Package ‘auk’
January 13, 2026

Title eBird Data Extraction and Processing in R
Version 0.9.1
Description Extract and process bird sightings records from
eBird (<http://ebird.org>), an online tool for recording bird
observations. Public access to the full eBird database is via the
eBird Basic Dataset (EBD; see <http://ebird.org/ebird/data/download>
for access), a downloadable text file. This package is an interface to
AWK for extracting data from the EBD based on taxonomic, spatial, or
temporal filters, to produce a manageable file size that can be
imported into R.

License GPL-3
URL https://cornelllabofornithology.github.io/auk/

BugReports https://github.com/CornellLabofOrnithology/auk/issues

Depends R (>=4.1.0)

Imports assertthat, countrycode (>= 1.0.0), dplyr (>= 0.7.8), httr,
magrittr, readr (>= 2.0.0), rlang (>= 0.3.0), stringi, stringr,
tidyr (>= 0.8.0)

Suggests covr, knitr, rmarkdown, sf, testthat, unmarked, withr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Matthew Strimas-Mackey [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8929-7776>),
Eliot Miller [aut],
Wesley Hochachka [aut],
Cornell Lab of Ornithology [cph]

Maintainer Matthew Strimas-Mackey <mes335@cornell.edu>
Repository CRAN
Date/Publication 2026-01-13 06:10:34 UTC

http://ebird.org
http://ebird.org/ebird/data/download
https://cornelllabofornithology.github.io/auk/
https://github.com/CornellLabofOrnithology/auk/issues
https://orcid.org/0000-0001-8929-7776

2 Contents

Contents
auk_bboxX . . . L e 3
auk bCer . . . e s 4
auk_breeding e 5
auk clean L L e 6
auk_complete L. e e e e e 7
auk_country e e e 8
auk_county e e 9
auk_date L e e 10
auk_distance e 11
auk _duration L L L e e 12
auk_ebd . . . L e 13
auk _ebd_version L e e 14
AuK_EXOLIC o e e 15
auk_extent L e e 16
auk_filter e 17
auk_get_awk _path L 20
auk_get_ebd_path 20
auk last_edited L. e 21
auk_ODSEIVEr e e 22
auk_project e 23
auk_protocol 24
auk_rollup e 25
auk_sampling 27
auk_select e e e 28
auk_set_awk_path. 29
auk_set_ebd_path 30
aUK_SPECIES 31
auk_split. L e 32
auk_State . . . L L e 33
auk_time e e e e e e e e e e e 35
auk_unique L 36
AUK_VErSiON e e e e e e e e e e e e e 37
auk_year. 38
auk_zerofill e e e e 39
ber_codes s 42
ebird_Species e e e e e 43
ebird_states 44
ebird_taxonomy L. e e e e e 45
filter_repeat_visits e 46
format_unmarked_occu L. e e 48
get_ebird_taxonomy 50
process_barcharts e e e e 51
read_ebd 52
valid_protocols oL e e 54

Index 55

auk_bbox 3

auk_bbox Filter the eBird data by spatial bounding box

Description

Define a filter for the eBird Basic Dataset (EBD) based on spatial bounding box. This function only
defines the filter and, once all filters have been defined, auk_filter () should be used to call AWK
and perform the filtering.

Usage
auk_bbox(x, bbox)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
bbox numeric or sf or Rasterx object; spatial bounding box expressed as the range of
latitudes and longitudes in decimal degrees: c(lng_min, lat_min, lng_max,
lat_max). Note that longitudes in the Western Hemisphere and latitudes sound
of the equator should be given as negative numbers. Alternatively, a spatial
object from either the sf or raster packages can be provided and the bounding
box will be extracted from this object.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(),
auk_time(), auk_year()

Examples

fliter to locations roughly in the Pacific Northwest
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_bbox(bbox = c(-125, 37, -120, 52))

alternatively, without pipes

4 auk_bcr

ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_bbox(ebd, bbox = c(-125, 37, -120, 52))

auk_bcr Filter the eBird data by Bird Conservation Region

Description

Define a filter for the eBird Basic Dataset (EBD) to extract data for a set of Bird Conservation
Regions (BCRs). BCRs are ecologically distinct regions in North America with similar bird com-
munities, habitats, and resource management issues. This function only defines the filter and, once
all filters have been defined, auk_filter() should be used to call AWK and perform the filtering.

Usage

auk_bcr(x, bcr, replace = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
bcr integer; BCRs to filter by. BCRs are identified by an integer, from 1 to 66, that
can be looked up in the ber_codes table.
replace logical; multiple calls to auk_bcr() are additive, unless replace = FALSE, in
which case the previous list of states to filter by will be removed and replaced
by that in the current call.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(),
auk_time(), auk_year()

https://nabci-us.org/resources/bird-conservation-regions/
https://nabci-us.org/resources/bird-conservation-regions/

auk_breeding 5

Examples

bcr codes can be looked up in bcr_codes

dplyr::filter(bcr_codes, bcr_name == "Central Hardwoods")
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>

auk_bcr(bcr = 24)

filter to bcr 24
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_bcr(ebd, bcr = 24)

auk_breeding Filter to only include observations with breeding codes

Description

eBird users have the option of specifying breeding bird atlas codes for their observations, for ex-
ample, if nesting building behaviour is observed. Use this filter to select only those observations
with an associated breeding code. This function only defines the filter and, once all filters have been
defined, auk_filter () should be used to call AWK and perform the filtering.

Usage

auk_breeding(x)

Arguments

X auk_ebd object; reference to basic dataset file created by auk_ebd ().

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr(), auk_complete(), auk_country(), auk_county(), auk_date(),
auk_distance(), auk_duration(), auk_exotic(), auk_extent (), auk_filter (), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_breeding()

6 auk_clean

auk_clean Clean an eBird data file (Deprecated)

Description

This function is no longer required by current versions of the eBird Basic Dataset (EBD).

Usage

auk_clean(f_in, f_out, sep = "\t", remove_text = FALSE, overwrite = FALSE)

Arguments
f_in character; input file. If file is not found as specified, it will be looked for in the
directory specified by the EBD_PATH environment variable.
f_out character; output file.
sep character; the input field separator, the basic dataset is tab separated by default.
Must only be a single character and space delimited is not allowed since spaces
appear in many of the fields.
remove_text logical; whether all free text entry columns should be removed. These columns
include comments, location names, and observer names. These columns cause
import errors due to special characters and increase the file size, yet are rarely
valuable for analytical applications, so may be removed. Setting this argument
to TRUE can lead to a significant reduction in file size.
overwrite logical; overwrite output file if it already exists.
Value

If AWK ran without errors, the output filename is returned, however, if an error was encountered
the exit code is returned.

See Also

Other text: auk_select(), auk_split()

Examples

Not run:

get the path to the example data included in the package
f <- system.file("extdata/ebd-sample.txt”, package = "auk")
output to a temp file for example

in practice, provide path to output file

e.g. f_out <- "output/ebd_clean.txt”

f_out <- tempfile()

clean file to remove problem rows
note: this function is deprecated and no longer does anything

auk_complete 7

auk_clean(f, f_out)

End(Not run)

auk_complete Filter out incomplete checklists from the eBird data

Description

Define a filter for the eBird Basic Dataset (EBD) to only keep complete checklists, i.e. those for
which all birds seen or heard were recorded. These checklists are the most valuable for scientific
uses since they provide presence and absence data.This function only defines the filter and, once all
filters have been defined, auk_filter () should be used to call AWK and perform the filtering.

Usage

auk_complete(x)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_country(), auk_county(), auk_date(),
auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter (), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_complete()

8 auk_country

auk_country Filter the eBird data by country

Description

Define a filter for the eBird Basic Dataset (EBD) based on a set of countries. This function only
defines the filter and, once all filters have been defined, auk_filter () should be used to call AWK
and perform the filtering.

Usage

auk_country(x, country, replace = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
country character; countries to filter by. Countries can either be expressed as English
names or ISO 2-letter country codes. English names are matched via regular
expressions using countrycode, so there is some flexibility in names.
replace logical; multiple calls to auk_country() are additive, unless replace = FALSE,
in which case the previous list of countries to filter by will be removed and
replaced by that in the current call.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_county(), auk_date(),
auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter (), auk_last_edited(),
auk_observer (), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

country names and IS02 codes can be mixed
not case sensitive

country <- c("CA", "United States”, "mexico")
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>

auk_country(country)

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

auk_county 9

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_country(ebd, country)

auk_county Filter the eBird data by county

Description

Define a filter for the eBird Basic Dataset (EBD) based on a set of counties This function only
defines the filter and, once all filters have been defined, auk_filter () should be used to call AWK
and perform the filtering.

Usage

auk_county(x, county, replace = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
county character; counties to filter by. eBird uses county codes consisting of three parts,
the 2-letter ISO country code, a 1-3 character state code, and a county code, all
separated by a dash. For example, "US-NY-109" corresponds to Tompkins, NY,
US. The easiest way to find a county code is to find the corresponding explore
region page and look at the URL.
replace logical; multiple calls to auk_county() are additive, unless replace = FALSE,
in which case the previous list of states to filter by will be removed and replaced
by that in the current call.
Details

It is not possible to filter by both county as well as country or state, so calling auk_county () will
reset these filters to all countries and states, and vice versa.

