
Package ‘aqp’
January 17, 2026

Version 2.3

Title Algorithms for Quantitative Pedology

Author Dylan Beaudette [aut, cre] (ORCID:
<https://orcid.org/0009-0008-2780-4785>),

Pierre Roudier [aut, ctb],
Andrew Brown [aut, ctb],
Stephen Roecker [aut, ctb],
David Rossiter [ctb]

Maintainer Dylan Beaudette <dylan.beaudette@usda.gov>

Depends R (>= 4.1.0)

Imports grDevices, graphics, stats, utils, methods, grid, lattice,
cluster, data.table, farver, digest, colorspace, ape

Suggests mvtnorm, soilDB, sp, sf, latticeExtra, tactile, compositions,
markovchain, xtable, testthat, Gmedian, Hmisc, tibble,
RColorBrewer, scales, mpspline2 (>= 0.1.9), soiltexture, gower,
knitr, rmarkdown, dendextend

Description The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to orga-
nize a loosely-related set of concepts and source code on the topic of soil profile visualiza-
tion, aggregation, and classification into this pack-
age (aqp). Over the past 8 years, the project has grown into a suite of related R packages that en-
hance and simplify the quantitative analysis of soil profile data. Cen-
tral to the AQP project is a new vocabulary of specialized functions and data struc-
tures that can accommodate the inherent complexity of soil profile information; freeing the scien-
tist to focus on ideas rather than boilerplate data process-
ing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been ex-
tensively tested and documented, applied to projects involving hundreds of thousands of soil pro-
files, and deeply integrated into widely used tools such as Soil-
Web <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Compo-
nents of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an impor-
tant role in routine data analysis within the USDA-NRCS Soil Science Divi-
sion. The AQP suite of R packages offer a convenient platform for bridging the gap between pe-
dometric theory and practice.

License GPL (>= 3)

LazyLoad yes

1

https://orcid.org/0009-0008-2780-4785
https://doi.org/10.1016/j.cageo.2012.10.020
https://casoilresource.lawr.ucdavis.edu/soilweb-apps

2 Contents

Repository CRAN

URL https://ncss-tech.github.io/aqp/, https://ncss-tech.github.io/AQP/

BugReports https://github.com/ncss-tech/aqp/issues

Language en-US

Encoding UTF-8

RoxygenNote 7.3.3

VignetteBuilder knitr

Config/Needs/website rmarkdown

NeedsCompilation no

Date/Publication 2026-01-17 06:10:52 UTC

Contents
aqp-package . 7
.colorSig2PerceptualDistMat . 7
.detectColorSpec . 8
accumulateDepths . 8
addBracket . 10
addDiagnosticBracket . 13
addVolumeFraction . 14
aggregateColor . 15
aggregateColorPlot . 17
aggregateSoilDepth . 18
alignTransect . 20
allocate . 21
aqp_df_class,SoilProfileCollection-method . 25
argillic.clay.increase.depth . 26
as . 27
barron.torrent.redness.LAB . 28
bootstrapSoilTexture . 29
brierScore . 31
buntley.westin.index . 33
c,SoilProfileCollection-method . 33
ca630 . 34
checkHzDepthLogic . 37
checkSPC . 39
col2Munsell . 40
collapseHz . 42
colorChart . 45
colorContrast . 47
colorContrastPlot . 49
colorQuantiles . 51
colorVariation . 52
compareSites . 53

https://ncss-tech.github.io/aqp/
https://ncss-tech.github.io/AQP/
https://github.com/ncss-tech/aqp/issues

Contents 3

compositeSPC . 54
confusionIndex . 54
contrastChart . 55
contrastClass . 56
correctAWC . 58
crit.clay.argillic . 59
denormalize . 60
depthOf . 61
depths . 63
depthWeights . 65
depth_units,SoilProfileCollection-method . 66
diagnostic_hz,SoilProfileCollection-method . 66
dice,SoilProfileCollection-method . 67
duplicate . 69
electroStatics_1D . 70
equivalentMunsellChips . 72
equivalent_munsell . 74
estimateAWC . 75
estimatePSCS . 75
estimateSoilColor . 78
estimateSoilDepth . 79
evalGenHZ . 82
evalMissingData . 83
explainPlotSPC . 85
fillHzGaps . 87
findOverlap . 89
fixOverlap . 90
flagOverlappingHz . 92
fragmentClasses . 93
fragmentSieve . 94
generalize.hz . 96
genhzTableToAdjMat . 99
genSlabLabels . 99
get.increase.matrix . 100
get.ml.hz . 102
getArgillicBounds . 103
getCambicBounds . 106
getClosestMunsellChip . 107
getLastHorizonID . 108
getSoilDepthClass . 108
getSurfaceHorizonDepth . 110
GHL . 112
glom,SoilProfileCollection-method . 113
glomApply . 116
grepSPC . 118
groupedProfilePlot . 118
groupSPC . 121
guessGenHzLevels . 122

4 Contents

guessHzAttrName . 123
harden.melanization . 125
harden.rubification . 127
harmonize,SoilProfileCollection-method . 129
hasDarkColors . 131
horizonColorIndices . 133
horizonDepths<- . 134
horizonNames<- . 135
horizons,SoilProfileCollection-method . 135
huePosition . 136
huePositionCircle . 138
hurst.redness . 139
hzAbove . 140
HzDepthLogicSubset . 141
hzDepthTests . 142
hzDesgn,SoilProfileCollection-method . 143
hzdesgnname . 143
hzDistinctnessCodeToOffset . 144
hzID<-,SoilProfileCollection-method . 146
hzidname<- . 146
hzMetadata,SoilProfileCollection-method . 147
hzmetaname . 147
hztexclname . 148
hzTopographyCodeToLineType . 149
hzTopographyCodeToOffset . 150
hzTransitionProbabilities . 152
hz_dissolve . 153
hz_intersect . 155
hz_lag . 156
hz_segment . 158
hz_to_taxpartsize . 160
idname,SoilProfileCollection-method . 162
initSpatial<- . 163
invertLabelColor . 164
isEmpty,SoilProfileCollection-method . 165
jacobs2000 . 165
L1_profiles . 167
length,SoilProfileCollection-method . 168
lookup_taxpartsize . 169
lunique . 170
max,SoilProfileCollection-method . 171
metadata,SoilProfileCollection-method . 171
min,SoilProfileCollection-method . 172
missingDataGrid . 173
mixMunsell . 174
mollic.thickness.requirement . 177
munsell . 178
munsell.spectra . 179

Contents 5

munsell2rgb . 180
munsell2spc,SoilProfileCollection-method . 182
munsellHuePosition . 184
mutate_profile . 184
mu_confusion_matrix . 186
names,SoilProfileCollection-method . 187
NCSP . 188
nrow,SoilProfileCollection-method . 190
osd . 190
panel.depth_function . 191
parseMunsell . 195
pbindlist . 196
perturb . 197
ph_to_rxnclass . 201
plotColorMixture . 202
plotColorQuantiles . 203
plotMultipleSPC . 204
plotProfileDendrogram . 207
plotSPC . 209
plot_distance_graph . 217
previewColors . 219
prj,SoilProfileCollection-method . 220
profileApply . 221
profileGroupLabels . 224
profileInformationIndex . 226
profile_id<- . 228
quickSPC . 229
random_profile . 232
reactionclass . 235
rebuildSPC . 236
reduceSPC . 237
reorderHorizons . 238
repairMissingHzDepths . 238
replaceHorizons<- . 240
restrictions,SoilProfileCollection-method . 240
rgb2munsell . 241
ROSETTA.centroids . 243
rowley2019 . 245
rp . 248
SANN_1D . 248
shannonEntropy . 251
shuffle . 252
sierraTransect . 253
sim . 255
simulateColor . 256
site,SoilProfileCollection-method . 258
siteNames<- . 259
slab . 259

6 Contents

slice-methods . 268
slicedHSD . 271
soilColorSignature . 272
soilPalette . 274
SoilProfileCollection . 276
soiltexture . 279
soilTextureColorPal . 279
SoilTextureLevels . 280
soil_minerals . 281
sp1 . 283
sp2 . 285
sp3 . 287
sp4 . 290
sp5 . 293
sp6 . 295
SPC.with.overlap . 296
spc2mpspline,SoilProfileCollection-method . 297
spc_in_sync . 299
spec2Munsell . 300
spectral.reference . 301
split,SoilProfileCollection-method . 302
splitLogicErrors . 304
subApply . 305
subset,SoilProfileCollection-method . 305
subsetHz,SoilProfileCollection-method . 306
subsetProfiles . 307
summarizeSPC . 308
tauW . 309
texcl_to_ssc . 311
textureTriangleSummary . 316
thicknessOf . 318
thompson.bell.darkness . 320
traditionalColorNames . 321
transform,SoilProfileCollection-method . 321
unique,SoilProfileCollection-method . 322
us.state.soils . 323
validSpatialData,SoilProfileCollection-method . 324
warpHorizons . 324
wilson2022 . 327
xtableTauW . 329
[,SoilProfileCollection-method . 329
[[. 330
[[<- . 332
$. 332
$<- . 333

Index 334

aqp-package 7

aqp-package Algorithms for Quantitative Pedology

Description

The aqp (Algorithms for Quantitative Pedology) package for R was developed to address some
of the difficulties associated with processing soils information, specifically related to visualization,
aggregation, and classification of soil profile data. This package is based on a mix of S3/S4 functions
and classes, and most functions use basic dataframes as input, where rows represent soil horizons
and columns define properties of those horizons. Common to most functions are the requirements
that horizon boundaries are defined as depth from 0, and that profiles are uniquely defined by an id
column. The aqp package defines an S4 class, "SoilProfileCollection", for storage of profile-level
metadata, as well as summary, print, and plotting methods that have been customized for common
tasks related to soils data.

Details

Demos: demo(aqp)

Project homepage

Author(s)

Dylan E. Beaudette debeaudette@ucdavis.edu, Pierre Roudier, Andrew G. Brown

See Also
depths<-(), SoilProfileCollection(), sp1, sp2, sp3, sp4, sp5, sp6

.colorSig2PerceptualDistMat

Interpret a color signature containing color groups of CIELAB coor-
dinates using perceptual distance via CIE dE00

Description

Interpret a color signature containing color groups of CIELAB coordinates using perceptual dis-
tance via CIE dE00

Usage

.colorSig2PerceptualDistMat(pig)

Arguments

pig data.frame results from soilColorSignature(..., method = c('pam', 'depthSlices))

http://ncss-tech.github.io/AQP/
mailto:debeaudette@ucdavis.edu

8 accumulateDepths

Value

dist object

.detectColorSpec Detect color specification from a vector of values, or a matrix of color
coordinates

Description

Detect color specification from a vector of values, or a matrix of color coordinates

Usage

.detectColorSpec(col)

Arguments

col character vector, numeric matrix with 3 columns, or data.frame with 3 columns

accumulateDepths Accumulate horizon depths, and reflect reversed depths, relative to
new datum

Description

Fix old-style organic horizon depths or depths with a non-standard datum by the "depth accumula-
tion" method.

Usage

accumulateDepths(
x,
id = NULL,
hzdepths = NULL,
hzname = NULL,
hzdatum = 0,
seqnum = NULL,
pattern = "O",
fix = TRUE

)

accumulateDepths 9

Arguments

x A data.frame or SoilProfileCollection

id unique profile ID. Default: NULL, if x is a SoilProfileCollection idname(x)

hzdepths character vector containing horizon top and bottom depth column names. De-
fault: NULL, if x is a SoilProfileCollection horizonDepths(x)

hzname character vector containing horizon designation or other label column names.
Default: NULL, if x is a SoilProfileCollection hzdesgnname(x)

hzdatum a numeric vector to add to accumulated depths. Default: 0. Can be equal in
length to number of profiles if x is a SoilProfileCollection or number of
(unique) IDs if x is a data.frame.

seqnum Optional: character vector containing record "sequence number" column name;
used in-lieu of hzname (when NA) to identify "first" record in a profile

pattern pattern to search for in hzname to identify matching horizons to append the
profile to

fix apply adjustments to missing (NA) depths and expand 0-thickness horizons? De-
fault: TRUE

Details

The "depth accumulation" method calculates thicknesses of individual horizons and then cumulative
sums them after putting them in id + top depth order. The routine tries to determine context based
on hzname and pattern. The main transformation is if a top depth is deeper than the bottom depth,
the depths are reflected on the Z-axis (made negative). The data are then id + top depth sorted
again, the thickness calculated and accumulated to replace the old depths.

This function uses several heuristics to adjust data before transformation and thickness calculation:

Regex matching of horizon designation patterns and similar:

• matches of pattern where both top and bottom depth NA -> [0,1] [top,bottom] depth
• REMOVE horizons that do not match pattern where both top and bottom depths NA

Over-ride hzname handling with the sequence column argument seqnum:

• if seqnum column specified "first record with NA hzname" is considered a pattern match if
seqnum == 1

Trigger "fixing" with the fix argument::

• Add 1 cm to bottom-most horizons with NA bottom depth
• Add 1 cm thickness to horizons with top and bottom depth equal
• Add 1 cm thickness to horizons with NA top depth and bottom depth 0

Value

A horizon-level data.frame, suitable for promoting to SPC with depths<-, or a SoilProfileCollection,
depending on the class of x.

10 addBracket

Examples

example using hzdatum argument
data(sp4)
depths(sp4) <- id ~ top + bottom
hz <- accumulateDepths(sp4,

id = "id",
hzdepths = c("top", "bottom"),
hzname = "name",
hzdatum = 5 * 1:length(sp4))

plot(hz)

example using old-style O horizons
hz <- read.table(text = "peiidref hzdept hzdepb hzname seqnum phiid

1 11 0 5 A 2 295
2 11 1 0 Oe 1 294
3 11 5 13 C1 3 296
4 11 13 58 C2 4 297
5 11 58 152 C3 5 298
6 13 0 5 A 2 303
7 13 1 0 Oe 1 302
8 13 5 25 Bw 3 304
9 13 25 61 C 4 305
10 13 61 NA R 5 306
11 136 0 13 A1 3 695
12 136 1 0 Oe 2 694
13 136 2 1 Oi 1 693
14 136 13 61 C1 4 696
15 136 61 76 C2 5 697")

depths(hz) <- peiidref ~ hzdept + hzdepb

hz_fixed <- accumulateDepths(hz,
id = "peiidref",
hzdepths = c("hzdept", "hzdepb"),
hzname = "hzname")

is_valid <- checkHzDepthLogic(hz_fixed)$valid

test0 <- subset(hz_fixed, !is_valid)
test1 <- subset(hz_fixed, is_valid)

origO <- subset(hz, grepl("O", hzname))
fixedO <- subset(hz_fixed, grepl("O", hzname))

par(mfrow = c(2, 1), mar = c(0, 0, 3, 2))

plotSPC(origO, max.depth = 25)
plotSPC(fixedO, max.depth = 25)

addBracket Add Depth Brackets

addBracket 11

Description

Add depth brackets to soil profile sketches.

Usage

addBracket(
x,
label.cex = 0.75,
tick.length = 0.05,
arrow.length = 0.05,
offset = -0.3,
missing.bottom.depth = NULL,
...

)

Arguments

x data.frame object containing idname(x), top, bottom, and optionally label
columns

label.cex scaling factor for label font

tick.length length of bracket "tick" mark

arrow.length length of arrowhead

offset left-hand offset from each profile

missing.bottom.depth

distance (in depth units) to extend brackets that are missing a lower depth (de-
faults to max depth of collection)

... further arguments passed on to segments or arrows

Details

x may contain multiple records per profile. Additional examples can be found in this tutorial.

Note

This is a low-level plotting function: you must first plot a SoilProfileCollection object before
using this function.

Author(s)

D.E. Beaudette

See Also

addDiagnosticBracket, plotSPC

http://ncss-tech.github.io/AQP/aqp/SPC-plotting-ideas.html

12 addBracket

Examples

sample data
data(sp1)

add color vector
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

plot profiles
par(mar = c(0, 0, 0, 1))
plotSPC(sp1, width = 0.3)

extract min--max depths associated with all A horizons
result is a single-row data.frame / profile
combinedBracket <- function(i) {

h <- horizons(i)
idn <- idname(i)
this.id <- h[[idn]][1]

idx <- grep('^A', h$name)

res <- data.frame(
id = this.id,
top = min(h$top[idx]),
bottom = max(h$bottom[idx], na.rm=TRUE)

)
names(res)[1] <- idn

return(res)
}

return matching horizon top / bottom depths for A or C horizons
result is a 0 or more row data.frame / profile
individualBrackets <- function(i) {

h <- horizons(i)
idn <- idname(i)
this.id <- h[[idn]][1]

idx <- grep('^A|^C', h$name)

res <- data.frame(
id = this.id,
top = h$top[idx],
bottom = h$bottom[idx]

)
names(res)[1] <- idn

return(res)
}

addDiagnosticBracket 13

combined brackets
b1 <- profileApply(sp1, combinedBracket, frameify = TRUE)

individual brackets
b2 <- profileApply(sp1, individualBrackets, frameify = TRUE)

plot in reverse order
plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25)

note that plotting order is derived from the call to `plotSPC(sp1)`
addBracket(b1, col='red', offset = -0.35)

plot in reverse order
plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25)

note that plotting order is derived from the call to `plotSPC(sp1)`
addBracket(b2, col='red', offset = -0.35)

addDiagnosticBracket Annotate Diagnostic Features

Description

Annotate diagnostic features within a sketch of soil profiles.

Usage

addDiagnosticBracket(
s,
kind,
feature = "featkind",
top = "featdept",
bottom = "featdepb",
...

)

Arguments

s SoilProfileCollection object

kind filter applied to feature column of diagnostic horizons registered within s

feature column name containing feature kind

top column name containing feature top depth

bottom column name containing feature top depth

... additional arguments passed to addBracket

14 addVolumeFraction

Details

Additional examples can be found in this tutorial.

Note

This is a low-level plotting function: you must first plot a SoilProfileCollection object before
using this function.

Author(s)

D.E. Beaudette

See Also

addBracket(), plotSPC()

addVolumeFraction Symbolize Volume Fraction within a Soil Profile Collection Plot

Description

Symbolize volume fraction on an existing soil profile collection plot.

Usage

addVolumeFraction(
x,
colname,
res = 10,
cex.min = 0.1,
cex.max = 0.5,
pch = 1,
col = "black"

)

Arguments

x a SoilProfileCollection object

colname character vector of length 1, naming the column containing volume fraction data
(horizon-level attribute). Values should be within 0-100 percent.

res integer, resolution of the grid used to symbolize volume fraction

cex.min minimum symbol size

cex.max maximum symbol size

pch integer, plotting character code

col symbol color, either a single color or as many colors as there are horizons in x

http://ncss-tech.github.io/AQP/aqp/SPC-plotting-ideas.html

aggregateColor 15

Details

This function can only be called after plotting a SoilProfileCollection object. Details associated
with a call to plotSPC() are automatically accounted for within this function: e.g. plot.order,
width, etc..

Note

It may be necessary to adjust both res, cex.min, and cex.max for optimal legibility.

Author(s)

D.E. Beaudette

See Also

plotSPC()

aggregateColor Summarize Soil Colors

Description

Summarize soil color data, weighted by occurrence and horizon thickness.

Usage

aggregateColor(
x,
groups = "genhz",
col = "soil_color",
k = NULL,
profile_wt = NULL,
mixingMethod = c("estimate", "exact")

)

Arguments

x a SoilProfileCollection object

groups the name of a horizon or site attribute used to group horizons, see examples

col the name of a horizon-level attribute with soil color specified in hexadecimal
(i.e. "#rrggbb")

k single integer specifying the number of colors discretized via PAM (cluster::pam()),
see details

profile_wt the name of a site-level attribute used to modify weighting, e.g. area

mixingMethod method used to estimate "aggregate" soil colors, see mixMunsell()

16 aggregateColor

Details

Weights are computed by: w_i = sqrt(sum(thickness_i)) * n_i where w_i is the weight asso-
ciated with color i, thickness_i is the total thickness of all horizons associated with the color i,
and n_i is the number of horizons associated with color i. Weights are computed within groups
specified by groups.

See the related tutorial for additional examples.

Value

A list with the following components:

• scaled.data: a list of colors and associated weights, one item for each generalized horizon
label with at least one color specified in the source data

• aggregate.data: a data.frame of weighted-mean colors, one row for each generalized hori-
zon label with at least one color specified in the source data

Author(s)

D.E. Beaudette

See Also

generalize.hz(), aggregateColorPlot()

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

load some example data
data(sp1, package = 'aqp')

upgrade to SoilProfileCollection and convert Munsell colors
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

aggregate colors over horizon-level attribute: 'genhz'
a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color')

check results
str(a)

simple visualization
aggregateColorPlot(a)

http://ncss-tech.github.io/AQP/sharpshootR/aggregate-soil-color.html

aggregateColorPlot 17

aggregateColorPlot Plot aggregate soil color data

Description

Generate a plot from summaries generated by aggregateColor().

Usage

aggregateColorPlot(
x,
print.label = TRUE,
label.font = 1,
label.cex = 0.65,
label.orientation = c("v", "h"),
buffer.pct = 0.02,
print.n.hz = FALSE,
rect.border = "black",
horizontal.borders = FALSE,
horizontal.border.lwd = 2,
x.axis = TRUE,
y.axis = TRUE,
...

)

Arguments

x a list, results from aggregateColor()

print.label logical, print Munsell color labels inside of rectangles, only if they fit

label.font font specification for color labels

label.cex font size for color labels
label.orientation

label orientation, v for vertical or h for horizontal

buffer.pct extra space between labels and color rectangles

print.n.hz optionally print the number of horizons below Munsell color labels

rect.border color for rectangle border
horizontal.borders

optionally add horizontal borders between bands of color
horizontal.border.lwd

line width for horizontal borders

x.axis logical, add a scale and label to x-axis?

y.axis logical, add group labels to y-axis?

... additional arguments passed to plot

18 aggregateSoilDepth

Details

See the related tutorial for additional examples.

Value

no data are returned, function is called for graphical output

Author(s)

D.E. Beaudette

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

load some example data
data(sp1, package = 'aqp')

upgrade to SoilProfileCollection and convert Munsell colors
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

aggregate colors over horizon-level attribute: 'genhz'
a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color')

check results
str(a)

simple visualization
aggregateColorPlot(a)

aggregateSoilDepth Probabilistic Estimation of Soil Depth within Groups

Description

Estimate the most-likely depth to contact within a collection of soil profiles. Consider getSoilDepthClass
followed by group-wise percentile estimation as a faster alternative.

http://ncss-tech.github.io/AQP/sharpshootR/aggregate-soil-color.html

aggregateSoilDepth 19

Usage

aggregateSoilDepth(
x,
groups,
crit.prob = 0.9,
name = hzdesgnname(x),
p = "Cr|R|Cd",
...

)

Arguments

x a SoilProfileCollection object

groups the name of a site-level attribute that defines groups of profiles within a collec-
tion

crit.prob probability cutoff used to determine where the most likely depth to contact will
be, e.g. 0.9 translates to 90% of profiles are shallower than this depth

name horizon-level attribute where horizon designation is stored, defaults to hzdesgnname(x)

p a REGEX pattern that matches non-soil genetic horizons

... additional arguments to slab

Details

This function computes a probability-based estimate of soil depth by group. If no grouping variable
exists, a dummy value can be used to compute a single estimate. The crit.prob argument sets
the critical probability (e.g. 0.9) at which soil depth within a group of profiles is determined. For
example, a crit.prob of 0.95 might result in an estimated soil depth (e.g. 120cm) where 95% of
the profiles (by group) had depths that were less than or equal to 120cm.

Value

A data.frame is returned, with as many rows as there are unique group labels, as specified in
groups.

Author(s)

D.E. Beaudette

See Also

estimateSoilDepth() slab()

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

20 alignTransect

set horizon designation in SPC
hzdesgnname(sp1) <- 'name'

aggregateSoilDepth(sp1, 'group', crit.prob = 0.9)

alignTransect Calculate Relative Positions from Transect Data

Description

This function is used to support relative positioning of soil profiles by plotSPC, based on transect
or gradient values typically associated with a site level attribute (e.g. elevation). Gradient values
specified in x are translated to the range used by plotSPC (usually 1, length(SPC)) specified in
x.min and x.max.

Usage

alignTransect(x, x.min, x.max, fix = TRUE, ...)

Arguments

x numeric vector, describing values along a transect: distance, elevation, climatic
variables, etc.. Typically sourced from the site level attributes of a SoilProfileCollection
object. Order is not important.

x.min numeric, lower boundary to relative position scale

x.max numeric, upper boundary to relative position scale

fix logical, attempt fixing overlapping positions with fixOverlap

... additional arguments to fixOverlap

Details

See the Pair-Wise Distances by Generalized Horizon Labels tutorial for additional examples.

Value

list containing:

• grad: values of x in ascending order

• order: ordering vector of x

• relative.pos: elements of x translated to the new relative scale defined by x.min and x.max

http://ncss-tech.github.io/AQP/aqp/genhz-distance-eval.html

allocate 21

Examples

data("sierraTransect")

split transects
g <- subset(sierraTransect, transect == 'Granite')
a <- subset(sierraTransect, transect == 'Andesite')

g.p <- alignTransect(g$elev, x.min = 1, x.max = length(g), fix = FALSE)
a.p <- alignTransect(a$elev, x.min = 1, x.max = length(a), fix = FALSE)

op <- par(mar=c(2,0,0,2), mfrow=c(2,1))

plotSPC(g, width=0.25, name.style='center-center',
cex.names=0.75,
relative.pos = g.p$relative.pos, plot.order = g.p$order)

axis(1, at = g.p$relative.pos, labels = g.p$grad, line = -1.5)

plotSPC(a, width=0.25, name.style='center-center',
cex.names=0.75,
relative.pos = a.p$relative.pos, plot.order = a.p$order)

axis(1, at = a.p$relative.pos, labels = a.p$grad, line = -1.5)

par(op)

allocate Allocate soil properties within various classification systems.

Description

Generic function to allocate soil properties to different classification schemes.

Usage

allocate(
...,
to = c("FAO Salt Severity", "FAO Black Soil", "ST Diagnostic Features"),
droplevels = FALSE

)

Arguments

... arguments to specific allocation functions, see details and examples

to character specifying the classification scheme: FAO Salt Severity, FAO Black
Soil (see details for the required ...)

22 allocate

droplevels logical indicating whether to drop unused levels in factors. This is useful when
the results have a large number of unused classes, which can waste space in
tables and figures.

Details

This function is intended to allocate a set of soil properties to an established soil classification
scheme, such as Salt Severity or Black Soil. Allocation is semantically different from classification.
While classification is the ’act’ of developing a grouping scheme, allocation is the assignment or
identification of measurements to a established class (Powell, 2008).

Usage Details:
Each classification scheme (to argument) uses a different set of arguments.

• FAO Salt Severity

– EC: electrical conductivity column name, dS/m
– pH: pH column name, saturated paste extract
– ESP: exchangeable sodium percentage column name, percent

• FAO Black Soils

– object: a data.frame or SoilProfileCollection
– pedonid: pedon ID column name, required when object is a data.frame

– hztop: horizon top depth column name, required when object is a data.frame

– hzbot: horizon bottom depth column name, required when object is a data.frame

– OC: organic carbon column name, percent
– m_chroma: moist Munsell chroma column name
– m_value: moist Munsell value column name
– d_value: dry Munsell value column name
– CEC: cation exchange capacity column name (NH4OAc at pH 7), units of cmol(+)/kg

soil
– BS: base saturation column name (NH4OAc at pH 7), percent
– tropical: logical, data are associated with "tropical soils"

• ST Diagnostic Features

– object: a data.frame or SoilProfileCollection
– pedonid: pedon ID column name, required when object is a data.frame

– hzname: horizon name column, required when object is a data.frame

– hztop: horizon top depth column name, required when object is a data.frame

– hzbot: horizon bottom depth column name, required when object is a data.frame

– texcl: soil texture class (USDA) column name
– rupresblkcem: rupture resistance column name
– m_value: moist Munsell value column name
– m_chroma: moist Munsell chroma column name
– d_value: dry Munsell value column name
– BS: base saturation column name (method ??), percent
– OC: organic carbon column name, percent
– n_value: ??
– featkind: ??

allocate 23

Value

A vector or data.frame object.

Note

The results returned by allocate(to = "ST Diagnostic Features") currently return a limited set
of diagnostic features that are easily defined. Also, the logic implemented for some features does
not include all the criteria defined in the Keys to Soil Taxonomy.

Author(s)

Stephen Roecker

References

Abrol, I., Yadav, J. & Massoud, F. 1988. Salt-affected soils and their management. No. Bulletin 39.
Rome, FAO Soils.

FAO. 2006. Guidelines for soil description. Rome, Food and Agriculture Organization of the United
Nations.

FAO. 2020. DEFINITION | What is a black soil? (online). (Cited 28 December 2020). http://www.fao.org/global-
soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/more-
on-black-soils/definition-what-is-a-black-soil/es/

Powell, B., 2008. Classifying soil and land, in: McKenzie, N.J., Grundy, M.J., Webster, R.,
Ringrose-Voase, A.J. (Eds.), Guidelines for Survey Soil and Land Resources, Australian Soil and
Land Survey Handbook Series. CSIRO, Melbourne, p. 572.

Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Government
Printing Office. 166 pp.

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation
Service, Washington, D.C.

Examples

Salt Severity
test <- expand.grid(

EC = sort(sapply(c(0, 0.75, 2, 4, 8, 15, 30), function(x) x + c(0, -0.05, 0.05))),
pH = c(8.1, 8.2, 8.3, 8.4, 8.5, 8.6),
ESP = sort(sapply(c(0, 15, 30, 50, 70, 100), function(x) x + c(0, 0.1, -0.1)))

)
test$ss <- with(test, allocate(EC = EC, pH = pH, ESP = ESP, to = "FAO Salt Severity"))
table(test$ss)

Black Soil Category 1 (BS1)
test <- expand.grid(

dept = seq(0, 50, 10),
OC = sort(sapply(c(0, 0.6, 1.2, 20, 40), function(x) x + c(0, -0.05, 0.05))),
chroma_moist = 2:4,
value_moist = 2:4,
value_dry = 4:6,
thickness = 24:26,

https://www.fao.org/4/x5871e/x5871e00.htm
https://www.fao.org/4/a0541e/a0541e.pdf
https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf

24 allocate

CEC = 24:26,
BS = 49:51,
tropical = c(TRUE, FALSE)

)
test$pedon_id <- rep(1:21870, each = 6)
test$depb <- test$dept + 10

bs1 <- allocate(test, pedonid = "pedon_id", hztop = "dept", hzbot = "depb",
OC = "OC", m_chroma = "chroma_moist", m_value = "value_moist",
d_value = "value_dry", CEC = "CEC", BS = "BS",
to = "FAO Black Soil"

)

table(BS1 = bs1$BS1, BS2 = bs1$BS2)

SoilProfileCollection interface

data(sp3)
depths(sp3) <- id ~ top + bottom
hzdesgnname(sp3) <- 'name'

fake base saturation
horizons(sp3)$bs <- 75

plotSPC(sp3)

allocate(
sp3,
to = 'FAO Black Soil',
OC = 'tc',
m_chroma = 'chroma',
m_value = 'value',
d_value = 'value',
CEC = 'cec',
BS = 'bs'

)

make a copy and edit horizon values
x <- sp3
x$value <- 2
x$chroma <- 2
x$cec <- 26
x$tc <- 2

x$soil_color <- munsell2rgb(xhue, xvalue, x$chroma)

plotSPC(x)

allocate(
x,
to = 'FAO Black Soil',
OC = 'tc',

aqp_df_class,SoilProfileCollection-method 25

m_chroma = 'chroma',
m_value = 'value',
d_value = 'value',
CEC = 'cec',
BS = 'bs'

)

Soil Taxonomy Diagnostic Features
data(sp1)
sp1$texcl = gsub("gr|grv|cbv", "", sp1$texture)
df <- allocate(object = sp1, pedonid = "id", hzname = "name",

hzdept = "top", hzdepb = "bottom", texcl = "texcl",
to = "ST Diagnostic Features"

)
aggregate(featdept ~ id, data = df, summary)

aqp_df_class,SoilProfileCollection-method

Get aqp_df_class entry from metadata or return a safe value.

Description

This is an accessor and replacement method for the aqp_df_class entry in the metadata slot. This
entry is used internally by methods that interact with data.frame objects and slots to ensure that
the same class used to promote to the SoilProfileCollection initially is used throughout the process.

Usage

S4 method for signature 'SoilProfileCollection'
aqp_df_class(object)

S4 replacement method for signature 'SoilProfileCollection'
aqp_df_class(object) <- value

Arguments

object a SoilProfileCollection

value "data.frame", "data.table" or "tbl_df"

26 argillic.clay.increase.depth

argillic.clay.increase.depth

Return upper boundary of argillic horizon

Description

Returns the top depth of the argillic horizon as a numeric vector.

Usage

argillic.clay.increase.depth(p, clay.attr = "clay")

Arguments

p A single-profile SoilProfileCollection object.

clay.attr OPTIONAL: horizon attribute name referring to clay content. default: clay

Details

Uses crit.clay.argillic to determine threshold clay increase, and get.increase.matrix to
determine where increase is met within a vertical distance of 30 cm.

Value

A numeric vector containing top depth of argillic horizon, if present, or NA.

Author(s)

Andrew Gene Brown

See Also

getArgillicBounds, get.increase.matrix, crit.clay.argillic

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents
foo <- argillic.clay.increase.depth(p, clay.attr = attr)
foo

as 27

as Coerce SoilProfileCollection with as()

Description

SoilProfileCollections can be coerced to other R object types using as(spc, 'type').

Possible endpoints include: list, data.frame, SpatialPointsDataFrame and SpatialPoints.

Usage

S4 method for signature 'SoilProfileCollection'
as.data.frame(x)

Arguments

x a SoilProfileCollection

Value

list

data.frame

tbl_df

data.table

SpatialPointsDataFrame

sf

SpatialPoints

Examples

load example data stored as SoilProfileCollection
data(sp5)

sp5
str(sp5)

list output
str(as(sp5, 'list'))

data.frame output
str(as(sp5, 'data.frame'))

Spatial Objects
make some random coordinate data for each profile
sp5$x <- sp5$y <- rnorm(length(sp5))
initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y

if (requireNamespace("sf")) {

28 barron.torrent.redness.LAB

sf output
str(as(sp5, 'sf'))

SpatialPointsDataFrame output
str(as(sp5, 'SpatialPointsDataFrame'))

SpatialPoints output
str(as(sp5, 'SpatialPoints'))

}

barron.torrent.redness.LAB

Barron & Torrent (1986) Redness Index in LAB color space

Description

Calculate Redness Index after Barron & Torrent (1986) "Use of the Kubelka—Munk Theory to
Study the Influence of Iron Oxides on Soil Colour" using Munsell colors converted to LAB. DOI:
10.1111/j.1365-2389.1986.tb00382.x. Accepts vectorized inputs for hue, value and chroma, pro-
duces vector output.

