite integral of B-spline

Description

Indefinite integral of B-spline

Usage

ibsp(f, const = @, nint = 1L)

Arguments
f Function, B-spline such as returned by smbsp() or par2bsp()
const Numeric scalar or vector of length ncol(qw) where qw is weight matrix of f.
Defines starting value of weights for indefinite integral (O by default).
nint Integer scalar >= 0, defines how many times to take integral (1 by default)
Details

If f is B-spline, then following identity is held: dbsp(ibsp(f)) is identical to f. Generally, it does not
work in the other sens: ibsp(dbsp(f)) is not f but not very far. If we can get an appropriate constant
C=f(min(x)) then we can assert that ibsp(dbsp(f), const=C) is the same as f.

Value

Function calculating requested integral

iknots Estimate internal knot positions equalizing jumps in n-th derivative

Description

Normalized total variation of n-th finite differences is calculated for each column in y then aver-
aged. These averaged values are smoothed (if requested) and sampled to find knot positions which
equalize the jumps of n-th derivative. If any of found knots fall inside a same x interval, TV is
smoothed till no such situation occurs.

Usage

iknots(x, y, nki = 1L, n = 3L, lenfit = 12L, smooth = FALSE)

10 imat

Arguments
X Numeric vector
y Numeric vector or matrix
nki Integer scalar, number of internal knots to estimate (1 by default)
n Integer scalar, polynomial order of B-spline (3 by default)
lenfit Integer scalar, length of knots for linear spline to fit the total variation if greater
than 0, otherwise full linear interpolation is used (12 by default)
smooth Logical scalar, should total variation be smoothed? (FALSE by default)
Value

Numeric vector, estimated knot positions

imat Integration matrix of B-spline

Description

Calculate matrix for obtaining coefficients of indefinite integral of B-spline. They can be calculated
as iqw=Mi %% qw. Here, iqw are coefficients of the indefinite integral of B-spline, Mi is the matrix
returned by this function, and qw are the coefficients of integrated B-spline.

As per the nature of the indefinite integral, this coefficients are defined up to arbitrary additive con-
stant.

Usage

imat(nqw = NULL, xk = NULL, n = NULL, f = NULL)

Arguments
naw Integer scalar, row number of qw matrix (i.e. degree of freedom of a B-spline)
xk Numeric vector, knot positions
n Integer scalar, B-spline polynomial order
f Function from which previous parameters can be retrieved. If both f and any
of previous parameters are given then explicitly set parameters take precedence
over those retrieved from f.
Value

Numeric matrix of size nqw+1 x ngw

ipk 11

ipk Intervals of points in knot intervals

Description

Find first and last+1 indexes iip s.t. x[iip] belongs to interval starting at xk[iik]

Usage
ipk(x, xk)

Arguments

X Numeric vector, abscissa points (must be non decreasing)

xk Numeric vector, knots (must be non decreasing)

Value

Integer matrix of size (2 x length(xk)-1). Indexes are 0-based

jacw Knot Jacobian of B-spline with weights

Description

Knot Jacobian of B-spline with weights

Usage

jacw(jac, qws)

Arguments
jac Numeric array, such as returned by bsc(. .., cjac=TRUE)
qws Numeric matrix, each column is a set of weights forming a B-spline. If qws is a
vector, it is coerced to 1-column matrix.
Value

Numeric array of size nx x ncol (gw) x nk, where nx=dim(jac)[1] and nk is the number of knots
dim(jac)[3]+n+1 (n being polynomial order).