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr(), auk_breeding(), auk_complete(), auk_country(), auk_date(),
auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

https://ebird.org/explore
https://ebird.org/explore

10 auk_date

Examples

choose tompkins county, ny, united states
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_county ("US-NY-109")

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_county(ebd, "US-NY-109")

auk_date Filter the eBird data by date

Description

Define a filter for the eBird Basic Dataset (EBD) based on a range of dates. This function only
defines the filter and, once all filters have been defined, auk_filter () should be used to call AWK
and perform the filtering.

Usage

auk_date(x, date)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
date character or date; date range to filter by, provided either as a character vector
in the format "2015-12-31" or a vector of Date objects. To filter on a range of
dates, regardless of year, use "*" in place of the year.
Details

To select observations from a range of dates, regardless of year, the wildcard "*" can be used in
place of the year. For example, using date = c("*-05-01", "%*-06-30") will return observations
from May and June of any year. When using wildcards, dates can wrap around the year end.

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.
Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

auk_distance 11

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_date(date = c("2010-01-01", "2010-12-31"))

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_date(ebd, date = c("2010-01-01", "2010-12-31"))

the * wildcard can be used in place of year to select dates from all years
system.file("extdata/ebd-sample.txt”, package = "auk") |>

auk_ebd() |>

may-june records from all years

auk_date(date = c("*-05-01", "x-06-30"))

dates can also wrap around the end of the year
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
dec-jan records from all years
auk_date(date = c("*-12-01", "x-01-31"))

auk_distance Filter eBird data by distance travelled

Description

Define a filter for the eBird Basic Dataset (EBD) based on the distance travelled on the checklist.
This function only defines the filter and, once all filters have been defined, auk_filter () should
be used to call AWK and perform the filtering. Note that stationary checklists (i.e. point counts)
have no distance associated with them, however, since these checklists can be assumed to have 0
distance they will be kept if O is in the range defined by distance.

Usage

auk_distance(x, distance, distance_units)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
distance integer; 2 element vector specifying the range of distances to filter by. The
default is to accept distances in kilometers, use distance_units = "miles” for
miles.

distance_units character; whether distances are provided in kilometers (the default) or miles.

Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

12 auk_duration

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

only keep checklists that are less than 10 km long
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_distance(distance = c(0, 10))

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_distance(ebd, distance = c(0, 10))

auk_duration Filter the eBird data by duration

Description

Define a filter for the eBird Basic Dataset (EBD) based on the duration of the checklist. This func-
tion only defines the filter and, once all filters have been defined, auk_filter () should be used to
call AWK and perform the filtering. Note that checklists with no effort, such as incidental observa-
tions, will be excluded if this filter is used since they have no associated duration information.

Usage

auk_duration(x, duration)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
duration integer; 2 element vector specifying the range of durations in minutes to filter
by.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

auk_ebd 13

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_exotic(), auk_extent(), auk_filter(), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

only keep checklists that are less than an hour long
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_duration(duration = c(@, 60))

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_duration(ebd, duration = c(@, 60))

auk_ebd Reference to eBird data file

Description

Create a reference to an eBird Basic Dataset (EBD) file in preparation for filtering using AWK.

Usage
auk_ebd(file, file_sampling, sep = "\t")

Arguments

file character; input file. If file is not found as specified, it will be looked for in the
directory specified by the EBD_PATH environment variable.

file_sampling character; optional input sampling event data (i.e. checklists) file, required if
you intend to zero-fill the data to produce a presence-absence data set. This file
consists of just effort information for every eBird checklist. Any species not
appearing in the EBD for a given checklist is implicitly considered to have a
count of 0. This file should be downloaded at the same time as the basic dataset
to ensure they are in sync. If file is not found as specified, it will be looked for
in the directory specified by the EBD_PATH environment variable.

sep character; the input field separator, the eBird data are tab separated so this should
generally not be modified. Must only be a single character and space delimited
is not allowed since spaces appear in many of the fields.

14 auk_ebd_version

Details

eBird data can be downloaded as a tab-separated text file from the eBird website after submitting a
request for access. As of February 2017, this file is nearly 150 GB making it challenging to work
with. If you’re only interested in a single species or a small region it is possible to submit a custom
download request. This approach is suggested to speed up processing time.

There are two potential pathways for preparing eBird data. Users wishing to produce presence only
data, should download the eBird Basic Dataset and reference this file when calling auk_ebd().
Users wishing to produce zero-filled, presence absence data should additionally download the sam-
pling event data file associated with the basic dataset This file contains only checklist information
and can be used to infer absences. The sampling event data file should be provided to auk_ebd()
via the file_sampling argument. For further details consult the vignettes.

Value

An auk_ebd object storing the file reference and the desired filters once created with other package
functions.

See Also

Other objects: auk_sampling()

Examples

get the path to the example data included in the package

in practice, provide path to ebd, e.g. f <- "data/ebd_relFeb-2018.txt
f <- system.file("extdata/ebd-sample.txt”, package = "auk")

auk_ebd(f)

to produce zero-filled data, provide a checklist file

f_ebd <- system.file("extdata/zerofill-ex_ebd.txt"”, package = "auk")
f_cl <- system.file("extdata/zerofill-ex_sampling.txt"”, package = "auk")
auk_ebd(f_ebd, file_sampling = f_cl)

auk_ebd_version Get the EBD version and associated taxonomy version

Description

Based on the filename of eBird Basic Dataset (EBD) or sampling event data, determine the version
(i.e. release date) of this EBD. Also determine the corresponding taxonomy version. The eBird
taxonomy is updated annually in August.

Usage

auk_ebd_version(x, check_exists = TRUE)

http://ebird.org/ebird/data/download
http://ebird.org/ebird/data/download/

auk_exotic 15

Arguments

X filename of EBD of sampling event data file, auk_ebd object, or auk_sampling
object.

check_exists logical; should the file be checked for existence before processing. If check_exists
= TRUE and the file does not exists, the function will raise an error.
Value
A list with two elements:

* ebd_version: a date object specifying the release date of the EBD.

* taxonomy_version: the year of the taxonomy used in this EBD.

Both elements will be NA if an EBD version cannot be extracted from the filename.

See Also

Other helpers: auk_version(), ebird_species(), get_ebird_taxonomy(), process_barcharts()

Examples

auk_ebd_version("ebd_relAug-2018.txt", check_exists = FALSE)

auk_exotic Filter the eBird data by exotic code

Description

Exotic codes are applied to eBird observations when the species is believe to be non-native to the
given location. This function defines a filter for the eBird Basic Dataset (EBD) to subset obser-
vations to one or more of the exotic codes: "" (i.e. no code, meaning it is a native species), "N"
(naturalized), "P" (provisional), or "X" (escapee). This function only defines the filter and, once all
filters have been defined, auk_filter () should be used to call AWK and perform the filtering.

Usage

auk_exotic(x, exotic_code, replace = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
exotic_code characterr; exotic codes to filter by. Note that an empty string (""), meaning no
exotic code, is used for native species.
replace logical; multiple calls to auk_exotic() are additive, unless replace = FALSE,

in which case the previous list of states to filter by will be removed and replaced
by that in the current call.

16 auk_extent

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_extent(), auk_filter(), auk_last_edited(),
auk_observer (), auk_project(), auk_protocol(), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

filter to only native observations
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_exotic(ebd, exotic_code = "")

filter to native and naturalized observations

auk_exotic(ebd, exotic_code = c("", "N"))
auk_extent Filter the eBird data by spatial extent
Description

Deprecated, use auk_bbox () instead.

Usage

auk_extent(x, extent)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
extent numeric; spatial extent expressed as the range of latitudes and longitudes in deci-
mal degrees: c(lng_min, lat_min, lng_max, lat_max). Note that longitudes
in the Western Hemisphere and latitudes sound of the equator should be given
as negative numbers.
Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_filter(), auk_last_edited(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

auk_filter 17

Examples

fliter to locations roughly in the Pacific Northwest
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_bbox (bbox = c(-125, 37, -120, 52))

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_bbox(ebd, bbox = c(-125, 37, -120, 52))

auk_filter Filter the eBird file using AWK

Description

Convert the filters defined in an auk_ebd object into an AWK script and run this script to produce a
filtered eBird Reference Dataset (ERD). The initial creation of the auk_ebd object should be done
with auk_ebd() and filters can be defined using the various other functions in this package, e.g.
auk_species() or auk_country(). Note that this function typically takes at least a couple
hours to run on the full dataset

Usage
auk_filter(x, file, ...)

S3 method for class 'auk_ebd'
auk_filter(
X,
file,
file_sampling,
keep,
drop,
awk_file,
sep = "\t",
filter_sampling = TRUE,
execute = TRUE,
overwrite = FALSE,

)

S3 method for class 'auk_sampling'
auk_filter(

X,

file,

keep,

drop,

awk_file,

18

sep = "\t",

auk_filter

execute = TRUE,

overwrite =

Arguments

X

file

file_sampling

keep

drop

awk_file

sep

FALSE,

auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().

character; output file.
arguments passed on to methods.
character; optional output file for sampling data.

character; a character vector specifying the names of the columns to keep in the
output file. Columns should be as they appear in the header of the EBD; how-
ever, names are not case sensitive and spaces may be replaced by underscores,
e.g. "COMMON NAME", "common name”, and "common_NAME" are all valid.

character; a character vector of columns to drop in the same format as keep.
Ignored if keep is supplied.

character; output file to optionally save the awk script to.

character; the input field separator, the eBird file is tab separated by default.
Must only be a single character and space delimited is not allowed since spaces
appear in many of the fields.

filter_sampling

execute

overwrite

Details

logical; whether the sampling event data should also be filtered.

logical; whether to execute the awk script, or output it to a file for manual exe-
cution. If this flag is FALSE, awk_file must be provided.

logical; overwrite output file if it already exists

If a sampling file is provided in the auk_ebd object, this function will filter both the eBird Basic
Dataset and the sampling data using the same set of filters. This ensures that the files are in sync,
i.e. that they contain data on the same set of checklists.

