

Package ‘bayesrules’

January 20, 2026

Type Package

Title Datasets and Supplemental Functions from Bayes Rules! Book

Version 0.0.3

Description Provides datasets and functions used for analysis

and visualizations in the Bayes Rules! book (<<https://www.bayesrulesbook.com>>).

The package contains a set of functions that summarize and plot Bayesian models from some conjugate families

and another set of functions for evaluation of some Bayesian models.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Suggests knitr, rmarkdown

Imports ggplot2, janitor, magrittr, dplyr, stats, purrr, rstanarm, e1071, groupdata2

Depends R (>= 2.10)

URL <https://bayes-rules.github.io/bayesrules/docs/>,
<https://github.com/bayes-rules/bayesrules/>

BugReports <https://github.com/bayes-rules/bayesrules/issues>

VignetteBuilder knitr

NeedsCompilation no

Author Mine Dogucu [aut, cre] (ORCID: <<https://orcid.org/0000-0002-8007-934X>>),
Alicia Johnson [aut],
Miles Ott [aut] (ORCID: <<https://orcid.org/0000-0003-4457-6565>>)

Maintainer Mine Dogucu <mdogucu@gmail.com>

Repository CRAN

Date/Publication 2026-01-20 08:50:09 UTC

Contents

airbnb	3
airbnb_small	4
bald_eagles	5
basketball	5
bechdel	7
big_word_club	7
bikes	9
bike_users	10
bird_counts	11
book_banning	11
cherry_blossom_sample	13
classification_summary	13
classification_summary_cv	14
climbers_sub	15
coffee_ratings	16
coffee_ratings_small	17
equality_index	18
fake_news	19
football	20
hotel_bookings	21
loons	22
moma	23
moma_sample	24
naive_classification_summary	24
naive_classification_summary_cv	25
penguins_bayes	26
plot_beta	27
plot_beta_binomial	27
plot_beta_ci	28
plot_binomial_likelihood	29
plot_gamma	29
plot_gamma_poisson	30
plot_normal	31
plot_normal_likelihood	31
plot_normal_normal	32
plot_poisson_likelihood	33
pop_vs_soda	33
prediction_summary	34
prediction_summary_cv	35
pulse_of_the_nation	36
sample_mode	37
spotify	37
summarize_beta	38
summarize_beta_binomial	39
summarize_gamma	40
summarize_gamma_poisson	40

summarize_normal_normal	41
voices	42
weather_australia	42
weather_perth	44
weather_WU	45

Index**46**

airbnb*Chicago AirBnB Data*

Description

The AirBnB data was collated by Trinh and Ameri as part of a course project at St Olaf College, and distributed with "Broadening Your Statistical Horizons" by Legler and Roback. This data set includes the prices and features for 1561 AirBnB listings in Chicago, collected in 2016.

Usage

airbnb

Format

A data frame with 1561 rows and 12 variables. Each row represents a single AirBnB listing.

price the nightly price of the listing (in USD)

rating the listing's average rating, on a scale from 1 to 5

reviews number of user reviews the listing has

room_type the type of listing (eg: Shared room)

accommodates number of guests the listing accommodates

bedrooms the number of bedrooms the listing has

minimum_stay the minimum number of nights to stay in the listing

neighborhood the neighborhood in which the listing is located

district the broader district in which the listing is located

walk_score the neighborhood's rating for walkability (0 - 100)

transit_score the neighborhood's rating for access to public transit (0 - 100)

bike_score the neighborhood's rating for bikeability (0 - 100)

Source

Ly Trinh and Pony Ameri (2018). Airbnb Price Determinants: A Multilevel Modeling Approach. Project for Statistics 316-Advanced Statistical Modeling, St. Olaf College. Julie Legler and Paul Roback (2019). Broadening Your Statistical Horizons: Generalized Linear Models and Multilevel Models. <https://bookdown.org/roback/bookdown-bysh/>. <https://github.com/proback/BeyondMLR/blob/master/data/airbnb.csv/>

airbnb_small

Chicago AirBnB Data

Description

The AirBnB data was collated by Trinh and Ameri as part of a course project at St Olaf College, and distributed with "Broadening Your Statistical Horizons" by Legler and Roback. This data set, a subset of the airbnb data in the bayesrules package, includes the prices and features for 869 AirBnB listings in Chicago, collected in 2016.

Usage

airbnb_small

Format

A data frame with 869 rows and 12 variables. Each row represents a single AirBnB listing.

price the nightly price of the listing (in USD)

rating the listing's average rating, on a scale from 1 to 5

reviews number of user reviews the listing has

room_type the type of listing (eg: Shared room)

accommodates number of guests the listing accommodates

bedrooms the number of bedrooms the listing has

minimum_stay the minimum number of nights to stay in the listing

neighborhood the neighborhood in which the listing is located

district the broader district in which the listing is located

walk_score the neighborhood's rating for walkability (0 - 100)

transit_score the neighborhood's rating for access to public transit (0 - 100)

bike_score the neighborhood's rating for bikeability (0 - 100)

Source

Ly Trinh and Pony Ameri (2018). Airbnb Price Determinants: A Multilevel Modeling Approach. Project for Statistics 316-Advanced Statistical Modeling, St. Olaf College. Julie Legler and Paul Roback (2019). Broadening Your Statistical Horizons: Generalized Linear Models and Multilevel Models. <https://bookdown.org/roback/bookdown-bysh/>. <https://github.com/proback/BeyondMLR/blob/master/data/airbnb.csv/>

bald_eagles	<i>Bald Eagle Count Data</i>
-------------	------------------------------

Description

Bald Eagle count data collected from the year 1981 to 2017, in late December, by birdwatchers in the Ontario, Canada area. The data was made available by the Bird Studies Canada website and distributed through the R for Data Science TidyTuesday project. A more complete data set with a larger selection of birds can be found in the bird_counts data in the bayesrules package.

Usage

```
bald_eagles
```

Format

A data frame with 37 rows and 5 variables. Each row represents Bald Eagle observations in the given year.

year year of data collection

count number of birds observed

hours total person-hours of observation period

count_per_hour count divided by hours

count_per_week count_per_hour multiplied by 168 hours per week

Source

https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-06-18/bird_counts.csv.

basketball	<i>WNBA Basketball Data</i>
------------	-----------------------------

Description

The WNBA Basketball Data was scraped from <https://www.basketball-reference.com/wnba/players/> and contains information on basketball players from the 2019 season.