Usage

barron.torrent.redness.LAB(hue, value, chroma)

Arguments

hue A character vector containing Munsell hues (e.g. "7.5YR")

value A numeric vector containing Munsell values

chroma A numeric vector containing Munsell chromas

Value

A numeric vector of horizon redness index (higher values = redder).

Author(s)

Andrew G. Brown

References

Barron, V. and Torrent, J. (1986), Use of the Kubelka-Munk theory to study the influence of iron ox-
ides on soil colour. Journal of Soil Science, 37: 499-510. doi:10.1111/j.1365-2389.1986.tb00382.x

bootstrapSoilTexture 29

bootstrapSoilTexture Bootstrap Soil Texture Data

Description

Simulate realistic sand/silt/clay values (a composition) using multivariate Normal distribution or
Dirichlet distribution. Simulations from the multivariate Normal distribution are based on the com-
positional mean and variance-covariance matrix. Simulations from the Dirichlet distribution are
based on maximum likelihood estimation of alpha parameters.

Usage

bootstrapSoilTexture(ssc, method = c("dirichlet", "normal"), n = 100)

Arguments

ssc a data.frame object with 3 columns: ’SAND’, ’SILT’, ’CLAY’ and at least
three rows of data within the range of 0-100 (percent). NA are automatically
removed, but care should be taken to ensure that the sand/silt/clay values add to
100 percent. Simulations are based on these examples.

method type of simulation: ’dirichlet’ or ’normal’. See details.

n number of simulated compositions. See details.

Details

Simulations from the multivariate normal distribution will more closely track the marginal distri-
butions of sand, silt, and clay–possibly a better fit for "squished" compositions (TODO elaborate).
However, these simulations can result in extreme (unlikely) estimates.

Simulations from the Dirichlet distribution will usually be a better fit (fewer extreme estimates) but
require a fairly large number of records in ssc (n >= 30?) for a reliable fit.

Additional examples will be added to this tutorial.

Value

a list containing:

• samples - data.frame of simulated sand, silt, clay values

• mean - compositional mean

• var - compositional variance-covariance matrix

• D.alpha - (fitted) alpha parameters of the Dirichlet distribution, NULL when method = 'normal'

Author(s)

D.E. Beaudette

http://ncss-tech.github.io/AQP/aqp/soiltexture-vizualization-ideas.html

30 bootstrapSoilTexture

References

Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and
Applied Probability. Chapman & Hall Ltd., London (UK). 416p.

Aitchison, J, C. Barcel’o-Vidal, J.J. Egozcue, V. Pawlowsky-Glahn (2002) A concise guide to the
algebraic geometric structure of the simplex, the sample space for compositional data analysis,
Terra Nostra, Schriften der Alfred Wegener-Stiftung, 03/2003

Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 1*):
re-calibration of field soil texture class centroids and description of a field soil texture conversion
algorithm. Soil Research. https://www.publish.csiro.au/SR/SR20283

Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 2*):
spatial modelling of merged field and lab measurements. Soil Research. https://doi.org/10.1071/SR20284

Examples

if(
requireNamespace("compositions") &

requireNamespace("soiltexture")
) {

sample data, data.frame
data('sp4')

filter just Bt horizon data
ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')]
names(ssc) <- toupper(names(ssc))

simulate 100 samples
s <- bootstrapSoilTexture(ssc, n = 100)
s <- s$samples

empty soil texture triangle
TT <- soiltexture::TT.plot(

class.sys= "USDA-NCSS.TT",
main= "",
tri.sum.tst=FALSE,
cex.lab=0.75,
cex.axis=0.75,
frame.bg.col='white',
class.lab.col='black',
lwd.axis=1.5,
arrows.show=TRUE,
new.mar = c(3, 0, 0, 0)

)

add original data points
soiltexture::TT.points(

tri.data = s, geo = TT, col='firebrick',
pch = 3, cex = 0.5, lwd = 1,
tri.sum.tst = FALSE

brierScore 31

)

add simulated points
soiltexture::TT.points(

tri.data = ssc, geo = TT, bg='royalblue',
pch = 22, cex = 1, lwd = 1,
tri.sum.tst = FALSE

)

simple legend
legend('top',

legend = c('Source', 'Simulated'),
pch = c(22, 3),
col = c('black', 'firebrick'),
pt.bg = c('royalblue', NA),
horiz = TRUE, bty = 'n'

)

}

brierScore Multinominal Brier Score

Description

Compute a multinominal Brier score from predicted class probabilities and observed class label.
Lower values are associated with a more accurate classifier.

Usage

brierScore(x, classLabels, actual = "actual")

Arguments

x data.frame of class probabilities (numeric) and observed class label (charac-
ter), see examples

classLabels vector of predicted class labels (probabilities), corresponding to column names
in x

actual name of column containing the observed class, should be character vector not
factor

Value

a single Brier score, representative of data in x

32 brierScore

Author(s)

D.E. Beaudette

References

Brier, Glenn W. 1950. "Verification of Forecasts Expressed in Terms of Probability." Monthly
Weather Review 78 (1): 1-3. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Examples

columns 'a', 'b', 'c' contain predicted probabilities
column 'actual' contains observed class label

a good classifier
d.good <- data.frame(

a = c(0.05, 0.05, 0.10),
b = c(0.90, 0.85, 0.75),
c = c(0.05, 0.10, 0.15),
actual = c('b', 'b', 'b'),
stringsAsFactors = FALSE

)

a rather bad classifier
d.bad <- data.frame(

a = c(0.05, 0.05, 0.10),
b = c(0.90, 0.85, 0.75),
c = c(0.05, 0.10, 0.15),
actual = c('c', 'c', 'c'),
stringsAsFactors = FALSE

)

class labels are factors
d.factors <- data.frame(

a = c(0.05, 0.05, 0.10),
b = c(0.90, 0.85, 0.75),
c = c(0.05, 0.10, 0.15),
actual = c('b', 'b', 'b'),
stringsAsFactors = TRUE

)

relatively low value = accurate
brierScore(x = d.good, classLabels = c('a', 'b', 'c'), actual = 'actual')

high values = not accuate
brierScore(x = d.bad, classLabels = c('a', 'b', 'c'), actual = 'actual')

message related to conversion of factor -> character
brierScore(x = d.factors, classLabels = c('a', 'b', 'c'), actual = 'actual')

buntley.westin.index 33

buntley.westin.index Buntley-Westin (1965) Index

Description

Calculate "Color Development Equivalent" by the method of Buntley & Westin (1965) "A Compara-
tive Study of Developmental Color in a Chestnut-Chernozem-Brunizem Soil Climosequence" DOI:
10.2136/sssaj1965.03615995002900050029x. Originally developed for Mollisols, the Buntley-
Westin index has been used as a tool to separate soils based on depth to particular colors.

Usage

buntley.westin.index(hue, chroma)

Arguments

hue A character vector containing Munsell hues (e.g. "7.5YR")

chroma A numeric vector containing Munsell chromas

Value

A numeric vector reflecting horizon color development.

Author(s)

Andrew G. Brown

References

Buntley, G.J. and Westin, F.C. (1965), A Comparative Study of Developmental Color in a Chestnut-
Chernozem-Brunizem Soil Climosequence. Soil Science Society of America Journal, 29: 579-582.
doi:10.2136/sssaj1965.03615995002900050029x

c,SoilProfileCollection-method

Combine SoilProfileCollection objects

Description

Combine SoilProfileCollection objects or lists of SoilProfileCollection objects. This
method provides ... expansion for the pbindlist method.

34 ca630

Usage

S4 method for signature 'SoilProfileCollection'
c(x, ...)

S4 method for signature 'SoilProfileCollection'
combine(...)

S4 method for signature 'list'
combine(...)

Arguments

x A SoilProfileCollection

... SoilProfileCollection objects

Value

A SoilProfileCollection

Examples

example data
spc1 <- random_profile(1, SPC = TRUE)
spc2 <- random_profile(2, SPC = TRUE)
spc3 <- random_profile('A', SPC = TRUE)

combine into a single SPC, ... interface
spc <- combine(spc1, spc2, spc3)

combine into a single SPC, list interface
spc <- combine(list(spc1, spc2, spc3))

input are combined into a single SPC
spc <- c(spc1, spc2, spc3)

result is a list when a mixture of objects are provided
spc <- c(spc1, bar=spc2, baz="foo")

ca630 Soil Data from the Central Sierra Nevada Region of California

Description

Site and laboratory data from soils sampled in the central Sierra Nevada Region of California.

Usage

data(ca630)

ca630 35

Format

List containing:

$site : A data frame containing site information.

user_site_id national user site id

mlra the MLRA

county the county

ssa soil survey area

lon longitude, WGS84

lat latitude, WGS84

pedon_key national soil profile id

user_pedon_id local soil profile id

cntrl_depth_to_top control section top depth (cm)

cntrl_depth_to_bot control section bottom depth (cm)

sampled_taxon_name soil series name

$lab : A data frame containing horizon information.

pedon_key national soil profile id

layer_key national horizon id

layer_sequence horizon sequence number

hzn_top horizon top (cm)

hzn_bot horizon bottom (cm)

hzn_desgn horizon name

texture_description USDA soil texture

nh4_sum_bases sum of bases extracted by ammonium acetate (pH 7)

ex_acid exchangeable acidity [method ?]

CEC8.2 cation exchange capacity by sum of cations method (pH 8.2)

CEC7 cation exchange capacity by ammonium acetate (pH 7)

bs_8.2 base saturation by sum of cations method (pH 8.2)

bs_7 base saturation by ammonium acetate (pH 7)

Details

These data were extracted from the NSSL database. ca630 is a list composed of site and lab data,
each stored as data.frame objects. These data are modeled by a 1:many (site:lab) relation, with
the pedon_id acting as the primary key in the site table and as the foreign key in the lab table.

Note

These data are out of date. Pending some new data + documentation. Use with caution

36 ca630

Source

https://ncsslabdatamart.sc.egov.usda.gov/

Examples

Not run:
library(tactile)
library(lattice)
library(Hmisc)
library(sp)

check the data out:
data(ca630)
str(ca630)

note that pedon_key is the link between the two tables

make a copy of the horizon data
ca <- ca630$lab

promote to a SoilProfileCollection class object
depths(ca) <- pedon_key ~ hzn_top + hzn_bot

add site data, based on pedon_key
site(ca) <- ca630$site

ID data missing coordinates: '|' is a logical OR
(missing.coords.idx <- which(is.na(ca$lat) | is.na(ca$lon)))

remove missing coordinates by safely subsetting
if(length(missing.coords.idx) > 0)
ca <- ca[-missing.coords.idx,]

register spatial data
initSpatial(ca) <- ~ lon + lat

assign a coordinate reference system
prj(ca) <- 'EPSG:4269'

check the result
print(ca)

aggregate %BS 7 for all profiles into 1 cm slices
a <- slab(ca, fm= ~ bs_7)

plot median & IQR by 1 cm slice
xyplot(
top ~ p.q50,
data = a,
lower=a$p.q25,
upper=a$p.q75,
alpha=0.5,

https://ncsslabdatamart.sc.egov.usda.gov/

checkHzDepthLogic 37

ylim=c(160,-5),
scales = list(alternating = 1, y = list(tick.num = 7)),
panel = panel.depth_function,
prepanel = prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7',
par.settings = tactile.theme(superpose.line = list(col = 'black', lwd = 2))
)

aggregate %BS at pH 8.2 for all profiles by MLRA, along 1 cm slices
note that mlra is stored in @site
a <- slab(ca, mlra ~ bs_8.2)

keep only MLRA 18 and 22
a <- subset(a, subset=mlra %in% c('18', '22'))

plot median & IQR by 1 cm slice, using different colors for each MLRA
xyplot(
top ~ p.q50,
groups = factor(mlra),
data = a,
lower=a$p.q25,
upper=a$p.q75,
alpha=0.25,
sync.colors = TRUE,
ylim=c(160,-5),
scales = list(alternating = 1, y = list(tick.num = 7)),
panel = panel.depth_function,
prepanel = prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7',
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
auto.key = list(lines = TRUE, points = FALSE, columns = 2)
)

Extract the 2nd horizon from all profiles as SPDF
ca.2 <- ca[, 2]

subset profiles 1 through 10
ca.1.to.10 <- ca[1:10,]

basic plot method: profile plot
par(mar = c(0, 0, 3, 1))
plotSPC(ca.1.to.10, name='hzn_desgn', color = 'CEC7')

End(Not run)

checkHzDepthLogic Check a SoilProfileCollection object for errors in horizon depths.

38 checkHzDepthLogic

Description

This function inspects a SoilProfileCollection object, looking for four common errors in hori-
zon depths:

1. bottom depth shallower than top depth

2. equal top and bottom depth

3. missing top or bottom depth (e.g. NA)

4. gap or overlap between adjacent horizons (only if byhz = FALSE)

Usage

checkHzDepthLogic(
x,
hzdepths = NULL,
idname = NULL,
fast = FALSE,
byhz = FALSE

)

Arguments

x SoilProfileCollection or data.frame object to check

hzdepths character vector, describing top and bottom depths in a SoilProfileCollection
or data.frame. horizonDepths(x) is used when x is a SoilProfileCollection.

idname character, describing the column containing profile IDs in a SoilProfileCollection
or data.frame. idname(x) is used when x is a SoilProfileCollection.

fast logical, When TRUE, details about specific test results are not needed, the opera-
tion can allocate less memory and run approximately 5x faster.

byhz logical, apply logic tests to profiles (FALSE) or individual horizons (TRUE)?

Value

A data.frame containing profile IDs, validity boolean (valid) and test results if fast = FALSE.

The data.frame will have as many rows as profiles in x (length(x)).

• id : Profile IDs, named according to idname(x)

• valid : boolean, profile passes all of the following tests

• depthLogic : boolean, errors related to depth logic

• sameDepth : boolean, errors related to same top/bottom depths

• missingDepth : boolean, NA in top / bottom depths

• overlapOrGap : boolean, gaps or overlap in adjacent horizons (NA when byhz = TRUE)

Author(s)

D.E. Beaudette, A.G. Brown, S.M. Roecker

checkSPC 39

Examples

sample data

data(sp3)
depths(sp3) <- id ~ top + bottom

these data should be clean
res <- checkHzDepthLogic(sp3)

head(res)

less memory if only concerned about net validity
res <- checkHzDepthLogic(sp3, fast = TRUE)

head(res)

checkSPC Test for a valid SoilProfileCollection

Description

Test for a valid SoilProfileCollection

Usage

checkSPC(x)

Arguments

x a SoilProfileCollection object

Details

Test for valid SoilProfileCollection by checking for slots defined in the class prototype. Likely
only used between major versions of aqp where internal structure of SoilProfileCollection has
changed. Use checkHzDepthLogic to check for common errors in horizon depths.

Value

TRUE or FALSE. Consider using rebuildSPC() if FALSE.

Author(s)

D.E. Beaudette

See Also

rebuildSPC, checkHzDepthLogic

40 col2Munsell

col2Munsell Convert colors into Munsell Notation

Description

Lookup the n closest Munsell chips from the munsell lookup table from various color notations.
This function replaces rgb2munsell().

Usage

col2Munsell(col, space = c("sRGB", "CIELAB"), nClosest = 1)

Arguments

col character vector of colors, data.frame or matrix of color coordinates in sRGB
or CIELAB color space

space character, one of sRGB or CIELAB, defines the input color system

nClosest integer, number of closest Munsell colors to return (valid range is 1-20)

Value

an (NA-padded) data.frame containing hue, value, chroma, and CIE delta-E 2000 color contrast
metric between source and nearest matching color(s).

Note

This function is fully vectorized and will pad output with NA-records when NA are present in
color.

Author(s)

D.E. Beaudette

References

• http://ncss-tech.github.io/AQP/

• http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

• http://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

• http://www.cis.rit.edu/mcsl/online/munsell.php

col2Munsell 41

Examples

vector of named R colors
col2Munsell(c('red', 'green', 'blue'))

sRGB matrix in the range of 0-255
col2Munsell(cbind(255, 0, 0))

sRGB matrix in the range of 0-1
col2Munsell(cbind(1, 0, 0))

10YR 5/6 in CIELAB
col2Munsell(

cbind(51.4337, 9.917916, 38.6889),
space = 'CIELAB'

)

2.5YR 6/8 in hex notation
col2Munsell("#D18158FF")

7.5YR 8/1 in sRGB {0, 1}
col2Munsell(

cbind(0.8240707, 0.7856834, 0.7541048)
)

7.5YR 8/1 in sRGB {0, 255}
col2Munsell(

cbind(0.8240707, 0.7856834, 0.7541048) * 255
)

multple colors in CIELAB
col2Munsell(

parseMunsell(c('10BG 6/6', '2.5YR 4/6'), returnLAB = TRUE),
space = 'CIELAB'

)

data.frame input
col2Munsell(

data.frame(r = 1, g = 0, b = 0),
space = 'sRGB'

)

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

Munsell notation to sRGB triplets {0, 1}
color <- munsell2rgb(

the_hue = c('10YR', '2.5YR', '5YR'),
the_value = c(3, 5, 2.5),
the_chroma = c(5, 6, 2),
return_triplets = TRUE

)

42 collapseHz

result is a data.frame of sRGB {0, 1}
color

back-transform sRGB -> closest Munsell color
sigma is the dE00 color contrast metric
col2Munsell(color, space = 'sRGB')

collapseHz Collapse Horizons within Profiles Based on Pattern Matching

Description

Combines layers and aggregates data by grouping adjacent horizons which match pattern in
hzdesgn or, alternately, share a common value in by argument. Numeric properties are combined
using the weighted average, and other properties are derived from the dominant condition based on
thickness of layers and values in each group.

Usage

collapseHz(
x,
pattern = NULL,
by = NULL,
hzdesgn = hzdesgnname(x, required = TRUE),
FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]], ignore.case =

FALSE),
...,
AGGFUN = NULL,
ignore_numerics = NULL,
na.rm = FALSE

)

Arguments

x A SoilProfileCollection

pattern character. A regular expression pattern to match in hzdesgn column. Default:
NULL.

by character. A column name specifying horizons that should be combined. Ag-
gregation will be applied to adjacent groups of layers within profiles that have
the same value in by. Used in lieu of pattern and hzdesgn. Default: NULL.

hzdesgn character. Any character column containing horizon-level identifiers. Default:
hzdesgnname(x, required = TRUE).

FUN function. A function that returns a logical vector equal in length to the number
of horizons in x. Used only when pattern is specified. See details.

... Additional arguments passed to the matching function FUN.

collapseHz 43

AGGFUN list. A named list containing custom aggregation functions. List element names
should match the column name that they transform. The functions defined
should take three arguments: x (a vector of horizon property values), top (a
vector of top depths), and bottom (a vector of bottom depths). Default: NULL ap-
plies weighted.mean() to all numeric columns not listed in ignore_numerics
and takes the dominant condition (value with greatest aggregate thickness sum)
for all other columns. See details.

ignore_numerics

character. Vector of column names that contain numeric values which should
not be aggregated using weighted.mean(). For example, soil color "value" and
"chroma".

na.rm logical. If TRUE NA values are ignored when calculating min/max boundaries for
each group and in weighted averages. If FALSE NA values are propagated to the
result. Default: FALSE.

Details

If a custom matching function (FUN) is used, it should accept arbitrary additional arguments via an
ellipsis (...). It is not necessary to do anything with arguments, but the result should match the
number of horizons found in the input SoilProfileCollection x.

Custom aggregation functions defined in the AGGFUN argument should either return a single vec-
tor value for each group*column combination, or should return a data.frame object with named
columns. If the input column name is used as a column name in the result data.frame, then the
values of that column name in the result SoilProfileCollection will be replaced by the output of the
aggregation function. See examples.

Value

A SoilProfileCollection

Author(s)

Andrew G. Brown

See Also

hz_dissolve()

Examples

data(jacobs2000)

calculate a new SPC with genhz column based on patterns
new_labels <- c("A", "E", "Bt", "Bh", "C")
patterns <- c("A", "E", "B.*t", "B.*h", "C")
jacobs2000_gen <- generalizeHz(jacobs2000, new = new_labels, pattern = patterns)

use existing generalized horizon labels
i <- collapseHz(jacobs2000_gen, by = "genhz")

44 collapseHz

profile_id(i) <- paste0(profile_id(i), "_collapse")

plot(
c(i, jacobs2000),
color = "genhz",
name = "name",
name.style = "center-center",
cex.names = 1

)

custom pattern argument
j <- collapseHz(jacobs2000,

c(
`A` = "^A",
`E` = "E",
`Bt` = "[ABC]+t",
`C` = "^C",
`foo` = "bar"

))
profile_id(j) <- paste0(profile_id(j), "_collapse")
plot(c(j, jacobs2000), color = "clay")

custom aggregation function for matrix_color_munsell
k <- collapseHz(jacobs2000,

pattern = c(
`A` = "^A",
`E` = "E",
`Bt` = "[ABC]+t",
`C` = "^C",
`foo` = "bar"

),
AGGFUN = list(

matrix_color_munsell = function(x, top, bottom) {
thk <- bottom - top
if (length(x) > 1) {

xord <- order(thk, decreasing = TRUE)
paste0(paste0(x[xord], " (t=", thk[xord], ")"), collapse = ", ")

} else
x

}
)

)
profile_id(k) <- paste0(profile_id(k), "_collapse_custom")

unique(k$matrix_color_munsell)

custom aggregation function for matrix_color_munsell (returns data.frame)
m <- collapseHz(jacobs2000,

pattern = c(
`A` = "^A",
`E` = "E",
`Bt` = "[ABC]+t",
`C` = "^C",

colorChart 45

`foo` = "bar"
),
AGGFUN = list(

matrix_color_munsell = function(x, top, bottom) {
thk <- bottom - top
if (length(x) > 1) {

xord <- order(thk, decreasing = TRUE)
data.frame(matrix_color_munsell = paste0(x, collapse = ";"),

n_matrix_color = length(x))
} else {

data.frame(matrix_color_munsell = x,
n_matrix_color = length(x))

}
}

)
)

profile_id(m) <- paste0(profile_id(m), "_collapse_custom")

m$matrix_color_munsell.n_matrix_color

colorChart Visualize soil colors in Munsell notation according to within-group
frequency.

Description

Visualize soil colors in Munsell notation according to within-group frequency.

Usage

colorChart(
m,
g = factor("All"),
size = TRUE,
annotate = FALSE,
chip.cex = 3,
chip.cex.min = 0.1,
chip.cex.max = 1.5,
chip.border.col = "black",
annotate.cex = chip.cex * 0.25,
annotate.type = c("count", "percentage"),
threshold = NULL

)

Arguments

m character vector of color in Munsell notation (’10YR 4/6’)

46 colorChart

g factor describing group membership, typically a generalization of horizon des-
ignation, default value will generate a fake grouping that covers all of the colors
in m

size logical, encode group-wise frequency with chip size

annotate logical, annotate color chip frequency

chip.cex scaling factor applied to each color chip

chip.cex.min lower limit for color chip frequency depiction

chip.cex.max lower limit for color chip frequency depiction
chip.border.col

color for chip borders (outline)

annotate.cex scaling factor for chip frequency annotation

annotate.type character, within-group count or percentage

threshold numeric within 0-1, color chips with proportion < threshold are removed

Value

a trellis object

Examples

library(lattice)

two hue pages
ric <- expand.grid(

hue = c('5YR', '7.5YR'),
value = 2:8,
chroma = 2:8

)

combine hue, value, chroma into standard Munsell notation
ric <- sprintf("%s %s/%s", richue, ricvalue, ric$chroma)

note that chip frequency-based size is disabled
because all chips have equal frequency
colorChart(ric, chip.cex = 4, size = TRUE)

annotation of frequency
colorChart(ric, chip.cex = 4, annotate = TRUE)

bootstrap to larger size
ric.big <- sample(ric, size = 100, replace = TRUE)

frequency can be encoded in size
colorChart(ric.big, chip.cex = 3)
colorChart(ric.big, chip.cex = 5, annotate = TRUE)

constant size
colorChart(ric.big, chip.cex = 3, size = FALSE)

colorContrast 47

colorChart(ric.big, chip.cex = 3, size = FALSE, chip.border.col = 'NA')

simulate colors based dE00 thresholding
p <- list(

list(m = '10YR 4/4', thresh = 10, hues = c('10YR', '7.5YR'))
)

perform 500 simulations
s <- simulateColor(method = 'dE00', n = 500, parameters = p)

result is a list, use the first element
colorChart(s[[1]], chip.cex = 4)

increase the possible range of color chip sizes
colorChart(s[[1]], chip.cex = 4, chip.cex.min = 0.01, chip.cex.max = 2)

slightly funky support for neutral hues
N <- sprintf('N %s/', 2:8)
cols <- c(rep(N, times = 5), ric.big)

note special panel used to show neutral hues
colorChart(cols, size = FALSE, annotate = TRUE)

filter proportions below given threshold
colorChart(cols, size = FALSE, annotate = TRUE, threshold = 0.01,

chip.cex = 4, annotate.type = 'percentage')

colorContrast Metrics of Contrast Suitable for Comparing Soil Colors

Description

Pair-wise comparisons of Munsell color specifications, based on the NCSS color contrast classes
(Soil Survey Technical Note 2) and CIE delta-E 2000 metric.

Usage

colorContrast(m1, m2 = NULL)

Arguments

m1 vector of Munsell colors (’10YR 3/3’), must be >1 color if m2 is not specified

m2 optional vector of Munsell colors (’10YR 3/6’)

48 colorContrast

Details

This function is fully vectorized over elements of m1 and m2 when both are of the same length.
Recycling is not implemented. The minimum set of all pair-wise comparisons are performed within
elements of m1 when m2 is not specified. For example, comparisons between A, B, and C are limited
to AxB, AxC, and BxC. Use expand.grid() to generate suitable input from 1:many or many:1 type
comparisons. See this tutorial for an expanded discussion and more examples. Neutral colors are not
mentioned in SSTN2: in this function any comparison to a neutral color (e.g. ’N 3/’) are assigned a
delta-hue of 1. Since SSTN2 expects hues to be counted clock wise from 5R, it possible to get very
large delta-hue values for otherwise adjacent colors: ’5R’ vs. ’2.5R’. This will be addressed in an
update to the standards.

The most meaningful representation of color contrast is the CIE2000 (dE00) metric.

Value

data.frame with the following columns:

• m1: Munsell color 1

• m2: Munsell color 2

• dH: delta-hue, as computed by huePosition

• dV: delta-value, absolute value of difference in Munsell value (m1 vs. m2)

• dc: delta-chroma, absolute value of difference in Munsell chroma (m1 vs. m2)

• dE00: delta-E00, e.g. the CIE delta-E as refined in 2000

• cc: soil color contrast class, as specified in Soil Survey Technical Note 2.

Note

delta-E00 is computed by the farver package.

Author(s)

D.E. Beaudette

References

1. https://en.wikipedia.org/wiki/Color_difference

See Also

colorContrastPlot, huePosition, huePositionCircle

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

two sets of colors to compare
m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4')
m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3')

http://ncss-tech.github.io/AQP/aqp/color-contrast.html
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
https://CRAN.R-project.org/package=farver

colorContrastPlot 49

contrast metrics
colorContrast(m1, m2)

adjacent chips
colorContrast('10YR 3/3', '10YR 3/4')
colorContrast('10YR 3/3', '7.5YR 3/3')

highly contrasting colors
http://colour.granjow.net/fabercastell-polychromos.html
colorContrastPlot('10B 4/13', '10YR 10/15',
labels = c('helioblue-reddish', 'light cadmium yellow')
)

Note: neutral hues aren't defined in TN2
approximation / extension of the concept
colorContrast(m1 = 'N 3/', m2 = 'N 6/')

colorContrast(m1 = '10YR 3/3', m2 = 'N 3/')

pair-wise comparisons
m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', 'N 3/')
colorContrast(m1)

colorContrastPlot Color Contrast Plot

Description

A simple display of two sets of colors, NCSS color contrast class and CIE delta-E00.

Usage

colorContrastPlot(
m1,
m2,
col.cex = 1,
col.font = 2,
d.cex = 1,
cc.font = 3,
dE00.font = 1,
labels = c("m1", "m2"),
label.cex = 1,
label.font = 1,
printMetrics = TRUE,
...

)

50 colorContrastPlot

Arguments

m1 first set of Munsell colors for comparison (e.g. ’5YR 3/2’)

m2 second set of Munsell colors for comparison

col.cex scaling factor for color labels

col.font font for color labels

d.cex contrast for contrast metric labels

cc.font font for contrast class

dE00.font font for delta-E00

labels labels for compared colors, vector length 2

label.cex scaling factor for labels

label.font font for labels

printMetrics logical, print metrics between color swatches

... further arguments to colorspace::swatchplot

Note

This function requires the farver package for calculation of CIE delta-E00.

Author(s)

D.E. Beaudette

See Also

colorContrast()

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

two sets of colors to compare
m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4')
m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3')

contrast metrics
colorContrast(m1, m2)

graphical display
colorContrastPlot(m1, m2)

colorQuantiles 51

colorQuantiles Soil Color Range via Quantiles

Description

Estimate central tendency and spread of soil color using marginal quantiles and L1 median of
CIELAB coordinates.

Usage

colorQuantiles(soilColors, p = c(0.05, 0.5, 0.95))

Arguments

soilColors vector of R colors (sRGB colorspace)

p marginal quantiles of interest

Details

Colors are converted from sRGB to CIELAB (D65 illuminant), marginal quantiles of (L,A,B) co-
ordinates are estimated, and L1 median (L,A,B) is estimates. The closest Munsell chips (via Mun-
sell/CIELAB lookup table provided by munsell) and R colors are determined by locating chips
closest to the marginal quantiles and L1 median.

The results can be conveniently inspected using plotColorQuantiles().

Value

A List containing the following elements:

• marginal: data.frame containing marginal quantiles in CIELAB (D65), closest Munsell
chips, and dE00

• L1: L1 median CIELAB (D65) values, closest Munsell chip, and dE00

Author(s)

D.E. Beaudette

Examples

Not run:
example data, see manual page for details
data(sp5)

slice top 25 cm
24-25cm is the last slice
s <- dice(sp5, 0:24 ~ .)

check some of the data

52 colorVariation

par(mar=c(0,0,0,0))
plotSPC(sample(s, 25), divide.hz = FALSE, name = '', print.id = FALSE, width = 0.5)

colors
previewColors(unique(s$soil_color))

compute marginal quantiles and L1 median
cq <- colorQuantiles(s$soil_color)

simple graphical display of results
plotColorQuantiles(cq)

End(Not run)

colorVariation Quantitative Description of Color Variation

Description

This function computes several measures of "color variation", typically associated with soil colors
described in the Munsell system, using the CIE2000 dE (dE00) color contrast metric. The resulting
dE00 summaries map closely to color differences as perceived by "average human vision".

Usage

colorVariation(m, method = c("frequency", "centroid", "reference"), ref = NULL)

Arguments

m character vector of colors, described using the Munsell system e.g. c('10YR
3/3', '5YR 4/6')

method character, one of c('frequency', 'centroid', 'reference'), see Details

ref character, a reference color specified in the Munsell system when method =
'reference'

Details

dE00 values are computed according to method:

• ’frequency’: relative to most frequency color in m

• ’centroid’: relative to centroid (CIELAB coordinates) of colors specified in m

• ’reference’: relative to color specified in ref

Value

numeric dE00 summary of color variation

compareSites 53

Examples

m <- c('10YR 3/3', '10YR 4/4', '10YR 4/4', '5GY 6/8')
colorVariation(m)

compareSites Compare Site Level Attributes of a SoilProfileCollection

Description

Compare site level attributes of a SoilProfileCollection object, returning a distance matrix
conformal with the output from NCSP(). Values are within the range of 0-1.

Usage

compareSites(x, vars, weights = rep(1, times = length(vars)), ...)

Arguments

x SoilProfileCollection object

vars character vector listing one or more site level attributes of x

weights numeric vector, same length as vars, variable weighting

... additional arguments to cluster::daisy()

Details

This function is typically used in conjunction with the output from NCSP().

Value

dissimilarity / dist class object containing pair-wise distances, row/column names derived from
profile_id(x)

See Also

NCSP() cluster::daisy()

54 confusionIndex

compositeSPC Return a list representation of site and horizon level data

Description

compositeSPC() is a convenience function that returns a named list representation of the columns
from the @site and @horizons slots.

Usage

compositeSPC(object)

Arguments

object A SoilProfileCollection

Value

A list.

Author(s)

Andrew G. Brown.

confusionIndex Confusion Index

Description

Calculate the confusion index of Burrough et al., 1997.

Usage

confusionIndex(x)

Arguments

x vector of probabilities (0,1), should not contain NA

Value

A single numeric value.

Author(s)

D.E. Beaudette

contrastChart 55

References

Burrough, P.A., P.F.M. van Gaans, and R. Hootsmans. 1997. "Continuous Classification in Soil Sur-
vey: Spatial Correlation, Confusion and Boundaries." Geoderma 77: 115-35. doi:10.1016/S0016-
7061(97)00018-9.

Examples

a very simple example
p <- c(0.25, 0.25, 0.4, 0.05, 0.05)
confusionIndex(p)

for comparison
shannonEntropy(p)

contrastChart Color Contrast Chart

Description

Compare one or more pages from a simulated Munsell book of soil colors to a reference color.

Usage

contrastChart(
m,
hues,
ccAbbreviate = 1,
style = "hue",
gridLines = FALSE,
de00.cex = 0.6,
cc.cex = 0.6,
thresh = NULL,
returnData = FALSE

)

Arguments

m Munsell representation of a single color for comparison e.g. ’10YR 4/3’
hues vector of one or more Munsell hue pages to display
ccAbbreviate length of abbreviated contrast classes, use 0 to suppress labels
style ’hue’ or ’CC’, see details
gridLines logical, add grid lines to the color contrast chart
de00.cex character scaling applied to dE00 annotation
cc.cex character scaling applied to contrast class annotation
thresh threshold (<) applied to pair-wise comparisons and resulting color chips
returnData logical, return lattice figure + data used to generate the figure

56 contrastClass

Details

A simulated Munsell color book page or pages are used to demonstrate color contrast between all
chips and the reference color m (highlighted in red). NCSS color contrast class and CIE delta-E00
values are printed below all other color chips. Munsell color chips for chroma 5 and 7 are omitted,
but axis labels are retained as a reminder of this fact.