The AWK script can be saved for future reference by providing an output filename to awk_file.
The default behavior of this function is to generate and run the AWK script, however, by setting
execute = FALSE the AWK script will be generated but not run. In this case, file is ignored and
awk_f'ile must be specified.

Calling this function requires that the command line utility AWK is installed. Linux and Mac
machines should have AWK by default, Windows users will likely need to install Cygwin.

Value

An auk_ebd object with the output files set. If execute = FALSE, then the path to the AWK script
is returned instead.

https://www.cygwin.com

auk_filter 19

Methods (by class)

* auk_filter(auk_ebd): auk_ebd object

e auk_filter(auk_sampling): auk_sampling object

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_last_edited(),
auk_observer (), auk_project(), auk_protocol(), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

get the path to the example data included in the package
in practice, provide path to ebd, e.g. f <- "data/ebd_relFeb-2018.txt"
f <- system.file("extdata/ebd-sample.txt”, package = "auk")
define filters
filters <- auk_ebd(f) |>
auk_species(species = c("Canada Jay", "Blue Jay")) |>
auk_country(country = c("US", "Canada")) |>
auk_bbox (bbox = c(-100, 37, -80, 52)) |>
auk_date(date = c("2012-01-01", "2012-12-31")) |>
auk_time(start_time = c("06:00", "09:00")) |>
auk_duration(duration = c(@, 60)) |>
auk_complete()

alternatively, without pipes

ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
filters <- auk_species(ebd, species = c("Canada Jay"”, "Blue Jay"))
filters <- auk_country(filters, country = c("US", "Canada"))

filters <- auk_bbox(filters, bbox = c(-100, 37, -80, 52))

filters <- auk_date(filters, date = c("2012-01-01", "2012-12-31"))
filters <- auk_time(filters, start_time = c("06:00", "09:00"))

filters <- auk_duration(filters, duration = c(@, 60))

filters <- auk_complete(filters)

apply filters

Not run:

output to a temp file for example

in practice, provide path to output file

e.g. f_out <- "output/ebd_filtered.txt”
f_out <- tempfile()

filtered <- auk_filter(filters, file = f_out)
str(read_ebd(filtered))

End(Not run)

20 auk_get_ebd_path

auk_get_awk_path OS specific path to AWK executable

Description

Return the OS specific path to AWK (e.g. "C:/cygwin64/bin/gawk.exe” or "/usr/bin/awk"),
or highlights if it’s not installed. To manually set the path to AWK, set the AWK_PATH envi-
ronment variable in your .Renviron file, which can be accomplished with the helper function
auk_set_awk_path(path).

Usage

auk_get_awk_path()

Value

Path to AWK or NA if AWK wasn’t found.

See Also

Other paths: auk_get_ebd_path(), auk_set_awk_path(), auk_set_ebd_path()

Examples

auk_get_awk_path()

auk_get_ebd_path Return EBD data path

Description
Returns the environment variable EBD_PATH, which users are encouraged to set to the directory that
stores the eBird Basic Dataset (EBD) text files.

Usage
auk_get_ebd_path()

Value

The path stored in the EBD_PATH environment variable.

See Also

Other paths: auk_get_awk_path(), auk_set_awk_path(), auk_set_ebd_path()

auk_last_edited 21

Examples

auk_get_ebd_path()

auk_last_edited Filter the eBird data by last edited date

Description

Define a filter for the eBird Basic Dataset (EBD) based on a range of last edited dates. Last edited
date is typically used to extract just new or recently edited data. This function only defines the filter
and, once all filters have been defined, auk_filter () should be used to call AWK and perform the
filtering.

Usage

auk_last_edited(x, date)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
date character or date; date range to filter by, provided either as a character vector in
the format "2015-12-31" or a vector of Date objects.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

system.file("extdata/ebd-sample.txt"”, package = "auk") |>
auk_ebd() |>
auk_last_edited(date = c(”2010-01-01", "2010-12-31"))

22 auk_observer

auk_observer Filter the eBird data by observer

Description

Define a filter for the eBird Basic Dataset (EBD) based on a set of observer IDs This function only
defines the filter and, once all filters have been defined, auk_filter () should be used to call AWK
and perform the filtering.

Usage

auk_observer(x, observer_id)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
observer_id character or integer; observers to filter by. Observer IDs can be provided either
as integer (e.g. 12345) or character with the "obsr" prefix as they appear in the
EBD (e.g. "obsr12345").
Value

An auk_ebd or ‘auk_sampling* object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_project(), auk_protocol(), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_observer("obsr313215")

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_observer(ebd, observer = 313215)

auk_project 23

auk_project Filter the eBird data by project code

Description

Some eBird records are collected as part of a particular project (e.g. the Virginia Breeding Bird
Survey) and have an associated project code in the eBird dataset (e.g. EBIRD_ATL_VA). This
function only defines the filter and, once all filters have been defined, auk_filter() should be
used to call AWK and perform the filtering.

Usage

auk_project(x, project)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
project character; project code to filter by (e.g. "EBIRD_MEX"). Multiple codes are
accepted.
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_protocol (), auk_species(), auk_state(), auk_time(),
auk_year()

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_project("EBIRD_MEX")

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_project(ebd, "EBIRD_MEX")

24 auk_protocol

auk_protocol Filter the eBird data by protocol

Description

Filter to just data collected following a specific search protocol: stationary, traveling, or casual.
This function only defines the filter and, once all filters have been defined, auk_filter () should
be used to call AWK and perform the filtering.

Usage

auk_protocol(x, protocol)

Arguments

X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().

protocol character. Many protocols exist in the database, however, the most commonly
used are:

* Stationary
* Traveling
* Area

¢ Incidental

A complete list of valid protocols is contained within the vector valid_protocols
within this package. Multiple protocols are allowed at the same time.

Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent (), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_species(), auk_state(), auk_time(),
auk_year()

auk_rollup 25

Examples

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_protocol ("Stationary")

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_protocol (ebd, "Stationary”)

auk_rollup Roll up eBird taxonomy to species

Description

The eBird Basic Dataset (EBD) includes both true species and every other field-identifiable taxon
that could be relevant for birders to report. This includes taxa not identifiable to a species (e.g.
hybrids) and taxa reported below the species level (e.g. subspecies). This function produces a list
of observations of true species, by removing the former and rolling the latter up to the species level.
In the resulting EBD data.frame, category will be "species” for all records and the subspecies
fields will be dropped. By default, read_ebd() calls ebd_rollup() when importing an eBird data
file.

Usage
auk_rollup(x, drop_higher = TRUE)

Arguments
X data.frame; data frame of eBird data, typically as imported by read_ebd()
drop_higher logical; whether to remove taxa above species during the rollup process, e.g.
"spuhs" like "duck sp.".
Details

When rolling observations up to species level the observed counts are summed across any taxa that
resolve to the same species. However, if any of these taxa have a count of "X" (i.e. the observer
did not enter a count), then the rolled up record will get an "X" as well. For example, if an observer
saw 3 Myrtle and 2 Audubon’s Warblers, this will roll up to 5 Yellow-rumped Warblers. However,
if an "X" was entered for Myrtle, this would roll up to "X" for Yellow-rumped Warbler.

The eBird taxonomy groups taxa into eight different categories. These categories, and the way they
are treated by auk_rollup() are as follows:
* Species: e.g., Mallard. Combined with lower level taxa if present on the same checklist.

* ISSF or Identifiable Sub-specific Group: Identifiable subspecies or group of subspecies,
e.g., Mallard (Mexican). Rolled-up to species level.

* Intergrade: Hybrid between two ISSF (subspecies or subspecies groups), e.g., Mallard (Mex-
ican intergrade. Rolled-up to species level.

26 auk_rollup

* Form: Miscellaneous other taxa, including recently-described species yet to be accepted
or distinctive forms that are not universally accepted (Red-tailed Hawk (Northern), Upland
Goose (Bar-breasted)). If the checklist contains multiple taxa corresponding to the same
species, the lower level taxa are rolled up, otherwise these records are left as is.

* Spuh: Genus or identification at broad level — e.g., duck sp., dabbling duck sp.. Dropped by
auk_rollup().

* Slash: Identification to Species-pair e.g., American Black Duck/Mallard). Dropped by auk_rollup().

* Hybrid: Hybrid between two species, e.g., American Black Duck x Mallard (hybrid). Dropped
by auk_rollup().

* Domestic: Distinctly-plumaged domesticated varieties that may be free-flying (these do not
count on personal lists) e.g., Mallard (Domestic type). Dropped by auk_rollup().