12 parr

par2bsp Convert parameters to B-spline function

Description

Convert parameters to B-spline function

Usage
par2bsp(n, qw, xk, covgw = NULL, sdy = NULL, sdgw = NULL)

Arguments
n Integer scalar, polynomial order of B-splines
qw Numeric vector or matrix, coefficients of B-splines, one set per column in case
of matrix
xk Numeric vector, knots
covagw Numeric Matrix, covariance matrix of qw (can be estimated in smbsp).
sdy Numeric vector, SD of each y column (can be estimated in smbsp).
sdqw Numeric Matrix, SD of qw thus having the same dimension as qw (can be esti-
mated in smbsp).
Value

Function, calculating B-splines at arbitrary points and having interface f(x, select, fsd=0.)
where x is a vector of abscissa points. Parameter select is passed to qw[, select, drop=FALSE]
and can be missing or NULL in which case all columns of qw are used. fsd is a factor for SD to
be added to the B-spline. Column names in the result matrix returned by f () will be inherited from
qw.

parr Polynomial formulation of B-spline

Description

Polynomial formulation of B-spline

Usage
parr(xk, n = 3L)

Arguments

xk Numeric vector, knots

n Integer scalar, polynomial order (3 by default)

pbsc 13

Value

Numeric 3D array, the first index runs through n+1 polynomial coefficients; the second — through
n+1 supporting intervals; and the last one through nk-n-1 B-splines (here nk=length(xk)). Knot
interval of length 0 will have corresponding coefficients set to 0.

pbsc Polynomial B-spline Calculation of Basis Matrix

Description

Polynomial B-spline Calculation of Basis Matrix

Usage
pbsc(x, xk, coeffs)

Arguments

X Numeric,vector, abscissa points

xk Numeric vector, knots

coeffs Numeric 3D array, polynomial coefficients such as calculated by parr
Details

Polynomials are calculated recursively by Cox-de Boor formula. However, it is not applied to
final values but to polynomial coefficients. Multiplication by a linear functions gives a raise of
polynomial degree by 1.

Polynomial coefficients stored in the first dimension of coeffs are used as in the following formula
pL11*x*n + p[11*x*(n-1) + ... + p[n+1].

Resulting matrix is the same as returned by bsc(x, xk, n=dim(coeffs)[1]1-1)

Value

Numeric matrix, basis vectors, one per column. Row number is length(x).

See Also

bsc

Examples

n=3

x=seq(@, 5, length.out=101)
xk=c(rep(@, n+1), 1:4, rep(5, n+1))
cubic polynomial coefficients
coeffs=parr(xk)

basis matrix

14 smbsp
m=pbsc(x, xk, coeffs)
matplot(x, m, t="1")
stopifnot(all.equal.numeric(c(m), c(bsc(x, xk))))
smbsp Smoothing B-spline of order n >= 0
Description

Optimize smoothing B-spline coefficients (smbsp) and knot positions (fitsmbsp) such that residual

squared sum is minimized for all y columns.

Usage

smbsp (

X7

Y,

n = 3L,

xki = NULL,
nki = 1L,
lieq = NULL,
monotone = @,
positive = 0,

mat = NULL,
estSD = FALSE,
tol = le-10,
regular_grid = FALSE
)
fitsmbsp(
X,
"
n = 3L,
xki = NULL,
nki = 1L,
lieq = NULL,

monotone = @,
positive = 0,
control = list(),
estSD = FALSE,

tol = l1e-10,
regular_grid = FALSE

Arguments

X

Numeric vector, abscissa points

smbsp

xki

nki

lieq

monotone

positive

mat

estSD

tol

regular_grid

control

Details

15

Numeric vector or matrix or data.frame, ordinate values to be smoothed (one set
per column in case of matrix or data.frame)

Integer scalar, polynomial order of B-splines (3 by default)

Numeric vector, strictly internal B-spline knots, i.e. lying strictly inside of x
bounds. If NULL (by default), they are estimated with the help of iknots().
This vector is used as initial approximation during optimization process. Must
be non decreasing if not NULL.

Integer scalar, internal knot number (1 by default). When nki==0, it corresponds
to polynomial regression. If xki is not NULL, this parameter is ignored.

List, equality constraints to respect by the smoothing spline, one list item per y
column. By default (NULL), no constraint is imposed. Constraints are given as
a 2-column matrix (xe, ye) where for each xe, an ye value is imposed. If a list
item is NULL, no constraint is imposed on corresponding y column.

Numeric scalar or vector, if monotone > 0, resulting B-spline weights must be
increasing; if monotone < @, B-spline weights must be decreasing; if monotone
== @ (default), no constraint on monotonicity is imposed. If 'monotone’ is a
vector it must be of length ncol(y), in which case each component indicates
the constraint for corresponding column of y.