Setting style='hue' emphasizes the contrast classes and CIE delta-E00 of chips adjacent to m.
Setting style='CC' emphasizes adjacent chips according to respective contrast class via lattice
panels.

Two-way panels are used when multiple hues are provided and style='CC'. The default output can
be greatly enhanced via:

latticeExtra::useOuterStrips(..., strip = strip.custom(bg=grey(0.85)), strip.left
= strip.custom(bg=grey(0.85)))

Author(s)

D.E. Beaudette

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

single hue page
contrastChart(m = '10YR 3/3', hues = '10YR')

multiple hue pages
contrastChart(m = '10YR 3/3', hues = c('10YR', '2.5Y'))

contrast class, single hue
contrastChart(m = '10YR 3/3', hues = '10YR', style='CC')

contrast class, multiple hues
consider latticeExtra::useOuterStrips()
contrastChart(m = '10YR 5/6', hues = c('10YR', '2.5Y'), style='CC')

contrastClass Soil Color Contrast

Description

Determine soil color contrast class according to methods outlined in the Soil Survey Manual. This
function is typically called from colorContrast() which is simpler to use and provides more
information.

Usage

contrastClass(v1, c1, v2, c2, dH, dV, dC, verbose = FALSE)

contrastClass 57

Arguments

v1 Munsell value of first color

c1 Munsell chroma of first color

v2 Munsell value of second color

c2 Munsell chroma of second color

dH delta Hue

dV delta Value

dC delta Chroma

verbose return a list for testing rules/cases

Details

This function is fully vectorized but expects all inputs have the same length.

Value

A vector of color contrast classes (ordered factor). A list when verbose is TRUE.

Author(s)

D.E. Beaudette

References

• Soil Survey Technical Note 2 wayback machine URL

See Also

colorContrast

Examples

standard use, result is an ordered factor
10YR 6/3 vs 5YR 3/4
contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1)

verbose output, useful for testing rules/cases
10YR 6/3 vs 5YR 3/4
contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1, verbose = TRUE)

https://web.archive.org/web/20220704214918/https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053569

58 correctAWC

correctAWC Apply rock fragment or salt correction to available water content

Description

Apply rock fragment or salt correction to available water content

Usage

correctAWC(
awc,
total_rf = numeric(length(awc)),
gravel = NULL,
ec = NULL,
nullFragsAreZero = TRUE

)

Arguments

awc Numeric vector of available water capacities (e.g. from estimateAWC)

total_rf Numeric vector of rock fragment volume percentage, 0 - 100

gravel Numeric vector of gravel volume percentage, 0 - 100

ec Numeric vector of electrical conductivity, mmhos/cm
nullFragsAreZero

Interpret NA in total_rf, gravel or ec as 0? Default: TRUE

Value

A numeric vector (double) containing estimated available water capacities corrected for rock frag-
ments and salts

Examples

medium organic matter, loam texture
base.awc <- 0.18 # estimateAWC(texcl = "l", omcl = 2, na.rm = TRUE)

medium organic matter, loam texture w/ 23% rock fragments by volume
corrected.awc <- correctAWC(base.awc, total_rf = 23)
corrected.awc

medium organic matter, loam texture w/ 0% frags by volume and 8 mmhos/cm salts
salty.awc <- correctAWC(base.awc, total_rf = 0, ec = 8)
salty.awc

crit.clay.argillic 59

crit.clay.argillic Determines threshold (minimum) clay content for argillic upper bound

Description

Given a vector or matrix of "eluvial" horizon clay contents (\ crit.clay.argillic() returns a
vector or matrix of minimum clay contents (thresholds) that must be met for an argillic horizon clay
increase.

Usage

crit.clay.argillic(eluvial_clay_content)

Arguments

eluvial_clay_content

A numeric vector or matrix containing clay contents of potential "eluvial" hori-
zons. May contain NA.

Details

Uses the standard equations for clay contents less than 15 \ and 40 \ the definition of the argillic
horizon from 12th Edition Keys to Soil Taxonomy (Soil Survey Staff, 2014).

Value

A vector or matrix (input-dependent) containing minimum "illuvial" horizon clay contents (thresh-
olds) to be met for argillic horizon clay increase.

Note

This function is intended for identifying clay content threshold required for an argillic horizon.
These thresholds may not apply depending on the specifics of your soil. E.g. if the upper part of
argillic has been plowed (has Ap immediately over upper boundary) the clay increase requirement
can be waived (Soil Survey Staff, 2014).

Author(s)

Andrew Gene Brown

References

Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation
Service, Washington, DC.

See Also

getArgillicBounds, get.increase.matrix

60 denormalize

Examples

crit.clay.argillic uses different equations for clay content
less than 15 %, between 15 and 40 %, and >40 %

crit.clay.argillic(eluvial_clay_content=c(5, 20, 45))

denormalize Create a (redundant) horizon-level attribute from a site-level attribute

Description

Create a (redundant) horizon-level attribute from a site-level attribute. Specify a SoilProfileCol-
lection and a site-level attribute from that SPC (by name) to receive a vector of length equal to
the number of horizons containing the site-level values. This vector is directly usable with the
SoilProfileCollection horizon setter.

denormalize is the inverse operation for the formula interface that "normalizes" a horizon level
variable to site level:

site(object) <- ~ horizonvar

Usage

denormalize(object, attr)

Arguments

object A SoilProfileCollection

attr Site-level attribute name (character string) to denormalize to horizon.

Details

"Denormalization" is the process of trying to improve the read performance of a database, at the
expense of losing some write performance, by adding redundant copies of data or by grouping data.
Sometimes it is beneficial to have site-level attributes denormalized for grouping of horizon-level
data in analyses. denormalize achieves this result for SoilProfileCollections.

Value

A vector of values of equal length to the number of rows in the horizon table of the input SPC.

Author(s)

Andrew G. Brown, Dylan Beaudette

depthOf 61

Examples

data(sp1)

create a SoilProfileCollection from horizon data
depths(sp1) <- id ~ top + bottom

create random site-level attribute `sitevar` with a binary (0/1) outcome
sp1$sitevar <- round(runif(length(sp1)))

use denormalize() to create a mirror of sitevar in the horizon table
name the attribute something different (e.g. `hz.sitevar`) to
prevent collision with the site attribute
the attributes can have the same name but you will then need
site() or horizons() to access explicitly
sp1$hz.sitevar <- denormalize(sp1, 'sitevar')

compare number of profiles to number of sitevar assignments
length(sp1)
table(sp1$sitevar)

compare number of horizons to number of horizon-level copies of sitevar `hz.'sitevar`
nrow(sp1)
table(sp1$hz.sitevar)

depthOf Get top or bottom depths of horizons matching a regular expression
pattern

Description

The depthOf family of functions calculate depth of occurrence of a horizon designation pattern, or
any other value that can be coerced to character and matched with a regular expression.

If you need all depths of occurrence for a particular pattern, depthOf is what you are looking for.
minDepthOf and maxDepthOf are wrappers around depthOf that return the minimum and maximum
depth. They are all set up to handle missing values and missing "contacts" with the target pattern.

Usage

depthOf(
p,
pattern,
FUN = NULL,
top = TRUE,
hzdesgn = hzdesgnname(p, required = TRUE),
no.contact.depth = NULL,
no.contact.assigned = NA_real_,
na.rm = TRUE,
simplify = TRUE

62 depthOf

)

maxDepthOf(
p,
pattern,
top = TRUE,
hzdesgn = hzdesgnname(p, required = TRUE),
no.contact.depth = NULL,
no.contact.assigned = NA,
na.rm = TRUE,
simplify = TRUE

)

minDepthOf(
p,
pattern,
top = TRUE,
hzdesgn = hzdesgnname(p, required = TRUE),
no.contact.depth = NULL,
no.contact.assigned = NA,
na.rm = TRUE,
simplify = TRUE

)

Arguments

p a SoilProfileCollection

pattern a regular expression to match in the horizon designation column. See:hzdesgn

FUN a function that returns a single value, and takes argument na.rm

top should the top (TRUE) or bottom (FALSE) depth be returned for matching hori-
zons? Default: TRUE.

hzdesgn column name containing horizon designations. Default: guessHzDesgnName(p)

no.contact.depth

depth to assume that contact did not occur.

no.contact.assigned

depth to assign when a contact did not occur.

na.rm logical. Remove NA? (default: TRUE)

simplify logical. Return single profile results as vector (default: TRUE) or data.frame
(FALSE)

Value

a numeric vector containing specified depth(s) of horizons matching a pattern. If length(p) > 1
then a data.frame containing profile ID, horizon ID, top or bottom depths, horizon designation and
pattern.

depths 63

Author(s)

Andrew G. Brown

Examples

construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts",

hzname = c("A","AB","Bw","BC","R"),
hzdept = c(0, 20, 32, 42, 49),
hzdepb = c(20, 32, 42, 49, 200),
clay = c(19, 22, 22, 21, NA),
texcl = c("l","l","l", "l","br"),
d_value = c(5, 5, 5, 6, NA),
m_value = c(2.5, 3, 3, 4, NA),
m_chroma = c(2, 3, 4, 4, NA))

promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'

multiple horizons contain B
depthOf(spc, "B")

deepest top depth of horizon containing B
maxDepthOf(spc, "B")

shallowest top depth
minDepthOf(spc, "B")

deepest bottom depth
maxDepthOf(spc, "B", top = FALSE)

deepest bottom depth above 35cm
maxDepthOf(spc, "B", top = FALSE, no.contact.depth = 35)

assign infinity (Inf) if B horizon does not start within 10cm
minDepthOf(spc, "B", no.contact.depth = 10, no.contact.assigned = Inf)

depths Initialize a SoilProfileCollection from data.frame

Description
depths(<data.frame>) <- <formula>: Initialize SoilProfileCollection
depths(<SoilProfileCollection>): Extract profile ID and horizon depths from SoilProfileCol-
lection

64 depths

Usage

S4 method for signature 'SoilProfileCollection'
depths(x, hzID = FALSE, ...)

S4 replacement method for signature 'SoilProfileCollection'
depths(object) <- value

S4 replacement method for signature 'data.frame'
depths(object) <- value

Arguments

x A SoilProfileCollection

hzID Include horizon ID? Usually this is calculated from the (sorted) row index unless
hzidname()<- has been called. Default: FALSE

... not used

object An object to promote to SoilProfileCollection (inherits from data.frame)

value A formula specifying the unique profile ID, top and bottom depth column names

Details

The input horizon data, and the resulting profile order, is sorted based on unique profile ID and top
depth. ID columns are converted to character, depth columns are converted to integer. If NA values
exist in all of the top depths, a prototype with 1 horizon per profile ID is returned, with NA in all
non-essential columns. If the input object has 0 rows, a prototype with 0 horizons and 0 rows, but
same column names as object, is returned.

Value

a data.frame containing profile ID, top depth, and bottom depth

See Also

horizons() idname() hzidname() horizonDepths()

Examples

load a SoilProfileCollection
data(jacobs2000, package = "aqp")

depths(jacobs2000)
init SoilProfileCollection objects from data.frame of horizon data

load demo data
data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

depthWeights 65

plot
plot(sp1)

number of profiles
length(sp1)

number of horizons
nrow(sp1)

depthWeights Return a vector of contributing fractions over a depth interval

Description

depthWeights() calculates the contributing fraction for each pair of horizon top and bottom depths,
given an upper and lower boundary.

Usage

depthWeights(top, bottom, upper, lower)

Arguments

top A numeric vector of horizon top depths.

bottom A numeric vector of horizon bottom depths.

upper A unit length numeric vector with upper boundary.

lower A unit length numeric vector with lower boundary.

Value

A named list.

Author(s)

Andrew G. Brown.

66 diagnostic_hz,SoilProfileCollection-method

depth_units,SoilProfileCollection-method

Get depth units from metadata

Description

Get units of depth measurement from metadata. Default value is centimeters.

Usage

S4 method for signature 'SoilProfileCollection'
depth_units(object)

S4 replacement method for signature 'SoilProfileCollection'
depth_units(object) <- value

Arguments

object A SoilProfileCollection
value character, a value representing units. Default 'cm'.

Examples

data(sp5)

get depth units
du <- depth_units(sp5)

set alternate units; e.g. inches
depth_units(sp5) <- 'in'

replace original value (cm)
depth_units(sp5) <- du

diagnostic_hz,SoilProfileCollection-method

Get or Set Diagnostic Horizon data in a SoilProfileCollection

Description

Diagnostic horizons describe features of the soil relevant to taxonomic classification. A single
profile may have multiple diagnostic features or horizons, each of which may be comprised of
multiple horizons.

• diagnostic_hz() (get method): Get diagnostic feature data from a SoilProfileCollection.

• diagnostic_hz<- (set method): Set diagnostic feature data for a SoilProfileCollection. The
profile ID column from object (idname(object)) must be present in the replacement value
object.

dice,SoilProfileCollection-method 67

Usage

S4 method for signature 'SoilProfileCollection'
diagnostic_hz(object)

S4 replacement method for signature 'SoilProfileCollection'
diagnostic_hz(object) <- value

Arguments

object A SoilProfileCollection

value An object inheriting from data.frame

Examples

load test data
data(sp2)

promote to SPC
depths(sp2) <- id ~ top + bottom

assign two profiles a zone related to the mollic epipedon
newdata <- data.frame(id = c("hon-1","hon-17"),

featkind = "fixed-depth surface sample",
featdept = 0,
featdepb = 18)

do left join
diagnostic_hz(sp2) <- newdata

inspect site table: newvalue TRUE only for horizons
with top depth equal to zero
diagnostic_hz(sp2)

dice,SoilProfileCollection-method

Efficient Slicing of SoilProfileCollection Objects

Description

Cut ("dice") soil horizons into 1-unit thick slices. This function replaces aqp::slice(), which will
be deprecated in aqp 2.0.

Usage

S4 method for signature 'SoilProfileCollection'
dice(
x,

68 dice,SoilProfileCollection-method

fm = NULL,
SPC = TRUE,
pctMissing = FALSE,
fill = FALSE,
strict = TRUE,
byhz = TRUE,
verbose = FALSE

)

Arguments

x a SoilProfileCollection object
fm optional formula describing top depths and horizon level attributes to include:

integer.vector ~ var1 + var2 + var3 or integer.vector ~ . to include all
horizon level attributes. Specification of integer.vector forces fill = TRUE.
When NULL profiles are "diced" to depth and results will include all horizon level
attributes. Note on interpretation of integer.vector (slice tops)

SPC return the diced SoilPrfolileCollection, if FALSE a data.frame of horizon-
level attributes

pctMissing compute "percent missing data" by slice (when TRUE expect 6-8x longer run
time)

fill logical, fill with empty placeholder horizons in gaps within profiles, and/or,
above/below interval specified in fm. Automatically set to TRUE when LHS of
fm is specified. Backwards compatibility with slice is maintained by setting
fill = TRUE with or without fm.

strict perform horizon depth logic checking / flagging / removal
byhz Evaluate horizon depth logic at the horizon level (TRUE) or profile level (FALSE).

Invalid depth logic invokes HzDepthLogicSubset which removes offending pro-
files or horizon records.

verbose Print information about object size/memory usage. Default: FALSE

Details

For large and potentially messy collections that may include missing horizon depth logic errors,
consider using repairMissingHzDepths() before dice(). Consider using accumulateDepths()
before invoking dice() on collections that may contain old-style O horizon notation (e.g. 5-0cm).

Value

a SoilProfileCollection object, or data.frame when SPC = FALSE

Author(s)

D.E. Beaudette and A.G. Brown

See Also

repairMissingHzDepths(), accumulateDepths(), fillHzGaps()

duplicate 69

duplicate Duplicate Profiles of a SoilProfileCollection

Description

A simple function to duplicate the contents of a SoilProfileCollection object. Old profile IDs
are saved as a site-level attribute (oldID) and new IDs are generated using a numeric serial number.

Usage

duplicate(x, times = 3, oldID = ".oldID")

Arguments

x a SoilProfileCollection object with 1 or more profiles

times requested number of copies

oldID site-level attribute used to store the original profile IDs

Value

a SoilProfileCollection object

Author(s)

D.E. Beaudette

Examples

sample data
data('sp4')

promote to SPC
depths(sp4) <- id ~ top + bottom

duplicate each profile 2 times
d <- duplicate(sp4, times = 2)

graphical check
par(mar = c(0, 0, 3, 1))
plotSPC(d, color = 'Ca', width = 0.25)

70 electroStatics_1D

electroStatics_1D Label placement based on a simulation of electrostatic forces

Description

This function attempts to move labels along a 1D coordinate system such that overlap (as specified
by threshold) is minimized. An electrostatic simulation applies forces of repulsion between labels
that are within thresh (e.g. overlapping) and forces of attraction to a uniformly spaced sequence
to iteratively perturb affected labels until either no overlap is reported, or a maximum number of
iterations (maxIter) has been reached.

Usage

electroStatics_1D(
x,
thresh,
q = 1,
chargeDecayRate = 0.01,
QkA_GrowthRate = 0.05,
maxIter = 100,
tiny = 1e-04,
const = 0.001,
trace = FALSE,
...

)

Arguments

x numeric vector, pre-sorted sorted, without duplication, describing 1D label (par-
ticle) configuration

thresh numeric, overlap threshold, same as in fixOverlap()

q numeric, electrical charge (typically between 0.1 and 2)
chargeDecayRate

numeric, exponential decay rate constant for q as a function of iteration i

QkA_GrowthRate numeric, growth rate constant for Qk applied to attraction to uniform spacing of
labels, invoked when rank order is violated during the simulation

maxIter integer, maximum number of iterations before giving up

tiny numeric, 0-values replaced by this number to avoid division by 0 and infinite
forces

const numeric, empirical constant added to the 1D electrostatic force equation to
dampen oscillation: (Qk * Q1 * Q2) / (d^ex + const)

trace logical, include diagnostic output

... not used, absorbs additional arguments to fixOverlap()

electroStatics_1D 71

Details

Difficult overlap problems can be addressed by reducing thresh and increasing q. Large values of
q can lead to chaotic results.

This function will generate unpredictable output when x contains duplicate values.

This function requires input to be pre-sorted, although interesting "artistic" simulations will often
result from unsorted x.

Value

When trace = TRUE a list, otherwise numeric vector with converged attribute.

Author(s)

D.E. Beaudette and K.C. Thompson

See Also

fixOverlap(), SANN_1D()

Examples

vector of object locations, with potential overlap
x <- c(1, 2, 3, 3.3, 3.8, 5, 6, 7, 8, 9, 10)

full diagnostic output
z <- electroStatics_1D(x, thresh = 0.65, trace = TRUE, q = 1)
txt <- sprintf("Converged %s (%s iterations)", z$converged, length(z$cost))

plot(
seq_along(z$cost),
z$cost,
las = 1,
xlab = 'Iteration',
ylab = 'Overlap Cost',
type = 'b',
main = txt
)

abline(h = 0, lty = 2, col = 2)

final configuration only
xnew <- electroStatics_1D(x, thresh = 0.65, q = 1)

check for convergence
attr(xnew, 'converged')

compare original vs. modified
data.frame(orig = x, new = round(xnew, 2))

72 equivalentMunsellChips

equivalentMunsellChips

Identify "equivalent" (whole number value/chroma) Munsell chips

Description

Uses a pre-calculated lookup list (equivalent_munsell) based on pair-wise CIE2000 contrast
(dE00) of LAB color with D65 illuminant for all whole value/chroma "chips" in the aqp::munsell
data set.

The intention is to identify Munsell chips that may be "functionally equivalent" to some other given
whole value/chroma chip elsewhere in the Munsell color space – as discretized in the aqp::munsell
data table. This basic assumption needs to be validated against your end goal: probably by visual
inspection of some or all of the resulting sets. See colorContrast and colorContrastPlot.

"Equivalent" chips table are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default
Type 7 quantile) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to
a dE00 contrast threshold of approximately 2.16.

Usage

equivalentMunsellChips(hue = NULL, value = NULL, chroma = NULL)

Arguments

hue A character vector containing Munsell hues

value A numeric vector containing Munsell values (integer only)

chroma A numeric vector containing Munsell chromas (integer only)

Value

A named list; Each list element contains a data.frame with one or more rows of "equivalent" Mun-
sell, RGB and LAB color coordinates from munsell data set.

References

Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference For-
mula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR
research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf

Thomas Lin Pedersen, Berendea Nicolae and Romain François (2020). farver: High Performance
Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver

Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths,
Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Charac-
terization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193

See Also

colorContrast colorContrastPlot equivalent_munsell

equivalentMunsellChips 73

Examples

7.5YR 4/4 (the one and only)

equivalentMunsellChips("7.5YR", 4, 4)
#>
#> $`7.5YR 4/4`
#> hue value chroma r g b L A B
#> 8330 7.5YR 4 4 0.4923909 0.352334 0.2313328 41.26403 10.8689 23.5914

7.5YR 1/1 (two chips are equivalent; 3 row result)

equivalentMunsellChips("7.5YR", 1, 1)
#>
#> $`7.5YR 1/1`
#> hue value chroma r g b L A B
#> 1983 10YR 1 1 0.1345633 0.1087014 0.07606787 10.64787 1.621323 6.847629
#> 6189 5YR 1 1 0.1330994 0.1076359 0.09450179 10.63901 2.489012 3.515146
#> 8303 7.5YR 1 1 0.1329483 0.1082380 0.08862581 10.64210 2.065514 4.623922

10YR 6/8 (two chips are equivalent; 3 row result)

equivalentMunsellChips("10YR", 6, 8)
#>
#> $`10YR 6/8`
#> hue value chroma r g b L A B
#> 2039 10YR 6 7 0.7382230 0.5512957 0.2680260 61.76795 10.50886 44.78574
#> 2040 10YR 6 8 0.7519872 0.5472116 0.2157209 61.77496 11.83215 51.15496
#> 2041 10YR 6 9 0.7642826 0.5433189 0.1559069 61.78085 13.09599 57.49773

compare visually a very red color

veryred <- equivalentMunsellChips("10R", 6, 28)[[1]]

par(mar=c(0,0,1,1))

pie(rep(1, nrow(veryred)), col = with(veryred, munsell2rgb(hue, value, chroma)),
label = with(veryred, sprintf("%s %s/%s", hue, value, chroma)))

table(veryred$hue) # 2 hues
#>
#> 10R 7.5R
#> 8 17

table(veryred$value) # 2 values
#>
#> 5 6
#> 11 14

table(veryred$chroma) # 10 chromas
#>
#> 21 22 23 24 25 26 27 28 29 30
#> 1 2 2 3 3 4 3 3 2 2

74 equivalent_munsell

equivalent_munsell Indices of "equivalent" Munsell chips in the munsell data set

Description

A pre-calculated lookup list (made with farver::compare_colour) based on pair-wise color con-
trast (CIE2000 or dE00) evaluated over all "chips" in the aqp::munsell data set.
The intention is to identify Munsell chips that may be "functionally equivalent" to some other given
whole chip elsewhere in the Munsell color space – as discretized in the aqp::munsell lookup table.
"Equivalent" chips are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default Type
7 quantile) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a
dE00 threshold of approximately 2.15.
This is a naive (to the subtleties of human color perception, and overall magnitude of contrast be-
tween some of the "chips") but computationally consistent approach. Using the lookup list, as
opposed to manual contrast via e.g. farver::compare_colour may have some benefits for effi-
ciency in certain applications where the exact contrast value is not as important as the concept of
having some threshold that is non-zero, but very small.

Usage

data(equivalent_munsell)

Format

A named list with 8467 elements, each containing a numeric vector of indices corresponding to the
munsell data set, which has 8467 rows (unique, whole-number chips). Names have the format HUE
VALUE/CHROMA, e.g. "7.5YR 4/4"

References

Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference For-
mula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR
research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
Thomas Lin Pedersen, Berendea Nicolae and Romain Francois (2020). farver: High Performance
Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver
Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths,
Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Charac-
terization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193

See Also

equivalentMunsellChips

Examples

data(equivalent_munsell)

estimateAWC 75

estimateAWC Estimate available water capacity for fine-earth fraction

Description

Estimate available water capacity for fine-earth fraction

Usage

estimateAWC(texcl, omcl, precision = 2, FUN = mean, ...)

Arguments

texcl character, USDA textural class fine earth fraction

omcl integer, Organic matter class. 1: less than 1.5 percent, 2: less than 5, 3: greate
than 5

precision integer, Number of decimal places in result default: 2

FUN Function for interpolating between table values default: mean

... Additional arguments to FUN

Value

A numeric vector double containing estimated available water capacities for fine-earth fraction.

Examples

organic matter, loam texture, low medium and high OM
base.awc <- estimateAWC(c("l","l","l"), c(1, 2, 3), na.rm = TRUE)
base.awc

estimatePSCS Estimate boundaries of the U.S Soil Taxonomy Particle Size Control
Section

Description

Estimates the upper and lower boundary of the particle size control section for Mineral or Organic
soilsby applying a programmatic version of the particle size control section key from the Keys to
Soil Taxonomy (13th edition). See details for assumptions and required data elements.

76 estimatePSCS

Usage

estimatePSCS(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
clay.attr = hzmetaname(p, "clay", required = TRUE),
texcl.attr = hztexclname(p, required = TRUE),
lieutex = hzmetaname(p, "lieutex"),
tax_order_field = "tax_order",
bottom.pattern = "Cr|R|Cd|m",
simplify = TRUE,
...

)

Arguments

p A SoilProfileCollection

hzdesgn Name of the horizon attribute containing the horizon designation. Default hzdesgnname(p,
required = TRUE)

clay.attr Name of the horizon attribute containing clay contents. Default hzmetaname(p,
"clay", required = TRUE)

texcl.attr Name of the horizon attribute containing textural class (used for finding sandy
textures). Default hztexclname(p, required = TRUE)

lieutex Optional data element used in addition to the horizon designation to identify
kinds of organic soil material for soils with organic surfaces. Default: hzmetaname(p,
"lieutex")

tax_order_field

Name of the site attribute containing taxonomic order; for handling PSCS rules
for Andisols in lieu of lab data. May be NA or column missing altogether, in
which case Andisol PSC possibility is ignored.

bottom.pattern Regular expression pattern to match a root-restrictive contact. Default matches
Cr, R, Cd or m. This argument is passed to both minDepthOf() and getArgillicBounds().

simplify Return a length 2 vector with upper and lower boundary when p has length 1?
Default TRUE.

... additional arguments are passed to getArgillicBounds()

Details

Requires information to identify argillic horizons (clay contents, horizon designations) with getArgillicBounds()
as well as the presence of plow layers and surface organic soil material. Any getArgillicBounds()
arguments may be passed to estimatePSCS.

Also, requires information on taxonomic order to handle Andisols.

In aqp 2.1, particle size control sections of organic soils Histosols and Histels are supported. This
requires setting the "lieutex" horizon metadata column using hzmetaname<-() Horizon designa-
tions containing "f" or "W" are recognized as permafrost and water layers, respectively, for appli-
cation of the organic soils key to control sections. In lieu textures "SPM" and "PEAT" are used to

estimatePSCS 77

identify low density organic materials used for surface tier thickness. To avoid using the 160 cm
surface tier, set the "lieutex" column to any column that does not contain "SPM" or "PEAT" values.

WARNING: Soils in arenic or grossarenic subgroups, with fragipans, or with strongly contrasting
PSCs may not be classified correctly. The author would welcome a dataset to develop this function-
ality for.

Value

A numeric vector (when simplify=TRUE) containing the top and bottom depth of the particle size
control section. First value is top, second value is bottom. If p contains more than one profile, the
result is a data.frame with profile ID plus PSCS top and bottom depths.

Author(s)

Andrew Gene Brown

References

Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation
Service, Washington, DC.

See Also

getArgillicBounds(), getSurfaceHorizonDepth()

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

set required metadata
hzdesgnname(sp1) <- 'name'
hztexclname(sp1) <- 'texture'
hzmetaname(sp1, 'clay') <- 'prop'

x <- estimatePSCS(sp1)
x

change horizon texture and set inlieu texture column to turn
first profile into an organic soil
sp1$name[1:6] <- c("Oi1", "Oi2", "Oi3", "Oaf", "Cf1", "Cf2")
sp1$texture <- as.character(sp1$texture)
sp1$texture[1:6] <- c("PEAT", "PEAT", "PEAT", "MUCK", "GRVLS", "GRVLS")
sp1$bottom[6] <- 200
hzmetaname(sp1, 'lieutex') <- 'texture'

y <- estimatePSCS(sp1[1,], simplify = FALSE)

74cm lower boundary is 25cm past the upper boundary of permafrost (49cm)
but minimum depth is 100cm unless there is a root-limiting layer

78 estimateSoilColor

y

estimateSoilColor Estimate dry soil colors from moist soil colors and vice versa.

Description

Soil color is typically described at dry and moist conditions. This function attempts to estimate soil
color at dry or moist condition when one is missing. Estimation proceeds as:

• convert Munsell notation to CIELAB color coordinates via munsell2rgb()

• apply scaling, rotation, and translation parameters in CIELAB color space

• locate closest Munsell chip to CIELAB coordinates via col2munsell()

Estimation of dry from moist soil color state is not guaranteed to be symmetric with estimation of
moist from dry.

Usage

estimateSoilColor(hue, value, chroma, sourceMoistureState = c("dry", "moist"))

Arguments

hue vector of Munsell hue (’10YR’, ’2.5Y’, etc.)

value vector of Munsell value (2,2.5 2.5, 3, 5, 6, etc.)

chroma vector of Munsell chroma (2, 3, 4, etc.)
sourceMoistureState

character, source colors are either ’dry’ or ’moist’

Details

Scaling, rotation, and translation parameters for shifting between dry <–> moist CIELAB coordi-
nates was determined using vegan::procrustes(), from those official series descriptions (OSD)
where moist and dry soil colors were available.

Estimates for colors having a (dry or moist) Munsell value of 10 are not likely correct.

This is still a work in progress.

Value

data.frame of estimated colors in Munsell notation. The sigma column contains CIE2000 color
contrast metric values describing the perceptual distance between estimated color in CIELAB co-
ordinates and closest Munsell chip.

Author(s)

D.E. Beaudette

estimateSoilDepth 79

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

estimateSoilColor(hue = '10YR', value = 3, chroma = 3, sourceMoistureState = 'moist')

note that estimation is not symmetric
estimateSoilColor(hue = '10YR', value = 5, chroma = 3, sourceMoistureState = 'dry')

estimateSoilDepth Estimate Soil Depth

Description

Estimate the soil depth of a single profile within a SoilProfileCollection object. This function
would typically be called by profileApply().

Usage

estimateSoilDepth(
f,
name = hzdesgnname(f),
p = "Cr|R|Cd",
selection = min,
no.contact.depth = NULL,
no.contact.assigned = NULL

)

Arguments

f SoilProfileCollection object of length 1, e.g. a single profile
name name of the column that contains horizon designations
p REGEX pattern for determining "contact", or depth to some morphologic fea-

ture (e.g. Bt)
selection an R function applied in the presence of multiple matching horizons: min (de-

fault), max, mean, etc.
no.contact.depth

in the absence of contact matching p, a depth at which we can assume a standard
depth-to-contact

no.contact.assigned

value assigned when no contact is encountered at or below no.contact.depth

Details

The choice of a selection function usually follows:

min: the top of the first matching horizon, max: the top bot the last matching horizon, or possibly
mean: somewhere in-between.

80 estimateSoilDepth

Value

single value representing the depth to contact or no.contact.assigned

Author(s)

D.E. Beaudette and J.M. Skovlin

See Also

getSoilDepthClass, profileApply

Examples

consider a situation where there were multiple candidate
"contacts": 2 Cd horizons over an R

init hypothetical profile
d <- data.frame(

id = '1',
top = c(0, 10, 20, 30, 40, 50, 60),
bottom = c(10, 20, 30, 40, 50, 60, 80),
name = c('A', 'Bt1', 'Bt2', 'BC', 'Cd1', 'Cd2', 'R'),
stringsAsFactors = FALSE

)

upgrade to SPC
depths(d) <- id ~ top + bottom

init horizon designation
hzdesgnname(d) <- 'name'

visual check
par(mar = c(0, 0, 0, 2))
plotSPC(d, hz.depths = TRUE, name.style = 'center-center', cex.names = 1, width = 0.1)

top of the first Cd
estimateSoilDepth(d, name = 'name')

top of the first Cd
estimateSoilDepth(d, name = 'name', selection = min)

top of the R
estimateSoilDepth(d, name = 'name', selection = max)

top of the second Cd
estimateSoilDepth(d, name = 'name', selection = max, p = 'Cd')

another example

data(sp1)

estimateSoilDepth 81

depths(sp1) <- id ~ top + bottom

init horizon designation
hzdesgnname(d) <- 'name'

apply to each profile in a collection, and save as site-level attribute
sp1$depth <- profileApply(sp1, estimateSoilDepth, name='name')

this function can be used to "find" depth to any feature
that can be defined via REGEX pattern matching on the horizon name
for example, locate the depth to the top "Bt" horizon
returning NA when there is no match
sp1$top_Bt <- profileApply(

sp1, estimateSoilDepth,
name='name',
p='Bt',
no.contact.depth=0,
no.contact.assigned=NA

)

reduced margins
par(mar=c(1,1,1,2))
adjust default y-offset and depth scaling for following examples
plotSPC(sp1, y.offset=10, scaling.factor=0.5)

get plotting parameters for profile widths and depth scaling factors
lsp <- get("last_spc_plot", envir = aqp.env)

positions on x-axis, same for both depth and top "Bt" horizon
x.positions <- (1:length(sp1)) - lsp$width

annotate contact with unicode right-arrow
y-position is adjusted based on plot y-offset and scaling factor
y.positions <- lsp$y.offset + (sp1$depth * lsp$scaling.factor)
text(x.positions, y.positions, '\u2192', col='red', adj=1, cex=1.25, lwd=2)

annotate top "Bt" depth with unicode right-arrow
y-position is adjusted based on plot y-offset and scaling factor
y.positions <- lsp$y.offset + (sp1$top_Bt * lsp$scaling.factor)
text(x.positions, y.positions, '\u2192', col='blue', adj=1, cex=1.25, lwd=2)

Not run:
sample data
data(gopheridge, package='soilDB')

run on a single profile
estimateSoilDepth(gopheridge[1,], name = 'hzname')

apply to an entire collection
profileApply(gopheridge, estimateSoilDepth, name = 'hzname')

End(Not run)

82 evalGenHZ

evalGenHZ Evaluate Generalized Horizon Labels

Description

Data-driven evaluation of generalized horizon labels using nMDS and silhouette width.