The rollup process is based on the eBird taxonomy, which is updated once a year in August. The
auk package includes a copy of the eBird taxonomy, current at the time of release; however, if
the EBD and auk versions are not aligned, you may need to explicitly specify which version of
the taxonomy to use, in which case the eBird API will be queried to get the correct version of the
taxonomy.

Value

A data frame of the eBird data with taxonomic rollup applied.

References

Consult the eBird taxonomy page for further details.

See Also

Other pre: auk_unique()

Examples

get the path to the example data included in the package

in practice, provide path to ebd, e.g. f <- "data/ebd_relFeb-2018.txt
f <- system.file("extdata/ebd-rollup-ex.txt"”, package = "auk")

read in data without rolling up

ebd <- read_ebd(f, rollup = FALSE)

rollup

ebd_ru <- auk_rollup(ebd)

keep higher taxa

ebd_higher <- auk_rollup(ebd, drop_higher = FALSE)

all taxa not identifiable to species are dropped
unique(ebd$category)

unique(ebd_ru$category)
unique(ebd_higher$category)

yellow-rump warbler subspecies rollup
library(dplyr)
without rollup, there are multiple observations per checklists

https://ebird.org/science/use-ebird-data/the-ebird-taxonomy

auk_sampling 27

ebd |>
filter(common_name == "Yellow-rumped Warbler") |>
select(checklist_id, category, common_name, subspecies_common_name,

observation_count)

with rollup, they have been combined

ebd_ru |>
filter(common_name == "Yellow-rumped Warbler") |>
select(checklist_id, category, common_name, observation_count)

auk_sampling Reference to eBird sampling event file

Description

Create a reference to an eBird sampling event file in preparation for filtering using AWK. For
working with the sightings data use auk_ebd(), only use auk_sampling() if you intend to only
work with checklist-level data.

Usage

auk_sampling(file, sep = "\t")

Arguments
file character; input sampling event data file, which contains checklist data from
eBird.
sep character; the input field separator, the eBird data are tab separated so this should
generally not be modified. Must only be a single character and space delimited
is not allowed since spaces appear in many of the fields.
Details

eBird data can be downloaded as a tab-separated text file from the eBird website after submitting
a request for access. In the eBird Basic Dataset (EBD) each row corresponds to a observation of a
single bird species on a single checklist, while the sampling event data file contains a single row for
every checklist. This function creates an R object to reference only the sampling data.

Value
An auk_sampling object storing the file reference and the desired filters once created with other
package functions.

See Also

Other objects: auk_ebd()

http://ebird.org/ebird/data/download

28 auk_select

Examples

get the path to the example data included in the package

in practice, provide path to the sampling event data

e.g. f <- "data/ebd_sampling_relFeb-2018.txt"

f <- system.file("extdata/zerofill-ex_sampling.txt"”, package = "auk")
auk_sampling(f)

auk_select Select a subset of columns

Description

Select a subset of columns from the eBird Basic Dataset (EBD) or the sampling events file. Subset-
ting the columns can significantly decrease file size.

Usage

auk_select(x, select, file, sep = "\t", overwrite = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
select character; a character vector specifying the names of the columns to select.
Columns should be as they appear in the header of the EBD; however, names
are not case sensitive and spaces may be replaced by underscores, e.g. "COMMON
NAME", "common name"”, and "common_NAME" are all valid.
file character; output file.
sep character; the input field separator, the eBird file is tab separated by default.
Must only be a single character and space delimited is not allowed since spaces
appear in many of the fields.
overwrite logical; overwrite output file if it already exists
Value

Invisibly returns the filename of the output file.

See Also

Other text: auk_clean(), auk_split()

auk_set_awk_path 29

Examples

Not run:
select a minimal set of columns
out_file <- tempfile()
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
cols <- c("latitude”, "longitude"”,
"group identifier”, "sampling event identifier”,
"scientific name"”, "observation count”,
"observer_id")
selected <- auk_select(ebd, select = cols, file = out_file)
str(read_ebd(selected))

End(Not run)

auk_set_awk_path Set a custom path to AWK executable

Description

If AWK has been installed in a non-standard location, the environment variable AWK_PATH must be
set to specify the location of the executable. Use this function to set AWK_PATH in your .Renviron file.
Most users should NOT set AWK_PATH, only do so if you have installed AWK in non-standard
location and auk cannot find it. This function first looks for for an .Renviron location defined by
R_ENVIRON_USER, then defaults to ~/.Renviron.

Usage

auk_set_awk_path(path, overwrite = FALSE)

Arguments
path character; path to the AWK executable on your system, e.g. "C:/cygwin64/bin/gawk.exe”
or "/usr/bin/awk”.
overwrite logical; should the existing AWK_PATH be overwritten if it has already been set in
.Renviron.
Value

Edits .Renviron, sets ANK_PATH for the current session, then returns the EBD path invisibly.

See Also

Other paths: auk_get_awk_path(), auk_get_ebd_path(), auk_set_ebd_path()

30 auk_set_ebd_path

Examples

Not run:
auk_set_awk_path("/usr/bin/awk")

End(Not run)

auk_set_ebd_path Set the path to EBD text files

Description

Users of auk are encouraged to set the path to the directory containing the eBird Basic Dataset
(EBD) text files in the EBD_PATH environment variable. All functions referencing the EBD or sam-
pling event data files will check in this directory to find the files, thus avoiding the need to specify
the full path every time. This will increase the portability of your code. Use this function to set
EBD_PATH in your .Renviron file; it is also possible to manually edit the file. This function first
looks for for an .Renviron location defined by R_ENVIRON_USER, then defaults to ~/.Renviron.

Usage

auk_set_ebd_path(path, overwrite = FALSE)

Arguments
path character; directory where the EBD text files are stored, e.g. " /home/matt/ebd".
overwrite logical; should the existing EBD_PATH be overwritten if it has already been set in
.Renviron.
Value

Edits .Renviron, sets EBD_PATH for the current session, then returns the EBD path invisibly.

See Also

Other paths: auk_get_awk_path(), auk_get_ebd_path(), auk_set_awk_path()

Examples

Not run:
auk_set_ebd_path("/home/matt/ebd")

End(Not run)

auk_species 31

auk_species Filter the eBird data by species

Description

Define a filter for the eBird Basic Dataset (EBD) based on species. This function only defines
the filter and, once all filters have been defined, auk_filter () should be used to call AWK and
perform the filtering.

Usage

auk_species(x, species, taxonomy_version, replace = FALSE)

Arguments
X auk_ebd object; reference to object created by auk_ebd().
species character; species to filter by, provided as scientific or English common names,

or a mixture of both. These names must match the official eBird Taxomony
(ebird_taxonomy).

taxonomy_version
integer; the version (i.e. year) of the taxonomy. In most cases, this should be

left empty to use the version of the taxonomy included in the package. See
get_ebird_taxonomy().

replace logical; multiple calls to auk_species() are additive, unless replace = FALSE,
in which case the previous list of species to filter by will be removed and re-
placed by that in the current call.

Details

The list of species is checked against the eBird taxonomy for validity. This taxonomy is updated
once a year in August. The auk package includes a copy of the eBird taxonomy, current at the time
of release; however, if the EBD and auk versions are not aligned, you may need to explicitly specify
which version of the taxonomy to use, in which case the eBird API will be queried to get the correct
version of the taxonomy.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent (), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol (), auk_state(), auk_time(),
auk_year()

32 auk_split

Examples

common and scientific names can be mixed

species <- c("Canada Jay"”, "Pluvialis squatarola”)
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>

auk_species(species)

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_species(ebd, species)

auk_split Split an eBird data file by species

Description

Given an eBird Basic Dataset (EBD) and a list of species, split the file into multiple text files, one for
each species. This function is typically used after auk_filter () has been applied if the resulting
file is too large to be read in all at once.

Usage
auk_split(
file,
species,
prefix,
taxonomy_version,
sep = ”\t” ,
overwrite = FALSE
)
Arguments
file character; input file.
species character; species to filter and split by, provided as scientific or English com-
mon names, or a mixture of both. These names must match the official eBird
Taxomony (ebird_taxonomy).
prefix character; a file and directory prefix. For example, if splitting by species "A"

and "B" and prefix = "data/ebd_", the resulting files will be "data/ebd_A.txt"
and "data/ebd_B.txt".

taxonomy_version
integer; the version (i.e. year) of the taxonomy. In most cases, this should be
left empty to use the version of the taxonomy included in the package. See
get_ebird_taxonomy().

sep character; the input field separator, the eBird file is tab separated by default.
Must only be a single character and space delimited is not allowed since spaces
appear in many of the fields.

overwrite logical; overwrite output files if they already exists.

auk_state 33

Details

The list of species is checked against the eBird taxonomy for validity. This taxonomy is updated
once a year in August. The auk package includes a copy of the eBird taxonomy, current at the time
of release; however, if the EBD and auk versions are not aligned, you may need to explicitly specify
which version of the taxonomy to use, in which case the eBird API will be queried to get the correct
version of the taxonomy.

Value

A vector of output filenames, one for each species.