Usage

```
basketball
```

Format

A data frame with 146 rows and 30 variables. Each row represents a single WNBA basketball player. The variables on each player are as follows.

player_name first and last name
height height in inches
weight weight in pounds
year year of the WNBA season
team team that the WNBA player is a member of
age age in years
games_played number of games played by the player in that season
games_started number of games the player started in that season
avg_minutes_played average number of minutes played per game
avg_field_goals average number of field goals per game played
avg_field_goal_attempts average number of field goals attempted per game played
field_goal_pct percent of field goals made throughout the season
avg_three_pointers average number of three pointers per game played
avg_three_pointer_attempts average number of three pointers attempted per game played
three_pointer_pct percent of three pointers made throughout the season
avg_two_pointers average number of two pointers made per game played
avg_two_pointer_attempts average number of two pointers attempted per game played
two_pointer_pct percent of two pointers made throughout the season
avg_free_throws average number of free throws made per game played
avg_free_throw_attempts average number of free throws attempted per game played
free_throw_pct percent of free throws made throughout the season
avg_offensive_rb average number of offensive rebounds per game played
avg_defensive_rb average number of defensive rebounds per game played
avg_rb average number of rebounds (both offensive and defensive) per game played
avg_assists average number of assists per game played
avg_steals average number of steals per game played
avg_blocks average number of blocks per game played
avg_turnovers average number of turnovers per game played
avg_personal_fouls average number of personal fouls per game played. Note: after 5 fouls the player is not allowed to play in that game anymore
avg_points average number of points made per game played
total_minutes total number of minutes played throughout the season
starter whether or not the player started in more than half of the games they played

Source

<https://www.basketball-reference.com/>

`bechdel`

Bechdel Test for over 1500 movies

Description

A dataset containing data behind the story "The Dollar-And-Cents Case Against Hollywood's Exclusion of Women" <https://fivethirtyeight.com/features/the-dollar-and-cents-case-against-hollywoods-exclusion-of-women/>

Usage

`bechdel`

Format

A data frame with 1794 rows and 3 variables:

year The release year of the movie

title The title of the movie

binary Bechdel test result (PASS, FAIL)

Source

<https://github.com/fivethirtyeight/data/tree/master/bechdel/>

`big_word_club`

Big Word Club (BWC)

Description

Data on the effectiveness of a digital learning program designed by the Abdul Latif Jameel Poverty Action Lab (J-PAL) to address disparities in vocabulary levels among children from households with different income levels.

Usage

`big_word_club`

Format

A data frame with 818 student-level observations and 31 variables:

participant_id unique student id

treat control group (0) or treatment group (1)

age_months age in months

female whether student identifies as female

kindergarten grade level, pre-school (0) or kindergarten (1)
teacher_id unique teacher id
school_id unique school id
private_school whether school is private
title1 whether school has Title 1 status
free_reduced_lunch percent of school that receive free / reduced lunch
state school location
esl_observed whether student has ESL status
special_ed_observed whether student has special education status
new_student whether student enrolled after program began
distracted_a1 student's distraction level during assessment 1 (0 = not distracted; 1 = mildly distracted; 2 = moderately distracted; 3 = extremely distracted)
distracted_a2 same as distracted_a1 but during assessment 2
distracted_ppvt same as distracted_a1 but during standardized assessment
score_a1 student score on BWC assessment 1
invalid_a1 whether student's score on assessment 1 was invalid
score_a2 student score on BWC assessment 2
invalid_a2 whether student's score on assessment 2 was invalid
score_ppvt student score on standardized assessment
score_ppvt_age score_ppvt adjusted for age
invalid_ppvt whether student's score on standardized assessment was invalid
t_logins_april number of teacher logins onto BWC system in April
t_logins_total number of teacher logins onto BWC system during entire study
t_weeks_used number of weeks of the BWC program that the classroom has completed
t_words_learned teacher response to the number of words students had learned through BWC (0 = almost none; 1 = 1 to 5; 2 = 6 to 10)
t_financial_struggle teacher response to the number of their students that have families that experience financial struggle
t_misbehavior teacher response to frequency that student misbehavior interferes with teaching (0 = never; 1 = rarely; 2 = occasionally; 3 = frequently)
t_years_experience teacher's number of years of teaching experience
score_pct_change percent change in scores before and after the program

Source

These data correspond to the following study: Ariel Kalil, Susan Mayer, Philip Oreopoulos (2020). Closing the word gap with Big Word Club: Evaluating the Impact of a Tech-Based Early Childhood Vocabulary Program. Data was obtained through the was obtained through the Inter-university Consortium for Political and Social Research (ICPSR) <https://www.openicpsr.org/openicpsr/project/117330/version/V1/view/>.

bikes

Capital Bikeshare Bike Ridership

Description

Data on ridership among registered members of the Capital Bikeshare service in Washington, D.C..

Usage

bikes

Format

A data frame with 500 daily observations and 13 variables:

date date of observation

season fall, spring, summer, or winter

year the year of the date

month the month of the date

day_of_week the day of the week

weekend whether or not the date falls on a weekend (TRUE or FALSE)

holiday whether or not the date falls on a holiday (yes or no)

temp_actual raw temperature (degrees Fahrenheit)

temp_feel what the temperature feels like (degrees Fahrenheit)

humidity humidity level (percentage)

windspeed wind speed (miles per hour)

weather_cat weather category (categ1 = pleasant, categ2 = moderate, categ3 = severe)

rides number of bikeshare rides

Source

Fanaee-T, Hadi and Gama, Joao (2013). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence. <https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset>

bike_users*Capital Bikeshare Bike Ridership (Registered and Casual Riders)*

Description

Data on ridership among registered members and casual users of the Capital Bikeshare service in Washington, D.C..

Usage

`bike_users`

Format

A data frame with 534 daily observations, 267 each for registered riders and casual riders, and 13 variables:

date date of observation
season fall, spring, summer, or winter
year the year of the date
month the month of the date
day_of_week the day of the week
weekend whether or not the date falls on a weekend (TRUE or FALSE)
holiday whether or not the date falls on a holiday (yes or no)
temp_actual raw temperature (degrees Fahrenheit)
temp_feel what the temperature feels like (degrees Fahrenheit)
humidity humidity level (percentage)
windspeed wind speed (miles per hour)
weather_cat weather category (categ1 = pleasant, categ2 = moderate, categ3 = severe)
user rider type (casual or registered)
rides number of bikeshare rides

Source

Fanaee-T, Hadi and Gama, Joao (2013). Event labeling combining ensemble detectors and background knowledge. *Progress in Artificial Intelligence*. <https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset/>

`bird_counts`*Bird Counts Data*

Description

Bird count data collected between the years 1921 and 2017, in late December, by birdwatchers in the Ontario, Canada area. The data was made available by the Bird Studies Canada website and distributed through the R for Data Science TidyTuesday project.

Usage

`bird_counts`

Format

A data frame with 18706 rows and 7 variables. Each row represents observations for the given bird species in the given year.

year year of data collection

species scientific name of observed bird species

species_latin latin name of observed bird species

count number of birds observed

hours total person-hours of observation period

count_per_hour count divided by hours

count_per_week count_per_hour multiplied by 168 hours per week

Source

https://github.com/rfordatascience/tidytuesday/blob/master/data/2019/2019-06-18/bird_counts.csv.

`book_banning`*Book Banning Data*

Description

The book banning data was collected by Fast and Hegland as part of a course project at St Olaf College, and distributed with "Broadening Your Statistical Horizons" by Legler and Roback. This data set includes the features and outcomes for 931 book challenges (ie. requests to ban a book) made in the US between 2000 and 2010. Information on the books being challenged and the characteristics of these books were collected from the American Library Society. State-level demographic information and political leanings were obtained from the US Census Bureau and Cook Political Report, respectively. Due to an outlying large number of challenges, book challenges made in the state of Texas were omitted.