Usage

evalGenHZ(
obj,
genhz = GHL(obj, required = TRUE),
vars,
non.matching.code = "not-used",
stand = TRUE,
metric = "euclidean"

)

Arguments

obj a SoilProfileCollection object

genhz name of horizon-level attribute containing generalized horizon labels

vars character vector of horizon-level attributes to include in the evaluation
non.matching.code

code used to represent horizons not assigned a generalized horizon label

stand standardize variables before computing distance matrix, passed to cluster::daisy()

metric distance metric, passed to cluster::daisy()

Details

Classic multidimensional scaling is performed via stats::cmdscale(). The input distance matrix
is generated by cluster::daisy() using (complete cases of) horizon-level attributes from obj as
named in vars.

Silhouette widths are computed via cluster::silhouette(). The input distance matrix is gener-
ated by cluster::daisy() using (complete cases of) horizon-level attributes from obj as named
in vars. Note that observations with genhz labels specified in non.matching.code are removed
filtered before calculation of the distance matrix.

Value

a list is returned containing:

• horizons: c('mds.1', mds.2', 'sil.width', 'neighbor')

• stats: mean and standard deviation vars, computed by generalized horizon label

• dist: the distance matrix as passed to stats::cmdscale()

evalMissingData 83

Author(s)

D.E. Beaudette

See Also

get.ml.hz()

evalMissingData Evaluate Missing Data within a SoilProfileCollection

Description

Evaluate missing data within a SoilProfileCollection object

Data completeness is evaluated by profile or by horizon. Profile-level evaluation is based on the
thickness of horizons (method = absolute) with complete horizon-level attributes (vars), option-
ally divided by the total thickness (method = relative). The REGEX pattern (p) is used to filter
non-soil horizons from the calculation.

Usage

evalMissingData(
x,
vars,
name = hzdesgnname(x),
p = "Cr|R|Cd",
method = c("relative", "absolute", "horizon")

)

Arguments

x SoilProfileCollection object

vars character vector, naming horizon-level attributes in x

name character, the name of a horizon-level attribute where horizon designations are
stored, defaults to hzdesgnname(x)

p character, REGEX pattern used to match non-soil horizons

method character, one of: ’relative’ (proportion of total) depth, ’absolute’ depth, or ’hori-
zon’ (fraction not-missing by horizon)

Value

A vector values ranging from 0 to 1 (method = 'relative') or 0 to maximum depth in specified
depth units (method = 'absolute') representing the quantity of non-missing data (as specified in
vars) for each profile. When method = 'horizon' a non-missing data fraction is returned for each
horizon.

84 evalMissingData

Author(s)

D.E. Beaudette

Examples

example data
data("jacobs2000")

fully populated
plotSPC(jacobs2000, name.style = 'center-center',

cex.names = 0.8, color = 'time_saturated')

missing some data
plotSPC(jacobs2000, name.style = 'center-center',

cex.names = 0.8, color = 'concentration_color')

very nearly complete
plotSPC(jacobs2000, name.style = 'center-center',

cex.names = 0.8, color = 'matrix_color')

variables to consider
v <- c('time_saturated', 'concentration_color', 'matrix_color')

compute data completeness by profile
ignore 2C horizons
jacobs2000$data.complete <- evalMissingData(

jacobs2000,
vars = v,
method = 'relative',
p = '2C'

)

jacobs2000$data.complete.abs <- evalMissingData(
jacobs2000,
vars = v,
method = 'absolute',
p = '2C'

)

compute data completeness by horizon
ignore 2C horizons
jacobs2000$hz.data.complete <- evalMissingData(

jacobs2000,
vars = v,
method = 'horizon',
p = '2C'

)

"fraction complete" by horizon
plotSPC(

explainPlotSPC 85

jacobs2000, name.style = 'center-center',
cex.names = 0.8, color = 'hz.data.complete'

)

rank on profile completeness
new.order <- order(jacobs2000$data.complete)

plot along data completeness ranking
plotSPC(

jacobs2000, name.style = 'center-center',
cex.names = 0.8, color = 'concentration_color',
plot.order = new.order

)

add relative completeness axis
note re-ordering of axis labels
axis(

side = 1, at = 1:length(jacobs2000),
labels = round(jacobs2000$data.complete[new.order], 2),
line = 0, cex.axis = 0.75

)

add absolute completeness (cm)
axis(

side = 1, at = 1:length(jacobs2000),
labels = jacobs2000$data.complete.abs[new.order],
line = 2.5, cex.axis=0.75

)

explainPlotSPC Visual Explanation for plotSPC

Description

Create a visual explanation for the many arguments to plotSPC. Call this function instead of
plotSPC, all objects after x are passed on to plotSPC. Nearly all of the figures in the Introduc-
tion to SoilProfileCollection Objects tutorial are created with this function.

Usage

explainPlotSPC(x, ...)

Arguments

x a SoilProfileCollection object

... arguments passed to plotSPC

https://ncss-tech.github.io/AQP/aqp/aqp-intro.html
https://ncss-tech.github.io/AQP/aqp/aqp-intro.html

86 explainPlotSPC

Value

a list of internally-used ordering vectors and graphical offsets / scaling factors

Author(s)

D.E. Beaudette

See Also

plotSPC

Examples

sample data
data(sp4)
depths(sp4) <- id ~ top + bottom

proposed vector of relative positions, overlap likely
pos <- c(1, 1.1, 3, 4, 5, 5.2, 7, 8, 9, 10)

try it
explainPlotSPC(sp4, name = 'name', relative.pos=pos)

attempt to fix using an integer sequence, short-circut will prevent adjustments
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(1:10))

attempt to adjust using defaults
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos))

attempt to adjust and tinker with defaults
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, adj = 0.2))

enforce larger space between
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7))

more complex adjustments required
pos <- c(1, 2, 3, 3.3, 5, 5.1, 5.5, 8, 9, 10)

tinker
explainPlotSPC(sp4, name = 'name', relative.pos = pos)
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos))

explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos,
thresh = 0.7))

explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos,
thresh = 0.7, adj = 0.2))

SANN: solution requires many iterations, and will not always converge
explainPlotSPC(sp4, name = 'name',
relative.pos = fixOverlap(pos, thresh = 0.85, adj = 0.2)
)

fillHzGaps 87

electrostatics: solution requires larger charge (q)
explainPlotSPC(sp4, name = 'name',
relative.pos = fixOverlap(pos, thresh = 0.85, method = 'E', q = 2)
)

fillHzGaps Find and Fill Horizon Gaps

Description

This function attempts to find "gaps" in the horizon records of a SoilProfileCollection object
and fill with placeholder horizons (profile ID, horizon ID, to/bottom depths, all else NA). Missing
horizon records between the top of each profile and to_top, or the bottom of each profile and
to_bottom are treated as gaps when those arguments are not NULL. You can use this function to
prepare a potentially messy SoilProfileCollection for subsequent analyses that are sensitive to
horizon sequence inconsistencies or require a conformal "rectangle" of data spanning known depths.

Gaps are defined as:

• within each profile, for horizons i to n_hz:
• bottom_i != top_i+1 (but only to i = 1:(n_hz - 1)

Usage

fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))

Arguments

x SoilProfileCollection object

flag logical, flag empty horizons that have been added. default: TRUE

to_top numeric, fill from shallowest top depth in each profile to specified depth? de-
fault: 0

to_bottom numeric, fill from deepest bottom depth in each profile to specified depth? de-
fault: aqp::max(x)

Value

a possibly modified SoilProfileCollection object

Author(s)

A.G. Brown and D.E. Beaudette

88 fillHzGaps

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

introduce depth logic errors
idx <- c(2, 6:7, 8, 12)
sp4$top[idx] <- NA

check
horizons(sp4)[idx,]

create gaps by removing logic errors
x <- HzDepthLogicSubset(sp4, byhz = TRUE)

check on removed horizons (hzID values)
metadata(x)$removed.horizons

inspect
par(mar = c(0, 0, 0, 2))
plotSPC(x, width = 0.3, default.color = 'royalblue',
name = 'hzID', name.style = 'center-center', cex.names = 0.8,
cex.id = 0.66)

fill gaps left by HzDepthLogicSubset()
z <- fillHzGaps(x, flag = TRUE)

graphical check
plotSPC(z, width = 0.3, color = '.filledGap', name = 'hzID',
show.legend = FALSE, name.style = 'center-center', cex.names = 0.8,
cex.id = 0.66)

fill top to 0 cm
z2 <- fillHzGaps(x, flag = TRUE, to_top = 0)
plotSPC(z2, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)

fill bottom to max(SPC)
z3 <- fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))
plotSPC(z3, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)

another example
data(sp4)
depths(sp4) <- id ~ top + bottom

remove 1st horizons from profiles 1:4
idx <- sp4[,, .FIRST, .HZID]
replaceHorizons(sp4) <- horizons(sp4)[-idx[1:4],]

prepare for dice()
z <- fillHzGaps(sp4, to_top = 0, to_bottom = 50, flag = TRUE)

empty-horizon padding is in place for formula interface to dice()
d <- dice(z, fm = 0:50 ~ .)

findOverlap 89

plotSPC(d, color = 'Ca', show.legend = FALSE)
plotSPC(d, color = '.filledGap', show.legend = FALSE)

findOverlap Find Overlap within a Sequence

Description

Establish which elements within a vector of horizontal positions overlap beyond a given threshold

Desc.

Usage

findOverlap(x, thresh)

overlapMetrics(x, thresh)

Arguments

x vector of relative horizontal positions, one for each profile

thresh threshold defining "overlap", typically < 1
@return a list:

• idx: unique index to overlapping elements in x

• ov: normalized overlap (see details)

Value

unique index to affected (overlapping) elements in x

Examples

x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

findOverlap(x, thresh = 0.5)

x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

overlapMetrics(x, thresh = 0.5)

90 fixOverlap

fixOverlap Fix Overlap within a Sequence

Description

Fix Overlap within a Sequence

Usage

fixOverlap(x, thresh = 0.6, method = c("S", "E"), trace = FALSE, ...)

Arguments

x vector of initial positions, pre-sorted

thresh numeric, overlap threshold defined on the same scale as x

method character vector, ’S’ for simulated annealing via SANN_1D() or ’E’ for electro-
static simulation via electroStatics_1D()

trace logical, return full output

... additional arguments to SANN_1D() or electroStatics_1D()

Value

When trace = FALSE, a vector of the same length as x, preserving rank-ordering and boundary
conditions. When trace = TRUE a list containing the new sequence along with information about
objective functions and decisions made during adjustment of x.

See Also

electroStatics_1D(), SANN_1D()

Examples

s <- c(1, 2, 2.3, 4, 5, 5, 7)

simulated annealing, solution is non-deterministic
fixOverlap(s, thresh = 0.6, method = 'S')

electrostatics-inspired simulation of particles
solution is deterministic
fixOverlap(s, thresh = 0.6, method = 'E')

create a very busy profile with lots of possible overlapping
depth annotation
x <- quickSPC(

"SPC:AAA|BBB|CCC|D|EEEEE|FF|GG|HH|I|I|JJ|KK|LL|M|N|O|P|QQQQ|RR|S|TTTTTT|U",
interval = 1

)

fixOverlap 91

convert horizon ID to numeric
x$z <- as.numeric(x$hzID)

plotSPC arguments
.a <- list(

width = 0.2,
hz.depths = TRUE,
name.style = 'center-center',
cex.names = 1.5,
depth.axis = FALSE,
name = NA,
color = 'z',
show.legend = FALSE,
print.id = FALSE,
col.palette = hcl.colors(n = 25, palette = 'Spectral', rev = TRUE)

)

set plotSPC default arguments
options(.aqp.plotSPC.args = .a)

wrapper function to test label collision solutions
testIt <- function(x, ...) {

plotSPC(x, ...)

a normalized index of label adjustment
.txt <- sprintf(
"LAI: %0.3f",
get('last_spc_plot', envir = aqp.env)$hz.depth.LAI

)
mtext(.txt, side = 1, at = 1, line = -2, cex = 0.8)

}

compare and contrast
op <- par(mar = c(0, 0, 0, 0), mfcol = c(1, 6))

testIt(x)
title('ES (defaults)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'S'))
title('SANN (defaults)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 1.5))
title('ES (q = 1.5)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 1))
title('ES (q = 1)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 0.5))
title('ES (q = 0.5)', line = -3)

92 flagOverlappingHz

testIt(x, fixOverlapArgs = list(method = 'E', q = 0.1))
title('ES (q = 0.1)', line = -3)

par(op)

flagOverlappingHz Flag perfectly overlapping horizons within a SoilProfileCollection

Description

Flag perfectly overlapping horizons within a SoilProfileCollection

Usage

flagOverlappingHz(x)

Arguments

x a SoilProfileCollection object

Details

Horizons with NA depths can be flagged as overlapping. Consider finding these horizons with
checkHzDepthLogic(byhz=TRUE) and removing or fixing them.

Value

logical vector with length (and order) matching the horizons of x

Author(s)

D.E. Beaudette, A.G. Brown

See Also

checkHzDepthLogic() fillHzGaps()

Examples

two overlapping horizons
z <- data.frame(

id = 'SPC',
top = c(0, 25, 25, 50, 75, 100, 100),
bottom = c(25, 50, 50, 75, 100, 125, 125)

)

init SPC

fragmentClasses 93

depths(z) <- id ~ top + bottom

flag perfectly overlapping horizons
z$.overlapFlag <- flagOverlappingHz(z)

thematic sketches
plotSPC(z, color = '.overlapFlag', hz.depths = TRUE,
depth.axis = FALSE, cex.names = 0.85)

fragmentClasses Coarse Fragment Class Labels and Diameter

Description

This is a convenience function for accessing coarse fragment class labels and associated diameter
(mm), as defined in various classification systems such as USDA, Unified, and AASHTO.

Usage

fragmentClasses(
sys = c("usda_simplified", "usda", "international", "unified", "aashto",
"mod.wentworth"),

flat = FALSE,
rounded = FALSE

)

Arguments

sys character, length 1. This is an abbreviated name used to select class labels and
fragment diameter.

flat logical. Fragments are flat, only used by USDA systems.

rounded logical. Fragments are rounded, only used by AASHTO system.

Value

named vector of fragment diameter in mm

References

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for
describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil
Survey Center, Lincoln, NE.

See Also

fragmentSieve()

94 fragmentSieve

Examples

use default system: "usda_simplified"
fragmentClasses()
fragmentClasses(flat = TRUE)

fragmentClasses(sys = 'usda')
fragmentClasses(sys = 'USDA', flat = TRUE)

fragmentClasses(sys = 'international')

fragmentClasses(sys = 'unified')

fragmentClasses(sys = 'aashto')
fragmentClasses(sys = 'aashto', rounded = TRUE)

fragmentClasses(sys = 'mod.wentworth')

fragmentSieve Sieve the Coarse Fraction of Soil

Description

Sieve applies thresholds to a numeric vector of fragment diameter values, returning fragment size
classes. Particle diameter thresholds are evaluated as d < threshold.

Usage

fragmentSieve(
diameter,
sieves = NULL,
ordered = FALSE,
prefix = "",
new_names = NULL,
...

)

Arguments

diameter numeric. Vector of diameters of coarse fragments to "sieve". Default sieves
are specified in millimeters.

sieves leave as NULL to use fragment class labels and diameters defined by fragmentClasses(),
or a named vector of fragment diameters. See examples.

ordered logical. Return as an ordered factor.

prefix character. Add a prefix to result names? Default: "" adds no prefix. For example
"para" might be used for size classes of pararock fragments.

new_names Optional: apply new labels to result classes. Should match length of sieves.

fragmentSieve 95

... additional arguments to fragmentClasses(), such as sys, flat, and rounded,
see examples.

Value

character. Size class labels based on names of sieves, new_names, and prefix (if specified).

References

Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger
(eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.

See Also

fragmentClasses()

Examples

use a simplified version of the USDA system
common within NRCS/SPSD and NCSS
fragmentSieve(c(30, 125, 180, 500, 1000))

pararock fragments
fragmentSieve(c(30, 125, 180, 500, 1000), prefix = 'para')

result as an ordered factor
fragmentSieve(c(30, 125, 180, 500, 1000), ordered = TRUE)

USDA system, flat size classes
fragmentSieve(c(30, 125, 180, 500, 1000), flat = TRUE)

alternative classification systems
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'usda')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'international')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'unified')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'aashto')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'mod.wentworth')

custom fragment labels / diameter
fragmentSieve(

c(30, 125, 180, 500, 1000),
sieves = c(clumps = 50, chunks = 300, blocks = 100000)

)

unnamed sieves, generic labels used
fragmentSieve(c(10, 50), sieves = c(30, 70))

fragmentSieve(c(10, 50), sieves = c(30, 70), ordered = TRUE)

96 generalize.hz

generalize.hz Generalize Horizon Names

Description

Generalize a vector of horizon names, based on new classes, and REGEX patterns. Or create a new
column ghl in a SoilProfileCollection (requires a horizon designation name to be defined for
the collection, see details)

Usage

generalize.hz(
x,
new,
pattern,
non.matching.code = "not-used",
hzdepm = NULL,
ordered = !missing(hzdepm),
na.rm = TRUE,
...

)

S4 method for signature 'character'
generalizeHz(
x,
new,
pattern,
non.matching.code = "not-used",
hzdepm = NULL,
ordered = !missing(hzdepm),
...

)

S4 method for signature 'SoilProfileCollection'
generalizeHz(
x,
new,
pattern,
non.matching.code = "not-used",
hzdepm = NULL,
ordered = !missing(hzdepm),
ghl = "genhz",
...

)

Arguments

x character vector of horizon names or a SoilProfileCollection object

generalize.hz 97

new character vector of generalized horizon labels (GHL)

pattern character vector of REGEX patterns, same length as new
non.matching.code

character, label used for any horizon not matched by pattern

hzdepm numeric vector of horizon mid-points; NA values in hzdepm will result in non.matching.code
(or NA if not defined) in result

ordered logical, default TRUE when hzdepm argument is specified

na.rm logical, default TRUE will ignore missing depths in calculating sort order when
hzdepm is specified and ordered=TRUE

... additional arguments passed to grep() such as perl = TRUE for advanced REGEX

ghl Generalized Horizon Designation column name (to be created/updated when x
is a SoilProfileCollection)

Details

When x is a SoilProfileCollection the ghl column will be updated with the factor results. This
requires that the "horizon designation name" metadata be defined for the collection to set the column
for input designations.

Value

factor (an ordered factor when ordered=TRUE) of the same length as x (if character) or as number
of horizons in x (if SoilProfileCollection)

Author(s)

D.E. Beaudette

References

Beaudette, D.E., Roudier, P., Skovlin, J. (2016). Probabilistic Representation of Genetic Soil Hori-
zons. In: Hartemink, A., Minasny, B. (eds) Digital Soil Morphometrics. Progress in Soil Science.
Springer, Cham. https://doi.org/10.1007/978-3-319-28295-4_18

See Also

hzdesgnname()

Examples

data(sp1)

check original distribution of hz designations
table(sp1$name)

generalized horizon labels
character vector input
sp1$genhz <- generalizeHz(

98 generalize.hz

sp1$name,
new = c('O','A','B','C','R'),
pattern = c('O', '^A','^B','C','R'),
ordered = TRUE

)

see how we did / what we missed
table(sp1$genhz, sp1$name)

a more advanced example, requries `perl = TRUE`
example data
x <- c('A', 'AC', 'Bt1', '^AC', 'C', 'BC', 'CB')

new labels
n <- c('A', '^AC', 'C')

patterns:
"A anywhere in the name"
"literal '^A' anywhere in the name"
"C anywhere in name, but without preceding A"
p <- c('A', '^A', '(?<!A)C')

note additional argument
res <- generalizeHz(

x,
new = n,
pattern = p,
perl = TRUE

)

double-check: OK
table(res, x)

apply to a SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

must set horizon designation metadata
hzdesgnname(sp1) <- 'name'

result is a SoilProfileCollection
x <- generalizeHz(

sp1,
new = c('O','A','B','C','R'),
pattern = c('O', '^A','^B','C','R'),
ordered = TRUE

)

GHL stored in 'genhz' column
x$genhz

GHL metadata is set

genhzTableToAdjMat 99

GHL(x)

genhzTableToAdjMat Convert cross-tabulation to adjacency matrix.

Description

Convert a cross-tabulation of e.g. original horizon designations vs. generalized horizon labels to
adjacency matrix form.

Usage

genhzTableToAdjMat(tab)

Arguments

tab table, cross-tabulation of original and generalized horizon labels e.g. table(original,
genhz)

Value

matrix of numeric values

Author(s)

D.E. Beaudette

genSlabLabels Generate Labels for Slabs

Description

This method is used by slab() for generating labels that assign IDs to layers in a SoilProfileCol-
lection

Usage

genSlabLabels(
slab.structure = 1,
max.d = NULL,
n.profiles = NULL,
spc = NULL,
diced = NULL,
...

)

100 get.increase.matrix

Arguments

slab.structure A user-defined slab thickness (defined by an integer), or user-defined structure
(numeric vector). See details for slab().

max.d Maximum depth
n.profiles Number of profiles
spc Optional: A SoilProfileCollection
diced Optional: The dice()-ed horizon-level data.frame corresponding to spc

... Additional arguments passed to dice() when spc is specified.

Details

The new routine used in aqp 2.0 requires that, at a minimum, the spc and slab.structure argu-
ments be specified.

Value

factor. slab IDs, labels are the segment top and bottom depth separated by "-"

See Also

slab()

get.increase.matrix Compute Pair-wise Distances of Soil Properties over Depth

Description

Computes pair-wise distance matrix to determine where an attribute increases within a specified
vertical distance threshold.

get.increase.depths performs the conversion of the square matrix output of get.increase.matrix
back to horizon top depth for where criteria were met.

Usage

get.increase.matrix(p, attr, threshold.fun, vertical.distance)

get.increase.depths(p, attr, threshold.fun, vertical.distance)

Arguments

p a SoilProfileCollection, containing a single profile
attr horizon attribute name to get the "increase" of
threshold.fun a function that returns the threshold (as a function of attr); may return a constant

single value
vertical.distance

the vertical distance (determined from difference SPC top depth variable) within
which increase must be met

get.increase.matrix 101

Details

Uses matrix outer product to determine all pair-wise differences in attr for the horizons of p. Sup-
plies attr to threshold.fun to determine the minimum value criterion to return TRUE in output
matrix for an "increase". Also, computes all pair-wise distances in depth dimension to determine
whether the vertical distance criteria have been met simultaneously with attr increase.

This function assumes that the threshold.fun supplied by the user returns either a constant or a
vector of equal length to its input.

Note that the threshold.fun result is allowed to contain NA, but that will result in no output for
affected cells.

get.increase.depths() performs the conversion of the square matrix output of get.increase.matrix
back to horizon top depth for where criteria were met.

Note that the threshold.fun result is allowed to contain NA, but that will result in no output for
affected cells.

Value

Returns a square logical matrix reflecting where the increase criteria were met.

get.increase.depths converts to horizon top depth by using above matrix output to determine
depths where increase is met.

Returns a numeric vector of depths where the increase requirement is met. For the argillic, the first
is the one of interest.

get.increase.depths() converts to horizon top depth by using above matrix output to determine
depths where increase is met.

Author(s)

Andrew Gene Brown

See Also

getArgillicBounds(), crit.clay.argillic()

getArgillicBounds() crit.clay.argillic()

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents
foo <- get.increase.matrix(p, threshold.fun = crit.clay.argillic,

attr = attr, vertical.distance = 30)
foo

data(sp1, package = 'aqp')

102 get.ml.hz

depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents
foo <- get.increase.depths(p, threshold.fun = crit.clay.argillic,

attr = attr, vertical.distance = 30)
foo

get.ml.hz Determine ML Horizon Boundaries

Description

This function accepts input from slab() (a data.frame) along with a vector of horizon names, and
returns a data.frame of the most likely horizon boundaries.

This function expects that x is a data.frame generated by slab(). If x was not generated by
slab(), then o.names is required.

Usage

get.ml.hz(x, o.names = attr(x, which = "original.levels"))

Arguments

x data.frame, output from slab()

o.names an optional character vector of horizon designations that will be used in the final
table

Value

A data.frame with the following columns:

• hz: horizon names

• top: horizon top depth

• bottom: horizon bottom depth

• confidence: integrated probability over thickness of each ML horizon, rounded to the nearest
integer

• pseudo.brier: A "pseudo"" Brier Score for a multi-class prediction, where the most-likely
horizon label is treated as the "correct" outcome. Details on the calculation for traditional
Brier Scores here: https://en.wikipedia.org/wiki/Brier_score. Lower values suggest
better agreement between ML horizon label and class-wise probabilities.

• mean.H: mean Shannon entropy (bits), derived from probabilities within each most-likely hori-
zon. Larger values suggest more confusion within each ML.

https://en.wikipedia.org/wiki/Brier_score

getArgillicBounds 103

Author(s)

D.E. Beaudette

References

Beaudette, D. E., Roudier, P., & Skovlin, J. (2016). Probabilistic representation of genetic soil
horizons. Digital soil morphometrics, 281-293.

See Also

slab()

Examples

init SPC
data(sp1)
depths(sp1) <- id ~ top + bottom

set horizon designation metadata
hzdesgnname(sp1) <- 'name'

generalize horizon designations from character vector
result is an ordered factor
sp1$genhz <- generalizeHz(

sp1$name,
new = c('O','A','B','C'),
pat = c('O', '^A','^B','C'),
ordered = TRUE

)

compute slice-wise GHL probability
so that it sums to contributing fraction
from 0-150cm
a <- slab(sp1, fm = ~ genhz, cpm = 1, slab.structure = 0:150)

note original GHL names are set by slab()
attr(a, 'original.levels')

generate table of ML horizonation
get.ml.hz(a)

getArgillicBounds Estimate upper and lower boundary of argillic diagnostic subsurface
horizon

104 getArgillicBounds

Description

getArgillicBounds estimates the upper and lower boundary of argillic diagnostic subsurface hori-
zon for a profile in a single-profile SoilProfileCollection object (p).

The upper boundary is where the clay increase threshold is met. The function uses crit.clay.argillic
as the threshold function for determining whether a clay increase occurs and get.increase.matrix
to determine whether the increase is met, whether vertical distance of increase is sufficiently small,
and in which horizon.

Usage

getArgillicBounds(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
clay.attr = hzmetaname(p, "clay", required = TRUE),
texcl.attr = hztexclname(p, required = TRUE),
require_t = TRUE,
bottom.pattern = "Cr|R|Cd",
lower.grad.pattern = "^[2-9]*B*CB*[^rtd]*[1-9]*$",
sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$",
vertical.distance = 30,
simplify = TRUE,
verbose = FALSE

)

Arguments

p A SoilProfileCollection

hzdesgn the name of the column/attribute containing the horizon designation; default="hzname"

clay.attr the name of the column/attribute containing the clay content; default="clay"

texcl.attr the name of the column/attribute containing the textural class (used for finding
sandy horizons); default="texcl"

require_t require a "t" subscript for positive identification of upper and lower bound of
argillic? default: TRUE

bottom.pattern regular expression passed to estimateSoilDepth to match the lower boundary
of the soil. default is "Cr|R|Cd" which approximately matches paralithic, lithic
and densic contacts.

lower.grad.pattern

this is a pattern for adjusting the bottom depth of the argillic horizon upwards
from the bottom depth of the soil. The absence of illuviation is used as a final
control on horizon pattern matching.

sandy.texture.pattern

this is a pattern for matching sandy textural classes: -S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$
vertical.distance

Vertical distance in which clay increase must be met. Default 30 cm

simplify Return a length 2 vector with upper and lower boundary when p has length 1?
Default TRUE.

getArgillicBounds 105

verbose Print out information about ’t’ subscripts, sandy textures, plow layers and lower
gradational horizons?

Details

The lower boundary is first approximated as the depth to a lithic/paralithic/densic contact, or some
other horizon matchable by a custom regular expression pattern. Subsequently, that boundary is
extended upwards to the end of "evidence of illuviation."

The depth to contact is estimated using ’bottom.pattern’ "Cr|R|Cd" by default. It matches anything
containing Cr, R or Cd.

The lower gradational horizon regular expression ‘lower.grad.pattern’ default is ^[2-9]*B*CB*[^rtd]*[1-9]*$}.
It matches anything that starts with a lithologic discontinuity (or none) and a C master horizon des-
ignation. May contain B as second horizon designation in transitional horizon. May not contain ’r’
or ’t’ subscript.

The minimum thickness of the argillic horizon is dependent on whether all subhorizons are "sandy"
or not. The sandy.texture.pattern default -S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$ cap-
tures USDA textural class fine earth fractions that meet "sandy" particle size class criteria.

There also is an option ‘require_t’ to omit the requirement for evidence of eluviation in form of ’t’
subscript in ’hzdesgn’. Even if "t" subscript is not required for positive identification, the presence
of lower gradational C horizons lacking ’t’ will still be used to modify the lower boundary upward
from a detected contact, if needed. If this behavior is not desired, just set ’lower.grad.pattern’ to
something that will not match any horizons in your data.

Value

Returns a numeric vector; first value is top depth, second value is bottom depth. If as.list is TRUE,
returns a list with top depth named "ubound" and bottom depth named "lbound". If p has more than
one profile or if simplify = FALSE the result is a data.frame containing profile ID, upper and lower
boundary columns.

Author(s)

Andrew G. Brown

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

set required metadata
hzdesgnname(sp1) <- 'name'
hztexclname(sp1) <- 'texture'
hzmetaname(sp1, 'clay') <- 'prop'

x <- getArgillicBounds(sp1)
x

106 getCambicBounds

getCambicBounds Find all intervals that are potentially part of a Cambic horizon

Description

Find all intervals that are potentially part of a Cambic horizon excluding those that are part of an
argillic horizon (defined either by depth interval or getArgillicBounds()).

There may be multiple cambic horizons (indexes) in a profile. Each cambic index has a top and
bottom depth associated: cambic_top and cambic_bottom. This result is designed to be used for
single profiles, or with profileApply(..., frameify = TRUE)

Usage

getCambicBounds(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
texcl.attr = hztexclname(p, required = TRUE),
clay.attr = hzmetaname(p, "clay", required = TRUE),
argi_bounds = NULL,
d_value = "d_value",
m_value = "m_value",
m_chroma = "m_chroma",
sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$",
...

)

Arguments

p A single-profile SoilProfileCollection

hzdesgn Column name containing horizon designations.

texcl.attr Arguments to getArgillicBounds()

clay.attr Arguments to getArgillicBounds()

argi_bounds Optional: numeric vector of length 2 with top and bottom of argillic; (Default:
NULL)

d_value Column name containing dry value. Default: d_value

m_value Column name containing moist value. Default: m_value

m_chroma Column name containing moist chroma Default: m_chroma
sandy.texture.pattern

this is a pattern for matching sandy textural classes: -S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$

... Arguments to getArgillicBounds()

Value

A data.frame containing profile, cambic indexes, along with top and bottom depths.

getClosestMunsellChip 107

Author(s)

Andrew G. Brown

Examples

construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts",

hzname = c("A","AB","Bw","BC","R"),
hzdept = c(0, 20, 32, 42, 49),
hzdepb = c(20, 32, 42, 49, 200),
clay = c(19, 22, 22, 21, NA),
texcl = c("l","l","l", "l","br"),
d_value = c(5, 5, 5, 6, NA),
m_value = c(2.5, 3, 3, 4, NA),
m_chroma = c(2, 3, 4, 4, NA))

promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb

set required metadata
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'
hzmetaname(spc, 'clay') <- 'clay'

print results in table
getCambicBounds(spc)

getClosestMunsellChip Get Approximate Munsell Chip

Description

Non-standard Munsell notation (’7.9YR 2.7/2.0’) can be matched (nearest-neighbor, no interpola-
tion) to the closest color within the munsell sRGB/CIELAB look-up table via getClosestMunsellChip().
A more accurate estimate of sRGB values from non-standard notation can be achieved with the
munsellinterpol package. For example, conversion from Munsell to CIELAB, assuming a D65
illuminant via: MunsellToLab('0.1Y 3.3/4.4', white='D65', adapt='Bradford').

Usage

getClosestMunsellChip(munsellColor, convertColors = TRUE, ...)

Arguments

munsellColor character vector of strings containing Munsell notation of color, e.g. ’10YR
4/3’, not NA-safe

convertColors logical, should parsed Munsell colors be converted into sRGB values

... further arguments to munsell2rgb

https://CRAN.R-project.org/package=munsellinterpol

108 getSoilDepthClass

Value

a data.frame when convertColors=TRUE, otherwise character vector

Examples

convert a non-standard color to closest "chip" in `munsell` look-up table
getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE)

convert directly to R color
getClosestMunsellChip('7.9YR 2.7/2.0')

special case for 2.5 value -> no rounding, we have these records in the conversion LUT
getClosestMunsellChip('7.5YR 2.5/2', convertColors = FALSE)

getClosestMunsellChip('7.5YR 6.8/4.4', convertColors = FALSE)

getLastHorizonID Get IDs of Deepest Horizons by Profile

Description

Return horizon IDs of the deepest horizon within each profile of a SoilProfileCollection. IDs
are returned in the same order as profile_id(x). Horizon top depths are used because there are
cases where bottom depths may be missing.

Usage

getLastHorizonID(x)

Arguments

x a SoilProfileCollection

getSoilDepthClass Generate Soil Depth Class Matrix

Description

Generate a boolean matrix of soil depth classes, actual soil depth class, and estimate of soil depth
from a SoilProfileCollection object. Soil depths are estimated using pattern matching applied
to horizon designations, by estimateSoilDepth(). The default REGEX pattern (p = 'Cr|R|Cd')
will match most "contacts" described using the USDA / Soil Taxonomy horizon designation con-
ventions.

getSoilDepthClass 109

Usage

getSoilDepthClass(
f,
depth.classes = c(very.shallow = 25, shallow = 50, mod.deep = 100, deep = 150,

very.deep = 10000),
...