See Also

Other text: auk_clean(), auk_select()

Examples
Not run:
species <- c("Canada Jay", "Cyanocitta stelleri”)

get the path to the example data included in the package

in practice, provide path to a filtered ebd file

e.g. f <- "data/ebd_filtered.txt

f <- system.file("extdata/ebd-sample.txt”, package = "auk”)

output to a temporary directory for example

in practice, provide the path to the output location

e.g. prefix <- "output/ebd_"

prefix <- file.path(tempdir(), "ebd_")

species_files <- auk_split(f, species = species, prefix = prefix)

End(Not run)

auk_state Filter the eBird data by state

Description

Define a filter for the eBird Basic Dataset (EBD) based on a set of states. This function only defines
the filter and, once all filters have been defined, auk_filter() should be used to call AWK and
perform the filtering.

Usage

auk_state(x, state, replace = FALSE)

34 auk_state

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
state character; states to filter by. eBird uses 4 to 6 character state codes consisting of
two parts, the 2-letter ISO country code and a 1-3 character state code, separated
by a dash. For example, "US-NY" corresponds to New York State in the United
States. Refer to the data frame ebird_states for look up state codes.
replace logical; multiple calls to auk_state() are additive, unless replace = FALSE, in
which case the previous list of states to filter by will be removed and replaced
by that in the current call.
Details

It is not possible to filter by both country and state, so calling auk_state() will reset the country
filter to all countries, and vice versa.

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_time(),
auk_year()

Examples

state codes for a given country can be looked up in ebird_states
dplyr::filter(ebird_states, country == "Costa Rica")
choose texas, united states and puntarenas, cost rica
states <- c("US-TX", "CR-P")
system.file("extdata/ebd-sample.txt"”, package = "auk") |>
auk_ebd() |>
auk_state(states)

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_state(ebd, states)

auk_time 35

auk_time Filter the eBird data by checklist start time

Description

Define a filter for the eBird Basic Dataset (EBD) based on a range of start times for the checklist.
This function only defines the filter and, once all filters have been defined, auk_filter() should
be used to call AWK and perform the filtering.

Usage

auk_time(x, start_time)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
start_time character; 2 element character vector giving the range of times in 24 hour format,
e.g. "06:30" or "16:22".
Details

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol (), auk_species(), auk_state(),
auk_year()

Examples

only keep checklists started between 6 and 8 in the morning
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() |>
auk_time(start_time = c("06:00", "08:00"))

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_time(ebd, start_time = c("06:00", "08:00"))

36

auk_unique

auk_unique

Remove duplicate group checklists

Description

eBird checklists can be shared among a group of multiple observers, in which case observations will
be duplicated in the database. This functions removes these duplicates from the eBird Basic Dataset
(EBD) or the EBD sampling event data (with checklists_only = TRUE), creating a set of unique
bird observations. This function is called automatically by read_ebd() and read_sampling().

Usage
auk_unique(
X)
group_id = "group_identifier”,
checklist_id = "sampling_event_identifier”,
species_id = "scientific_name”,
observer_id = "observer_id",
checklists_only = FALSE
)
Arguments
X data.frame; the EBD data frame, typically as imported by read_ebd ().
group_id character; the name of the group ID column.

checklist_id

species_id

observer_id

checklists_only

character; the name of the checklist ID column, each checklist within a group
will get a unique value for this field. The record with the lowest checklist_id
will be picked as the unique record within each group. In the output dataset, this
field will be updated to have a full list of the checklist IDs that went into this
group checklist.

character; the name of the column identifying species uniquely. This is required
to ensure that removing duplicates is done independently for each species. Note
that this will not treat sub-species independently and, if that behavior is desired,
the user will have to generate a column uniquely identifying species and sub-
species and pass that column’s name to this argument.

character; the name of the column identifying the owner of this instance of the
group checklist. In the output dataset, the full list of observer IDs will be stored
(comma separated) in the new observer_id field. The order of these IDs will
match the order of the comma separated checklist IDs.

logical; whether the dataset provided only contains checklist information as with
the sampling event data file. If this argument is TRUE, then the species_id
argument is ignored and removing of duplicated records is done at the checklist
level not the species level.

auk_version 37

Details

This function chooses the checklist within in each that has the lowest value for the field specified by
checklist_id. A new column is also created, checklist_id, whose value is the taken from the
field specified in the checklist_id parameter for non-group checklists and from the field specified
by the group_id parameter for grouped checklists.

All the checklist and observer IDs for the checklists that comprise a given group checklist will be
retained as a comma separated string ordered by checklist ID.

Value

A data frame with unique observations, and an additional field, checklist_id, which is a combi-
nation of the sampling event and group IDs.

See Also

Other pre: auk_rollup()

Examples

read in an ebd file and don't automatically remove duplicates
f <- system.file("extdata/ebd-sample.txt”, package = "auk")

ebd <- read_ebd(f, unique = FALSE)

remove duplicates

ebd_unique <- auk_unique(ebd)

nrow(ebd)

nrow(ebd_unique)

auk_version Versions of auk, the EBD, and the eBird taxonomy

Description

This package depends on the version of the EBD and on the eBird taxonomy. Use this function to
determine the currently installed version of auk, the version of the EBD that this auk version works
with, and the version of the eBird taxonomy included in the packages. The EBD is update quarterly,
in March, June, September, and December, while the taxonomy is updated annually in August or

September. To ensure proper functioning, always use the latest version of the auk package and the
EBD.

Usage

auk_version()

38 auk_year

Value
A list with three elements:

* auk_version: the version of auk, e.g. "auk 0.4.1".

* ebd_version: a date object specifying the release date of the EBD version that this auk
version is designed to work with.

e taxonomy_version: the year of the taxonomy built in to this version of auk, i.e. the one
stored in ebird_taxonomy.

See Also

Other helpers: auk_ebd_version(), ebird_species(), get_ebird_taxonomy(), process_barcharts()

Examples

auk_version()

auk_year Filter the eBird data to a set of years

Description

Define a filter for the eBird Basic Dataset (EBD) based on a set of years. This function only defines
the filter and, once all filters have been defined, auk_filter () should be used to call AWK and
perform the filtering.

Usage
auk_year(x, year, replace = FALSE)

Arguments
X auk_ebd or auk_sampling object; reference to file created by auk_ebd() or
auk_sampling().
year integer; years to filter to.
replace logical; multiple calls to auk_year () are additive, unless replace = FALSE, in
which case the previous list of years to filter by will be removed and replaced
by that in the current call.
Details

For filtering to a range of dates use auk_date(); however, sometimes the goal is to extract data for
a given year or set of years, in which case auk_year () is simpler. In addition, auk_year() can be
used to get data from discontiguous sets of years (e.g. 2010 and 2012, but not 2011), which is not
possible with auk_date(). Finally, auk_year() can be used in conjunction with auk_date() to
extract data from a given range of dates within a set of years (see example below).

This function can also work with on an auk_sampling object if the user only wishes to filter the
sampling event data.

auk_zerofill 39

Value

An auk_ebd object.

See Also

Other filter: auk_bbox (), auk_bcr (), auk_breeding(), auk_complete(), auk_country(), auk_county(),
auk_date(), auk_distance(), auk_duration(), auk_exotic(), auk_extent(), auk_filter(),
auk_last_edited(), auk_observer(), auk_project(), auk_protocol(), auk_species(), auk_state(),
auk_time()

Examples

years to filter to

years <- c(2010, 2012)

set up filter

system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_year (year = years)

alternatively, without pipes
ebd <- auk_ebd(system.file("extdata/ebd-sample.txt”, package = "auk"))
auk_year (ebd, years)

filter to may and june of 2010 and 2012
system.file("extdata/ebd-sample.txt”, package = "auk") |>
auk_ebd() [|>
auk_year(year = c(2010, 2012)) |>
auk_date(date = c("*-05-01", "*x-06-30"))

auk_zerofill Read and zero-fill an eBird data file

Description

Read an eBird Basic Dataset (EBD) file, and associated sampling event data file, to produce a zero-
filled, presence-absence dataset. The EBD contains bird sightings and the sampling event data is
a set of all checklists, they can be combined to infer absence data by assuming any species not
reported on a checklist was had a count of zero.

Usage

auk_zerofill(x, ...)

S3 method for class 'data.frame'
auk_zerofill(

X,

sampling_events,

species,

40

taxonomy_ve
collapse =
unique = TR
rollup = TR
drop_higher
complete =

)

S3 method

auk_zerofill(
X,
sampling_ev
species,
taxonomy_ve
collapse =
unique = TR
rollup = TR
drop_higher
complete =
sep = "\t",

)

S3 method

auk_zerofill(
X,
species,
taxonomy_ve
collapse =
unique = TR
rollup = TR
drop_higher
complete =
sep = "\t",

)

collapse_zero

Arguments

X

auk_zerofill

rsion,
FALSE,
UE,

UE,

= TRUE,
TRUE,

for class 'character'

ents,

rsion,
FALSE,
UE,

UE,

= TRUE,
TRUE,

for class 'auk_ebd'

rsion,
FALSE,
UE,

UE,

= TRUE,
TRUE,

£i11(x)

filename, data. frame of eBird observations, or auk_ebd object with associated
output files as created by auk_filter(). If a filename is provided, it must point
to the EBD and the sampling_events argument must point to the sampling
event data file. If a data. frame is provided it should have been imported with
read_ebd(), to ensure the variables names have been set correctly, and it must
have been passed through auk_unique() to ensure duplicate group checklists
have been removed.

auk_zerofill 41

additional arguments passed to methods.

sampling_events
character or data. frame; filename for the sampling event data or a data. frame
of the same data. If a data.frame is provided it should have been imported
with read_sampling(), to ensure the variables names have been set correctly,
and it must have been passed through auk_unique () to ensure duplicate group
checklists have been removed.

species character; species to include in zero-filled dataset, provided as scientific or En-
glish common names, or a mixture of both. These names must match the official
eBird Taxomony (ebird_taxonomy). To include all species, leave this argument
blank.

taxonomy_version
integer; the version (i.e. year) of the taxonomy. In most cases, this should be
left empty to use the version of the taxonomy included in the package. See
get_ebird_taxonomy().

collapse logical; whether to call collapse_zerofill() to return a data frame rather than
an auk_zerofill object.

unique logical; should auk_unique() be run on the input data if it hasn’t already.

rollup logical; should auk_rollup() be run on the input data if it hasn’t already.

drop_higher logical; whether to remove taxa above species during the rollup process, e.g.
"spuhs" like "duck sp.". See auk_rollup().

complete logical; if TRUE (the default) all checklists are required to be complete prior to
zero-filling.

sep character; single character used to separate fields within a row.