Usage

```
book_banning
```

Format

A data frame with 931 rows and 17 variables. Each row represents a single book challenge within the given state and date.

title title of book being challenged

book_id identifier for the book

author author of the book

date date of the challenge

year year of the challenge

removed whether or not the challenge was successful (the book was removed)

explicit whether the book was challenged for sexually explicit material

antifamily whether the book was challenged for anti-family material

occult whether the book was challenged for occult material

language whether the book was challenged for inappropriate language

lgbtq whether the book was challenged for LGBTQ material

violent whether the book was challenged for violent material

state US state in which the challenge was made

political_value_index Political Value Index of the state (negative = leans Republican, 0 = neutral, positive = leans Democrat)

median_income median income in the state, relative to the average state median income

hs_grad_rate high school graduation rate, in percent, relative to the average state high school graduation rate

college_grad_rate college graduation rate, in percent, relative to the average state college graduation rate

Source

Shannon Fast and Thomas Hegland (2011). Book Challenges: A Statistical Examination. Project for Statistics 316-Advanced Statistical Modeling, St. Olaf College. Julie Legler and Paul Roback (2019). Broadening Your Statistical Horizons: Generalized Linear Models and Multilevel Models. <https://bookdown.org/roback/bookdown-bysh/>. <https://github.com/proback/BeyondMLR/blob/master/data/bookbanningNoTex.csv/>

cherry_blossom_sample *Cherry Blossom Running Race*

Description

A sub-sample of outcomes for the annual Cherry Blossom Ten Mile race in Washington, D.C.. This sub-sample was taken from the complete Cherry data in the mdsr package.

Usage

`cherry_blossom_sample`

Format

A data frame with 252 Cherry Blossom outcomes and 7 variables:

runner a unique identifier for the runner

age age of the runner

net time to complete the race, from starting line to finish line (minutes)

gun time between the official start of the race and the finish line (minutes)

year year of the race

previous the number of previous years in which the subject ran in the race

Source

Data in the original Cherry data set were obtained from <https://cherryblossom.org/post-race/race-results/>.

classification_summary

Posterior Classification Summaries

Description

Given a set of observed data including a binary response variable y and an rstanreg model of y , this function returns summaries of the model's posterior classification quality. These summaries include a confusion matrix as well as estimates of the model's sensitivity, specificity, and overall accuracy.

Usage

`classification_summary(model, data, cutoff = 0.5)`

Arguments

model	an rstanreg model object with binary y
data	data frame including the variables in the model, both response y and predictors x
cutoff	probability cutoff to classify a new case as positive (0.5 is the default)

Value

a list

Examples

```
x <- rnorm(20)
z <- 3*x
prob <- 1/(1+exp(-z))
y <- rbinom(20, 1, prob)
example_data <- data.frame(x = x, y = y)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data, family = binomial)
classification_summary(model = example_model, data = example_data, cutoff = 0.5)
```

classification_summary_cv

Cross-Validated Posterior Classification Summaries

Description

Given a set of observed data including a binary response variable y and an rstanreg model of y, this function returns cross validated estimates of the model's posterior classification quality: sensitivity, specificity, and overall accuracy. For hierarchical models of class lmerMod, the folds are comprised by collections of groups, not individual observations.

Usage

```
classification_summary_cv(model, data, group, k, cutoff = 0.5)
```

Arguments

model	an rstanreg model object with binary y
data	data frame including the variables in the model, both response y (0 or 1) and predictors x
group	a character string representing the name of the factor grouping variable, ie. random effect (only used for hierarchical models)
k	the number of folds to use for cross validation
cutoff	probability cutoff to classify a new case as positive

Value

a list

Examples

```
x <- rnorm(20)
z <- 3*x
prob <- 1/(1+exp(-z))
y <- rbinom(20, 1, prob)
example_data <- data.frame(x = x, y = y)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data, family = binomial)
classification_summary_cv(model = example_model, data = example_data, k = 2, cutoff = 0.5)
```

climbers_sub

Himalayan Climber Data

Description

A sub-sample of the Himalayan Database distributed through the R for Data Science TidyTuesday project. This dataset includes information on the results and conditions for various Himalayan climbing expeditions. Each row corresponds to a single member of a climbing expedition team.

Usage

climbers_sub

Format

A data frame with 2076 observations (1 per climber) and 22 variables:

expedition_id unique expedition identifier
member_id unique climber identifier
peak_id unique identifier of the expedition's destination peak
peak_name name of the expedition's destination peak
year year of expedition
season season of expedition (Autumn, Spring, Summer, Winter)
sex climber gender identity which the database oversimplifies to a binary category
age climber age
citizenship climber citizenship
expedition_role climber's role in the expedition (eg: Co-Leader)
hired whether the climber was a hired member of the expedition
highpoint_metres the destination peak's highpoint (metres)
success whether the climber successfully reached the destination
solo whether the climber was on a solo expedition

oxygen_used whether the climber utilized supplemental oxygen
died whether the climber died during the expedition
death_cause
death_height_metres
injured whether the climber was injured on the expedition
injury_type
injury_height_metres
count number of climbers in the expedition
height_metres height of the peak in meters
first_ascent_year the year of the first recorded summit of the peak (though not necessarily the actual first summit!)

Source

Original source: <https://www.himalayandatabase.com/>. Complete dataset distributed by: <https://github.com/rfordatascience/tidytuesday/tree/master/data/2020/2020-09-22/>.

coffee_ratings	<i>Coffee Ratings Data</i>
----------------	----------------------------

Description

A sub-set of data on coffee bean ratings / quality originally collected by James LeDoux (jmzledoux) and distributed through the R for Data Science TidyTuesday project.

Usage

coffee_ratings

Format

A data frame with 1339 batches of coffee beans and 27 variables on each batch.

owner farm owner
farm_name farm where beans were grown
country_of_origin country where farm is
mill where beans were processed
in_country_partner country of coffee partner
altitude_low_meters lowest altitude of the farm
altitude_high_meters highest altitude of the farm
altitude_mean_meters average altitude of the farm
number_of_bags number of bags tested

bag_weight weight of each tested bag
species bean species
variety bean variety
processing_method how beans were processed
aroma bean aroma grade
flavor bean flavor grade
aftertaste bean aftertaste grade
acidity bean acidity grade
body bean body grade
balance bean balance grade
uniformity bean uniformity grade
clean_cup bean clean cup grade
sweetness bean sweetness grade
moisture bean moisture grade
category_one_defects count of category one defects
category_two_defects count of category two defects
color bean color
total_cup_points total bean rating (0 – 100)

Source

https://raw.githubusercontent.com/rfordatascience/tidyTuesday/master/data/2020/2020-07-07/coffee_ratings.csv.

coffee_ratings_small *Coffee Ratings Data*

Description

A sub-set of data on coffee bean ratings / quality originally collected by James LeDoux (jmzledoux) and distributed through the R for Data Science TidyTuesday project. This is a simplified version of the coffee_ratings data.

Usage

coffee_ratings_small

Format

A data frame with 636 batches of coffee beans and 11 variables on each batch.

farm_name farm where beans were grown
total_cup_points total bean rating (0 – 100)
aroma bean aroma grade
flavor bean flavor grade
aftertaste bean aftertaste grade
acidity bean acidity grade
body bean body grade
balance bean balance grade
uniformity bean uniformity grade
sweetness bean sweetness grade
moisture bean moisture grade

Source

https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-07/coffee_ratings.csv.

equity_index	<i>LGBTQ+ Rights Laws by State</i>
--------------	------------------------------------

Description

Data on the number of LGBTQ+ equality laws (as of 2019) and demographics in each U.S. state.