)

Arguments

f a SoilProfileCollection object

depth.classes a named vector of classes and depth breaks

... arguments passed to estimateSoilDepth

Value

a data.frame containing soil depth and depth class for each profile, see examples

Author(s)

D.E. Beaudette and J.M. Skovlin

See Also

estimateSoilDepth

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom

generate depth-class matrix
sdc <- getSoilDepthClass(sp1, name = 'name')

inspect
head(sdc)

join back into sp1 as site-level data
site(sp1) <- sdc

Not run:
sample data
data(gopheridge, package='soilDB')

getSoilDepthClass(gopheridge, name = 'hzname')

End(Not run)

110 getSurfaceHorizonDepth

getSurfaceHorizonDepth

Determine thickness of horizons (continuous from surface) matching a
pattern

Description

Find the thickness of horizon designations, or any other character patterns, that are continuous from
the soil surface (depth = 0 or shallowest depth in profile).

Usage

getSurfaceHorizonDepth(
p,
pattern,
hzdesgn = hzdesgnname(p, required = TRUE),
simplify = TRUE

)

getMineralSoilSurfaceDepth(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
pattern = "O",
simplify = TRUE

)

getPlowLayerDepth(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
pattern = "^Ap[^b]*",
simplify = TRUE

)

Arguments

p a SoilProfileCollection

pattern a regular expression pattern to match for all horizons to be considered part of
the "surface".

hzdesgn column name containing horizon designation. Default: hzdesgnname(p, required
= TRUE).

simplify logical. Return single profile results as vector (default: TRUE) or data.frame
(FALSE)

getSurfaceHorizonDepth 111

Details

The horizon designation to match is specified with the regular expression pattern ’pattern’. All
horizons matching that pattern, that are continuous from the soil surface, count towards the depth /
thickness value that is ultimately returned. For instance: horizon designations: A1-A2-A3-C-Ab ,
would return A3 bottom depth given pattern = "^A[1-9]*$".

getSurfaceHorizonDepth is used by getPlowLayerDepth for matching Ap horizons; and, it is
used by getMineralSoilSurfaceDepth to find the thickness of O horizons in lieu of lab data.

Value

a numeric value corresponding to the bottom depth of the last horizon matching ’pattern’ that is
contiguous with other matching horizons up to the soil surface. If length(p) > 1 then a data.frame
containing profile ID, horizon ID, top or bottom depths, horizon designation and pattern.

Author(s)

Andrew G. Brown

Examples

library(aqp)
data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
q <- sp1[2]

look at horizon designations in p and q
p$name
q$name

thickness of all surface horizons containing A
getSurfaceHorizonDepth(p, pattern = 'A', hzdesgn = 'name')

thickness of all surface horizons that start with A
getSurfaceHorizonDepth(p, pattern = '^A', hzdesgn = 'name')

thickness of all surface horizons that start with A, and the A is not followed by B
getSurfaceHorizonDepth(p, pattern = '^A[^B]*', hzdesgn = 'name')

thickness of all surface horizons that start with A
followed by a number from _2_ to 9 (returns ZERO)
getSurfaceHorizonDepth(p, pattern = '^A[2-9]*', hzdesgn = 'name')

getPlowLayerDepth matches first two horizons in fake Ap horizon data with "buried Ap"
p$aphorizons <- c("Ap1","Ap2","AB", rep('C', nrow(p) - 4), "Apb")
getPlowLayerDepth(p, hzdesgn = 'aphorizons')

getMineralSoilSurfaceDepthmatches first 3 horizons in fake O horizon data
p$ohorizons <- c("Oi1","Oi2","Oe", rep('C', nrow(p) - 4), "2C")

112 GHL

getMineralSoilSurfaceDepth(p, hzdesgn='ohorizons')

matches first Oi horizon with original horizon designations of pedon 2
getMineralSoilSurfaceDepth(q, hzdesgn='name')

GHL Get or Set Generalized Horizon Label (GHL) Column Name

Description

GHL(): Get column name containing generalized horizon labels
GHL<-: Set generalized horizon label column name

Usage

S4 method for signature 'SoilProfileCollection'
GHL(object, required = FALSE)

S4 replacement method for signature 'SoilProfileCollection'
GHL(object, required = FALSE) <- value

Arguments

object a SoilProfileCollection

required logical, is this attribute required? If it is, set to TRUE to trigger error on invalid
value.

value character, name of column containing generalized horizon labels

Details

Store the column name containing generalized horizon labels in the metadata slot of the SoilPro-
fileCollection.

Examples

data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

set horizon designation column
GHL(sp1) <- "name"

get horizon designation column
GHL(sp1)

glom,SoilProfileCollection-method 113

glom,SoilProfileCollection-method

Subset soil horizon data using a depth or depth interval

Description

Make a "clod" of horizons from a SoilProfileCollection given a point or a depth interval to intersect.
The interval [z1,z2] may be profile-specific (equal in length to p), or may be recycled over all
profiles (if boundaries are length 1). For "point" intersection, z2 may be left as the default value
NULL.

trunc() is a wrapper method (using S4 generic) for glom() where truncate=TRUE

Usage

S4 method for signature 'SoilProfileCollection'
glom(
p,
z1,
z2 = NULL,
ids = FALSE,
df = FALSE,
truncate = FALSE,
invert = FALSE,
fill = FALSE,
modality = "all",
drop = !fill,
...

)

S4 method for signature 'SoilProfileCollection'
trunc(x, z1, z2, ...)

Arguments

p A SoilProfileCollection

z1 numeric vector of top depth to intersect horizon (required). Can be an expression
involving siteNames(p) or quoted column name. Should evaluate to numeric
length 1 or length equal to length(p)

z2 numeric vector bottom depth of intersection interval (optional). Can also be an
expression involving siteNames(p) or quoted column name. Should evaluate to
numeric length 1, length equal to length(p) or NULL. Default: NULL is "point"
intersection

ids return only horizon IDs? default: FALSE

df return a data.frame, by intersection with horizons(p)? default: FALSE

truncate truncate horizon top and bottom depths to z1 and z2? default: FALSE

114 glom,SoilProfileCollection-method

invert get horizons outside the interval [z1,z2]? default: FALSE

fill keep sites and preserve order for profiles that do not have horizons in interval by
filling with a single horizon with NA top and bottom depth. default: FALSE

modality default: "all" return all horizons; or modality = "thickest") to return the
thickest horizon in interval. If multiple horizons have equal thickness, the first
(shallowest) is returned.

drop Inverted alias of fill for consistency with other methods. When drop=FALSE,
filling occurs.

... trunc(): additional arguments passed to glom()

x A SoilProfileCollection

Details

"To glom" is "to steal" or to "become stuck or attached to". The word is related to the compound
"glomalin", which is a glycoprotein produced by mycorrhizal fungi in soil.

The full depth range of horizons included within the interval are returned (a "ragged" SoilProfileCol-
lection) unless the truncate argument is set as TRUE. Horizon intersection is based on unique ID
hzidname(spc) and depth range of interest. Profiles that lack data in the range of interest will be
dropped from the resulting SoilProfileCollection.

If inverting results with invert, it is possible that thick horizons (whose boundaries span wider
than the specified interval) will be split into two horizons, where previously they were one. This
may make the results from ids = TRUE different from what you expect, as they will be based on a
profile with an "extra" horizon and re-calculated unique horizon ID (hzidname(spc)) "hzID".

Value

a SoilProfileCollection, data.frame, or a vector of horizon IDs. NULL if no result.

Author(s)

Andrew G. Brown

See Also

glomApply trunc

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- glom(sp1, 25, 150)

28 horizons

glom,SoilProfileCollection-method 115

nrow(p)

inspect graphically
par(mar = c(1,1,3,1))
plot(p, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

glom(..., truncate = TRUE)

p2 <- glom(sp1, 25, 150, truncate = TRUE)

28 horizons
nrow(p2)

inspect graphically
par(mar = c(1,1,3,1))
plot(p2, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

glom(..., truncate = TRUE, invert = TRUE)

p3 <- glom(sp1, 25, 150, truncate = TRUE, invert = TRUE)

45 horizons
nrow(p3)

inspect graphically
par(mar = c(1,1,3,1))
plot(p3, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

profile-specific interval, using expressions evaluated within sp1@site

calculate some new site-level variables containing target interval
sp1$glom_top <- (1:9) * 10
sp1$glom_bottom <- 10 + sp1$glom_top

glom evaluates non-standard expressions using siteNames(sp1) column names
p4 <- glom(sp1, glom_top / 2, glom_bottom * 1.2, truncate = TRUE)

inspect graphically
par(mar = c(1,1,3,1))
plot(p4, color = "prop", max.depth = 200)

load sample data
data("sp3")

promote to SPC
depths(sp3) <- id ~ top + bottom

TRUNCATE all profiles in sp3 to [0,25]

116 glomApply

set up plot parameters
par(mfrow=c(2,1), mar=c(0,0,0,0))

full profiles
plot(sp3)

trunc'd profiles
plot(trunc(sp3, 0, 25))

glomApply Subset an SPC by applying glom to each profile

Description

glomApply() is a function used for subsetting SoilProfileCollection objects by depth. It is a wrapper
around glom which is intended to subset single-profile SPCs based on depth intervals/intersection.

glomApply works by accepting a function .fun as argument. This function is used on each profile
to process a multi-profile SPC for input to glom (via profileApply). For each profile, .fun returns
a 2-length numeric vector of top and bottom boundaries glom arguments: z1, z2.

glomApply provides the option to generate profile-specific glom depths for a large SPC and handles
iteration and rebuilding of a subset SPC object. Optional arguments include: truncate to cut
the boundaries to specified [z1, z2]; invert to the portion outside [z1, z2], modality to either
"all" horizons or "thickest" horizon in the glom interval. ... are various expressions you can
run on the individual profiles using NSE, similar to mutate.

Usage

glomApply(
object,
.fun = NULL,
truncate = FALSE,
invert = FALSE,
modality = "all",
...,
chunk.size = 100

)

Arguments

object A SoilProfileCollection

.fun A function that returns vector with top and bottom depth (z1 and z2 arguments
to glom) for a single profile p (as passed by profileApply)

truncate Truncate horizon top and bottom depths to [z1, z2]

invert Truncate horizon top and bottom depths to [z1, z2] and then invert result?

modality Aggregation method for glom result. Default "all": return all horizons; "thickest":
return (shallowest) thickest horizon

glomApply 117

... A set of comma-delimited R expressions that resolve to a transformation to be
applied to a single profile e.g glomApply(hzdept = max(hzdept) - hzdept)
like aqp::mutate

chunk.size Chunk size parameter for profileApply

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

See Also

glom trunc

glom glomApply

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp3)
depths(sp3) <- id ~ top + bottom

init horizon designation column in metadata, used by estimateSoilDepth
hzdesgnname(sp3) <- 'name'

constant depths, whole horizon returns by default
plot(glomApply(sp3, function(p) c(25,100)))

constant depths, truncated
#(see aqp::trunc for helper function)
plot(glomApply(sp3, function(p) c(25,30), truncate = TRUE))

constant depths, inverted
plot(glomApply(sp3, function(p) c(25,100), invert = TRUE))

constant depths, inverted + truncated (same as above)
plot(glomApply(sp3, function(p) c(25,30), invert = TRUE, truncate=TRUE))

random boundaries in each profile
plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3))))))

random boundaries in each profile (truncated)
plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))), truncate = TRUE))

calculate some boundaries as site level attribtes
sp3$glom_top <- profileApply(sp3, getMineralSoilSurfaceDepth)
sp3$glom_bottom <- profileApply(sp3, estimateSoilDepth)

118 groupedProfilePlot

use site level attributes for glom intervals for each profile
plot(glomApply(sp3, function(p) return(c(p$glom_top, p$glom_bottom))))

grepSPC Subset SPC with pattern-matching for text-based attributes

Description

grepSPC() is a shorthand function for subsetting SoilProfileCollection objects. For exam-
ple, by filter(grepl(spc, ...)) or filter(stringr::str_detect(spc, ...)). It provides
pattern matching for a single text-based site or horizon level attribute.

Usage

grepSPC(object, attr, pattern, ...)

Arguments

object A SoilProfileCollection

attr A character vector (column in object) for matching patterns against.

pattern REGEX pattern to match in attr

... Additional arguments are passed to grep()

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

groupedProfilePlot Grouped Soil Profile Plot

Description

Plot a collection of soil profiles, sorted by group.

The left-right ordering of groups can be adjusted by converting groups into a factor and explicitly
setting factor levels. Alpha-numeric ordering is used for all other types.

groupedProfilePlot 119

Usage

groupedProfilePlot(
x,
groups,
group.name.offset = -5,
group.name.cex = 0.75,
group.line.col = "RoyalBlue",
group.line.lwd = 2,
group.line.lty = 2,
break.style = c("line", "arrow", "both"),
break.offset = 0.5,
arrow.offset = group.name.offset + 5,
arrow.length = 0.1,
...

)

Arguments

x a SoilProfileCollection object

groups the name of a site-level attribute that defines groups, factor levels will influence
plotting order

group.name.offset

vertical offset for group names, single numeric value or vector of offsets

group.name.cex font size for group names

group.line.col color for line that splits groups

group.line.lwd width of line that splits groups

group.line.lty style of line that splits groups

break.style style of group boundaries: "line", "arrow", "both"

break.offset horizontal offset used to place vertical breaks and/or arrows, shifted slightly to
the right of default when hz.depths=TRUE is passed to plotSPC()

arrow.offset vertical offset for "arrow" style boundaries, single numeric value or vector of
offsets

arrow.length value passed to arrows to define arrow head size

... further arguments to plotSPC

Author(s)

D.E. Beaudette

See Also

plotSPC

120 groupedProfilePlot

Examples

sample data
data(sp1)
convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

add a groups
sp1$group.2 <- sprintf("%s-%s", rev(LETTERS[1:3]), sp1$group)

convert fake groupt to factor with new levels
sp1$group.3 <- factor(sp1$group.2, levels=c('C-2', 'B-2', 'A-2', 'C-1', 'B-1', 'A-1'))

plot profiles, sorted and annotated by 'group' (integers)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group', max.depth=150, group.name.offset = -5, id.style='side')

plot profiles, sorted and annotated by 'group.2' (characters)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group.2', max.depth=150, group.name.offset = -5, id.style='side')

plot profiles, sorted and annotated by 'group.3' (characters)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group.3', max.depth=150, group.name.offset = -5, id.style='side')

make fake site-level attribute and adjust levels
sp1$new.group <- sample(letters[1:3], size=length(sp1), replace=TRUE)

tabulate pedons / group
tab <- table(sp1$new.group)

sort large -> small
tab <- sort(tab, decreasing = TRUE)

set levels based on sorted tabulation
assign custom labels
sp1$new.group <- factor(sp1$new.group, levels=names(tab),
labels=paste0(names(tab), ' (', tab, ')'))

groupedProfilePlot(sp1, groups='new.group', max.depth=150,
group.name.offset = -10, id.style='side')

offsets can be set using a vector of values, recycled as needed
groupedProfilePlot(sp1, groups='new.group', max.depth=150,
group.name.offset=c(-10, -5), id.style='side')

annotate with arrows instead of vertical lines
groupedProfilePlot(sp1, groups='new.group', max.depth=150,

groupSPC 121

group.name.offset=c(-10, -12), break.style='arrow', arrow.offset=-3,
group.line.lty = 1, group.line.lwd = 1, id.style='side')

Not run:
more complete example using data from soilDB package
data(loafercreek, package='soilDB')
par(mar=c(1,1,1,1))
lines
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10)

arrows
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10, break.style ='arrow', group.line.lty = 1,
group.line.lwd = 1)

both
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10, break.style ='both', group.line.lty = 1,
group.line.lwd = 1)

End(Not run)

groupSPC Store groupings within a profile collection.

Description

Store groupings within a profile collection.

Usage

groupSPC(object, ...)

Arguments

object SoilProfileCollection.

... One or more expressions evaluated within the context of object that resolve to
vectors that can be coerced to factor "groups."

122 guessGenHzLevels

guessGenHzLevels Guess Appropriate Ordering for Generalized Horizon Labels

Description

This function makes an (educated) guess at an appropriate set of levels for generalized horizon
labels using the median of horizon depth mid-points.

Usage

guessGenHzLevels(x, hz = GHL(x, required = TRUE))

Arguments

x a SoilProfileCollection object

hz name of horizon-level attribute containing generalized horizon labels, see details

Details

This function is useful when groups of horizons have been generalized via some method other than
generalize.hz. For example, it may be useful to generalize horizons using labels derived from
slice depths. The default sorting of these labels will not follow a logical depth-wise sorting when
converted to a factor. guessGenHzLevels does a good job of "guessing" the proper ordering of
these labels based on median horizon depth mid-point.

Value

a list:

levels a vector of levels sorted by median horizon depth mid-point

median.depths a vector of median horizon mid-points

Author(s)

D.E. Beaudette

See Also

generalize.hz

Examples

load some example data
data(sp1, package='aqp')

upgrade to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

guessHzAttrName 123

generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

note: levels are in the order in which originally defined:
levels(sp1$genhz)

generalize horizons by depth slice
s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ .)
s$slice <- paste0(s$top, ' cm')
not a factor
levels(s$slice)

the proper ordering of these new labels can be guessed from horizon depths
guessGenHzLevels(s, 'slice')

convert to factor, and set proper order
s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels)

that is better
levels(s$slice)

guessHzAttrName Guess Horizon Slot Column Names

Description

guessHzAttrName(): Guess the horizon column name where possible/preferred formative ele-
ments are known. There is a preference for records where more optional requirements are met
to handle cases where there will be many matches. For example, working with soil data one might
have "low, RV and high" total clay, as well as clay fractions. One could distinguish between these
different measurements using standard formative elements for column names from the database of
interest. Result is the first match in horizonNames(x) with the most required plus optional patterns
matched.

e.g. guessHzAttrName(x, attr="clay", optional=c("total", "_r")) matches (claytotal_r
== totalclay_r) over (clay_r == claytotal == totalclay) over clay.

guessHzDesgnName(): DEPRECATED This follows the historic convention used by aqp::plotSPC()
looking for "hzname" or other column names containing the regular expression "name". If the pat-
tern "name" is not found, the pattern "desgn" is searched as a fallback, as "hzdesgn" or "hz_desgn"
are other common column naming schemes for horizon designation name.

guessHzTexClName(): DEPRECATED This function is used to provide a texture class attribute
column name to functions. It will use regular expressions to match "texcl" which is typically the
texture of the fine earth fraction, without modifiers or in-lieu textures. Alternately, it will match
"texture" for cases where "texcl" is absent (e.g. in NASIS Component Horizon).

124 guessHzAttrName

Usage

guessHzAttrName(x, attr, optional = NULL, verbose = TRUE, required = FALSE)

guessHzDesgnName(x, required = FALSE)

guessHzTexClName(x, required = FALSE)

Arguments

x A SoilProfileCollection

attr character. A regular expression containing required formative element of at-
tribute name.

optional character. Vector of regular expression(s) containing optional formative ele-
ments of attribute name.

verbose logical. Produce message output about guesses? Default: TRUE

required logical Default: FALSE. Is this attribute required? If it is, set to TRUE to trigger
error on invalid value.

Value

Character containing horizon attribute column name. Result is the first match in horizonNames(x)
with the most required plus optional patterns matched.

Author(s)

Andrew G. Brown

Examples

a has the required attr pattern, but none of the optional
a <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),

clay=c(18,19))
depths(a) <- id ~ top + bottom

guessHzAttrName(a, attr="clay", optional=c("total", "_r"))

b has requried attr pattern, and one of the opional patterns
notice that it also contains "clay" but preferentially matches more optional patterns
b <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),

clay=c(0.18,0.19), clay_r=c(18,19))
depths(b) <- id ~ top + bottom

guessHzAttrName(b, attr="clay", optional=c("total", "_r"))

c has total and _r (both optional) on either side of clay
having all of the optional patterns plus required is best evidence, and first
column containing that combination will be returned
c <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),

totalclay_r=c(18,19), claytotal_r=c(0.18,0.19))

harden.melanization 125

depths(c) <- id ~ top + bottom

guessHzAttrName(c, attr="clay", optional=c("total", "_r"))

harden.melanization Harden (1982) Melanization

Description

Calculate "melanization" component of "Profile Development Index" after Harden (1982) "A quan-
titative index of soil development from field descriptions: Examples from a chronosequence in
central California". Accepts vectorized inputs for value and reference value to produce vector out-
put. A convenient use case would be to apply this on a profile-specific basis, where the value_ref
has a single value, and value is a vector of length equal to the number of horizons within the upper
100 cm.

Usage

harden.melanization(value, value_ref)

Arguments

value numeric vector containing Munsell values

value_ref A numeric vector containing Munsell value(s) for reference material

Details

In Harden (1982), "melanization" is calculated relative to a reference parent material for all horizons
within 100cm of the soil surface. In addition, several other non-color components are normalized
relative to a maximum value and summed to obtain the overall Profile Development Index.

Value

A numeric vector reflecting horizon darkening relative to a reference (e.g. parent) material.

Author(s)

Andrew G. Brown

References

Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Exam-
ples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-
7061(82)90037-4

126 harden.melanization

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

library(aqp)
data("jacobs2000", package="aqp")

LEFT JOIN hue, value, chroma matrix color columns
horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))],

parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE))

calculate a mixed 150-200cm color ~"parent material"

jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) {

and derive the parent material from the 150-200cm interval
p150_200 <- glom(p, 150, 200, truncate = TRUE)
p150_200$thickness <- p150_200$bottom - p150_200$top

mix colors
clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')])
mixMunsell(clrs$matrix_color_munsell, w = clrs$thickness)$munsell

})

segment profile into 1cm slices (for proper depth weighting)
jacobs2000$melan <- profileApply(jacobs2000, function(p) {

sum the melanization index over the 0-100cm interval
p0_100 <- hz_segment(p, 0:100)

ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE)

sum(harden.melanization(
value = as.numeric(p0_100$value),
value_ref = as.numeric(ccol$value)), na.rm = TRUE)

})

jacobs2000$melanorder <- order(jacobs2000$melan)

Plot in order of increasing Melanization index

plotSPC(jacobs2000,
color = "matrix_color",
label = "melan",
plot.order = jacobs2000$melanorder,
max.depth = 250
)

segments(
x0 = 0.5,

harden.rubification 127

x1 = length(jacobs2000) + 0.5,
y0 = c(0,100,150,200),
y1 = c(0,100,150,200),
lty = 2

)

Add [estimated] parent material color swatches
lapply(seq_along(jacobs2000$c_horizon_color), function(i) {

rect(i - 0.15, 250, i + 0.15, 225,
col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$melanorder[i]]))

})

harden.rubification Harden (1982) Rubification

Description

Calculate "rubification" component of "Profile Development Index" after Harden (1982) "A quan-
titative index of soil development from field descriptions: Examples from a chronosequence in
central California". Accepts vectorized inputs for hue and chroma to produce vector output.

In Harden (1982) "rubification" is calculated relative to a reference parent material. Several other
non-color components are normalized relative to a maximum value and summed to obtain the over-
all Profile Development Index.

Usage

harden.rubification(hue, chroma, hue_ref, chroma_ref)

Arguments

hue A character vector containing Munsell hues (e.g. "7.5YR")
chroma A numeric vector containing Munsell chromas
hue_ref A character vector containing Munsell hue(s) (e.g. "10YR") for reference mate-

rial
chroma_ref A numeric vector containing Munsell chroma(s) for reference material

Value

A numeric vector reflecting horizon redness increase relative to a reference (e.g. parent) material.

Author(s)

Andrew G. Brown

References

Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Exam-
ples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-
7061(82)90037-4

128 harden.rubification

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

library(aqp)
data("jacobs2000", package="aqp")

LEFT JOIN hue, value, chroma matrix color columns
horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))],

parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE))

#' # calculate a mixed 150-200cm color ~"parent material"
jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) {

and derive the parent material from the 150-200cm interval
p150_200 <- glom(p, 150, 200, truncate = TRUE)
p150_200$thickness <- p150_200$bottom - p150_200$top

subset colors and thickness
clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')])

simulate a subtractive mixture using thickness as weight
mixMunsell(
clrs$matrix_color_munsell,
w = clrs$thickness,
mixingMethod = 'exact')$munsell

})

segment profile into 1cm slices (for proper depth weighting)
jacobs2000$rubif <- profileApply(jacobs2000, function(p) {

sum the melanization index over the 0-100cm interval
p0_100 <- hz_segment(p, 0:100)

ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE)

sum(harden.rubification(
hue = p0_100$hue,
chroma = as.numeric(p0_100$chroma),
hue_ref = ccol$hue,
chroma_ref = as.numeric(ccol$chroma)

), na.rm = TRUE)

})

jacobs2000$rubiforder <- order(jacobs2000$rubif)

Plot in order of increasing Rubification index

plotSPC(jacobs2000,
color = "matrix_color",
label = "rubif",

harmonize,SoilProfileCollection-method 129

plot.order = jacobs2000$rubiforder,
max.depth = 250
)

segments(
x0 = 0.5,
x1 = length(jacobs2000) + 0.5,
y0 = c(0,100,150,200),
y1 = c(0,100,150,200),
lty = 2

)

Add [estimated] parent material color swatches
trash <- sapply(seq_along(jacobs2000$c_horizon_color), function(i) {

rect(i - 0.15, 250, i + 0.15, 225,
col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$rubiforder[i]]))

})

harmonize,SoilProfileCollection-method

Harmonize a property by profile-level denormalization for convenient
visualization or analysis of ranges

Description

It is sometimes convenient to be able to "denormalize" to a SoilProfileCollection with fewer
attributes but more profiles. This is helpful wherever calculations are made on a profile basis and
ranges or repeated measures are depicted with multiple attributes per soil horizon.

harmonize is most commonly used for creating "comparison" soil profile sketches with plotSPC–
where the thematic attribute is derived from multiple data sources or summary statistics (such as
quantiles of a property for Low-RV-High). However, the method more generally applies wherever
one wants to alias between multiple columns containing "similar" data as input to an algorithm.

Data are "harmonized" to a common attribute names specified by the names of list elements in
x.names. Profiles are essentially duplicated. In order to satisfy uniqueness constraints of the
SoilProfileCollection, the label from the sub-elements of x.names are used to disambiguate
profiles. A new column in the site table is calculated to reflect these groupings and facilitate filter-
ing. See examples below.

Usage

S4 method for signature 'SoilProfileCollection'
harmonize(x, x.names, keep.cols = NULL, grp.name = "hgroup")

Arguments

x A SoilProfileCollection.

x.names a named list of character vectors specifying target names, profile ID suffixes and
source attribute names for harmonization

130 harmonize,SoilProfileCollection-method

keep.cols a character vector of column names to keep unaltered from the horizon data

grp.name a character vector with column name to store grouping variable in site table
(default: "hgroup")

Details

If attributes reflecting the same or similar property within a soil layer have different names (e.g.
socQ05, socQ50, socQ95) it is sometimes inconvenient to work with them as multiple attributes
within the same profile. These similar attributes may need to be analyzed together, or in sequence
by profile, displayed using the same name or using a common scale. It is also useful to be able to
alias different data sources that have the same attributes with different names.

Each list element in x.names specifies a single "harmonization," which is comprised of one or more
mappings from new to old. Each named "sub-element" of x.names specifies the name and attribute
to use for updating the profile ID and site table of the duplicated profiles.

Value

A (redundant) SoilProfileCollection, with one profile for each set of harmonizations specified
by x.names.

Author(s)

Andrew G. Brown

Examples

single source "harmonization" of single-profile with range -> single attribute, multi-profile

make some test data
spc <- combine(lapply(1:10, random_profile, SPC = TRUE))

assume that p1, p2 and p3 are the low RV and high quantiles for a hypothetical property "foo"
h1 <- harmonize(spc, x.names = list(foo = c(q05 = "p1", q50 = "p2", q95 = "p3")))

inspect result
plotSPC(h1, color = "foo")

filter with calculated "harmonized group" to get just RV profiles
plotSPC(subset(h1, hgroup == "q50"), color="foo")

single source, two properties at once; with common labels: "method1" "method2"

assume that p1, p2 are measurements by two (!=) methods for a hypothetical property "foo"
p3, p4 are measurements by same two methods for a hypothetical property "bar"
h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),

bar = c(method1 = "p3", method2 = "p4")))
plotSPC(h3, color = "foo")
plotSPC(h3, color = "bar")
head(horizons(h3))

a slight modification, "method 1" onlyused for "foo" and "method 3" for "bar"

hasDarkColors 131

h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),
bar = c(method2 = "p3", method3 = "p4")))

plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method3)
plotSPC(h3, color = "bar") # likewise for bar (*_method1)

#' the new labels need not match across harmonizations -- not sure how useful this is but it works
h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),

bar = c(method3 = "p3", method4 = "p4")))
plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method 3 + 4)
plotSPC(h3, color = "bar") # likewise for bar (*_method 1 + 2)

two-source harmonization

make test data
spc1 <- combine(lapply(LETTERS[1:5], random_profile, SPC = TRUE))
spc2 <- combine(lapply(letters[1:5], random_profile, SPC = TRUE))

h4 <- combine(list(harmonize(spc1, list(foo = c(transect1 = "p4"))), # foo is p4 in dataset 1
harmonize(spc2, list(foo = c(transect2 = "p2"))))) # foo is p2 in dataset 2

same property with different name in two different datasets
plotSPC(h4, color = "foo")

many source harmonization

make test datasets (n=10); highly redundant IDs (1:3 repeated)
spcs <- lapply(1:10, function(x) pbindlist(lapply(1:3, random_profile, SPC = TRUE)))

randomly varying column name for demo (in each dataset, foo could could be p1 thru p5)
rcolname <- paste0("p", round(runif(10, 0.5, 5.5)))

iterate over data sources
bigspc <- combine(lapply(1:length(spcs), function(i) {

assume each data source has a unique name for the property "foo"
xn <- rcolname[i]

set names attribute to be equal to index i [creating unique profile IDs]
i.e. 2_10 will be profile ID 2 from 10th dataset
names(xn) <- i

harmonize each data source, using unique column name and target name "foo"
harmonize(spcs[[i]], x.names = list(foo = xn))

}))

inspect a subset
plotSPC(bigspc[1:30,], color = "foo")

hasDarkColors Find horizons with colors darker than a Munsell hue, value, chroma
threshold

132 hasDarkColors

Description

hasDarkColors returns a boolean value by horizon representing whether darkness thresholds are
met. The code is fully vectorized and deals with missing data and optional thresholds.

Default arguments are set up for "5-3-3 colors" – the basic criteria for Mollic/Umbric epipedon/mineral
soil darkness. Any of the thresholds or column names can be altered. Any thresholds that are set
equal to NA will be ignored.

Usage

hasDarkColors(
p,
d_hue = NA,
m_hue = NA,
d_value = 5,
d_chroma = NA,
m_value = 3,
m_chroma = 3,
dhuenm = "d_hue",
dvalnm = "d_value",
dchrnm = "d_chroma",
mhuenm = "m_hue",
mvalnm = "m_value",
mchrnm = "m_chroma"

)

Arguments

p A SoilProfileCollection.

d_hue Optional: character vector of dry hues to match (default: NA)

m_hue Optional: character vector of moist hues to match (default: NA)

d_value Maximum value of dry value (default: 5)

d_chroma Optional: Maximum value of dry chroma (default: NA)

m_value Maximum value of moist value (default: 3)

m_chroma Maximum value of moist chroma (default: 3)

dhuenm Column name containing dry hue.

dvalnm Column name containing dry value.

dchrnm Column name containing dry chroma.

mhuenm Column name containing moist hue.

mvalnm Column name containing moist value.

mchrnm Column name containing moist chroma.

Value

Boolean value (for each horizon in p) reflecting whether "darkness" criteria are met.

horizonColorIndices 133

Author(s)

Andrew G. Brown

Examples

construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs",

hzdesgn = c("A","AB","Bt","BCt","R"),
hzdept = c(0, 20, 32, 42, 49),
hzdepb = c(20, 32, 42, 49, 200),
d_value = c(5, 5, 5, 6, NA),
m_value = c(2.5, 3, 3, 4, NA),
m_chroma = c(2, 3, 4, 4, NA))

promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb

print results in table
data.frame(id = spc[[idname(spc)]],

hz_desgn = spc$hzdesgn,
has_dark_colors = hasDarkColors(spc))

horizonColorIndices Horizon Color Indices

Description

Calculate basic horizon-level color indices for a SoilProfileCollection. Basic indices do not require
aggregation over the whole profile or comparison to a "reference" (e.g. parent material) color.
Includes Hurst (1977) Redness Index, Barron-Torrent Redness Index (1986) and Buntley-Westin
Index (1965). This is a wrapper method around several horizon-level indices. See the individual
functions for more details.

Usage

horizonColorIndices(p, hue = "m_hue", value = "m_value", chroma = "m_chroma")

Arguments

p A SoilProfileCollection

hue Column name containing moist hue; default: "m_hue"

value Column name containing moist value; default: "m_value"

chroma Column name containing moist chroma; default: "m_chroma"

Value

A data.frame containing unique pedon and horizon IDs and horizon-level color indices.

134 horizonDepths<-

Author(s)

Andrew G. Brown

See Also

hurst.redness barron.torrent.redness.LAB buntley.westin.index

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp1)

promote sp1 data to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

move site data
site(sp1) <- ~ group

use Munsell color notation as horizon name
sp1$m <- sprintf("%s %s/%s", sp1$hue, sp1$value, sp1$chroma)

compute indices
merged into `sp1` with left-join on hzidname(sp1)
horizons(sp1) <- horizonColorIndices(sp1, hue="hue", value="value", chroma="chroma")

visualize
par(mar = c(0, 1, 3, 1))
plotSPC(sp1, color='hurst_redness', name = 'm')
plotSPC(sp1, color='barron_torrent_redness', name = 'm')
plotSPC(sp1, color='buntley_westin', name = 'm')

horizonDepths<- Set horizon depth column names

Description

Set column name containing horizon ID

Get column names containing horizon depths

Usage

S4 replacement method for signature 'SoilProfileCollection'
horizonDepths(object) <- value

S4 method for signature 'SoilProfileCollection'
horizonDepths(object)

horizonNames<- 135

Arguments

object a SoilProfileCollection

value a character vector of length two with names of columns containing numeric top
and bottom depths

horizonNames<- Set horizon column names

Description

Set horizon column names

Get names of columns in horizon table.

Usage

S4 replacement method for signature 'SoilProfileCollection'
horizonNames(object) <- value

S4 method for signature 'SoilProfileCollection'
horizonNames(object)

Arguments

object a SoilProfileCollection

value a unique vector of equal length to number of columns in horizons length(horizonNames(object))

horizons,SoilProfileCollection-method

Retrieve horizon data from SoilProfileCollection

Description

Get horizon data from SoilProfileCollection. Result is returned in the same data.frame class used
to initially construct the SoilProfileCollection.