Details

auk_zerofill () generates an auk_zerofill object consisting of a list with elements observations
and sampling_events. observations is a data frame giving counts and binary presence/absence
data for each species. sampling_events is a data frame with checklist level information. The two
data frames can be connected via the checklist_id field. This format is efficient for storage since
the checklist columns are not duplicated for each species, however, working with the data often
requires joining the two data frames together.

To return a data frame, set collapse = TRUE. Alternatively, zerofill_collapse() generates a data
frame from an auk_zerofill object, by joining the two data frames together to produce a single
data frame in which each row provides both checklist and species information for a sighting.

The list of species is checked against the eBird taxonomy for validity. This taxonomy is updated
once a year in August. The auk package includes a copy of the eBird taxonomy, current at the time
of release; however, if the EBD and auk versions are not aligned, you may need to explicitly specify
which version of the taxonomy to use, in which case the eBird API will be queried to get the correct
version of the taxonomy.

Value

By default, an auk_zerofill object, or a data frame if collapse = TRUE.

42 ber_codes

Methods (by class)
e auk_zerofill(data.frame): EBD data frame.
e auk_zerofill(character): Filename of EBD.

* auk_zerofill(auk_ebd): auk_ebd object output from auk_filter(). Must have had a
sampling event data file set in the original call to auk_ebd().

See Also
Other import: read_ebd()

Examples

read and zero-fill the ebd data

f_ebd <- system.file("extdata/zerofill-ex_ebd.txt"”, package = "auk")
f_smpl <- system.file("extdata/zerofill-ex_sampling.txt"”, package = "auk")
auk_zerofill(x = f_ebd, sampling_events = f_smpl)

use the species argument to only include a subset of species
auk_zerofill(x = f_ebd, sampling_events = f_smpl,
species = "Collared Kingfisher")

to return a data frame use collapse = TRUE
ebd_df <- auk_zerofill(x = f_ebd, sampling_events = f_smpl, collapse = TRUE)

bcr_codes BCR Codes

Description

A data frame of Bird Conservation Region (BCR) codes. BCRs are ecologically distinct regions
in North America with similar bird communities, habitats, and resource management issues. These
codes are required to filter by BCR using auk_bcr ().

Usage

bcr_codes

Format
A data frame with two variables and 66 rows:

* bcr_code: integer code from 1 to 66.

¢ bcr_name: name of BCR.

See Also

Other data: ebird_states, ebird_taxonomy, valid_protocols

ebird_species 43

ebird_species Lookup species in eBird taxonomy

Description

Given a list of common or scientific names, or species codes, check that they appear in the official
eBird taxonomy and convert them all to scientific names, common names, or species codes. Un-
matched species are returned as NA.

Usage
ebird_species(
X)
type = c("scientific”, "common"”, "code"”, "all"),
taxonomy_version
)
Arguments
X character; species to look up, provided as scientific names, English common
names, species codes, or a mixture of all three. Case insensitive.
type character; whether to return scientific names (scientific), English common

names (common), or 6-letter eBird species codes (code). Alternatively, use all

to return a data frame with the all the taxonomy information.
taxonomy_version

integer; the version (i.e. year) of the taxonomy. Leave empty to use the version

of the taxonomy included in the package. See get_ebird_taxonomy ().

Value

Character vector of species identified by scientific name, common name, or species code. If type =
"all"” a data frame of the taxonomy of the requested species is returned.

See Also

Other helpers: auk_ebd_version(), auk_version(), get_ebird_taxonomy(), process_barcharts()

Examples

mix common and scientific names, case-insensitive

species <- c("Blackburnian Warbler”, "Poecile atricapillus”,
"american dipper"”, "Caribou”, "hudgod")

note that species not in the ebird taxonomy return NA

ebird_species(species)

use taxonomy_version to query older taxonomy versions
Not run:
ebird_species("Cordillera Azul Antbird")

44 ebird_states

ebird_species("Cordillera Azul Antbird"”, taxonomy_version = 2017)

End(Not run)

ebird_states eBird States

Description

A data frame of state codes used by eBird. These codes are 4 to 6 characters, consisting of two parts,
the 2-letter ISO country code and a 1-3 character state code, separated by a dash. For example,
"US-NY" corresponds to New York State in the United States. These state codes are required to
filter by state using auk_state().

Usage

ebird_states

Format
A data frame with four variables and 3,145 rows:
* country: short form of English country name.
* country_code: 2-letter ISO country code.

* state: state name.

e state_code: 4 to 6 character state code.

Details

Note that some countries are not broken into states in eBird and therefore do not appear in this data
frame.

See Also

Other data: bcr_codes, ebird_taxonomy, valid_protocols

ebird_taxonomy 45

ebird_taxonomy eBird Taxonomy

Description

A simplified version of the taxonomy used by eBird. Includes proper species as well as various
other categories such as spuh (e.g. duck sp.) and slash (e.g. American Black Duck/Mallard).
This taxonomy is based on the Clements Checklist, which is updated annually, typically in the late
summer. Non-ASCII characters (e.g. those with accents) have been converted to ASCII equivalents
in this data frame.

Usage

ebird_taxonomy

Format

A data frame with eight variables and 16,248 rows:

* species_code: a unique alphanumeric code identifying each species.

* taxon_concept_id: a unique alphanumeric code identifying each species in the Avibase tax-
onomy.

e scientific_name: scientific name.

e common_name: common name, defaults to English, but different languages can be selected
using the locale parameter.

* order: the scientific name of the order that the species belongs to.
» family: the scientific name of the family that the species belongs to.
e family_common: the common name of the family that the species belongs to.

* category: whether the entry is for a species or another field-identifiable taxon, such as spuh,
slash, hybrid, etc.

* taxonomic_order: integer value used to sort rows in taxonomic order.

* report_as: for taxa that can be resolved to true species (i.e. species, subspecies, and rec-
ognizable forms), this field links to the corresponding species code. For taxa that can’t be
resolved, this field is NA.

* extinct: logical variable indicating whether the species is listed as extinct in the eBird tax-
onomy.

For further details, see https://support.ebird.org/support/solutions/articles/48000837816-the-ebird-taxonc

See Also

Other data: bcr_codes, ebird_states, valid_protocols

https://support.ebird.org/support/solutions/articles/48000837816-the-ebird-taxonomy

46

filter_repeat_visits

filter_repeat_visits Filter observations to repeat visits for hierarchical modeling

Description

Hierarchical modeling of abundance and occurrence requires repeat visits to sites to estimate de-
tectability. These visits should be all be within a period of closure, i.e. when the population can
be assumed to be closed. eBird data, and many other data sources, do not explicitly follow this
protocol; however, subsets of the data can be extracted to produce data suitable for hierarchical
modeling. This function extracts a subset of observation data that have a desired number of repeat
visits within a period of closure.

Usage

filter_repeat_visits(

X,

min_obs = 2L,

max_obs = 10L,
annual_closure = TRUE,
n_days = NULL,

date_var = "observation_date",
site_vars = c("locality_id"”, "observer_id"),
11 _digits = 6L
)
Arguments
X data.frame; observation data, e.g. data from the eBird Basic Dataset (EBD)
zero-filled with auk_zerofill (). This function will also work with an auk_zerofill
object, in which case it will be converted to a data frame with collapse_zerofill().
Note that these data must for a single species.
min_obs integer; minimum number of observations required for each site.
max_obs integer; maximum number of observations allowed for each site.

annual_closure

n_days

date_var

site_vars

logical; whether the entire year should be treated as the period of closure (the
default). This can be useful, for example, if the data have been subset to a period
of closure prior to calling filter_repeat_visits().

integer; number of days defining the temporal length of closure. If annual_closure
= TRUE closure periods will be split at year boundaries. If annual_closure =
FALSE the closure periods will ignore year boundaries.

character; column name of the variable in x containing the date. This column
should either be in Date format or convertible to Date format with as.Date().

character; names of one of more columns in x that define a site, typically the
location (e.g. latitude/longitude) and observer ID.

filter_repeat_visits 47

11_digits integer; the number of digits to round latitude and longitude to. If latitude and/or
longitude are used as site_vars, it’s usually best to round them prior to iden-
tifying sites, otherwise locations that are only slightly offset (e.g. a few cen-
timeters) will be treated as different. This argument can also be used to group
sites together that are close but not identical. Note that 1 degree of latitude is
approximately 100 km, so the default value of 6 for 11_digits is equivalent to
about 10 cm.