Usage

equity_index

Format

A data frame with 50 observations, one per state, and 6 variables:

state state name
region region in which the state falls
gop_2016 percent of the 2016 presidential election vote earned by the Republican ("GOP") candidate
laws number of LGBTQ+ rights laws (as of 2019)
historical political leaning of the state over time (gop = Republican, dem = Democrat, swing = swing state)
percent_urban percent of state's residents that live in urban areas (by the 2010 census)

Source

Data on LGBTQ+ laws were obtained from Warbelow, Sarah, Courtney Avant, and Colin Kutney (2020). 2019 State Equality Index. Washington, DC. Human Rights Campaign Foundation. https://assets2.hrc.org/files/assets/resources/HRC-SEI-2019-Report.pdf?_ga=2.14892568.1325740687.1594310864-1928808113.1594310864&_gac=1.213124768.1594312278.EAIaIQobChMI9dP2hMzA6gIVkcDBwE/. Data on urban residency obtained from <https://www.icip.iastate.edu/tables/population/urban-pct-states/>.

fake_news

A collection of 150 news articles

Description

A dataset containing data behind the study "FakeNewsNet: A Data Repository with News Content, Social Context and Spatialtemporal Information for Studying Fake News on Social Media" <https://arxiv.org/abs/1809.01286>. The news articles in this dataset were posted to Facebook in September 2016, in the run-up to the U.S. presidential election.

Usage

fake_news

Format

A data frame with 150 rows and 6 variables:

title The title of the news article

text Text of the article

url Hyperlink for the article

authors Authors of the article

type Binary variable indicating whether the article presents fake or real news(fake, real)

title_words Number of words in the title

text_words Number of words in the text

title_char Number of characters in the title

text_char Number of characters in the text

title_caps Number of words that are all capital letters in the title

text_caps Number of words that are all capital letters in the text

title_caps_percent Percent of words that are all capital letters in the title

text_caps_percent Percent of words that are all capital letters in the text

title_excl Number of characters that are exclamation marks in the title

text_excl Number of characters that are exclamation marks in the text

title_excl_percent Percent of characters that are exclamation marks in the title

text_excl_percent Percent of characters that are exclamation marks in the text
title_has_excl Binary variable indicating whether the title of the article includes an exclamation point or not(TRUE, FALSE)
anger Percent of words that are associated with anger
anticipation Percent of words that are associated with anticipation
disgust Percent of words that are associated with disgust
fear Percent of words that are associated with fear
joy Percent of words that are associated with joy
sadness Percent of words that are associated with sadness
surprise Percent of words that are associated with surprise
trust Percent of words that are associated with trust
negative Percent of words that have negative sentiment
positive Percent of words that have positive sentiment
text_syllables Number of syllables in text
text_syllables_per_word Number of syllables per word in text

Source

Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H. (2018) FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media

football

Football Brain Measurements

Description

Brain measurements for football and non-football players as provided in the Lock5 package

Usage

football

Format

A data frame with 75 observations and 5 variables:

group control = no football, fb_no_concuss = football player but no concussions, fb_concuss = football player with concussion history
years Number of years a person played football
volume Total hippocampus volume, in cubic centimeters

Source

Singh R, Meier T, Kuplicki R, Savitz J, et al., "Relationship of Collegiate Football Experience and Concussion With Hippocampal Volume and Cognitive Outcome," JAMA, 311(18), 2014

hotel_bookings *Hotel Bookings Data*

Description

A random subset of the data on hotel bookings originally collected by Antonio, Almeida and Nunes (2019) and distributed through the R for Data Science TidyTuesday project.

Usage

hotel_bookings

Format

A data frame with 1000 hotel bookings and 32 variables on each booking.

hotel "Resort Hotel" or "City Hotel"
is_canceled whether the booking was cancelled
lead_time number of days between booking and arrival
arrival_date_year year of scheduled arrival
arrival_date_month month of scheduled arrival
arrival_date_week_number week of scheduled arrival
arrival_date_day_of_month day of month of scheduled arrival
stays_in_weekend_nights number of reserved weekend nights
stays_in_week_nights number of reserved week nights
adults number of adults in booking
children number of children
babies number of babies
meal whether the booking includes breakfast (BB = bed & breakfast), breakfast and dinner (HB = half board), or breakfast, lunch, and dinner (FB = full board)
country guest's country of origin
market_segment market segment designation (eg: TA = travel agent, TO = tour operator)
distribution_channel booking distribution channel (eg: TA = travel agent, TO = tour operator)
is_repeated_guest whether or not booking was made by a repeated guest
previous_cancellations guest's number of previous booking cancellations
previous_bookings_not_canceled guest's number of previous bookings that weren't cancelled
reserved_room_type code for type of room reserved by guest
assigned_room_type code for type of room assigned by hotel
booking_changes number of changes made to the booking
deposit_type No Deposit, Non Refund, Refundable

agent booking travel agency
company booking company
days_in_waiting_list number of days the guest waited for booking confirmation
customer_type Contract, Group, Transient, Transient-party (a transient booking tied to another transient booking)
average_daily_rate average hotel cost per day
required_car_parking_spaces number of parking spaces the guest needed
total_of_special_requests number of guest special requests
reservation_status Canceled, Check-Out, No-Show
reservation_status_date when the guest cancelled or checked out

Source

Nuno Antonio, Ana de Almeida, and Luis Nunes (2019). "Hotel booking demand datasets." Data in Brief (22): 41-49. <https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-02-11/hotels.csv/>.

loons

Loon Count Data

Description

Loon count data collected from the year 2000 to 2017, in late December, by birdwatchers in the Ontario, Canada area. The data was made available by the Bird Studies Canada website and distributed through the R for Data Science TidyTuesday project. A more complete data set with a larger selection of birds can be found in the `bird_counts` data in the `bayesrules` package.

Usage

loons

Format

A data frame with 18 rows and 5 variables. Each row represents loon observations in the given year.

year year of data collection
count number of loons observed
hours total person-hours of observation period
count_per_hour count divided by hours
count_per_100 count_per_hour multiplied by 100 hours

Source

https://github.com/rfordatascience/tidytuesday/blob/master/data/2019/2019-06-18/bird_counts.csv.

Description

The Museum of Modern Art data includes information about the individual artists included in the collection of the Museum of Modern Art in New York City. It does not include information about works for artist collectives or companies. The data was made available by MoMA itself and downloaded in December 2020.

Usage

moma

Format

A data frame with 10964 rows and 11 variables. Each row represents an individual artist in the MoMA collection.

artist name

country country of origin

birth year of birth

death year of death

alive whether or not the artist was living at the time of data collection (December 2020)

genx whether or not the artist is Gen X or younger, ie. born during 1965 or after

gender gender identity (as perceived by MoMA employees)

department MoMA department in which the artist's works most frequently appear

count number of the artist's works in the MoMA collection

year_acquired_min first year MoMA acquired one of the artist's works

year_acquired_max most recent year MoMA acquired one of the artist's works

Source

<https://github.com/MuseumofModernArt/collection/blob/master/Artworks.csv>.

moma_sample	<i>Museum of Modern Art (MoMA) data sample</i>
-------------	--

Description

A random sample of 100 artists represented in the Museum of Modern Art in New York City. The data was made available by MoMA itself and downloaded in December 2020. It does not include information about artist collectives or companies.