Horizon data in an object inheriting from data.frame can easily be added via merge (LEFT JOIN).
There must be one or more same-named columns (with at least some matching data) on the left and
right hand side to facilitate the join: horizons(spc) <- newdata

Usage

S4 method for signature 'SoilProfileCollection'
horizons(object)

S4 replacement method for signature 'SoilProfileCollection'
horizons(object) <- value

136 huePosition

Arguments

object A SoilProfileCollection

value An object inheriting data.frame

Examples

load test data
data(sp2)

promote to SPC
depths(sp2) <- id ~ top + bottom

assign true to surface horizon
newdata <- data.frame(top = 0,

newvalue = TRUE)

do left join
horizons(sp2) <- newdata

inspect site table: newvalue TRUE only for horizons
with top depth equal to zero
horizons(sp2)

huePosition Munsell Hue Reference and Position Searching

Description

The 40 Munsell hues are typically arranged from 5R to 2.5R moving clock wise on the unit circle.
This function matches a vector of hues to positions on that circle, with options for setting a custom
origin or search direction.

This function is fully vectorized.

Usage

huePosition(
x,
returnHues = FALSE,
includeNeutral = FALSE,
origin = "5R",
direction = c("cw", "ccw")

)

huePosition 137

Arguments

x character vector of hues, e.g. c(’10YR’, ’5YR’), optional if returnHues = TRUE

returnHues logical, should the full set of Munsell hues be returned? See details.

includeNeutral logical, add ’N’ to the end of the full set of Munsell hues

origin hue to be used as the starting point for position searches (position 1)

direction indexing direction, should be cw (clock wise) or ccw (counter-clock wise)

Value

A vector of integer hue positions is returned, of the same length and order as x. If returnHues =
TRUE, then all hue names and ordering are returned and x is ignored.

Author(s)

D.E. Beaudette

References

• Soil Survey Technical Note 2 wayback machine URL

• Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.

See Also

colorContrast, huePositionCircle

Examples

get hue ordering for setting levels of a factor
huePosition(returnHues = TRUE)

get hue ordering including N (neutral)
huePosition(returnHues = TRUE, includeNeutral = TRUE)

get position of the '10YR' hue, relative to standard origin of '5R'
should be 7
huePosition(x = '10YR')

get position of the '10YR' hue, relative to standard origin of '5YR'
should be 3
huePosition(x = '10YR', origin = '5YR')

visualize
op <- par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black')

huePositionCircle(huePosition(returnHues = TRUE, origin = '5YR'))

par(op)

https://web.archive.org/web/20220704214918/https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053569

138 huePositionCircle

huePositionCircle Visual Description of Munsell Hue Ordering

Description

Munsell hues are arranged on the unit circle with "neutral" at the center.

Usage

huePositionCircle(
hues = huePosition(returnHues = TRUE),
value = 6,
chroma = 10,
chip.cex = 5.5,
label.cex = 0.66,
seg.adj = 0.8,
seg.col = grey(0.4),
plot = TRUE,
simulateCVD = NULL,
CVDseverity = 1

)

Arguments

hues vector of Munsell hues, commonly derived from huePosition()

value single integer, Munsell value used to create an actual color
chroma single integer, Munsell chroma used to create an actual color
chip.cex numeric, scaling for color chips
label.cex numeric, scaling labels
seg.adj numeric, scaling for line segment cues
seg.col single color, color used for line segment cues
plot logical, generate output on the current graphics device
simulateCVD simulate color vision deficiencies with the colorspace package, should be the

character representation of a function name, one of: ’deutan’, ’protan’, or ’tri-
tan’.

CVDseverity numeric value between 0 (none) and 1 (total), describing the severity of the color
vision deficiency

Value

an invisible data.frame of data used to create the figure

Note

The best results are obtained when setting margins to zero, and inverting foreground / background
colors. For example: par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black').

hurst.redness 139

References

Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

better graphics defaults
op <- par(
mar = c(0, 0, 0, 0),
fg = 'white',
bg = 'black',
xpd = NA
)

full set of hues, as generated by huePosition(returnHues = TRUE)
huePositionCircle()

just a few hues
huePositionCircle(hues = c('5R', '5Y', '5G', '5B', '5P'))

adjust Munsell value and chroma
huePositionCircle(value = 3, chroma = 6)

reset graphics state
par(op)

hurst.redness Hurst (1977) Redness Index

Description

Calculate Redness Index after Hurst (1977) "Visual estimation of iron in saprolite" DOI: 10.1130/0016-
7606(1977)88<174:VEOIIS>2.0.CO;2. Accepts vectorized inputs for hue, value and chroma, pro-
duces vector output.

Usage

hurst.redness(hue, value, chroma)

Arguments

hue A character vector containing Munsell hues (e.g. "7.5YR")

value A numeric vector containing Munsell values

chroma A numeric vector containing Munsell chromas

140 hzAbove

Value

A numeric vector of horizon redness index (lower values = redder).

Author(s)

Andrew G. Brown

References

Hurst, V.J. (1977) Visual estimation of iron in saprolite. GSA Bulletin. 88(2): 174–176. doi:
https://doi.org/10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2

hzAbove Horizons Above or Below

Description

Horizons Above or Below

Usage

hzAbove(x, ..., offset = 1, SPC = TRUE, simplify = SPC)

hzBelow(x, ..., offset = 1, SPC = TRUE, simplify = SPC)

hzOffset(x, hzid, offset, SPC = FALSE, simplify = TRUE)

Arguments

x A SoilProfileCollection

... Comma-separated set of R expressions that evaluate as TRUE or FALSE in context
of horizon data frame. Length for individual expressions matches number of
horizons, in x.

offset Integer offset in terms of SoilProfileCollection [,j] (horizon/slice) index

SPC Return a SoilProfileCollection? Default TRUE for horizon_* methods.

simplify If TRUE return a vector (all elements combined), or a list (1 element per profile).
If SPC is TRUE then simplify is TRUE.

hzid A vector of target horizon IDs. These are calculated from ... for horizon_*()
methods

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using
hzAbove()/hzBelow() inside another function, all expressions used in ... should be in terms of
variables that are in the horizon data frame.

HzDepthLogicSubset 141

Value

A SoilProfileCollection (when SPC = TRUE) or a vector of horizon row indices (when SPC = FALSE
and simplify = TRUE) or a list (when SPC = FALSE and simplify = FALSE))

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

get the horizon above the last horizon (j-index of bottom horizon minus 1)
hzAbove(sp4, hzID(sp4) %in% getLastHorizonID(sp4))

get horizons below the last horizon (none; j-index of bottom horizon plus 1)
hzBelow(sp4, hzID(sp4) %in% getLastHorizonID(sp4))

HzDepthLogicSubset Subset SoilProfileCollection Objects or Horizons via
checkHzDepthLogic

Description

This function removes profiles or horizons from a SoilProfileCollection that are flagged as
having invalid horizon depth logic by checkHzDepthLogic. Invalid profiles may be created when
setting byhz = TRUE; use caution as some functions may not work properly in the presence of gaps.
Consider using fillHzGaps to fill these gaps.

Usage

HzDepthLogicSubset(x, byhz = FALSE)

Arguments

x a SoilProfileCollection object

byhz logical, evaluate horizon depth logic at the horizon level (profile level if FALSE)

Value

a SoilProfileCollection object

Note

This function cannot identify (and remove) overlapping horizons when byhz = TRUE.

142 hzDepthTests

hzDepthTests Tests of horizon depth logic

Description

Function used internally by checkHzDepthLogic(), glom() and various other functions that op-
erate on horizon data from single soil profiles and require a priori depth logic checks. Checks for
bottom depths less than top depth / bad top depth order ("depthLogic"), bottom depths equal to top
depth ("sameDepth"), overlaps/gaps ("overlapOrGap") and missing depths ("missingDepth"). Use
names(res)[res] on result res of hzDepthTest() to to determine type of logic error(s) found –
see examples below.

Usage

hzDepthTests(top, bottom = NULL)

Arguments

top A numeric vector containing horizon top depths. Or a data.frame with two
columns (first containing top depths, second containing bottom)

bottom A numeric vector containing horizon bottom depths.

Value

A named logical vector containing TRUE for each type of horizon logic error found in the given
data.

Author(s)

Andrew G. Brown & Dylan E. Beaudette

Examples

no logic errors
res <- hzDepthTests(top = c(0,10,20,30), bottom = c(10,20,30,50))
names(res)[res]

bottom < top
hzDepthTests(top = c(10,20,30,50), bottom = c(0,10,20,30))
names(res)[res]

bottom == top
hzDepthTests(top = c(10,20,30,50), bottom = c(0,20,20,30))
names(res)[res]

overlap
hzDepthTests(top = c(0,5,20,30), bottom = c(10,20,30,50))
names(res)[res]

hzDesgn,SoilProfileCollection-method 143

gap
hzDepthTests(top = c(0,15,20,30), bottom = c(10,20,30,50))
names(res)[res]

missing
hzDepthTests(c(0,15,NA,30),c(10,NA,30,50))
names(res)[res]

hzDesgn,SoilProfileCollection-method

Get horizon designation column name

Description

Get horizon designation names

Usage

S4 method for signature 'SoilProfileCollection'
hzDesgn(object)

Arguments

object a SoilProfileCollection

hzdesgnname Get or Set Horizon Designation Column Name

Description

hzdesgnname(): Get column name containing horizon designations
hzdesgnname<-: Set horizon designation column name

Usage

S4 method for signature 'SoilProfileCollection'
hzdesgnname(object, required = FALSE)

S4 replacement method for signature 'SoilProfileCollection'
hzdesgnname(object, required = FALSE) <- value

Arguments

object a SoilProfileCollection
required logical, is this attribute required? If it is, set to TRUE to trigger error on invalid

value.
value character, name of column containing horizon designations

144 hzDistinctnessCodeToOffset

Details

Store the column name containing horizon designations or other identifiers in the metadata slot of
the SoilProfileCollection.

See Also

hzDesgn()

Examples

data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

set horizon designation column
hzdesgnname(sp1) <- "name"

get horizon designation column
hzdesgnname(sp1)

hzDistinctnessCodeToOffset

Convert Horizon Boundary Distinctness to Vertical Offset

Description

This function will convert USDA-NCSS horizon boundary distinctness codes into vertical (+/-)
offsets in cm, based on the Field Book for Describing and Sampling Soils, version 3.0.

Usage

hzDistinctnessCodeToOffset(
x,
codes = c("very abrupt", "abrupt", "clear", "gradual", "diffuse"),
offset = c(0.5, 2, 5, 15, 20)/2

)

Arguments

x vector of boundary distinctness codes to be converted

codes character vector of distinctness terms (’clear’) or codes (’C’), case insensitive,
see details

offset vertical offset factors (cm), approximating 1/2 of the transitional zone thickness,
see details

https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

hzDistinctnessCodeToOffset 145

Details

The default offsets are based on the high-end of ranges presented in "transitional zone thickness cri-
teria" from the Field Book version 3.0 (page 2-6). Offsets are returned as 1/2 of the transitional zone
thickness so that horizon boundaries can be adjusted up/down from horizon depths. See plotSPC,
specifically the hz.distinctness.offset argument for visualization ideas. Missing data in x
(NA) or codes that are not defined in codes are returned as 0 offsets.

Either format (or mixture) are accepted, case insensitive:

• terms: c('very abrupt', 'abrupt', 'clear', 'gradual', 'diffuse')

• coded values: c('v', 'a', 'c', 'g', d')

Additional examples are available in the Visualization of Horizon Boundaries tutorial.

Value

vector of offsets with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC

Examples

example data
data(sp1)

compute 1/2 transitional zone thickness from distinctness codes
sp1$hzdo <- hzDistinctnessCodeToOffset(sp1$bound_distinct)

convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
hzdesgnname(sp1) <- 'name'

adjust margins
op <- par(mar=c(0,0,0,1.5))

sketches, adjust width, adjust text size, include coded hz distinctness offsets
plotSPC(sp1, width=0.3, cex.names=0.75, hz.distinctness.offset = 'hzdo')

clean-up

https://ncss-tech.github.io/AQP/aqp/hz-boundaries.html
https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

146 hzidname<-

par(op)

hzID<-,SoilProfileCollection-method

Set horizon IDs

Description

Set vector containing horizon IDs

Get vector containing horizon IDs

Usage

S4 replacement method for signature 'SoilProfileCollection'
hzID(object) <- value

S4 method for signature 'SoilProfileCollection'
hzID(object)

Arguments

object a SoilProfileCollection

value a unique vector of equal length to number of horizons nrow(object)

hzidname<- Set horizon ID column name

Description

Set unique horizon ID column name

Get column name containing unique horizon ID

Usage

S4 replacement method for signature 'SoilProfileCollection'
hzidname(object) <- value

S4 method for signature 'SoilProfileCollection'
hzidname(object)

Arguments

object a SoilProfileCollection

value character, column name containing unique horizon ID values

hzMetadata,SoilProfileCollection-method 147

Examples

data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

create new horizon ID
sp1$hzIDrev <- rev(sp1$hzID)

set horizon designation column
hzidname(sp1) <- "hzIDrev"

get horizon designation column
hzidname(sp1)

hzMetadata,SoilProfileCollection-method

Get horizon-level metadata

Description

Get idname(object) and hzidname(object), with hzdesgnname(object), hztexclname(object)
(if defined)

Usage

S4 method for signature 'SoilProfileCollection'
hzMetadata(object)

Arguments

object a SoilProfileCollection

hzmetaname Get or Set Horizon Metadata Column Name

Description

hzmetaname(): Get column name containing horizon data of interest
hzmetaname<-: Set horizon designation column name

Usage

S4 method for signature 'SoilProfileCollection'
hzmetaname(object, attr, required = FALSE)

S4 replacement method for signature 'SoilProfileCollection'
hzmetaname(object, attr, required = FALSE) <- value

148 hztexclname

Arguments

object A SoilProfileCollection
attr character. Base name for attribute to be stored in metadata. This is prefixed with

"aqp_hz" for horizon-level metadata for column attributes. e.g. attr="clay"
results in metadata value retrieved from "aqp_hzclay".

required logical. Is this attribute required? If it is, set to TRUE to trigger error on invalid
value.

value character. Name of horizon-level column containing data corresponding to
attr.

Details

Store the column name containing a specific type of horizon data in the metadata slot of the Soil-
ProfileCollection.

See Also

guessHzAttrName()

Examples

data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

set important metadata columns
hzdesgnname(sp1) <- "name"
hztexclname(sp1) <- "texture"

set custom horizon property (clay content) column
hzmetaname(sp1, "clay") <- "prop"

inspect metadata list
metadata(sp1)

get horizon clay content column
hzmetaname(sp1, "clay")

uses hzdesgname(), hztexclname(), hzmetaname(attr="clay") in function definition
estimatePSCS(sp1)

hztexclname Get or Set Horizon Texture Class Column Name

Description

hztexclname(): Get column name containing horizon designation name
hztexclname<-: Set horizon texture class column name for a SoilProfileCollection

hzTopographyCodeToLineType 149

Usage

S4 method for signature 'SoilProfileCollection'
hztexclname(object, required = FALSE)

S4 replacement method for signature 'SoilProfileCollection'
hztexclname(object, required = FALSE) <- value

Arguments

object a SoilProfileCollection

required logical, is this attribute required? If it is, set to TRUE to trigger error on invalid
value.

value character, name of column containing horizon texture classes

Details

Store the column name containing horizon texture classes or other identifiers in the metadata slot of
the SoilProfileCollection.

Examples

data(sp1)

promote to SPC
depths(sp1) <- id ~ top + bottom

set horizon texture class column
hztexclname(sp1) <- "texture"

get horizon texture class column
hztexclname(sp1)

hzTopographyCodeToLineType

Convert Horizon Boundary Topography to Line Type

Description

This function will convert USDA-NCSS horizon boundary topography codes into line types, based
on the Field Book for Describing and Sampling Soils, version 3.0.

Usage

hzTopographyCodeToLineType(
x,
codes = c("smooth", "wavy", "irregular", "broken"),
lty = c(1, 2, 3, 4)

)

https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

150 hzTopographyCodeToOffset

Arguments

x vector of boundary topography codes to be converted

codes character vector of topography terms (’smooth’) or codes (’S’), case insensitive,
see details

lty line types

Details

Visualization of horizon boundary topography can be difficult, line type offers an additional visual
cue. See hzTopographyCodeToOffset for an offset-based approach. Additional examples are
available in the Visualization of Horizon Boundaries tutorial. Missing data in x (NA) or codes that
are not defined in codes are returned as line type 1.

Either format (or mixture) are accepted, case insensitive:

• terms: c('smooth', 'wavy', 'irregular', 'broken')

• coded values: c('s', 'w', 'i', 'b')

Value

vector of line types with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC, hzTopographyCodeToOffset

hzTopographyCodeToOffset

Convert Horizon Boundary Topography to Vertical Offset

Description

This function will convert USDA-NCSS horizon boundary topography codes into a vertical off-
set, suitable for use in plotSPC. Default values are reasonable starting points for encoding smooth,
wavy, irregular, or broken style horizon boundary topography as defined in Field Book for Describ-
ing and Sampling Soils, version 3.0.

https://ncss-tech.github.io/AQP/aqp/hz-boundaries.html
https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991
https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991
https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

hzTopographyCodeToOffset 151

Usage

hzTopographyCodeToOffset(
x,
codes = c("smooth", "wavy", "irregular", "broken"),
offset = c(0, 4, 8, 12)

)

Arguments

x vector of boundary topography codes to be converted

codes character vector of topography terms (’smooth’) or codes (’S’), case insensitive,
see details

offset vertical offset (depth units) used to create "chevron" effect

Details

Additional examples are available in the Visualization of Horizon Boundaries tutorial. Missing data
in x (NA) or codes that are not defined in codes are returned with an offset of 0.

Either format (or mixture) are accepted, case insensitive:

• terms: c('smooth', 'wavy', 'irregular', 'broken')

• coded values: c('s', 'w', 'i', 'b')

Value

vector of vertical offsets with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC

https://ncss-tech.github.io/AQP/aqp/hz-boundaries.html
https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

152 hzTransitionProbabilities

hzTransitionProbabilities

Horizon Transition Probabilities

Description

Functions for creating and working with horizon (sequence) transition probability matrices.

See the following tutorials for some ideas:

• horizon designation TP

• soil color TP

Usage

hzTransitionProbabilities(
x,
name = GHL(x, required = TRUE),
loopTerminalStates = FALSE

)

mostLikelyHzSequence(mc, t0, maxIterations = 10)

Arguments

x a SoilProfileCollection object.

name A horizon level attribute in x that names horizons.
loopTerminalStates

should terminal states loop back to themselves?
This is useful when the transition probability matrix will be used to initialize a
markovchain object. See examples below.

mc Passed to markovchain conditionalDistribution()

t0 Passed to markovchain conditionalDistribution()

maxIterations Maximum number of iterations. Default: 10

Value

A square matrix of transition probabilities. See examples.

The function genhzTableToAdjMat() returns a square adjacency matrix. See examples.

The function mostLikelyHzSequence() returns the most likely sequence of horizons, given a
markovchain object initialized from horizon transition probabilities and an initial state, t0. See
examples.

Note

These functions are still experimental and subject to change.

http://ncss-tech.github.io/AQP/aqp/hz-transition-probabilities.html
http://ncss-tech.github.io/AQP/aqp/series-color-TP-graph.html

hz_dissolve 153

Author(s)

D.E. Beaudette

See Also

generalize.hz()

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

horizon transition probabilities: row -> col transitions
(tp <- hzTransitionProbabilities(sp4, 'name'))

hz_dissolve Dissolving horizon boundaries by grouping variables

Description

This function dissolves or combines horizons that have a common set of grouping variables. It only
combines those horizon records that are sequential (e.g. share a horizon boundary). Thus, it can
be used to identify discontinuities in the grouping variables along a profile and their unique depths.
It is particularly useful for determining the depth to the top or bottom of horizons with a specific
category, and should be simpler than previous methods that require aggregating over profiles.

Usage

hz_dissolve(
object,
by,
idcol = "id",
depthcols = c("top", "bottom"),
collapse = FALSE,
order = FALSE

)

dissolve_hz(
object,
by,
id = "idcol",
hztop = "top",
hzbot = "bottom",
collapse = FALSE,
order = FALSE

)

154 hz_dissolve

Arguments

object a data.frame

by character: column names, to be used as grouping variables, within the object.

idcol character: column name of the pedon ID within the object.

depthcols a character vector of length 2 specifying the names of the horizon depths (e.g.
c("top", "bottom")).

collapse logical: indicating whether to not combine grouping variables before dissolving.

order logical: indicating whether or not to order the object by the id, hztop, and hzbot
columns.

id deprecated and replaced with idcol.

hztop deprecated and replaced by depthcols.

hzbot deprecated and replaced by depthcols.

Details

This function assumes the profiles and horizons within the object follow the logic defined by
checkHzDepthLogic (e.g. records are ordered sequentially by id, hztop, and hzbot and without
gaps). If the records are not ordered, set the order = TRUE.

Value

A data.frame with the original idcol, by grouping variables, and non-consecutive horizon depths.

Author(s)

Stephen Roecker

See Also

hz_lag(), hz_intersect(), hz_segment() , checkHzDepthLogic()

Examples

example 1
data(jacobs2000)
spc <- jacobs2000

spc$dep_5 <- spc$depletion_pct >=5
spc$genhz <- generalize.hz(spc$name, c("A", "E", "B", "C"), c("A", "E", "B", "C"))
h <- horizons(spc)

test <- hz_dissolve(h, by = c("genhz", "dep_5"), idcol = "id", depthcols = c("top", "bottom"))

vars <- c("id", "top", "bottom", "genhz", "dep_5")
h[h$id == "92-1", vars]
test[test$id == "92-1",]

hz_intersect 155

example 2
df <- data.frame(

id = 1,
top = c(0, 5, 10, 15, 25, 50),
bottom = c(5, 10, 15, 25, 50, 100),
hzname = c("A1", "A2", "E/A", "2Bt1", "2Bt2", "2C"),
genhz = c("A", "A", "E", "2Bt", "2Bt", "2C"),
texcl = c("sil", "sil", "sil", "sl", "sl", "s")
)

df

hz_dissolve(df, c("genhz", "texcl"))
hz_dissolve(df, c("genhz", "texcl"), collapse = TRUE)

test <- hz_dissolve(df, "genhz")
subset(test, value == "2Bt")

hz_intersect Intersecting horizon boundaries by horizon depths

Description

This function intersects two horizon tables by harmonizing their depths and merging them where
they overlap. This can be useful to rejoin the results of hz_dissolve() to it’s original horizon
table, and then perform an aggregation on the dissolved variables.

Usage

hz_intersect(x, y, idcol = "id", depthcols = c("top", "bottom"))

Arguments

x a data.frame

y a data.frame

idcol character: column name of the pedon ID within the object.
depthcols a character vector of length 2 specifying the names of the horizon depths (e.g.

c("top", "bottom")).

Details

.

Value

A data.frame with harmonized depth intervals (i.e. segment_id) and columns from both of the
original data.frame. If both data.frame contain the same column names, they will both be re-
turned (with the exception of the idcol and depthcols), and appended with either x or y to indicate
which data.frame they originated from.

156 hz_lag

Author(s)

Stephen Roecker

See Also

hz_dissolve(), hz_lag(), hz_segment()

Examples

h <- data.frame(
id = 1,
top = c(0, 25, 44, 46, 50),
bottom = c(25, 44, 46, 50, 100),
by = c("Yes", "Yes", "No", "No", "Yes"),
clay = c(10, 12, 27, 35, 16)

)

hz_dissolve(h, "by")

hz_intersect(x = hz_dissolve(h, "by"), y = h)

hi <- hz_intersect(x = h, y = hz_dissolve(h, "by"))
aggregate(clay ~ dissolve_id, data = hi, mean)

hz_lag Find lagged horizon values

Description

This function finds adjacent values to a horizon values at lagged distances.

Usage

hz_lag(
object,
lag = 1,
unit = "index",
idcol = "id",
depthcols = c("top", "bottom"),
order = FALSE

)

Arguments

object a data.frame

lag integer: number of horizons to lag

unit character: lag units in index or depth.

hz_lag 157

idcol character: column name of the pedon ID within the object.

depthcols a character vector of length 2 specifying the names of the horizon depths (e.g.
c("top", "bottom")).

order logical: indicating whether or not to order the #’

Details

.

Value

A data.frame with lagged values.

Author(s)

Stephen Roecker

See Also

hz_dissolve(), hz_intersect(), hz_segment()

Examples

h <- data.frame(
id = 1,
top = c(0, 25, 44, 46, 50),
bottom = c(25, 44, 46, 50, 100),
texcl = c("SL", "SL", "CL", "CL", "L"),
clay = c(10, 12, 27, 35, 16)

)

hz_lag(h)

hz_lag(h, -1)

hz_lag(h, 10:15, unit = "depth")

transform(cbind(h, lag = hz_lag(h)),
clay_dif = lag.clay_bot.1 - clay,
texcl_contrast = paste0(texcl, "-", lag.texcl_bot.1)

)

158 hz_segment

hz_segment Segmenting of Soil Horizon Data by Depth Interval

Description

This function segments or subdivides horizon data from a SoilProfileCollection or data.frame
by depth interval (e.g. c(0, 10), c(0, 50), or 25:100). This results in horizon records being split
at the specified depth intervals, which duplicates the original horizon data but also adds new horizon
depths. In addition, labels (i.e. "segment_id") are added to each horizon record that correspond
with their depth interval (e.g. 025-100). This function is intended to harmonize horizons to a
common support (i.e. depth interval) for further aggregation or summary. See the examples.

Usage

hz_segment(object, intervals, trim = TRUE, depthcols = c("top", "bottom"))

segment(object, intervals, trim = TRUE, hzdepcols = c("top", "bottom"))

Arguments

object either a SoilProfileCollection or data.frame

intervals a vector of integers over which to slice the horizon data (e.g. c(25, 100) or
25:100)

trim logical, when TRUE horizons in object are truncated to the min/max specified
in intervals. When FALSE, those horizons overlapping an interval are marked
as such. Care should be taken when specifying more than one depth interval and
trim = FALSE.

depthcols a character vector of length 2 specifying the names of the horizon depths (e.g.
c("top", "bottom")), only necessary if object is a

hzdepcols deprecated being replaced by depthcols.

Details

hz_segment() performs no aggregation or resampling of the source data, rather, labels are added
to horizon records for subsequent aggregation or summary. This makes it possible to process a very
large number of records outside of the constraints associated with e.g. slice() or slab().

Value

Either a SoilProfileCollection or data.frame with the original horizon data segmented by
depth intervals. There are usually more records in the resulting object, one for each time a segment
interval partially overlaps with a horizon. A new column called segment_id identifying the depth
interval is added.

Author(s)

Stephen Roecker

hz_segment 159

See Also

dice(), glom(), hz_dissolve(), hz_lag(), hz_intersect()

Examples

example data
data(sp1)

upgrade to SPC
depths(sp1) <- id ~ top + bottom

segment and trim
z <- hz_segment(sp1, intervals = c(0, 10, 20, 30), trim = TRUE)

display segment labels
note that there are new horizon boundaries at segments
par(mar = c(0, 0, 3, 1))
plotSPC(z, color = 'segment_id', width = 0.3)

highlight new horizon records
par(mar = c(0, 0, 2, 1))
plotSPC(z, color = NA, default.color = NA, width = 0.3, lwd = 1)
plotSPC(sp1, color = NA, default.color = NA,
width = 0.3, lwd = 3, add = TRUE, name = NA, print.id = FALSE)
legend('top', horiz = TRUE,
legend = c('original', 'segmented'),
lwd = c(1, 3), cex = 0.85, bty = 'n')

same results as slab()
10 random profiles
s <- lapply(1:10, random_profile, n_prop = 1, SPC = TRUE, method = 'random_walk')
s <- combine(s)

a.slab <- slab(s, fm = ~ p1, slab.structure = c(0, 10, 20, 30), slab.fun = mean, na.rm = TRUE)

z <- hz_segment(s, intervals = c(0, 10, 20, 30), trim = TRUE)
z <- horizons(z)
z$thick <- z$bottom - z$top

a.segment <- sapply(split(z, z$segment_id), function(i) {
weighted.mean(i$p1, i$thick)

})

res <- data.frame(
slab = a.slab$value,
segment = a.segment,
diff = a.slab$value - a.segment

)

print(res)

160 hz_to_taxpartsize

res$diff < 0.001

data(sp5)

segment by upper 25-cm
test1 <- hz_segment(sp5, intervals = c(0, 100))
print(test1)
nrow(test1)
print(object.size(test1), units = "Mb")

segment by 1-cm increments
test2 <- hz_segment(sp5, intervals = 0:100)
print(test2)
nrow(test2)
print(object.size(test2), units = "Mb")

segment and aggregate
test3 <- hz_segment(horizons(sp5),

intervals = c(0, 5, 15, 30, 60, 100, 200),
depthcols = c("top", "bottom")

)
test3$hzthk <- test3$bottom - test3$top
test3_agg <- by(test3, test3$segment_id, function(x) {

data.frame(
hzID = x$hzID[1],
segment_id = x$segment_id[1],
average = weighted.mean(x$clay, w = x$hzthk)

)
})
test3_agg <- do.call("rbind", test3_agg)

head(test3_agg)

hz_to_taxpartsize Allocate Particle Size Class for the Control Section.

Description

This function aggregates information in the horizon table and allocates it to the particle size class
for the control section.

Usage

hz_to_taxpartsize(
x,
y,

hz_to_taxpartsize 161

taxpartsize = "taxpartsize",
clay = "clay",
idcol = "id",
depthcols = c("top", "bottom")

)

Arguments

x a data.frame containing the original horizon table.

y a data.frame containing the particle size control section depths for each idcol.

taxpartsize character column name for taxonomic family particle size class.

clay character column name for clay percent.

idcol character: column name of the pedon ID within the object.

depthcols a character vector of length 2 specifying the names of the horizon depths (e.g.
c("top", "bottom")).

Details

This function differs from texture_to_taxpartsize in that is aggregates the results of texture_to_taxpartsize,
and accounts for strongly contrasting particle size classes.

Value

A data.frame object containing the original idcol, the aggregated particle size control section
allocation, and an aniso column to indicate more than one contrasting class.

Author(s)

Stephen Roecker

See Also

texture_to_taxpartsize(), lookup_taxpartsize()

Examples

h <- data.frame(
id = 1,
hzname = c("A", "BA", "Bw", "BC", "C"),
top = c(0, 10, 45, 60, 90),
bottom = c(10, 45, 60, 90, 150),
clay = c(15, 16, 45, 20, 10),
sand = c(10, 35, 40, 50, 90),
frags = c(0, 5, 10, 38, 40)

)

h <- cbind(h,
texcl = ssc_to_texcl(clay = h$clay, sand = h$sand))

162 idname,SoilProfileCollection-method

pscs <- data.frame(id = 1,
top = 25,
bottom = 100)

h <- cbind(h,
taxpartsize = texture_to_taxpartsize(

texcl = h$texcl,
clay = h$clay,
sand = h$sand,
fragvoltot = h$frags

))

depths(h) <- id ~ top + bottom

set required metadata for estimatePSCS()
hzdesgnname(h) <- "hzname"
hztexclname(h) <- "texcl"
hzmetaname(h, "clay") <- "clay"

pscs <- data.frame(id = h$id, rbind(estimatePSCS(h)))
names(pscs)[2:3] <- c("top", "bottom")

hz_to_taxpartsize(horizons(h), pscs)

idname,SoilProfileCollection-method

Get profile ID column name

Description

Get column name containing unique profile IDs

Usage

S4 method for signature 'SoilProfileCollection'
idname(object)

Arguments

object a SoilProfileCollection

initSpatial<- 163

initSpatial<- Initialize Spatial Data in a SoilProfileCollection

Description
initSpatial()<-: Set the column names containing spatial data and the corresponding coordinate
reference system for a SoilProfileCollection.

getSpatial(): Get spatial data associated with a SoilProfileCollection

Usage

S4 replacement method for signature 'SoilProfileCollection,ANY,ANY'
initSpatial(object, crs = NULL) <- value

S4 replacement method for signature 'SoilProfileCollection,ANY,character'
initSpatial(object, crs = NULL) <- value

S4 method for signature 'SoilProfileCollection'
getSpatial(object)

S4 method for signature 'SoilProfileCollection'
coordinates(obj)

S4 replacement method for signature 'SoilProfileCollection,ANY'
coordinates(object) <- value

S4 replacement method for signature 'SoilProfileCollection,character'
coordinates(object) <- value

Arguments

object A SoilProfileCollection

crs Optional: character. Representation of Coordinate Reference System as "authority:code",
integer EPSG code, WKT2019 or PROJ4 string, an sf crs or sp CRS object.

value A formula specifying names of columns containing geometry (x and y coordi-
nates), or character with the column names

obj A SoilProfileCollection

See Also

prj()

Examples

data(sp5)

coordinates are stored in x and y column of site

164 invertLabelColor

sp5$x <- rnorm(length(sp5))
sp5$y <- rnorm(length(sp5))

coordinates takes a formula object as input
initSpatial(sp5) <- ~ x + y

optionally specify Coordinate Reference System (crs) on left-hand side
initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y

invertLabelColor Make High Contrast Label Colors

Description

Generate a vector of white or black label colors conditioned on a vector of colors to maximize label
contrast.

Usage

invertLabelColor(colors, threshold = 0.65)

Arguments

colors vector of colors

threshold black | white threshold

Value

vector of label colors

Author(s)

D.E. Beaudette

Examples

test with shades of grey
s <- seq(0, 1, by = 0.05)
cols <- grey(s)
soilPalette(cols, lab = as.character(s))

test with 10YR x/3
m <- sprintf('10YR %s/3', 1:8)
cols <- parseMunsell(m)
soilPalette(cols, lab = m)

isEmpty,SoilProfileCollection-method 165

isEmpty,SoilProfileCollection-method

Check for "empty" profiles in a SoilProfileCollection

Description

"Empty" profiles are used as placeholders for positions in a SoilProfileCollection These pro-
files result from operations that remove or extract portions of horizons from source profiles.

Usage

S4 method for signature 'SoilProfileCollection'
isEmpty(object, ...)

Arguments

object A SoilProfileCollection

... Additional arguments not used.

Details

In a SoilProfileCollection an empty profile occurs when it has one horizon, with NA top and
bottom depths. Generally all non-profile ID site and horizon-level values are all also NA, but only
the depths are checked by isEmpty().