Details

In addition to specifying the minimum and maximum number of observations per site, users must
specify the variables in the dataset that define a "site". This is typically a combination of IDs
defining the geographic site and the unique observer (repeat visits are meant to be conducted by
the same observer). Finally, the closure period must be defined, which is a period within which the
population of the focal species can reasonably be assumed to be closed. This can be done using a
combination of the n_days and annual_closure arguments.

Value

A data. frame filtered to only retain observations from sites with the allowed number of obser-
vations within the period of closure. The results will be sorted such that sites are together and in
chronological order. The following variables are added to the data frame:

* site: a unique identifier for each "site" corresponding to all the variables in site_vars and
closure_id concatenated together with underscore separators.

e closure_id: a unique ID for each closure period. If annual_closure = TRUE this ID will
include the year. If n_days is used an index given the number of blocks of n_days days since
the earliest observation will be included. Note that in this case, there may be gaps in the IDs.

* n_observations: number of observations at each site after all filtering.

See Also

Other modeling: format_unmarked_occu()

Examples

read and zero-fill the ebd data
f_ebd <- system.file("extdata/zerofill-ex_ebd.txt"”, package = "auk")
f_smpl <- system.file("extdata/zerofill-ex_sampling.txt"”, package = "auk")
data must be for a single species
ebd_zf <- auk_zerofill(x = f_ebd, sampling_events = f_smpl,

species = "Collared Kingfisher”,

collapse = TRUE)
filter_repeat_visits(ebd_zf, n_days = 30)

48 format_unmarked_occu

format_unmarked_occu Format EBD data for occupancy modeling with unmarked

Description

Prepare a data frame of species observations for ingestion into the package unmarked for hierarchi-
cal modeling of abundance and occurrence. The function unmarked: : formatWide() takes a data
frame and converts it to one of several unmarked objects, which can then be used for modeling.
This function converts data from a format in which each row is an observation (e.g. as in the eBird
Basic Dataset) to the esoteric format required by unmarked: : formatWide() in which each row is

a site.
Usage
format_unmarked_occu(
X,
site_id = "site",
response = "species_observed”,
site_covs,
obs_covs
)
Arguments
X data.frame; observation data, e.g. from the eBird Basic Dataset (EBD), for a
single species, that has been filtered to those with repeat visits by filter_repeat_visits().
site_id character; a unique idenitifer for each "site", typically identifying observations
from a unique location by the same observer within a period of temporal closure.
Data output from filter_repeat_visits() will have a . site_id variable that
meets these requirements.
response character; the variable that will act as the response in modeling efforts, typically
a binary variable indicating presence or absence or a count of individuals seen.
site_covs character; the variables that will act as site-level covariates, i.e. covariates that
vary at the site level, for example, latitude/longitude or habitat predictors. If
this parameter is missing, it will be assumed that any variable that is not an
observation-level covariate (obs_covs) or the site_id, is a site-level covariate.
obs_covs character; the variables that will act as observation-level covariates, i.e. covari-
ates that vary within sites, at the level of observations, for example, time or
length of observation.
Details

Hierarchical modeling requires repeat observations at each "site" to estimate detectability. A "site"
is typically defined as a geographic location visited by the same observer within a period of temporal
closure. To define these sites and filter out observations that do not correspond to repeat visits, users
should use filter_repeat_visits(), then pass the output to this function.

format_unmarked_occu 49

format_unmarked_occu() is designed to prepare data to be converted into an unmarkedFrameOccu
object for occupancy modeling with unmarked: :occu(); however, it can also be used to prepare
data for conversion to an unmarkedFramePCount object for abundance modeling with unmarked: : pcount ().

Value

A data frame that can be processed by unmarked: : formatWide(). Each row will correspond to
a unqiue site and, assuming there are a maximum of N observations per site, columns will be as
follows:

1. The unique site identifier, named "site".

2. Nresponse columns, one for each observation, named "y.1", ..., "y.N".
3. Columns for each of the site-level covariates.
4. Groups of N columns of observation-level covariates, one column per covariate per observa-
tion, names "covariate_name.1", ..., "covariate_name.N".
See Also

Other modeling: filter_repeat_visits()

Examples

read and zero-fill the ebd data
f_ebd <- system.file("extdata/zerofill-ex_ebd.txt"”, package = "auk")
f_smpl <- system.file("extdata/zerofill-ex_sampling.txt”, package = "auk")
data must be for a single species
ebd_zf <- auk_zerofill(x = f_ebd, sampling_events = f_smpl,
species = "Collared Kingfisher”,
collapse = TRUE)
occ <- filter_repeat_visits(ebd_zf, n_days = 30)
format for unmarked
typically one would join in habitat covariates prior to this step
occ_wide <- format_unmarked_occu(occ,
response = "species_observed”,
site_covs = c("latitude”, "longitude"),
obs_covs = c("effort_distance_km",
"duration_minutes"))
create an unmarked object
if (requireNamespace("”unmarked”, quietly = TRUE)) {
occ_um <- unmarked: :formatWide(occ_wide, type = "unmarkedFrameOccu")
unmarked: : summary (occ_um)

}

this function can also be used for abundance modeling

abd <- ebd_zf |>
convert count to integer, drop records with no count
dplyr::mutate(observation_count = as.integer(observation_count)) |>
dplyr::filter(!is.na(observation_count)) |>
filter to repeated visits
filter_repeat_visits(n_days = 30)

prepare for conversion to unmarkedFramePCount object

50 get_ebird_taxonomy

abd_wide <- format_unmarked_occu(abd,
response = "observation_count”,
site_covs = c("latitude”, "longitude"),
obs_covs = c("effort_distance_km",
"duration_minutes"))
create an unmarked object
if (requireNamespace("unmarked”, quietly = TRUE)) {

abd_um <- unmarked: :formatWide(abd_wide, type = "unmarkedFrameOccu")
unmarked: : summary (abd_um)
}
get_ebird_taxonomy Get eBird taxonomy via the eBird API
Description

Get the taxonomy used in eBird via the eBird APL

Usage

get_ebird_taxonomy(version, locale)

Arguments
version integer; the version (i.e. year) of the taxonomy. The eBird taxonomy is updated
once a year in August. Leave this parameter blank to get the current taxonomy.
locale character; the locale for the common names, defaults to English.
Value

A data frame of all species in the eBird taxonomy, consisting of the following columns:

e scientific_name: scientific name.

e common_name: common name, defaults to English, but different languages can be selected
using the locale parameter.

* species_code: a unique alphanumeric code identifying each species.

* category: whether the entry is for a species or another field-identifiable taxon, such as spuh,
slash, hybrid, etc.

* taxon_order: numeric value used to sort rows in taxonomic order.
* order: the scientific name of the order that the species belongs to.
e family: the scientific name of the family that the species belongs to.

* report_as: for taxa that can be resolved to true species (i.e. species, subspecies, and rec-
ognizable forms), this field links to the corresponding species code. For taxa that can’t be
resolved, this field is NA.

https://support.ebird.org/support/solutions/articles/48000804865-bird-names-in-ebird

process_barcharts 51

See Also

Other helpers: auk_ebd_version(), auk_version(), ebird_species(), process_barcharts()

Examples

Not run:
get_ebird_taxonomy()

End(Not run)

process_barcharts Process eBird bar chart data

Description

eBird bar charts show the frequency of detection for each week for all species within a region.
These can be accessed by visiting any region or hotspot page and clicking the "Bar Charts" link
in the left column. As an example, these bar charts for Guatemala list all the species (as well as
non-species taxa) that have been observed in eBird in Guatemala and, for each species, the width
of the green bar reflects the frequency of detections on eBird checklists within the region (referred
to as detection frequency). Detection frequency is provide for each of 4 "weeks" of each month
(although these are not technically 7 day weeks since months have more than 28 days). The data
underlying the bar charts can be downloaded via a link at the bottom right of the page; however,
the text file that’s downloaded is in a challenging format to work with. This function is designed to
read these text files and return a nicely formatted data frame for use in R.

Usage

process_barcharts(filename)

Arguments

filename character; path to the bar chart data text file downloaded from the eBird website.

Value

This functions returns a data frame in long format where each row provides data for one species in
one week. detection_frequency gives the proportion of checklists in the region that reported the
species in the given week and n_detections gives the number of detections. The total number of
checklists in each week used to estimate detection frequency is provided as a data frame stored in
the sample_sizes attribute. Note that since most months have more than 28 days, the first three
weeks have 7 days, but the final week has between 7-10 days.

See Also

Other helpers: auk_ebd_version(), auk_version(), ebird_species(), get_ebird_taxonomy()

https://ebird.org/barchart?r=GT&yr=all&m=

52 read_ebd

Examples

example bar chart data for svalbard

f <- system.file("extdata/barchart-sample.txt"”, package = "auk")
import and process barchart data

barcharts <- process_barcharts(f)

head(barcharts)

the sample sizes for each week can be access with
attr(barcharts, "sample_sizes")

bar charts include data for non-species taxa
use category to filter to only species

barcharts[barcharts$category == "species”,]
read_ebd Read an EBD file
Description

Read an eBird Basic Dataset file using readr: :read_delim(). read_ebd() reads the EBD itself,
while read_sampling()‘ reads a sampling event data file.