Usage

`moma_sample`

Format

A data frame with 100 rows and 10 variables. Each row represents an individual artist in the MoMA collection.

artist name

country country of origin

birth year of birth

death year of death

alive whether or not the artist was living at the time of data collection (December 2020)

genx whether or not the artist is Gen X or younger, ie. born during 1965 or after

gender gender identity (as perceived by MoMA employees)

count number of the artist's works in the MoMA collection

year_acquired_min first year MoMA acquired one of the artist's works

year_acquired_max most recent year MoMA acquired one of the artist's works

Source

<https://github.com/MuseumofModernArt/collection/blob/master/Artworks.csv>.

naive_classification_summary	<i>Posterior Classification Summaries for a Naive Bayes model</i>
------------------------------	---

Description

Given a set of observed data including a categorical response variable y and a `naiveBayes` model of y , this function returns summaries of the model's posterior classification quality. These summaries include a confusion matrix as well as an estimate of the model's overall accuracy.

Usage

```
naive_classification_summary(model, data, y)
```

Arguments

model	a naiveBayes model object with categorical y
data	data frame including the variables in the model
y	a character string indicating the y variable in data

Value

a list

Examples

```
data(penguins_bayes, package = "bayesrules")
example_model <- e1071::naiveBayes(species ~ bill_length_mm, data = penguins_bayes)
naive_classification_summary(model = example_model, data = penguins_bayes, y = "species")
```

naive_classification_summary_cv

Cross-Validated Posterior Classification Summaries for a Naive Bayes model

Description

Given a set of observed data including a categorical response variable y and a naiveBayes model of y, this function returns a cross validated confusion matrix by which to assess the model's posterior classification quality.

Usage

```
naive_classification_summary_cv(model, data, y, k = 10)
```

Arguments

model	a naiveBayes model object with categorical y
data	data frame including the variables in the model
y	a character string indicating the y variable in data
k	the number of folds to use for cross validation

Value

a list

Examples

```
data(penguins_bayes, package = "bayesrules")
example_model <- e1071::naiveBayes(species ~ bill_length_mm, data = penguins_bayes)
naive_classification_summary_cv(model = example_model, data = penguins_bayes, y = "species", k = 2)
```

penguins_bayes	Penguins Data
----------------	---------------

Description

Data on penguins in the Palmer Archipelago, originally collected by Gordan etal and distributed through the penguins data in the palmerpenguins package. In addition to the original penguins data is a variable above_average_weight.

Usage

`penguins_bayes`

Format

A data frame with 344 penguins and 9 variables on each.

species species (Adelie, Chinstrap, Gentoo)

island home island (Biscoe, Dream, Torgersen)

year year of observation

bill_length_mm length of bill (mm)

bill_depth_mm depth of bill (mm)

flipper_length_mm length of flipper (mm)

body_mass_g body mass (g)

above_average_weight whether or not the body mass exceeds 4200g (TRUE or FALSE)

sex male or female

Source

Gorman KB, Williams TD, and Fraser WR (2014). Ecological sexual dimorphism and environmental variability within a community of antarctic penguins (Genus Pygoscelis). PLoS ONE, 9(3).

<code>plot_beta</code>	<i>Plot a Beta Model for π</i>
------------------------	---

Description

Plots the probability density function (pdf) for a Beta(alpha, beta) model of variable π .

Usage

```
plot_beta(alpha, beta, mean = FALSE, mode = FALSE)
```

Arguments

<code>alpha, beta</code>	positive shape parameters of the Beta model
<code>mean, mode</code>	a logical value indicating whether to display the model mean and mode

Value

A density plot for the Beta model.

Examples

```
plot_beta(alpha = 1, beta = 12, mean = TRUE, mode = TRUE)
```

<code>plot_beta_binomial</code>	<i>Plot a Beta-Binomial Bayesian Model</i>
---------------------------------	--

Description

Consider a Beta-Binomial Bayesian model for parameter π with a Beta(alpha, beta) prior on π and Binomial likelihood with n trials and y successes. Given information on the prior (alpha and data) and data (y and n), this function produces a plot of any combination of the corresponding prior pdf, scaled likelihood function, and posterior pdf. All three are included by default.

Usage

```
plot_beta_binomial(
  alpha,
  beta,
  y = NULL,
  n = NULL,
  prior = TRUE,
  likelihood = TRUE,
  posterior = TRUE
)
```

Arguments

alpha, beta	positive shape parameters of the prior Beta model
y	observed number of successes
n	observed number of trials
prior	a logical value indicating whether the prior model should be plotted
likelihood	a logical value indicating whether the scaled likelihood should be plotted
posterior	a logical value indicating whether posterior model should be plotted

Value

a ggplot

Examples

```
plot_beta_binomial(alpha = 1, beta = 13, y = 25, n = 50)
plot_beta_binomial(alpha = 1, beta = 13, y = 25, n = 50, posterior = FALSE)
```

plot_beta_ci

Plot a Beta Model with Credible Interval

Description

Plots the probability density function (pdf) for a Beta(alpha, beta) model of variable π with markings indicating a credible interval for π .

Usage

```
plot_beta_ci(alpha, beta, ci_level = 0.95)
```

Arguments

alpha, beta	positive shape parameters of the Beta model
ci_level	credible interval level

Value

A density plot for the Beta model

Examples

```
plot_beta_ci(alpha = 7, beta = 12, ci_level = 0.80)
```

plot_binomial_likelihood

Plot a Binomial Likelihood Function

Description

Plots the Binomial likelihood function for variable π given y observed successes in a series of n Binomial trials.

Usage

```
plot_binomial_likelihood(y, n, mle = FALSE)
```

Arguments

<code>y</code>	number of successes
<code>n</code>	number of trials
<code>mle</code>	a logical value indicating whether maximum likelihood estimate of π , y/n , should be plotted

Value

a ggplot

Examples

```
plot_binomial_likelihood(y = 3, n = 10, mle = TRUE)
```

plot_gamma

Plot a Gamma Model for λ

Description

Plots the probability density function (pdf) for a Gamma(shape, rate) model of variable λ .

Usage

```
plot_gamma(shape, rate, mean = FALSE, mode = FALSE)
```

Arguments

<code>shape</code>	non-negative shape parameter of the Gamma model
<code>rate</code>	non-negative rate parameter of the Gamma model
<code>mean, mode</code>	a logical value indicating whether to display the model mean and mode

Value

A density plot for the Gamma model.

Examples

```
plot_gamma(shape = 2, rate = 11, mean = TRUE, mode = TRUE)
```

plot_gamma_poisson *Plot a Gamma-Poisson Bayesian Model*

Description

Consider a Gamma-Poisson Bayesian model for rate parameter λ with a $\text{Gamma}(\text{shape}, \text{rate})$ prior on λ and a Poisson likelihood for the data. Given information on the prior (shape and rate) and data (the sample size n and sum_y), this function produces a plot of any combination of the corresponding prior pdf, scaled likelihood function, and posterior pdf. All three are included by default.