Value

logical. Vector of length equal to number of profiles in object. Returns TRUE when a profile has
one horizon with NA top and bottom depths

jacobs2000 Soil Morphologic Data from Jacobs et al. 2002.

Description

Select soil morphologic data from "Redoximorphic Features as Indicators of Seasonal Saturation,
Lowndes County, Georgia". This is a useful sample dataset for testing the analysis and visualization
of redoximorphic features.

Usage

data(jacobs2000)

Format

A SoilProfileCollection object.

166 jacobs2000

References

Jacobs, P. M., L. T. West, and J. N. Shaw. 2002. Redoximorphic Features as Indicators of Sea-
sonal Saturation, Lowndes County, Georgia. Soil Sci. Soc. Am. J. 66:315-323. doi:doi:10.2136/
sssaj2002.3150

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

load
data(jacobs2000)

basic plot
par(mar = c(0, 1, 3, 1.5))
plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3)

add concentrations
addVolumeFraction(jacobs2000, 'concentration_pct',

col = jacobs2000$concentration_color, pch = 16, cex.max = 0.5)

add depletions
plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3)
addVolumeFraction(jacobs2000, 'depletion_pct',

col = jacobs2000$depletion_color, pch = 16, cex.max = 0.5)

time saturated
plotSPC(jacobs2000, color='time_saturated', cex.names=0.8, col.label = 'Time Saturated')

color contrast: matrix vs. concentrations
cc <- colorContrast(jacobs2000$matrix_color_munsell, jacobs2000$concentration_munsell)
cc <- na.omit(cc)

cc <- cc[order(cc$dE00),]
cc <- unique(cc)

par(bg = 'black', fg = 'white')
colorContrastPlot(cc$m1[1:10], cc$m2[1:10], labels = c('matrix', 'concentration'))
colorContrastPlot(cc$m1[11:21], cc$m2[11:21], labels = c('matrix', 'concentration'))

color contrast: depletion vs. concentrations
cc <- colorContrast(jacobs2000$depletion_munsell, jacobs2000$concentration_munsell)
cc <- na.omit(cc)

cc <- cc[order(cc$dE00),]
cc <- unique(cc)

par(bg = 'black', fg = 'white')
colorContrastPlot(cc$m1, cc$m2, labels = c('depletion', 'concentration'))

https://doi.org/10.2136/sssaj2002.3150
https://doi.org/10.2136/sssaj2002.3150

L1_profiles 167

L1_profiles Create Representative Soil Profiles via L1 Estimator

Description

The L1 estimator, or geometric median, is a multivariate generalization of the (univariate) median
concept. This function performs a multivariate aggregation (via L1 estimator) according to a suite
of ratio-scale soil properties. The L1 estimator is applied to soil profile data that have been sliced
to a 1-depth-unit basis. Data should be well stratified by groups defined in fm, otherwise the L1
median may not make any sense.

See the L1 Profiles Tutorial for additional examples.

Usage

L1_profiles(
x,
fm,
basis = 1,
method = c("regex", "simple", "constant"),
maxDepthRule = c("max", "min"),
maxDepthConstant = NULL

)

Arguments

x SoilProfileCollection object

fm formula, for example: group ~ p1 + p2 + p3, where "group" is a site-level group-
ing variable, and "p1", "p2", and "p3" are horizon level variables

basis positive integer, aggregation basis (e.g. 1 for 1-depth-unit intervals). Values
other than 1 are not currently supported.

method soil depth evaluation method: "regex" for regular expression, "simple", or "con-
stant". See details.

maxDepthRule maximum depth rule: "max" or "min" See details.
maxDepthConstant

positive integer, maximum depth when maxDepthRule = 'constant'

Details

See this related tutorial for additional examples. The method, maxDepthRule, and maxDepthConstant
arguments set the maximum depth (over the entire collection) of analysis used to build "L1 profiles".
The following rules are available:

• method = 'regex' uses pattern matching on horizon designations (note that hzdesgnname
metadata must be set with hzdesgnname(x) <- 'columnname')

• method = 'simple' uses min or max as applied to x, no accounting for non-soil horizons (e.g.
Cr or R)

https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/Median
https://ncss-tech.github.io/AQP/aqp/L1-profiles.html
https://ncss-tech.github.io/AQP/aqp/L1-profiles.html

168 length,SoilProfileCollection-method

• method = 'constant' uses a fixed depth value supplied by maxDepthConstant

The maxDepthRule argument sets depth calculation constraint, applied to soil depths computed
according to method (min or max).

Value

a SoilProfileCollection object

Note

This function requires the Gmedian package.

References

Cardot, H., Cenac, P. and Zitt, P-A. (2013). Efficient and fast estimation of the geometric median
in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43.

length,SoilProfileCollection-method

Get the number of profiles in a SoilProfileCollection

Description

Get the number of profiles in a SoilProfileCollection

Usage

S4 method for signature 'SoilProfileCollection'
length(x)

Arguments

x a SoilProfileCollection

lookup_taxpartsize 169

lookup_taxpartsize Ranking Systems for USDA Taxonomic Particle-Size and Substitute
Classes of Mineral Soils

Description

Generate a lookup table of USDA Particle-Size and Substitute Classes names, ranked according to
approximate particle size

Usage

lookup_taxpartsize()

Value

A data.frame with a rank column, taxonomic family particle size class, and a flag for contrasting.

Author(s)

Stephen Roecker

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

hz_to_taxpartsize(), texture_to_taxpartsize(), SoilTextureLevels()

Examples

class codes
lu <- lookup_taxpartsize()

idx <- lu$contrasting == FALSE

lu$taxpartsize[idx]

lu$rank[as.integer(lu$taxpartsize)[idx]]

https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

170 lunique

lunique Eliminate duplicate instances of profile IDs in a list of SoilProfileCol-
lections

Description

@description Experimental function to "clean" list input where duplicates exist (that would other-
wise prevent pbindlist). Useful for queries that may have overlapping instances of the same data,
for instance a list of SoilProfileCollections where each list element contains profiles gathered from
a set of (potentially overlapping) extents.

Usage

lunique(l)

Arguments

l A list of SoilProfileCollections.

Value

A list of SoilProfileCollections, with duplicate profile IDs removed.

Author(s)

Andrew G. Brown

Examples

data(sp5)

EXAMPLE #1 -- resolving overlap

6 profiles in four sets, and 5,6,7 are missing
input <- lapply(list(c(1,3,4), c(2,2,3), NA, c(8,9,1)), function(idx) {

if(!all(is.na(idx)))
sp5[idx,]

})

output <- lunique(input)

6 profiles are in final SPC; 5,6,7 are missing
match(profile_id(pbindlist(output)), profile_id(sp5))

EXAMPLE #2 -- exact duplicates

deliberately duplicate an SPC
sp5_2 <- sp5
res <- lunique(list(sp5, sp5_2))

max,SoilProfileCollection-method 171

the number of profiles in first element is equal to number in sp5
length(res[[1]]) == length(sp5)

second list element contains NA b/c all uniques are in #1
res[[2]]

max,SoilProfileCollection-method

Get the maximum bottom depth in a SoilProfileCollection

Description

Get the deepest depth of description out of all profiles in a SoilProfileCollection. Data missing one
or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases.

Usage

S4 method for signature 'SoilProfileCollection'
max(x, v = NULL, na.rm = TRUE)

Arguments

x a SoilProfileCollection

v optional: horizon-level column name to refine calculation

na.rm remove NA? default: TRUE

metadata,SoilProfileCollection-method

Retrieve metadata from SoilProfileCollection

Description

Get metadata from SoilProfileCollection. Result is a list. Two entries (aqp_df_class, depth_units)
should not be edited in the metadata list directly. There are methods that facilitate changing them
– and propagating their changes throughout the collection. Otherwise, metadata list is a free-form
slot used to store arbitrary information about the data, how it was collected, citations, etc.

Usage

S4 method for signature 'SoilProfileCollection'
metadata(object)

S4 replacement method for signature 'SoilProfileCollection'
metadata(object) <- value

172 min,SoilProfileCollection-method

Arguments

object A SoilProfileCollection

value A named list (see examples)

Examples

data(sp5)

replace default metadata with itself
metadata(sp5) <- metadata(sp5)

set new metadata attribute value
metadata(sp5)$newvalue <- 'foo'

get metadata attribute
metadata(sp5)$newvalue

min,SoilProfileCollection-method

Get the minimum bottom depth in a SoilProfileCollection

Description

Get the shallowest depth of description out of all profiles in a SoilProfileCollection. Data missing
one or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases.

Usage

S4 method for signature 'SoilProfileCollection'
min(x, v = NULL, na.rm = TRUE)

Arguments

x a SoilProfileCollection

v optional: a vector of horizon attribute names to refine calculation

na.rm remove NA? default: TRUE

missingDataGrid 173

missingDataGrid Missing Data Grid

Description

Generate a levelplot of missing data from a SoilProfileCollection object.

Usage

missingDataGrid(
s,
max_depth,
vars,
filter.column = NULL,
filter.regex = NULL,
cols = NULL,
...

)

Arguments

s a SoilProfileCollection object

max_depth integer specifying the max depth of analysis

vars character vector of column names over which to evaluate missing data

filter.column a character string naming the column to apply the filter REGEX to

filter.regex a character string with a regular expression used to filter horizon data OUT of
the analysis

cols a vector of colors

... additional arguments passed on to levelplot

Details

This function evaluates a missing data fraction based on slice-wise evaluation of named vari-
ables in a SoilProfileCollection object.

Value

A data.frame describing the percentage of missing data by variable.

Note

A lattice graphic is printed to the active output device.

Author(s)

D.E. Beaudette

174 mixMunsell

See Also

slice

Examples

10 random profiles
set.seed(10101)
s <- lapply(as.character(1:10), random_profile)
s <- do.call('rbind', s)

randomly sprinkle some missing data
s[sample(nrow(s), 5), 'p1'] <- NA
s[sample(nrow(s), 5), 'p2'] <- NA
s[sample(nrow(s), 5), 'p3'] <- NA

set all p4 and p5 attributes of `soil 1' to NA
s[which(s$id == '1'), 'p5'] <- NA
s[which(s$id == '1'), 'p4'] <- NA

upgrade to SPC
depths(s) <- id ~ top + bottom

plot missing data via slicing + levelplot
missingDataGrid(

s,
max_depth = 100,
vars = c('p1', 'p2', 'p3', 'p4', 'p5'),
main='Missing Data Fraction'

)

mixMunsell Mix Munsell Colors via Spectral Library

Description

Simulate mixing of colors in Munsell notation, similar to the way in which mixtures of pigments
operate.

Usage

mixMunsell(
x,
w = rep(1, times = length(x))/length(x),
mixingMethod = c("exact", "reference", "estimate", "adaptive"),
n = 1,
keepMixedSpec = FALSE,
distThreshold = 0.025,
...

)

mixMunsell 175

Arguments

x vector of colors in Munsell notation

w vector of proportions, can sum to any number

mixingMethod approach used to simulate a mixture:

• exact: simulate a subtractive mixture of pigments, color conversion via
CIE1931 color-matching functions (see details)

• reference: simulate a subtractive mixture of pigments, selecting n closest
reference spectra from munsell.spectra.wide (requires gower package)

• estimate: closest Munsell chip to a weighted mean of CIELAB coordi-
nates (fastest)

• adaptive: use exact method when possible, falling-back to estimate
(weighted mean of CIELAB coordinates) otherwise

n number of closest matching color chips (mixingMethod = reference only)

keepMixedSpec keep weighted geometric mean spectra, final result is a list (mixingMethod =
reference only)

distThreshold spectral distance used to compute scaledDistance, default value is based on
an analysis of spectral distances associated with adjacent Munsell color chips.
This argument is only used with mixingMethod = 'reference'.

... additional arguments to spec2Munsell

Details

See the expanded tutorial for examples.

An accurate simulation of pigment mixtures ("subtractive" color mixtures) is incredibly complex
due to factors that aren’t easily measured or controlled: pigment solubility, pigment particle size
distribution, water content, substrate composition, and physical obstruction to name a few. That
said, it is possible to simulate reasonable, subtractive color mixtures given a reference spectra library
(350-800nm) and some assumptions about pigment qualities and lighting. For the purposes of
estimating a mixture of soil colors (these are pigments after all) we can relax these assumptions and
assume a standard light source. The only missing piece is the spectral library for all Munsell chips
in our color books.

Thankfully, Scott Burns has outlined the entire process, and Paul Centore has provided a Mun-
sell color chip reflectance spectra library (http://www.munsellcolourscienceforpainters.com). The
estimation of a subtractive mixture of soil colors can proceed as follows:

1. look up the associated spectra for each color in x

2. compute the weighted (w argument) geometric mean of the spectra

3. convert the spectral mixture to the closest Munsell color via:

• search for the closest n matching spectra in the reference library (mixtureMethod = 'reference')

• direct conversion of spectra to closest Munsell color via spec2Munsell() (mixtureMethod =
'exact')

1. suggest resulting Munsell chip(s) as the best candidate for a simulated mixture

https://ncss-tech.github.io/AQP/aqp/mix-colors.html
https://arxiv.org/ftp/arxiv/papers/1710/1710.06364.pdf

176 mixMunsell

Key assumptions include:

• similar particle size distribution

• similar mineralogy (i.e. pigmentation qualities)

• similar water content.

For the purposes of estimating (for example) a "mixed soil color within the top 18cm of soil" these
assumptions are usually valid. Again, these are estimates that are ultimately "snapped" to the nearest
chip and not do not need to approach the accuracy of paint-matching systems.

A message is printed when scaledDistance is larger than 1.

Value

A data.frame with the closest matching Munsell color(s):

• munsell: Munsell notation of the n-closest spectra

• distance: spectral (Gower) distance to the n-closest spectra

• scaledDistance: spectral distance scaled by distThreshold

• mixingMethod: method used for each mixture

When keepMixedSpec = TRUE then a list:

• mixed: a data.frame containing the same elements as above

• spec: spectra for the 1st closest match

Author(s)

D.E. Beaudette

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and
Technology (pp. 32-96). North-Holland.

• inspiration / calculations based on the work of Scott Burns

• related discussion on Stack Overflow

• spectral library source: http://www.munsellcolourscienceforpainters.com/MunsellResources/SpectralReflectancesOf2007MunsellBookOfColorGlossy.txt

See Also

munsell.spectra

https://arxiv.org/ftp/arxiv/papers/1710/1710.06364.pdf
https://stackoverflow.com/questions/10254022/implementing-kubelka-munk-like-krita-to-mix-colours-color-like-paint/29967630#29967630

mollic.thickness.requirement 177

mollic.thickness.requirement

Calculate the minimum thickness requirement for Mollic epipedon

Description

Utilize horizon depths, designations and textures in a profile to estimate the thickness requirement
for the Mollic or Umbric epipedon, per criterion 6 in the U.S. Keys to Soil Taxonomy (12th Edition).

Usage

mollic.thickness.requirement(
p,
hzdesgn = hzdesgnname(p, required = TRUE),
texcl.attr = hztexclname(p, required = TRUE),
clay.attr = hzmetaname(p, "clay", required = TRUE),
truncate = TRUE

)

Arguments

p A single-profile SoilProfileCollection.

hzdesgn Column in horizon table containing designations. Default: guessHzDesgnName(p)

texcl.attr Column in horizon table containing texture classes. Default: guessHzTexClName(p)

clay.attr Column in horizon table containing clay contents. Default: guessHzAttrName(p,
'clay', c('total','_r'))

truncate Should sliding scale (Criterion 6C) results be truncated to 18 to 25cm interval?
(Experimental; Default: TRUE)

Value

A unit length numeric vector containing Mollic or Umbric epipedon minimum thickness require-
ment.

Author(s)

Andrew G. Brown

Examples

construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs",

hzname = c("A","AB","Bt","BCt","R"),
hzdept = c(0, 20, 32, 42, 49),
hzdepb = c(20, 32, 42, 49, 200),
prop = c(18, 22, 28, 24, NA),
texcl = c("l","l","cl", "l","br"),

178 munsell

d_value = c(5, 5, 5, 6, NA),
m_value = c(2.5, 3, 3, 4, NA),
m_chroma = c(2, 3, 4, 4, NA))

promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'

print results in table
data.frame(id = spc[[idname(spc)]],

thickness_req = mollic.thickness.requirement(spc, clay.attr='prop'),
thickness_req_nobound = mollic.thickness.requirement(spc,

clay.attr='prop', truncate=FALSE))

munsell Munsell to sRGB Lookup Table for Common Soil Colors

Description

A lookup table of interpolated Munsell color chips for common soil colors.

Usage

data(munsell)

Format

A data.frame with 8825 rows.

• hue: Munsell Hue, upper case

• value: Munsell Value

• chroma: Munsell Chroma

• r: sRGB "red" value (0-1)

• g: sRGB "green" value (0-1)

• b: sRGB "blue" value (0-1)

• L: CIELAB "L" coordinate

• A: CIELAB "A" coordinate

• B: CIELAB "B" coordinate

Details

See munsell2rgb for conversion examples. Values are referenced to the D65 standard illuminant.

munsell.spectra 179

Source

Color chip XYZ values: https://www.rit.edu/science/munsell-color-science-lab-educational-resources#
munsell-renotation-data

References

• Color conversion equations

– http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

• Methods used to generate this table

– http://dx.doi.org/10.1016/j.cageo.2012.10.020

Examples

data(munsell)

munsell.spectra Spectral Library of Munsell Colors

Description

The original database "SpectralReflectancesOf2007MunsellBookOfColorGlossy.txt" was provided
by Paul Centore and downloaded July, 2020. Reflectance values for odd chroma and 8.5-value chips
have been interpolated from adjacent chips. See aqp/misc/utils/Munsell/ for the entire set of
processing steps.

Munsell value typically ranges from 2-9, and chroma from 1-12. Ranges vary by hue. Run
aqp:::.summarizeMunsellSpectraRanges() for a detailed listing by hue.

The original database contains the following description:

This file contains spectral reflectance measurements of X-Rite’s 2007 Munsell Book of Color
(Glossy Finish). The measurements were made in 2012 with a ColorMunki spectrophotometer.
The first column is the Munsell name. The remaining columns give reflectance values for 380 nm
to 730 nm, in steps of 10 nm. The reflectance is a value between 0 (indicating that no light at that
wavelength is reflected) and 1 (indicating that all the light at that wavelength is reflected). Occa-
sionally an entry is slightly greater than 1. The likely cause is random variability, and those entries
can be adjusted to 1 with negligible loss. In all, 1485 colour samples were measured. Researchers
are invited to analyze the data in this file.

Usage

data(munsell.spectra)

https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data
https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data

180 munsell2rgb

Format

A data frame with 89496 rows and 10 variables:

munsell munsell color
hue hue component
value value component
chroma chroma component
wavelength wavelength (nm)
reflectance reflectance

References

Centore, Paul. Colour Tools for Painters. http://www.munsellcolourscienceforpainters.com/.

munsell2rgb Convert Munsell Color Notation to other Color Space Coordinates
(sRGB and CIELAB)

Description

Color conversion based on a look-up table of common soil colors.

Usage

munsell2rgb(
the_hue,
the_value,
the_chroma,
alpha = 1,
maxColorValue = 1,
return_triplets = FALSE,
returnLAB = FALSE

)

Arguments

the_hue a vector of one or more more hues, upper-case (e.g. ’10YR’)
the_value a vector of one or more values (e.g. ’4’)
the_chroma a vector of one or more chromas (e.g. ’6’), may be NA for neutral hues
alpha numeric, transparency setting used when return_triplets = FALSE and returnLAB

= FALSE

maxColorValue maximum sRGB color value, typically 1 (see rgb)
return_triplets

logical, return sRGB coordinates (range 0-1) instead of standard hex notation of
sRGB (e.g. ’#8080B’)

returnLAB logical, return CIELAB coordinates (D65 illuminant)

munsell2rgb 181

Details

This function is vectorized without recycling: i.e. the length of each argument must be the same.
Both functions will pad output with NA if there are any NA present in the inputs.

Neutral hues are approximated by greyscale shades ranging from 20\

Gley soil colors that are missing a chroma will not be correctly interpreted. Consider using a
chroma of 1. Non-standard Munsell notation (e.g. ’7.9YR 2.7/2.0’) can be matched (nearest-
neighbor, no interpolation) to the closest color within the munsell sRGB/CIELAB look-up table
via getClosestMunsellChip(). A more accurate estimate of sRGB values from non-standard
notation can be achieved with the munsellinterpol package.

See examples below.

Value

A vector of R colors is returned that is the same length as the input data. When return_triplets
= TRUE and/or returnLAB = TRUE, then a data.frame (of sample length as input) is returned.

Note

Care should be taken when using the resulting sRGB values; they are close to their Munsell coun-
terparts, but will vary based on your monitor and ambient lighting conditions. Also, the value used
for maxColorValue will affect the brightness of the colors. Th default value (1) will usually give
acceptable results, but can be adjusted to force the colors closer to what the user thinks they should
look like.

Author(s)

D.E. Beaudette

References

• http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

• https://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

• https://www.rit.edu/science/munsell-color-lab

Examples

neutral hues (N) can be defined with chroma of 0 or NA
g <- expand.grid(hue = 'N', value = 2:8, chroma = 0, stringsAsFactors = FALSE)
(m <- munsell2rgb(ghue, gvalue, g$chroma))
soilPalette(m)

back-transform to Munsell notation
col2Munsell(t(col2rgb(m)) / 255)

basic example
d <- expand.grid(hue = '10YR', value = 2:8, chroma = 1:8, stringsAsFactors = FALSE)
d$color <- with(d, munsell2rgb(hue, value, chroma))

https://CRAN.R-project.org/package=munsellinterpol

182 munsell2spc,SoilProfileCollection-method

similar to the 10YR color book page
plot(value ~ chroma, data = d, col = d$color, pch = 15, cex = 3, las = 1)

multiple pages of hue:
hues <- c('2.5YR', '5YR', '7.5YR', '10YR')
d <- expand.grid(

hue = hues,
value = c(2, 2.5, 3:8),
chroma = seq(2, 8, by = 2),
stringsAsFactors = FALSE

)
convert Munsell -> sRGB
d$color <- with(d, munsell2rgb(hue, value, chroma))

extract CIELAB coordinates
with(d, munsell2rgb(hue, value, chroma, returnLAB = TRUE))

plot: note that we are setting panel order from red --> yellow
library(lattice)

xyplot(
value ~ factor(chroma) | factor(hue, levels = hues),
main = "Common Soil Colors", layout = c(4, 1), scales = list(alternating = 1),
strip = strip.custom(bg = grey(0.85)),
data = d, as.table = TRUE, subscripts = TRUE,
xlab = 'Chroma', ylab = 'Value',
panel = function(x, y, subscripts, ...) {

panel.xyplot(x, y, pch = 15, cex = 4, col = d$color[subscripts])
}

)

convert a non-standard color to closest "chip" in `munsell` look-up table
getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE)

convert directly to hex notation of sRGB
getClosestMunsellChip('7.9YR 2.7/2.0')

munsell2spc,SoilProfileCollection-method

Merge Munsell Hue, Value, Chroma converted to sRGB & CIELAB
into a SoilProfileCollection

Description

Convert Munsell hue, value and chroma into sRGB (rgb_R, rgb_G, rgb_B) and CIELAB (lab_L,
lab_A, lab_B) color coordinates using munsell2rgb. The converted values are stored in the horizons()
slot unless as.spc is FALSE, in which case the results are combined with profile and horizon ID
columns and returned as the data.frame subclass used by the SPC.

munsell2spc,SoilProfileCollection-method 183

Usage

S4 method for signature 'SoilProfileCollection'
munsell2spc(
object,
hue = "hue",
value = "value",
chroma = "chroma",
.data = NULL,
as.spc = TRUE

)

Arguments

object A SoilProfileCollection

hue Column name containing numeric hue values. Default: "hue"

value Column name containing numeric value values. Default: "value"

chroma Column name containing numeric chroma values. Default: "chroma"

.data Optional: a character vector of equal length to number of horizons (contain-
ing Munsell notation), or a column name in the horizon data OR a data.frame
containing three columns (names specified in hue, value, chroma)

as.spc Return a data.frame-like object with ID columns?

Value

A SoilProfileCollection or data.frame-like object

See Also

parseMunsell rgb2munsell munsell2rgb

Examples

data(sp3)
depths(sp3) <- id ~ top + bottom

inspect input data
horizons(sp3)[,c("hue","value","chroma")]

do color conversions to sRGB and LAB, join into horizon data
sp3 <- munsell2spc(sp3)

plot rgb "R" coordinate by horizon
plot(sp3, color = "rgb_R")

plot lab "A" coordinate by horizon
plot(sp3, color = "lab_A")

note that `lab_A` values do not exactly match the original `A` values
this is because `lab_A` was computed from the (field determined) Munsell color notation,

184 mutate_profile

while `A` was directly measured in the lab by colorimeter
plot(sp3$A, sp3$lab_A, xlab = 'Measured', ylab = 'Converted from Field Observed Munsell')

munsellHuePosition Munsell Hue Position Reference

Description

Position data for the 40 standard Munsell hues (and neutral). Data include angular positions
(compass-style, origin at [x = 0, y = 1], CW rotation) and Cartesian coordinates on the unit
circle.

Usage

data(munsellHuePosition)

Format

An object of class data.frame with 41 rows and 4 columns.

References

Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.

mutate_profile Transform a SPC (by profile) with a set of expressions

Description

mutate_profile() is a function used for transforming SoilProfileCollections. Each expression is
applied to site or horizon level attributes of individual profiles. This distinguishes this function
from transform, which is applied to all values in a collection, regardless of which profile they
came from.

Usage

mutate_profile(object, ..., col_names = NULL, horizon_level = NULL)

mutate_profile_raw(object, expr, col_names = NULL, horizon_level = NULL)

mutate_profile 185

Arguments

object A SoilProfileCollection

... A set of comma-delimited R expressions that resolve to a transformation to
be applied to a single profile e.g mutate_profile(hzdept = max(hzdept) -
hzdept)

col_names character. Optional column names. Should match the number of expressions in
....

horizon_level logical. If TRUE results of expressions are added to the SoilProfileCollection’s
horizon slot, if FALSE the results are added to the site slot. If NULL (default) the
results are stored in the site or horizon slot based on the number of rows in each
slot compared to the length of the result calculated from the first and last profile
in the collection.

expr A list of expressions in terms of column names in site or horizon table of object

Details

If the length an expression’s result matches the number of horizons, the result is stored as a horizon-
level variable. If the result has length 1, it is stored as a site-level variable. In the ambiguous case
where the first and last profile have only one horizon, the results are stored in the horizon slot by
default. To force results into site slot use horizon_level = FALSE.

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

mutate_profile(sp4, clay_wtd_average = weighted.mean(clay, bottom - top))

data(jacobs2000)

set.seed(123)

col_names allows for column names to be calculated
x <- mutate_profile(jacobs2000, bottom - top / sum(bottom - top),

col_names = paste0("relthk", floor(runif(1, 0, 100))))
x$relthk28

mutate_profile_raw allows for lists of expressions to be evaluated
master_desgn <- c("O", "A", "E", "B", "C", "R", "L", "M")
thk_names <- paste0("thk_", master_desgn)

186 mu_confusion_matrix

calculate thickness for each horizon
x$thk <- x$bottom - x$top

construct an arbitrary number of expressions using variable inputs
ops <- lapply(master_desgn, function(x) {

substitute(sum(thk[grepl(PATTERN, name)], na.rm = TRUE), list(PATTERN = x))
})
names(ops) <- thk_names

do mutation
y <- mutate_profile_raw(x, ops)

site(y)[c(idname(y), thk_names)]

mu_confusion_matrix Map unit confusion matrix and other classification measures

Description

This function reverse engineers a confusion matrix and other classification measures from soil map
unit component percentages (i.e. composition) and area (i.e. acres).

Usage

mu_confusion_matrix(
x,
mapunit = "nationalmusym",
cophase = "coiid",
comppct = "comppct_r",
muacres = "muacres"

)

Arguments

x data.frame

mapunit character column name containing the mapunit identifier (e.g. nationalmusym)

cophase character column name containing the soil component phase identifier (e.g.
coiid or paste(compname, localphase))

comppct character column name containing the component percent (e.g. comppct_r)

muacres character column name containing the total area of the mapunit (e.g. muacres)

Details

mu_confusion_matrix There are several common statistical measures used to gauge the accuracy
of categorical maps. These measures are typically not estimated for soil surveys but can be inferred
from a map unit’s soil component composition percentages and size (i.e. acres). In general, overall
purity or accuracy (OP) is related to map unit kind (e.g. consociations vs complexes). For several

names,SoilProfileCollection-method 187

reasons, the “true” accuracies are unknown, and these values should be interpreted as Bayesian prior
estimates. However, it is likely that the estimates are optimistic if they haven’t been derived from
an external validation. Existing and future digital soil mapping products could be used to validate
how optimistic the current OA estimates are.

Value

list a confusion matrix, overall purity (OP) (i.e. overall accuracy), map unit purity (MP) (i.e.
user accuracy), class representation (CR) (i.e. producer accuracy), and Shannon entropy (E). The
measure names were selected to be consistent with the alternative terms proposed by Lark (1995)
and Brus (2011).

Author(s)

Stephen Roecker

References

• Brus DJ, Kempen B, Heuvelink GBM. 2011. Sampling for validation of digital soil maps.
European Journal of Soil Science. 62(3):394–407. doi:10.1111/j.13652389.2011.01364.x

• Lark RM. 1995. Components of accuracy of maps with special reference to discriminant
analysis on remote sensor data. International Journal of Remote Sensing. 16(8):1461–1480.
doi:10.1080/01431169508954488

See Also

tauW(), shannonEntropy(), confusionIndex()

Examples

example data
mu <- rbind(

data.frame(mapunit = "A", cophase = c("Alpha", "Beta"), comppct = c(90, 10), muacres = 100),
data.frame(mapunit = "B", cophase = c("Beta", "Alpha"), comppct = c(70, 30), muacres = 1000)
)

mu_confusion_matrix(mu, mapunit = "mapunit", cophase = "cophase", comppct = "comppct")

names,SoilProfileCollection-method

Get names of columns in site and horizons table

Description

Get names of columns in site and horizons table of a SoilProfileCollection.

https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://doi.org/10.1080/01431169508954488

188 NCSP

Usage

S4 method for signature 'SoilProfileCollection'
names(x)

Arguments

x a SoilProfileCollection

NCSP Numerical Classification of Soil Profiles

Description

Replacement for profile_compare().

Performs a numerical comparison of soil profiles using named properties, based on a weighted,
summed, depth-segment-aligned dissimilarity calculation.

Variability in soil depth can interfere significantly with the calculation of between-profile dissimilarity–
what is the numerical “distance” (or dissimilarity) between a slice of soil from profile A and the
corresponding, but missing, slice from a shallower profile B? Gower’s distance metric would yield
a NULL distance, despite the fact that intuition suggests otherwise: shallower soils should be more
dissimilar from deeper soils. For example, when a 25 cm deep profile is compared with a 50 cm
deep profile, numerical distances are only accumulated for the first 25 cm of soil (distances from 26
- 50 cm are NULL). When summed, the total distance between these profiles will generally be less
than the distance between two profiles of equal depth. Our algorithm will replace NULL distances
with the maximum distance between any pair of profiles for the current depth slice. In this way, the
numerical distance between a slice of soil and a corresponding slice of non-soil reflects the fact that
these two materials should be treated very differently.

This alternative calculation of dissimilarities between soil and non-soil slices solves the problem
of comparing shallow profiles with deeper profiles. However, it can result in a new problem: dis-
tances calculated between two shallow profiles will be erroneously inflated beyond the extent of
either profile’s depth. Our algorithm will preserve NULL distances between slices when both slices
represent non-soil material. Therefore, shallow profiles will only accumulate mutual dissimilarity
to the depth of the deeper profile.

Slices are classified as ’soil’ down to the maximum depth to which at least one of variables used in
the dissimilarity calculation is not NA. This will cause problems when profiles within a collection
contain all NAs within the columns used to determine dissimilarity. An approach for identifying
and removing these kind of profiles is presented in the examples section below.

Our approach builds on the work of (Moore, 1972) and the previously mentioned depth-slicing
algorithm. See references below for a detailed explanation of the NCSP algorithm.

Usage

NCSP(
x,
vars,

NCSP 189

fm = NULL,
weights = rep(1, times = length(vars)),
maxDepth = max(x),
k = 0,
isColor = FALSE,
rescaleResult = FALSE,
verbose = TRUE,
returnDepthDistances = FALSE

)

Arguments

x SoilProfileColection object, should be pre-filtered to remove profiles with
horizon depth logic, see HzDepthLogicSubset

vars character vector, names of horizon attributes to use in the classification

fm formula, formula as specified to dice(), not yet implemented

weights numeric vector, same length as vars: variable importance weights, need not
sum to 1

maxDepth numeric, maximum depth of analysis

k numeric, weighting coefficient, usually between 0-1. A value of 0 results in no
depth-weighting. See examples.

isColor logical: variables represent color, should be CIELAB coordinates (D65 illumi-
nant), weights are ignored. Variables should be named L, A, B in specified in that
order.

rescaleResult logical, distance matrix is rescaled based on max(D)

verbose logical, extra output messages
returnDepthDistances

logical, return a list of distances by depth slice

Note

NCSP() will overwrite the removed.profiles metadata from x.

Author(s)

Dylan E. Beaudette and Jon Maynard

References

• J.J Maynard, S.W. Salley, D.E. Beaudette, J.E Herrick. Numerical soil classification supports
soil identification by citizen scientists using limited, simple soil observations. Soil Sci. Soc.
Am. J. 2020; 84: 1675-1692. doi:10.1002/saj2.20119.

• D.E. Beaudette, P. Roudier, A.T. O’Geen, Algorithms for quantitative pedology: A toolkit for
soil scientists, Computers & Geosciences, Volume 52, 2013, Pages 258-268, ISSN 0098-3004,
doi:10.1016/j.cageo.2012.10.020.

• Moore, A.; Russell, J. & Ward, W. Numerical analysis of soils: A comparison of three soil
profile models with field classification. Journal of Soil Science, 1972, 23, 194-209.

https://doi.org/10.1002/saj2.20119
https://doi.org/10.1016/j.cageo.2012.10.020

190 osd

See Also

dice(), cluster::daisy(), compareSites()

nrow,SoilProfileCollection-method

Get the number of horizons in a SoilProfileCollection

Description

Get the number of horizons in a SoilProfileCollection

Usage

S4 method for signature 'SoilProfileCollection'
nrow(x)

Arguments

x a SoilProfileCollection

osd Example Output from soilDB::fetchOSD()

Description

An example SoilProfileCollection object created by soilDB::fetchOSD(), derived from the
Cecil, Appling, and Bonneau Official Series Descriptions.