Usage
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)

S3 method for class 'character'
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)

S3 method for class 'auk_ebd'
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)

read_sampling(x, sep = "\t"”, unique = TRUE)

S3 method for class 'character'
read_sampling(x, sep = "\t"”, unique = TRUE)

S3 method for class 'auk_ebd'
read_sampling(x, sep = "\t"”, unique = TRUE)

S3 method for class 'auk_sampling'
read_sampling(x, sep = "\t"”, unique = TRUE)
Arguments

X filename or auk_ebd object with associated output files as created by auk_filter ().

sep character; single character used to separate fields within a row.

read_ebd 53

unique logical; should duplicate grouped checklists be removed. If unique = TRUE,
auk_unique() is called on the EBD before returning.

rollup logical; should taxonomic rollup to species level be applied. If rollup = TRUE,
auk_rollup() is called on the EBD before returning. Note that this process can
be time consuming for large files, try turning rollup off if reading is taking too
long.

Details
This functions performs the following processing steps:

* Data types for columns are manually set based on column names used in the February 2017
EBD. If variables are added or names are changed in later releases, any new variables will
have data types inferred by the import function used.

e Variables names are converted to snake_case.

* Duplicate observations resulting from group checklists are removed using auk_unique(),
unless unique = FALSE.

Value

A data frame of EBD observations. An additional column, checklist_id, is added to output files
if unique = TRUE, that uniquely identifies the checklist from which the observation came. This field
is equal to sampling_event_identifier for non-group checklists, and group_identifier for
group checklists.

Methods (by class)

¢ read_ebd(character): Filename of EBD.
* read_ebd(auk_ebd): auk_ebd object output from auk_filter()

Functions

* read_sampling(character): Filename of sampling event data file

* read_sampling(auk_ebd): auk_ebd object output from auk_filter(). Must have had a
sampling event data file set in the original call to auk_ebd().

* read_sampling(auk_sampling): auk_sampling object output from auk_filter().

See Also

Other import: auk_zerofill()

Examples

f <- system.file("extdata/ebd-sample.txt”, package = "auk")

read_ebd(f)

read a sampling event data file

x <- system.file("extdata/zerofill-ex_sampling.txt", package = "auk") |>
read_sampling()

54 valid_protocols

valid_protocols Valid Protocols

Description

"non

A vector of valid protocol names, e.g. "Traveling", "Stationary", etc.

Usage

valid_protocols

Format

A vector with 42 elements.

See Also

Other data: bcr_codes, ebird_states, ebird_taxonomy

Index

+ datasets
bcr_codes, 42
ebird_states, 44
ebird_taxonomy, 45
valid_protocols, 54

* data
bcr_codes, 42
ebird_states, 44
ebird_taxonomy, 45
valid_protocols, 54

x filter
auk_bbox, 3
auk_bcr, 4
auk_breeding, 5
auk_complete, 7
auk_country, 8
auk_county, 9
auk_date, 10
auk_distance, 11
auk_duration, 12
auk_exotic, 15
auk_extent, 16
auk_filter, 17
auk_last_edited, 21
auk_observer, 22
auk_project, 23
auk_protocol, 24
auk_species, 31
auk_state, 33
auk_time, 35
auk_year, 38

+ helpers
auk_ebd_version, 14
auk_version, 37
ebird_species, 43

get_ebird_taxonomy, 50

process_barcharts, 51
* import
auk_zerofill, 39

55

read_ebd, 52

* modeling
filter_repeat_visits, 46
format_unmarked_occu, 48

* objects
auk_ebd, 13
auk_sampling, 27

+ paths
auk_get_awk_path, 20
auk_get_ebd_path, 20
auk_set_awk_path, 29
auk_set_ebd_path, 30

* pre
auk_rollup, 25
auk_unique, 36

* text
auk_clean, 6
auk_select, 28
auk_split, 32

as.Date(), 46

auk_bbox, 3,4, 5, 7-10, 12, 13, 16, 19, 21-24,
31, 34, 35, 39

auk_bbox (), 16

auk_bcr, 3,4, 5,7-10, 12, 13, 16, 19, 21-24,
31, 34, 35, 39

auk_bcr(), 42

auk_breeding, 3, 4,5, 7-10, 12, 13, 16, 19,
21-24, 31, 34, 35, 39

auk_clean, 6, 28, 33

auk_complete, 3-5,7, 8-10, 12, 13, 16, 19,
21-24, 31, 34, 35, 39

auk_country, 3-5,7,8,9, 10, 12, 13, 16, 19,
21-24, 31, 34, 35, 39

auk_country(), 17

auk_county, 3-5,7, 8,9, 10, 12, 13, 16, 19,
21-24, 31, 34, 35, 39

auk_date, 3-5, 7-9, 10, 12, 13, 16, 19, 21-24,
31, 34, 35, 39

56 INDEX

auk_distance, 3-5, 7-10, 11, 13, 16, 19, auk_zerofill, 39, 53

21-24, 31, 34, 35, 39 auk_zerofill(), 46
auk_duration, 3-5, 7-10, 12, 12, 16, 19,

21-24, 31, 34, 35, 39 bcr_codes, 4, 42, 44, 45, 54
auk_ebd, 13, 18, 27 . .
auk_ebd(), 3-5, 7-12, 15-18, 21-24, 28, 31, collapse_zerofill (auk_zerofill), 39

collapse_zerofill(), 46

34, 35, 38,42, 53
countrycode, 8

auk_ebd_version, 14, 38, 43, 51

auk_exotic, 3-5,7-10, 12, 13, 15, 16, 19, ebird_species, 15, 38,43, 51
21-24, 31, 34, 35, 39 ebird_states, 34, 42, 44, 45, 54
auk_extent, 3-3, 7-10, 12, 13, 16, 16, 9, ebird_taxonomy, 31, 32, 38, 41, 42, 44, 45, 54
21-24, 31, 34, 35, 39
auk_filter, 3-5, 7-10, 12, 13, 16, 17, 21-24, filter_repeat_visits, 46, 49
31,34, 35,39 filter_repeat_visits(), 46, 48
auk_filter(), 3-5,7-12, 15, 21-24, 31-33, format_unmarked_occu, 47, 48
35,38,40,42, 52, 53 format_unmarked_occu(), 49
auk_get_awk_path, 20, 20, 29, 30
auk_get_ebd_path, 20, 20, 29, 30 get_ebird_taxonomy, 15, 38, 43, 50, 51
auk_last_edited, 3-5, 7-10, 12, 13, 16, 19, get_ebird_taxonomy(), 31, 32,41, 43
21, 22-24, 31, 34, 35, 39
auk_observer, 3-5, 7-10, 12, 13, 16, 19, 21, process_barcharts, 15, 38, 43, 51, 51

22,23, 24, 31, 34, 35, 39
auk_project, 3-5, 7-10, 12, 13, 16, 19, 21,
22,23,24, 31, 34, 35, 39
auk_protocol, 3-5, 7-10, 12, 13, 16, 19,

21-23,24, 31, 34, 35, 39
auk_rollup, 25, 37

read_ebd, 42, 52
read_ebd(), 25, 36, 40
read_sampling (read_ebd), 52
read_sampling(), 36, 41
readr::read_delim(), 52

auk_rollup(), 25,41, 53 unmarked: : formatWide(), 48, 49

auk_sampling, 74,27 unmarked: :occu(), 49

auk_sampling(), 3, 4, 7-12, 15, 16, I8, unmarked: : pcount (), 49
21-24, 28, 34, 35, 38

auk_select, 6, 28, 33 valid_protocols, 42, 44, 45, 54

auk_set_awk_path, 20, 29, 30

auk_set_ebd_path, 20, 29, 30

auk_species, 3-5, 7-10, 12, 13, 16, 19
21-24,31, 34, 35, 39

auk_species(), 17

auk_split, 6, 28, 32

auk_state, 3-5, 7-10, 12, 13, 16, 19, 21-24,
31,33, 35, 39

auk_state(), 44

auk_time, 3-5, 7-10, 12, 13, 16, 19, 21-24,
31, 34, 35, 39

auk_unique, 26, 36

auk_unique(), 40, 41, 53

auk_version, 15,37,43,51

auk_year, 3-5,7-10, 12, 13, 16, 19, 21-24,
31, 34, 35, 38

	auk_bbox
	auk_bcr
	auk_breeding
	auk_clean
	auk_complete
	auk_country
	auk_county
	auk_date
	auk_distance
	auk_duration
	auk_ebd
	auk_ebd_version
	auk_exotic
	auk_extent
	auk_filter
	auk_get_awk_path
	auk_get_ebd_path
	auk_last_edited
	auk_observer
	auk_project
	auk_protocol
	auk_rollup
	auk_sampling
	auk_select
	auk_set_awk_path
	auk_set_ebd_path
	auk_species
	auk_split
	auk_state
	auk_time
	auk_unique
	auk_version
	auk_year
	auk_zerofill
	bcr_codes
	ebird_species
	ebird_states
	ebird_taxonomy
	filter_repeat_visits
	format_unmarked_occu
	get_ebird_taxonomy
	process_barcharts
	read_ebd
	valid_protocols
	Index