Usage

```
plot_gamma_poisson(
  shape,
  rate,
  sum_y = NULL,
  n = NULL,
  prior = TRUE,
  likelihood = TRUE,
  posterior = TRUE
)
```

Arguments

<code>shape</code>	non-negative shape parameter of the Gamma prior
<code>rate</code>	non-negative rate parameter of the Gamma prior
<code>sum_y</code>	sum of observed data values for the Poisson likelihood
<code>n</code>	number of observations for the Poisson likelihood
<code>prior</code>	a logical value indicating whether the prior model should be plotted.
<code>likelihood</code>	a logical value indicating whether the scaled likelihood should be plotted.
<code>posterior</code>	a logical value indicating whether posterior model should be plotted.

Value

a ggplot

Examples

```
plot_gamma_poisson(shape = 100, rate = 20, sum_y = 39, n = 6)
plot_gamma_poisson(shape = 100, rate = 20, sum_y = 39, n = 6, posterior = FALSE)
```

plot_normal	<i>Plot a Normal Model for μ</i>
-------------	---

Description

Plots the probability density function (pdf) for a $\text{Normal}(\text{mean}, \text{sd}^2)$ model of variable μ .

Usage

```
plot_normal(mean, sd)
```

Arguments

mean	mean parameter of the Normal model
sd	standard deviation parameter of the Normal model

Value

a ggplot

Examples

```
plot_normal(mean = 3.5, sd = 0.5)
```

plot_normal_likelihood	<i>Plot a Normal Likelihood Function</i>
------------------------	--

Description

Plots the Normal likelihood function for variable μ given a vector of Normal data y.

Usage

```
plot_normal_likelihood(y, sigma = NULL)
```

Arguments

y	vector of observed data
sigma	optional value for assumed standard deviation of y. by default, this is calculated by the sample standard deviation of y.

Value

a ggplot of Normal likelihood

Examples

```
plot_normal_likelihood(y = rnorm(50, mean = 10, sd = 2), sigma = 1.5)
```

plot_normal_normal *Plot a Normal-Normal Bayesian model*

Description

Consider a Normal-Normal Bayesian model for mean parameter μ with a $N(\text{mean}, \text{sd}^2)$ prior on μ and a Normal likelihood for the data. Given information on the prior (mean and sd) and data (the sample size n, mean $y_{\bar{}}^{}_{}$, and standard deviation sigma), this function produces a plot of any combination of the corresponding prior pdf, scaled likelihood function, and posterior pdf. All three are included by default.

Usage

```
plot_normal_normal(
  mean,
  sd,
  sigma = NULL,
  y_bar = NULL,
  n = NULL,
  prior = TRUE,
  likelihood = TRUE,
  posterior = TRUE
)
```

Arguments

mean	mean of the Normal prior
sd	standard deviation of the Normal prior
sigma	standard deviation of the data, or likelihood standard deviation
y_bar	sample mean of the data
n	sample size of the data
prior	a logical value indicating whether the prior model should be plotted
likelihood	a logical value indicating whether the scaled likelihood should be plotted
posterior	a logical value indicating whether posterior model should be plotted

Value

a ggplot

Examples

```
plot_normal_normal(mean = 0, sd = 3, sigma = 4, y_bar = 5, n = 3)
plot_normal_normal(mean = 0, sd = 3, sigma = 4, y_bar = 5, n = 3, posterior = FALSE)
```

plot_poisson_likelihood*Plot a Poisson Likelihood Function*

Description

Plots the Poisson likelihood function for variable λ given a vector of Poisson counts y .

Usage

```
plot_poisson_likelihood(y, lambda_upper_bound = 10)
```

Arguments

y	vector of observed Poisson counts
lambda_upper_bound	upper bound for lambda values to display on x-axis

Value

a ggplot of Poisson likelihood

Examples

```
plot_poisson_likelihood(y = c(4, 2, 7), lambda_upper_bound = 10)
```

pop_vs_soda*Pop vs Soda vs Coke*

Description

Results of a volunteer survey on how people around the U.S. refer to fizzy cola drinks. The options are "pop", "soda", "coke", or "other".

Usage

```
pop_vs_soda
```

Format

A data frame with 374250 observations, one per survey respondent, and 4 variables:

state the U.S. state in which the respondent resides

region region in which the state falls (as defined by the U.S. Census)

word_for_cola how the respondent refers to fizzy cola drinks

pop whether or not the respondent refers to fizzy cola drinks as "pop"

Source

The survey responses were obtained at <https://popvssoda.com/> which is maintained by Alan McConchie.

prediction_summary	<i>Posterior Predictive Summaries</i>
--------------------	---------------------------------------

Description

Given a set of observed data including a quantitative response variable y and an rstanreg model of y , this function returns 4 measures of the posterior prediction quality. Median absolute prediction error (mae) measures the typical difference between the observed y values and their posterior predictive medians (stable = TRUE) or means (stable = FALSE). Scaled mae (mae_scaled) measures the typical number of absolute deviations (stable = TRUE) or standard deviations (stable = FALSE) that observed y values fall from their predictive medians (stable = TRUE) or means (stable = FALSE). within_50 and within_90 report the proportion of observed y values that fall within their posterior prediction intervals, the probability levels of which are set by the user.

Usage

```
prediction_summary(
  model,
  data,
  prob_inner = 0.5,
  prob_outer = 0.95,
  stable = FALSE
)
```

Arguments

model	an rstanreg model object with quantitative y
data	data frame including the variables in the model, both response y and predictors x
prob_inner	posterior predictive interval probability (a value between 0 and 1)
prob_outer	posterior predictive interval probability (a value between 0 and 1)
stable	TRUE returns the number of absolute deviations and FALSE returns the standard deviations that observed y values fall from their predictive medians

Value

a tibble

Examples

```
example_data <- data.frame(x = sample(1:100, 20))
example_data$y <- example_data$x*3 + rnorm(20, 0, 5)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data)
prediction_summary(example_model, example_data, prob_inner = 0.6, prob_outer = 0.80, stable = TRUE)
```

prediction_summary_cv *Cross-Validated Posterior Predictive Summaries*

Description

Given a set of observed data including a quantitative response variable y and an `rstanreg` model of y , this function returns 4 cross-validated measures of the model's posterior prediction quality: Median absolute prediction error (`mae`) measures the typical difference between the observed y values and their posterior predictive medians (`stable = TRUE`) or means (`stable = FALSE`). Scaled `mae` (`mae_scaled`) measures the typical number of absolute deviations (`stable = TRUE`) or standard deviations (`stable = FALSE`) that observed y values fall from their predictive medians (`stable = TRUE`) or means (`stable = FALSE`). `within_50` and `within_90` report the proportion of observed y values that fall within their posterior prediction intervals, the probability levels of which are set by the user. For hierarchical models of class `lmerMod`, the folds are comprised by collections of groups, not individual observations.