Numeric scalar, if positive > @, resulting B-spline weights must be >= 0; if
positive < @, B-spline weights must be decreasing; if positive == @ (default),
no constraint on positivity is imposed. If 'positive’ is a vector it must be of
length ncol(y), in which case each component indicates the constraint for cor-
responding column of y.

Numeric matrix of basis vectors, if NULL it is recalculated by bsc(). If pro-
vided, it is the responsibility of the user to ensure that this matrix be adequate to
xki vector.

Logical scalar, if TRUE, indicates to calculate: SD of each y column, covariance
matrix and SD of spline coefficients. All these values can be retrieved with
bsppar() call (FALSE by default). These estimations are made under assumption
that all y points have uncorrelated noise. Optional constraints are not taken into
account of SD.

Numerical scalar, relative tolerance for small singular values that should be con-
sidered as 0 if s[i] <= tol*s[1]. This parameter is ignored if estSD=FALSE
(1.e-10 by default).

Logical scalar, should regular knot grid be used when xki=NULL (FALSE by
default)

List, passed through to nlsic() call

If constraints are set, we use nlsic::1sie_1n() to solve a least squares problem with equality
constraints in least norm sens for each y column. Otherwise, nlsic::1s_ln_svd() is used for the
whole y matrix. The solution of least squares problem is a vector of B-splines coefficients qw, one
vector per y column. These vectors are used to define B-spline function which is returned as the

result.

16 smbsp

NB. When nki >=length(x)-n-1 (be it from direct setting or calculated from length(xki)), it
corresponds to spline interpolation, i.e. the resulting spline will pass exactly by (x,y) points (well,
up to numerical precision).

Border and external knots are fixed, only strictly internal knots can move during optimization. The
optimization process is constrained to respect a minimal distance between knots as well as to bound
them to x range. This is done to avoid knots getting unsorted during iterations and/or going outside
of a meaningful range.

Value

Function, smoothing B-splines respecting optional constraints (generated by par2bsp()).

See Also

bsppar for retrieving parameters of B-spline functions; par2bsp for generating B-spline function;
iknots for estimation of knot positions

Examples

x=seq(@, 1, length.out=11)
y=sin(pi*x)+rnorm(x, sd=0.1)
constraint B-spline to be @ at the interval ends
fsm=smbsp(x, y, nki=1, lieg=list(rbind(c(@, @), c(1, 0))))
check parameters of found B-splines
bsppar (fsm)
plot(x, y) # original "measurements”
fine grained x
xfine=seq(@, 1, length.out=101)
lines(xfine, fsm(xfine)) # fitted B-splines
lines(xfine, sin(pi*xfine), col="blue") # original function
visualize knot positions
xk=bsppar (fsm) $xk
points(xk, fsm(xk), pch="x", col="red")
fit broken line with linear B-splines
x1=seq(@, 1, length.out=11)
x2=seq(1, 3, length.out=21)
x3=seq(3, 4, length.out=11)
y1=x1+rnorm(x1, sd=0.1)
y2=-2+3*x2+rnorm(x2, sd=0.1)
y3=4+x3+rnorm(x3, sd=0.1)
x=c(x1, x2, x3)
y=c(y1, y2, y3)
plot(x, y)
f=fitsmbsp(x, y, n=1, nki=2)
lines(x, f(x))

Index

bcurve, 2

bsc, 3, 13

bsp, 4

bspline, 5

bspline-package (bspline), 5
bsppar, 6

dbsp, 7, 8
diffn, 7
dmat, 8

fitsmbsp (smbsp), 14
ibsp, 9

iknots, 9

imat, 10

ipk, 11

jacw, 11

par2bsp, 12
parr, 12, 13

pbsc, 13

smbsp, 12, 14

17

	bcurve
	bsc
	bsp
	bspline
	bsppar
	dbsp
	diffn
	dmat
	ibsp
	iknots
	imat
	ipk
	jacw
	par2bsp
	parr
	pbsc
	smbsp
	Index