Usage

```
prediction_summary_cv(
  data,
  group,
  model,
  k,
  prob_inner = 0.5,
  prob_outer = 0.95
)
```

Arguments

<code>data</code>	data frame including the variables in the model, both response y and predictors x
<code>group</code>	a character string representing the name of the factor grouping variable, ie. random effect (only used for hierarchical models)
<code>model</code>	an <code>rstanreg</code> model object with quantitative y
<code>k</code>	the number of folds to use for cross validation
<code>prob_inner</code>	posterior predictive interval probability (a value between 0 and 1)
<code>prob_outer</code>	posterior predictive interval probability (a value between 0 and 1)

Value

`list`

Examples

```
example_data <- data.frame(x = sample(1:100, 20))
example_data$y <- example_data$x*3 + rnorm(20, 0, 5)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data)
prediction_summary_cv(model = example_model, data = example_data, k = 2)
```

`pulse_of_the_nation` *Cards Against Humanity's Pulse of the Nation Survey*

Description

Cards Against Humanity's "Pulse of the Nation" project (<https://thepulseofthenation.com/>) conducted monthly polls into people's social and political views, as well as some silly things. This data includes responses to a subset of questions included in the poll conducted in September 2017.

Usage

`pulse_of_the_nation`

Format

A data frame with observations on 1000 survey respondents with 15 variables:

income income in \$1000s
age age in years
party political party affiliation
trump_approval approval level of Donald Trump's job performance
education maximum education level completed
robots opinion of how likely their job is to be replaced by robots within 10 years
climate_change belief in climate change
transformers the number of Transformers film the respondent has seen
science_is_honest opinion of whether scientists are generally honest and serve the public good
vaccines_are_safe opinion of whether vaccines are safe and protect children from disease
books number of books read in the past year
ghosts whether or not they believe in ghosts
fed_sci_budget respondent's estimate of the percentage of the federal budget that is spent on scientific research
earth_sun belief about whether the earth is always farther away from the sun in winter than in summer (TRUE or FALSE)
wise_unwise whether the respondent would rather be wise but unhappy, or unwise but happy

Source

https://thepulseofthenation.com/downloads/201709-CAH_PulseOfTheNation_Raw.csv

sample_mode

Sample Mode

Description

Calculate the sample mode of vector x.

Usage

`sample_mode(x)`

Arguments

`x` vector of sample data

Value

sample mode

Examples

`sample_mode(rbeta(100, 2, 7))`

spotify

Spotify Song Data

Description

A sub-sample of the Spotify song data originally collected by Kaylin Pavlik (kaylinquest) and distributed through the R for Data Science TidyTuesday project.

Usage

`spotify`

Format

A data frame with 350 songs (or tracks) and 23 variables:

track_id unique song identifier

title song name

artist song artist

popularity song popularity from 0 (low) to 100 (high)

album_id id of the album on which the song appears

album_name name of the album on which the song appears

album_release_date when the album was released
playlist_name Spotify playlist on which the song appears
playlist_id unique playlist identifier
genre genre of the playlist
subgenre subgenre of the playlist
danceability a score from 0 (not danceable) to 100 (danceable) based on features such as tempo, rhythm, etc.
energy a score from 0 (low energy) to 100 (high energy) based on features such as loudness, timbre, entropy, etc.
key song key
loudness song loudness (dB)
mode 0 (minor key) or 1 (major key)
speechiness a score from 0 (non-speechy tracks) to 100 (speechy tracks)
acousticness a score from 0 (not acoustic) to 100 (very acoustic)
instrumentalness a score from 0 (not instrumental) to 100 (very instrumental)
liveness a score from 0 (no live audience presence on the song) to 100 (strong live audience presence on the song)
valence a score from 0 (the song is more negative, sad, angry) to 100 (the song is more positive, happy, euphoric)
tempo song tempo (beats per minute)
duration_ms song duration (ms)

Source

https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-01-21/spotify_songs.csv.

summarize_beta	<i>Summarize a Beta Model for π</i>
----------------	--

Description

Summarizes the expected value, variance, and mode of a Beta(alpha, beta) model for variable π .

Usage

```
summarize_beta(alpha, beta)
```

Arguments

alpha, beta	positive shape parameters of the Beta model
-------------	---

Value

a summary table

Examples

```
summarize_beta(alpha = 1, beta = 15)
```

```
summarize_beta_binomial
```

Summarize a Beta-Binomial Bayesian model

Description

Consider a Beta-Binomial Bayesian model for parameter π with a Beta(alpha, beta) prior on π and Binomial likelihood with n trials and y successes. Given information on the prior (alpha and data) and data (y and n), this function summarizes the mean, mode, and variance of the prior and posterior Beta models of π .

Usage

```
summarize_beta_binomial(alpha, beta, y = NULL, n = NULL)
```

Arguments

alpha, beta	positive shape parameters of the prior Beta model
y	number of successes
n	number of trials

Value

a summary table

Examples

```
summarize_beta_binomial(alpha = 1, beta = 15, y = 25, n = 50)
```

summarize_gamma	<i>Summarize a Gamma Model for λ</i>
-----------------	---

Description

Summarizes the expected value, variance, and mode of a Gamma(shape, rate) model for variable λ .

Usage

```
summarize_gamma(shape, rate)
```

Arguments

shape	positive shape parameter of the Gamma model
rate	positive rate parameter of the Gamma model

Value

a summary table

Examples

```
summarize_gamma(shape = 1, rate = 15)
```

summarize_gamma_poisson	<i>Summarize the Gamma-Poisson Model</i>
-------------------------	--

Description

Consider a Gamma-Poisson Bayesian model for rate parameter λ with a Gamma(shape, rate) prior on λ and a Poisson likelihood for the data. Given information on the prior (shape and rate) and data (the sample size n and sum_y), this function summarizes the mean, mode, and variance of the prior and posterior Gamma models of λ .

Usage

```
summarize_gamma_poisson(shape, rate, sum_y = NULL, n = NULL)
```

Arguments

shape	positive shape parameter of the Gamma prior
rate	positive rate parameter of the Gamma prior
sum_y	sum of observed data values for the Poisson likelihood
n	number of observations for the Poisson likelihood

Value

data frame

Examples

```
summarize_gamma_poisson(shape = 3, rate = 4, sum_y = 7, n = 12)
```

```
summarize_normal_normal
```

Summarize a Normal-Normal Bayesian model

Description

Consider a Normal-Normal Bayesian model for mean parameter μ with a $N(\text{mean}, \text{sd}^2)$ prior on μ and a Normal likelihood for the data. Given information on the prior (mean and sd) and data (the sample size n, mean $y_{\bar{}}$, and standard deviation sigma), this function summarizes the mean, mode, and variance of the prior and posterior Normal models of μ .

Usage

```
summarize_normal_normal(mean, sd, sigma = NULL, y_bar = NULL, n = NULL)
```

Arguments

mean	mean of the Normal prior
sd	standard deviation of the Normal prior
sigma	standard deviation of the data, or likelihood standard deviation
y_bar	sample mean of the data
n	sample size of the data

Value

data frame

Examples

```
summarize_normal_normal(mean = 2.3, sd = 0.3, sigma = 5.1, y_bar = 128.5, n = 20)
```

voices*Voice Pitch Data*

Description

Voice pitch data collected by Winter and Grawunder (2012). In an experiment, subjects participated in role-playing dialog under various conditions, while researchers monitored voice pitch (Hz). The conditions spanned different scenarios (eg: making an appointment, asking for a favor) and different attitudes to use in the scenario (polite or informal).

Usage

voices

Format

A data frame with 84 rows and 4 variables. Each row represents a single observation for the given subject.

subject subject identifier

scenario context of the dialog (encoded as A, B, ..., G)

attitude whether the attitude to use in dialog was polite or informal

pitch average voice pitch (Hz)

Source

Winter, B., & Grawunder, S. (2012). The Phonetic Profile of Korean Formal and Informal Speech Registers. *Journal of Phonetics*, 40, 808-815. https://bodo-winter.net/data_and_scripts/POP.csv. https://bodo-winter.net/tutorial/bw_LMETutorial2.pdf.

weather_australia*Weather Data for 3 Australian Cities*

Description

A sub-sample of daily weather information from the weatherAUS data in the rattle package for three Australian cities: Wollongong, Hobart, and Uluru.

Usage

weather_australia

Format

A data frame with 300 daily observations and 22 variables from 3 Australian weather stations:

location one of three weather stations

mintemp minimum temperature (degrees Celsius)

maxtemp maximum temperature (degrees Celsius)

rainfall rainfall (mm)

windgustdir direction of strongest wind gust

windgustspeed speed of strongest wind gust (km/h)

winddir9am direction of wind gust at 9am

winddir3pm direction of wind gust at 3pm

windspeed9am wind speed at 9am (km/h)

windspeed3pm wind speed at 3pm (km/h)

humidity9am humidity level at 9am (percent)

humidity3pm humidity level at 3pm (percent)

pressure9am atmospheric pressure at 9am (hpa)

pressure3pm atmospheric pressure at 3pm (hpa)

temp9am temperature at 9am (degrees Celsius)

temp3pm temperature at 3pm (degrees Celsius)

raintoday whether or not it rained today (Yes or No)

risk_mm the amount of rain today (mm)

raintomorrow whether or not it rained the next day (Yes or No)

year the year of the date

month the month of the date

day_of_year the day of the year

Source

Data in the original weatherAUS data set were obtained from <https://www.bom.gov.au/climate/data/>. Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

weather_perth

Weather Data for Perth, Australia

Description

A sub-sample of daily weather information on Perth, Australia from the weatherAUS data in the rattle package.

Usage

`weather_perth`

Format

A data frame with 1000 daily observations and 21 variables:

mintemp minimum temperature (degrees Celsius)
maxtemp maximum temperature (degrees Celsius)
rainfall rainfall (mm)
windgustdir direction of strongest wind gust
windgustspeed speed of strongest wind gust (km/h)
winddir9am direction of wind gust at 9am
winddir3pm direction of wind gust at 3pm
windspeed9am wind speed at 9am (km/h)
windspeed3pm wind speed at 3pm (km/h)
humidity9am humidity level at 9am (percent)
humidity3pm humidity level at 3pm (percent)
pressure9am atmospheric pressure at 9am (hpa)
pressure3pm atmospheric pressure at 3pm (hpa)
temp9am temperature at 9am (degrees Celsius)
temp3pm temperature at 3pm (degrees Celsius)
rainedtoday whether or not it rained today (Yes or No)
risk_mm the amount of rain today (mm)
rainedtomorrow whether or not it rained the next day (Yes or No)
year the year of the date
month the month of the date
day_of_year the day of the year

Source

Data in the original weatherAUS data set were obtained from <https://www.bom.gov.au/climate/data/>. Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

`weather_WU`*Weather Data for 2 Australian Cities*

Description

A sub-sample of daily weather information from the weatherAUS data in the rattle package for two Australian cities, Wollongong and Uluru. The weather_australia data in the bayesrules package combines this data with a third city

Usage

`weather_WU`

Format

A data frame with 200 daily observations and 22 variables from 2 Australian weather stations:

location one of two weather stations
mintemp minimum temperature (degrees Celsius)
maxtemp maximum temperature (degrees Celsius)
rainfall rainfall (mm)
windgustdir direction of strongest wind gust
windgustspeed speed of strongest wind gust (km/h)
winddir9am direction of wind gust at 9am
winddir3pm direction of wind gust at 3pm
windspeed9am wind speed at 9am (km/h)
windspeed3pm wind speed at 3pm (km/h)
humidity9am humidity level at 9am (percent)
humidity3pm humidity level at 3pm (percent)
pressure9am atmospheric pressure at 9am (hpa)
pressure3pm atmospheric pressure at 3pm (hpa)
temp9am temperature at 9am (degrees Celsius)
temp3pm temperature at 3pm (degrees Celsius)
raintoday whether or not it rained today (Yes or No)
risk_mm the amount of rain today (mm)
raintomorrow whether or not it rained the next day (Yes or No)
year the year of the date
month the month of the date
day_of_year the day of the year

Source

Data in the original weatherAUS data set were obtained from <https://www.bom.gov.au/climate/data>. Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

Index

- * **datasets**
 - airbnb, 3
 - airbnb_small, 4
 - bald_eagles, 5
 - basketball, 5
 - bechdel, 7
 - big_word_club, 7
 - bike_users, 10
 - bikes, 9
 - bird_counts, 11
 - book_banning, 11
 - cherry_blossom_sample, 13
 - climbers_sub, 15
 - coffee_ratings, 16
 - coffee_ratings_small, 17
 - equality_index, 18
 - fake_news, 19
 - football, 20
 - hotel_bookings, 21
 - loons, 22
 - moma, 23
 - moma_sample, 24
 - penguins_bayes, 26
 - pop_vs_soda, 33
 - pulse_of_the_nation, 36
 - spotify, 37
 - voices, 42
 - weather_australia, 42
 - weather_perth, 44
 - weather_WU, 45
 - airbnb, 3
 - airbnb_small, 4
 - bald_eagles, 5
 - basketball, 5
 - bechdel, 7
 - big_word_club, 7
 - bike_users, 10
 - bikes, 9
- bird_counts, 11
- book_banning, 11
- cherry_blossom_sample, 13
- classification_summary, 13
- classification_summary_cv, 14
- climbers_sub, 15
- coffee_ratings, 16
- coffee_ratings_small, 17
- equality_index, 18
- fake_news, 19
- football, 20
- hotel_bookings, 21
- loons, 22
- moma, 23
- moma_sample, 24
- naive_classification_summary, 24
- naive_classification_summary_cv, 25
- penguins_bayes, 26
- plot_beta, 27
- plot_beta_binomial, 27
- plot_beta_ci, 28
- plot_binomial_likelihood, 29
- plot_gamma, 29
- plot_gamma_poisson, 30
- plot_normal, 31
- plot_normal_likelihood, 31
- plot_normal_normal, 32
- plot_poisson_likelihood, 33
- pop_vs_soda, 33
- prediction_summary, 34
- prediction_summary_cv, 35
- pulse_of_the_nation, 36
- sample_mode, 37

spotify, 37
summarize_beta, 38
summarize_beta_binomial, 39
summarize_gamma, 40
summarize_gamma_poisson, 40
summarize_normal_normal, 41

voices, 42

weather_australia, 42
weather_perth, 44
weather_WU, 45