Usage

data(osd)

Format

A SoilProfileCollection

panel.depth_function 191

panel.depth_function Lattice Panel Function for Soil Profiles

Description

Panel function for plotting grouped soil property data, along with upper and lower estimates of
uncertainty.

This function can be used to replace panel.superpose when plotting depth function data. When
requested, contributing fraction data are printed using colors the same color as corresponding depth
function lines unless a single color value is given via cf.col.

This function is not able to apply transformations (typically log = 10) applied in the scales argu-
ment to xyplot to upper/lower bounds. These will have to be manually applied. See examples.

Usage

panel.depth_function(
x,
y,
id,
upper = NA,
lower = NA,
subscripts = NULL,
groups = NULL,
sync.colors = FALSE,
cf = NA,
cf.col = NA,
cf.interval = 20,
...

)

prepanel.depth_function(
x,
y,
upper = NA,
lower = NA,
subscripts,
groups = NULL,
...

)

Arguments

x x values (generated by calling lattice function)

y y values (generated by calling lattice function)

id vector of id labels, same length as x and y–only required when plotting segments
(see Details section)

192 panel.depth_function

upper vector of upper confidence envelope values

lower vector of lower confidence envelope values

subscripts paneling indices (generated by calling lattice function)

groups grouping data (generated by calling lattice function)

sync.colors optionally sync the fill color within the region bounded by (lower–upper) with
the line colors

cf optionally annotate contributing fraction data at regular depth intervals see slab

cf.col optional color for contributing fraction values, typically used to override the line
color

cf.interval number of depth units to space printed contributing fraction values

... further arguments to lower-level lattice plotting functions, see below

Author(s)

D.E. Beaudette

See Also

sp1, slice, slab

Examples

library(lattice)
data(sp1)

1. plotting mechanism for step-functions derived from soil profile data
xyplot(

cbind(top, bottom) ~ prop,
data = sp1,
id = sp1$id,
panel = panel.depth_function,
ylim = c(250, -10),
scales = list(y = list(tick.number = 10)),
xlab = 'Property',
ylab = 'Depth (cm)',
main = 'panel.depth_function() demo'

)

1.1 include groups argument to leverage lattice styling framework
sp1$group <- factor(sp1$group, labels = c('Group 1', 'Group2'))

xyplot(
cbind(top, bottom) ~ prop,
groups = group,
data = sp1,
id = sp1$id,
panel = panel.depth_function,
ylim = c(250, -10),
scales = list(y = list(tick.number = 10)),

panel.depth_function 193

xlab = 'Property',
ylab = 'Depth (cm)',
main = 'panel.depth_function() demo',
auto.key = list(

columns = 2,
points = FALSE,
lines = TRUE

),
par.settings = list(superpose.line = list(col = c(

'Orange', 'RoyalBlue'
)))

)

more complex examples, using step functions with grouped data
better looking figures with less customization via tactile package
if(requireNamespace('tactile')) {

library(data.table)
library(lattice)
library(tactile)

example data
data(sp6)

a single profile
x <- sp6[1:5,]

wide -> long format
x.long <- data.table::melt(
data.table::data.table(x),
id.vars = c('id', 'top', 'bottom'),
measure.vars = c('sand', 'silt', 'clay')

)

(optional) convert back to data.frame
x.long <- as.data.frame(x.long)

three variables sharing a common axis
factor levels set by melt()
xyplot(

cbind(top, bottom) ~ value | id,
groups = variable,
data = x.long,
id = x.long$id,
ylim = c(200, -5), xlim = c(10, 60),
scales = list(alternating = 1, y = list(tick.number = 10)),
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
xlab = 'Sand, Silt, Clay (%)',
ylab = 'Depth (cm)',
panel = panel.depth_function,
auto.key = list(columns = 3, lines = TRUE, points = FALSE),
asp = 1.5

194 panel.depth_function

)

all profiles
x <- sp6

wide -> long format
x.long <- data.table::melt(

data.table::data.table(x),
id.vars = c('id', 'top', 'bottom'),
measure.vars = c('sand', 'silt', 'clay')

)

(optional) convert back to data.frame
x.long <- as.data.frame(x.long)

three variables sharing a common axis
factor levels set by melt()
xyplot(

cbind(top, bottom) ~ value | id,
groups = variable,
data = x.long,
id = x.long$id,
ylim = c(200, -5), xlim = c(0, 70),
scales = list(alternating = 1, y = list(tick.number = 10)),
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
xlab = 'Sand, Silt, Clay (%)',
ylab = 'Depth (cm)',
panel = panel.depth_function,
auto.key = list(columns = 3, lines = TRUE, points = FALSE),
as.table = TRUE

)

xyplot(
cbind(top, bottom) ~ value,
groups = variable,
data = x.long,
id = x.long$id,
ylim = c(200, -5), xlim = c(0, 70),
scales = list(alternating = 1, y = list(tick.number = 10)),
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
xlab = 'Sand, Silt, Clay (%)',
ylab = 'Depth (cm)',
panel = panel.depth_function,
auto.key = list(columns = 3, lines = TRUE, points = FALSE),
as.table = TRUE

)

xyplot(
cbind(top, bottom) ~ value | variable,
groups = variable,
data = x.long,
id = x.long$id,

parseMunsell 195

ylim = c(200, -5), xlim = c(0, 70),
scales = list(alternating = 1, y = list(tick.number = 10)),
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
xlab = 'Sand, Silt, Clay (%)',
ylab = 'Depth (cm)',
panel = panel.depth_function,
auto.key = list(columns = 3, lines = TRUE, points = FALSE),
as.table = TRUE

)

xyplot(
cbind(top, bottom) ~ value | variable,
data = x.long,
id = x.long$id,
ylim = c(200, -5), xlim = c(0, 70),
scales = list(alternating = 1, y = list(tick.number = 10)),
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
xlab = 'Sand, Silt, Clay (%)',
ylab = 'Depth (cm)',
panel = panel.depth_function,
auto.key = list(columns = 3, lines = TRUE, points = FALSE),
as.table = TRUE

)

}

parseMunsell Parse Munsell Color Notation

Description

Split Munsell color notation into "hue", "value", and "chroma", with optional conversion to sRGB
hex notation, sRGB coordinates, and CIELAB coordinates. Conversion is performed by munsell2rgb().

Usage

parseMunsell(munsellColor, convertColors = TRUE, delim = NA, ...)

Arguments

munsellColor character vector of Munsell colors (e.g. c('10YR 3/4', '5YR 4/6'))

convertColors logical, convert colors to sRGB hex notation, sRGB coordinates, CIELAB co-
ordinates

delim optional, specify the type of delimiter used between value and chroma parts of
the Munsell code. By default ":", ",:, "’", and "/" are supported.

... additional arguments to munsell2rgb()

196 pbindlist

Value

a data.frame object

Author(s)

P. Roudier and D.E. Beaudette

Examples

just sRGB
parseMunsell("10YR 3/5", return_triplets = TRUE)

sRGB + CIELAB (D65 illuminant)
parseMunsell("10YR 3/5", return_triplets = TRUE, returnLAB = TRUE)

CIELAB only
parseMunsell("10YR 3/5", return_triplets = FALSE, returnLAB = TRUE)

neutral hue
note chroma encoded as '0'
parseMunsell('N 3/', convertColors = FALSE)

pbindlist Combine a list of SoilProfileCollection objects

Description

See combine(...) for a connotative short-hand method that does not require that SoilProfileCollection
be in a list. Profiles will be sorted based on character sorting of profile ID.

Usage

pbindlist(l, new.idname = NULL, verbose = TRUE)

Arguments

l a list of SoilProfileCollection objects
new.idname Optional: a character referring to a new column name to put unique profile IDs

in; default: NULL to attempt with existing idname in first element
verbose Produce warnings and messages regarding results? default: TRUE

Details

Input data must share a common depth unit, and if spatial data are present, a common CRS and
coordinate names. In the case of non-conformal @idname and/or @depthcols, the first SoilPro-
fileCollection is used as a template. If one or more subsequent list elements has non-unique val-
ues in a site level attribute of that name, the ID name from the second list element is attempted,
and so on. Non-conforming spatial data are dropped from the final result (returns default empty
SpatialPoints).

perturb 197

Value

a SoilProfileCollection object

Author(s)

D.E. Beaudette and A.G. Brown

Examples

example data
data(sp2, package = 'aqp')
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

copy pieces
x <- sp2[1:5,]
y <- sp2[6:10,]

reset IDs and combine
profile_id(y) <- sprintf("%s-copy", profile_id(y))

this should work
z <- pbindlist(list(x, y))

check
plot(z)

perturb Perturb soil horizon depths using boundary distinctness

Description

"Perturbs" the boundary between horizons or the thickness of horizons using a standard de-
viation specified as a horizon-level attribute. This is selected using either boundary.attr or
thickness.attr to specify the column name.

The boundary standard deviation corresponds roughly to the concept of "horizon boundary distinct-
ness." In contrast, the horizon thickness standard deviation corresponds roughly to the "variation in
horizon thickness" so it may be determined from several similar profiles that have a particular layer
"in common."

Usage

perturb(
p,
n = 100,
id = NULL,
thickness.attr = NULL,
boundary.attr = NULL,

198 perturb

min.thickness = 1,
max.depth = NULL,
new.idname = "pID"

)

Arguments

p A SoilProfileCollection

n Number of new profiles to generate (default: 100) per profile in p

id a vector of profile IDs with length equal to (n). Overrides use of seq_len(n) as
default profile ID values.

thickness.attr Horizon variance attribute containing numeric "standard deviations" reflecting
horizon thickness

boundary.attr Horizon variance attribute containing numeric "standard deviations" reflecting
boundary transition distinctness

min.thickness Minimum thickness of permuted horizons (default: 1)

max.depth Depth below which horizon depths are not perturbed (default: NULL)

new.idname New column name to contain unique profile ID (default: pID)

Details

Imagine a Normal curve with mean centered on the vertical (depth axis) at a representative value
(RV) horizon bottom depth or thickness. By the Empirical Rule for Normal distribution, two "stan-
dard deviations" above or below that "central" mean value represent 95% of the "typical volume"
of that horizon or boundary.

perturb() can leverage semi-quantitative (ordered factor) levels of boundary distinctness/topography
for the upper and lower boundary of individual horizons. A handy function for this is hzDistinctnessCodeToOffset().
The boundary.attr is arguably easier to parameterize from a single profile description or "Form
232" where horizon boundary distinctness classes (based on vertical distance of transition) are con-
ventionally recorded for each layer.

Alternately, perturb() can be parameterized using standard deviation in thickness of layers derived
from a group. Say, the variance parameters are defined from a set of pedons correlated to a particular
series or component, and the template "seed" profile is, for example, the Official Series Description
or the Representative Component Pedon.

Value

a SoilProfileCollection with n realizations of each profile in p

Author(s)

D.E. Beaudette, A.G. Brown

See Also

random_profile() hzDistinctnessCodeToOffset()

perturb 199

Examples

THICKNESS

load sample data and convert into SoilProfileCollection
data(sp3)
depths(sp3) <- id ~ top + bottom

select a profile to use as the basis for simulation
s <- sp3[3,]

reset horizon names
s$name <- paste('H', seq_along(s$name), sep = '')

simulate 25 new profiles
horizons(s)$hz.sd <- 2 # constant standard deviation
sim.1 <- perturb(s, n = 25, thickness.attr = "hz.sd")

simulate 25 new profiles using different SD for each horizon
horizons(s)$hz.sd <- c(1, 2, 5, 5, 5, 10, 3)
sim.2 <- perturb(s, n = 25, thickness.attr = "hz.sd")

plot
par(mfrow = c(2, 1), mar = c(0, 0, 0, 0))
plot(sim.1)
mtext(

'SD = 2',
side = 2,
line = -1.5,
font = 2,
cex = 0.75

)
plot(sim.2)
mtext(

'SD = c(1, 2, 5, 5, 5, 10, 3)',
side = 2,
line = -1.5,
font = 2,
cex = 0.75

)

aggregate horizonation of simulated data
note: set class_prob_mode=2 as profiles were not defined to a constant depth
sim.2$name <- factor(sim.2$name)
a <- slab(sim.2, ~ name, cpm=2)

convert to long format for plotting simplicity
library(data.table)
a.long <- data.table::melt(data.table::as.data.table(a),

id.vars = c('top', 'bottom'),
measure.vars = levels(sim.2$name))

plot horizon probabilities derived from simulated data

200 perturb

dashed lines are the original horizon boundaries
library(lattice)

xyplot(
top ~ value,
groups = variable,
data = a.long,
subset = value > 0,
ylim = c(100,-5),
type = c('l', 'g'),
asp = 1.5,
ylab = 'Depth (cm)',
xlab = 'Probability',
auto.key = list(

columns = 4,
lines = TRUE,
points = FALSE

),
panel = function(...) {

panel.xyplot(...)
panel.abline(h = s$top, lty = 2, lwd = 2)

}
)

BOUNDARIES

example with sp1 (using boundary distinctness)
data("sp1")
depths(sp1) <- id ~ top + bottom

specify "standard deviation" for boundary thickness
consider a normal curve centered at boundary RV depth
lookup table: ~maximum thickness of boundary distinctness classes, divided by 3
bound.lut <- c('V'=0.5,'A'=2,'C'=5,'G'=15,'D'=45) / 3

V A C G D
0.1666667 0.6666667 1.6666667 5.0000000 15.0000000

sp1$bound_sd <- bound.lut[sp1$bound_distinct]

hold any NA boundary distinctness constant
sp1$bound_sd[is.na(sp1$bound_sd)] <- 0

quantile(sp1$bound_sd, na.rm = TRUE)
p <- sp1[3]

assume boundary sd is 1/12 midpoint of horizon depth
(i.e. general relationship: SD increases (less well known) with depth)
sp1 <- transform(sp1, midpt = (bottom - top) / 2 + top, bound_sd = midpt / 12)
quantile(sp1$bound_sd)

perturb(p, boundary.attr = "bound_sd", n = 10)

ph_to_rxnclass 201

Custom IDs

ids <- sprintf("%s-%03d", profile_id(p), 1:10)
perturb(p, boundary.attr = "bound_sd", id = ids)

ph_to_rxnclass Convert pH to/from Reaction Classes

Description

Convert pH to/from Reaction Classes

Usage

ph_to_rxnclass(x, halfclass = FALSE, as.is = FALSE, droplevels = TRUE)

rxnclass_to_ph(x, halfclass = FALSE, digits = 2, simplify = TRUE)

ReactionClassLevels(halfclass = FALSE, as.is = FALSE)

Arguments

x input pH values (numeric; ph_to_rxnclass()) or reaction classes (character;
rxnclass_to_ph())

halfclass Split the standard classes in half for higher resolution? Default: FALSE

as.is logical. Should character vectors be converted to factors? Default: FALSE

droplevels logical. Drop unused levels in factors? Default: FALSE

digits Number of digits after decimal place; Default: 2. Used only for rxnclass_to_ph()

simplify Simplify list result to numeric vector when length of result is 1? Default: TRUE

Value

ph_to_rxnclass(): a vector of reaction classes corresponding to numeric input in x; if as.is=FALSE
an ordered factor using ReactionClassLevels()

rxnclass_to_ph(): a list of data.frame objects containing high/low values of reaction class 1:1
with input; if simplify=TRUE and input is a data.frame.

ReactionClassLevels(): ordered factor containing descriptive terms for reaction classes

202 plotColorMixture

Examples

ph_to_rxnclass(6.2)
rxnclass_to_ph("slightly acid")

rxnclass_to_ph(list(c("Slightly Acid", NA, "Moderately Acid"),
c("Slightly Acid", NA, "Strongly Acid")), simplify = FALSE)

ReactionClassLevels()

plotColorMixture Visualize Spectral Mixing of Munsell Colors

Description

Lattice visualization demonstrating subtractive mixtures of colors in Munsell notation and associ-
ated spectra.

Usage

plotColorMixture(
x,
w = rep(1, times = length(x))/length(x),
mixingMethod = c("exact", "reference"),
n = 1,
swatch.cex = 1.5,
label.cex = 0.85,
showMixedSpec = FALSE,
overlapFix = TRUE

)

Arguments

x vector of colors in Munsell notation, should not contain duplicates
w vector of weights, can sum to any number
mixingMethod approach used to simulate a mixture:

• exact: simulate a subtractive mixture of pigments, color conversion via
CIE1931 color-matching functions (see mixMunsell())

• reference : simulate a subtractive mixture of pigments, selecting n closest
reference spectra, requires gower package

n number of closest mixture candidates when mixingMethod = 'reference' (see
mixMunsell()), results can be hard to interpret when n > 2

swatch.cex scaling factor for color swatch rectangle width and height, relative to label.cex,
typically between 1 and 3

label.cex scaling factor for swatch labels
showMixedSpec show weighted geometric mean (mixed) spectra as dotted line (only when mixingMethod

= 'reference')
overlapFix attempt to "fix" overlapping chip labels via fixOverlap(), using method = 'E'

plotColorQuantiles 203

Details

If present, names attribute of x is used for the figure legend. See the expanded tutorial for examples.

Value

a lattice graphics object

Author(s)

D.E. Beaudette

See Also

mixMunsell()

plotColorQuantiles Visualize Color Quantiles

Description

This function creates a visualization of the output from colorQuantiles using lattice graphics.

Usage

plotColorQuantiles(res, pt.cex = 7, lab.cex = 0.66)

Arguments

res list returned by colorQuantiles

pt.cex scaling factor for color chips

lab.cex chip label scaling factor

Details

Marginal percentiles and L1 median CIELAB values from colorQuantiles() are combined into
a single plot, arranged in panels according to L, A, and B coordinates. Munsell "chips" (colors and
labels) are based on the closest Munsell color found via col2Munsell().

Value

a lattice graphics object

Author(s)

D.E. Beaudette

https://ncss-tech.github.io/AQP/aqp/mix-colors.html

204 plotMultipleSPC

plotMultipleSPC Plot Multiple SoilProfileCollection Objects

Description

Plot Multiple SoilProfileCollection Objects

Usage

plotMultipleSPC(
spc.list,
group.labels,
args = rep(list(NA), times = length(spc.list)),
merged.legend = NULL,
merged.colors = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B",

"#FDAE61", "#F46D43", "#D53E4F", "#9E0142"),
merged.legend.title = merged.legend,
arrow.offset = 2,
bracket.base.depth = 95,
label.offset = 2,
label.cex = 0.75,
...

)

Arguments

spc.list a list of SoilProfileCollection objects

group.labels a vector of group labels, one for each SoilProfileCollection object

args a list of arguments passed to plotSPC, one for each SoilProfileCollection
object

merged.legend name of a horizon level attribute from which to create thematic sketches and
merged legend

merged.colors vector of colors used to create thematic sketches from a shared horizon level
attribute

merged.legend.title

legend title

arrow.offset vertical offset in depth from base of start / end profiles and group bracket arrows
bracket.base.depth

baseline depth used for group brackets

label.offset vertical offset of group labels from baseline

label.cex label size

... additional arguments to the first call to plotSPC

plotMultipleSPC 205

Details

Combine multiple SoilProfileCollection objects into a single profile sketch, with annotated
groups.

See examples below for usage.

Note

For thematic sketches, use the merged.legend argument instead of color argument to plotSPC

Author(s)

D.E. Beaudette and Ben Marshall

See Also

profileGroupLabels

Examples

##
Simple Example
##

using default arguments to plotSPC()

load sample data
data(sp3)
data(sp4)

promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

combine into a list
spc.list <- list(sp3, sp4)

argument list
arg.list <- list(

list(name='name', id.style='top'),
list(name='name', id.style='side')

)

plot multiple SPC objects,
with list of named arguments for each call to plotSPC
par(mar=c(1,1,3,3))
plotMultipleSPC(

spc.list,
group.labels = c('Collection 1', 'Collection 2'),
args = arg.list,
bracket.base.depth = 120, label.cex = 1

206 plotMultipleSPC

)

specify a different max.depth
plotMultipleSPC(

spc.list,
group.labels = c('Collection 1', 'Collection 2'),
args = arg.list,
bracket.base.depth = 120, label.cex = 1,
max.depth = 250

)

##
Merged Legend Example
##

merged legend based on hz attribute 'clay'

reset sample data
data(sp3)
data(sp4)

promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

combine into a list
spc.list <- list(sp3, sp4)

argument list
arg.list <- list(

list(name='name', id.style='top'),
list(name='name', id.style='side')

)

par(mar=c(1,1,3,3))
plotMultipleSPC(

spc.list,
group.labels = c('Collection 1', 'Collection 2'),
args = arg.list,
label.cex = 1,
merged.legend = 'clay', merged.legend.title = 'Clay (%)'

)

##
Complex Merged Legend Example
##

create a merged legend from "clay" in sp4 and jacobs2000
use "soil_color" from sp3

plotProfileDendrogram 207

reset sample data
data(sp3)
data(sp4)
data(jacobs2000)

promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

remove 'clay' column from sp3
sp3$clay <- NULL

combine into a list
spc.list <- list(sp3, sp4, jacobs2000)

try some variations on the default arguments
`clay` is missing in the first SPC, safe to specify another column for colors
arg.list <- list(

list(color = 'soil_color', id.style='top', name = NA, width = 0.3, hz.depths = TRUE),
list(name='name', id.style='side', name.style = 'center-center'),
list(name='name', id.style='side', name.style = 'left-center', hz.depths = TRUE)

)

par(mar=c(1,1,3,3))
plotMultipleSPC(

spc.list,
group.labels = c('sp3', 'sp4', 'jacobs2000'),
label.offset = 3,
args = arg.list,
merged.legend = 'clay', merged.legend.title = 'Clay (%)',
depth.axis = list(line = 0)

)

plotProfileDendrogram Plot soil profiles below a dendrogram or cladogram

Description

Plot soil profiles below a dendrogram, using methods from the ape package.

Usage

plotProfileDendrogram(
x,
clust,
rotateToProfileID = FALSE,
scaling.factor = 5 * mean(clust$height)/max(x),
width = 0.25,

208 plotProfileDendrogram

y.offset = 60 * mean(clust$height)/max(x),
dend.y.scale = max(clust$height * 2, na.rm = TRUE),
dend.color = par("fg"),
dend.width = 1,
dend.type = c("phylogram", "cladogram"),
debug = FALSE,
...

)

Arguments

x a SoilProfileCollection object

clust a hierarchical clustering object generated by hclust(), cluster::agnes(), or
cluster::diana()

rotateToProfileID

logical, attempt rotation of dendrogram according to original profile IDs, re-
quires dendextend package

scaling.factor numeric, vertical scaling of the profile heights (default estimate printed if not
specified)

width numeric, scaling of profile widths

y.offset numeric, vertical offset for top of profiles (default estimate printed if not speci-
fied)

dend.y.scale numeric, scaling of dendrogram (default estimate printed if not specified)

dend.color dendrogram line color

dend.width dendrogram line width

dend.type dendrogram type, passed to plot.phylo(), either "phylogram" or "cladogram"

debug logical, optionally print debugging data and return a data.frame of linking
structure

... additional arguments to plotSPC()

Value

This function is typically called to create graphical output, when debug = TRUE a data.frame of
IDs and linking structure used to build the figure.

Note

The default values of scaling.factor, y.offset, and dend.y.scale are based on clust$height
and max(x), and should be close to optimal. Use the defaults as a starting point for finer control.

Author(s)

D.E. Beaudette

plotSPC 209

plotSPC Create Soil Profile Sketches

Description

Generate a diagram of soil profile sketches from a SoilProfileCollection object. The Introduc-
tion to SoilProfileCollection Objects Vignette contains many examples and discussion of the large
number of arguments to this function. The Soil Profile Sketches tutorial has longer-form discussion
and examples pertaining to suites of related arguments.

Options can be used to conveniently specify sets of arguments that will be used in several calls to
plotSPC() within a single R session. For example, arguments can be specified in a named list (.a)
and set using: options(.aqp.plotSPC.args = .a). Reset these options via options(.aqp.plotSPC.args
= NULL). Arguments explicitly passed to plotSPC() will override arguments set via options().

Usage

plotSPC(
x,
color = "soil_color",
width = ifelse(length(x) < 2, 0.15, 0.25),
name = hzdesgnname(x),
name.style = "right-center",
label = idname(x),
raggedBottom = NULL,
hz.depths = FALSE,
hz.depths.offset = ifelse(fixLabelCollisions, 0.03, 0),
hz.depths.lines = fixLabelCollisions,
depth.axis = list(style = "traditional", cex = cex.names * 1.15),
alt.label = NULL,
alt.label.col = "black",
cex.names = 0.5,
cex.id = cex.names + (0.2 * cex.names),
font.id = 2,
srt.id = 0,
print.id = TRUE,
id.style = "auto",
plot.order = 1:length(x),
relative.pos = 1:length(x),
add = FALSE,
scaling.factor = 1,
y.offset = rep(0, times = length(x)),
x.idx.offset = 0,
n = length(x),
max.depth = ifelse(is.infinite(max(x)), 200, max(x)),
n.depth.ticks = 10,
shrink = FALSE,

http://ncss-tech.github.io/aqp/articles/Introduction-to-SoilProfileCollection-Objects.html
http://ncss-tech.github.io/aqp/articles/Introduction-to-SoilProfileCollection-Objects.html
https://ncss-tech.github.io/AQP/aqp/sketches.html

210 plotSPC

shrink.cutoff = 3,
shrink.thin = NULL,
abbr = FALSE,
abbr.cutoff = 5,
divide.hz = TRUE,
hz.distinctness.offset = NULL,
hz.topography.offset = NULL,
hz.boundary.lty = NULL,
density = NULL,
show.legend = TRUE,
col.label = color,
col.palette = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B",

"#FDAE61", "#F46D43", "#D53E4F", "#9E0142"),
col.palette.bias = 1,
col.legend.cex = 1,
n.legend = 8,
lwd = 1,
lty = 1,
default.color = grey(0.95),
fixLabelCollisions = hz.depths,
fixOverlapArgs = list(method = "E", q = 1),
cex.depth.axis = cex.names,
axis.line.offset = -2,
plot.depth.axis = TRUE,
...

)

S4 method for signature 'SoilProfileCollection'
plot(x, y, ...)

Arguments

x a SoilProfileCollection object

color quoted column name containing R-compatible color descriptions, or numeric /
categorical data to be displayed thematically; see details

width scaling of profile widths (typically 0.1 - 0.4)

name quoted column name of the (horizon-level) attribute containing horizon desig-
nations or labels, if missing hzdesgnname(x) is used. Suppress horizon name
printing by setting name = NA or name = ''.

name.style one of several possible horizon designations labeling styles: c('right-center',
'left-center', 'left-top', 'center-center', 'center-top')

label quoted column name of the (site-level) attribute used to identify profile sketches

raggedBottom either quoted column name of the (site-level) attribute (logical) used to mark
profiles with a truncated lower boundary, or FALSE suppress ragged bottom
depths when max.depth < max(x)

hz.depths logical, annotate horizon top depths to the right of each sketch (FALSE)

plotSPC 211

hz.depths.offset

numeric, user coordinates for left-right adjustment for horizon depth annotation;
reasonable values are usually within 0.01-0.05 (default: 0)

hz.depths.lines

logical, draw segments between horizon depth labels and actual horizon depth;
this is useful when including horizon boundary distinctness and/or fixLabelCollisions
= TRUE

depth.axis logical or list. Use a logical to suppress (FALSE) or add depth axis using defaults
(TRUE). Use a list to specify one or more of:

• style: character, one of ’traditional’, ’compact’, or ’tape’
• line: numeric, negative values move axis to the left (does not apply to
style = 'tape')

• cex: numeric, scaling applied to entire depth axis
• interval: numeric, axis interval See examples.

alt.label quoted column name of the (site-level) attribute used for secondary annotation

alt.label.col color used for secondary annotation text

cex.names baseline character scaling applied to all text labels

cex.id character scaling applied to label

font.id font style applied to label, default is 2 (bold)

srt.id rotation applied to label, only when id.style = 'top'

print.id logical, print label above/beside each profile? (TRUE)

id.style label printing style: ’auto’ (default) = simple heuristic used to select from:
’top’ = centered above each profile, ’side’ = ’along the top-left edge of profiles’

plot.order integer vector describing the order in which individual soil profiles should be
plotted

relative.pos vector of relative positions along the x-axis, within {1, n}, ignores plot.order
see details

add logical, add to an existing figure

scaling.factor vertical scaling of profile depths, useful for adding profiles to an existing figure

y.offset numeric vector of vertical offset for top of profiles in depth units of x, can either
be a single numeric value or vector of length = length(x). A vector of y-offsets
will be automatically re-ordered according to plot.order.

x.idx.offset integer specifying horizontal offset from 0 (left-hand edge)

n integer describing amount of space along x-axis to allocate, defaults to length(x)

max.depth numeric. The lower depth for all sketches, deeper profiles are truncated at this
depth. Use larger values to arbitrarily extend the vertical dimension, convenient
for leaving extract space for annotation.

n.depth.ticks suggested number of ticks in depth scale

shrink logical, reduce character scaling for ’long’ horizon by 80%

shrink.cutoff character length defining ’long’ horizon names

shrink.thin integer, horizon thickness threshold for shrinking horizon names by 80%, only
activated when shrink = TRUE (NULL = no shrinkage)

212 plotSPC

abbr logical, abbreviate label

abbr.cutoff suggested minimum length for abbreviated label

divide.hz logical, divide horizons with line segment? (TRUE), see details
hz.distinctness.offset

NULL, or quoted column name (horizon-level attribute) containing vertical off-
sets used to depict horizon boundary distinctness (same units as profiles), see de-
tails and hzDistinctnessCodeToOffset(); consider setting hz.depths.lines
= TRUE when used in conjunction with hz.depths = TRUE

hz.topography.offset

NULL, or quoted column name (horizon-level attribute) containing offsets used
to depict horizon boundary topography (same units as profiles), see details and
hzTopographyCodeToOffset()

hz.boundary.lty

quoted column name (horizon-level attribute) containing line style (integers)
used to encode horizon topography

density fill density used for horizon color shading, either a single integer or a quoted
column name (horizon-level attribute) containing integer values (default is NULL,
no shading)

show.legend logical, show legend? (default is TRUE)

col.label thematic legend title

col.palette color palette used for thematic sketches (default is rev(brewer.pal(10, 'Spectral')))
col.palette.bias

color ramp bias (skew), see colorRamp()

col.legend.cex scaling of thematic legend

n.legend approximate number of classes used in numeric legend, max number of items
per row in categorical legend

lwd line width multiplier used for sketches

lty line style used for sketches

default.color default horizon fill color used when color attribute is NA
fixLabelCollisions

use fixOverlap() to attempt fixing hz depth labeling collisions, will slow plot-
ting of large collections; enabling also sets hz.depths.lines = TRUE. Addi-
tional arguments to fixOverlap() can be passed via fixOverlapArgs. Over-
lap collisions cannot be fixed within profiles containing degenerate or missing
horizon depths (e.g. top == bottom).

fixOverlapArgs a named list of arguments to fixOverlap(). Overlap adjustments are attempted
using electrostatic simulation with arguments: list(method = 'E', q = 1). Al-
ternatively, select adjustment by simulated annealing via list(method = 'S').
See electroStatics_1D() and SANN_1D() for details.

cex.depth.axis (deprecated, use depth.axis instead) character scaling applied to depth scale
axis.line.offset

(deprecated, use depth.axis instead) horizontal offset applied to depth axis
(default is -2, larger numbers move the axis to the right)

plotSPC 213

plot.depth.axis

(deprecated, use depth.axis instead) logical, plot depth axis?

... other arguments passed into lower level plotting functions

y (not used)

Details

Depth limits (max.depth) and number of depth ticks (n.depth.ticks) are suggestions to the
pretty() function. You may have to tinker with both parameters to get what you want.

The ’side’ id.style is useful when plotting a large collection of profiles, and/or, when profile IDs
are long.

If the column containing horizon designations is not specified (the name argument), a column (pre-
sumed to contain horizon designation labels) is guessed based on regular expression matching of
the pattern ’name’–this usually works, but it is best to manual specify the name of the column
containing horizon designations.

The color argument can either name a column containing R-compatible colors, possibly created
via munsell2rgb(), or column containing either numeric or categorical (either factor or character)
values. In the second case, values are converted into colors and displayed along with a simple
legend above the plot. Note that this functionality makes several assumptions about plot geometry
and is most useful in an interactive setting.

Adjustments to the legend can be specified via col.label (legend title), col.palette (palette of
colors, automatically expanded), col.legend.cex (legend scaling), and n.legend (approximate
number of classes for numeric variables, or, maximum number of legend items per row for categor-
ical variables). Currently, plotSPC will only generate two rows of legend items. Consider reducing
the number of classes if two rows isn’t enough room.

Profile sketches can be added according to relative positions along the x-axis (vs. integer sequence)
via relative.pos argument. This should be a vector of positions within {1,n} that are used for
horizontal placement. Default values are 1:length(x). Care must be taken when both plot.order
and relative.pos are used simultaneously: relative.pos specifies horizontal placement after
sorting. addDiagnosticBracket() and addVolumeFraction() use the relative.pos values for
subsequent annotation.

Relative positions that are too close will result in overplotting of sketches. Adjustments to relative
positions such that overlap is minimized can be performed with fixOverlap(pos), where pos is
the original vector of relative positions.

The x.idx.offset argument can be used to shift a collection of pedons from left to right in the
figure. This can be useful when plotting several different SoilProfileCollection objects within
the same figure. Space must be pre-allocated in the first plotting call, with an offset specified in the
second call. See examples below.

Horizon depths (e.g. cm) are converted to figure y-coordinates via: y = (depth * scaling.factor) +
y.offset.

Note

A new plot of soil profiles is generated, or optionally added to an existing plot.

214 plotSPC

Author(s)

D.E. Beaudette

References

Beaudette, D.E., Roudier P., and A.T. O’Geen. 2013. Algorithms for Quantitative Pedology: A
Toolkit for Soil Scientists. Computers & Geosciences. 52:258 - 268.

See Also

fixOverlap(), explainPlotSPC(), SoilProfileCollection, pretty(), hzDistinctnessCodeToOffset(),
addBracket(), profileGroupLabels()

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

example data
data(sp1)
usually best to adjust margins
par(mar = c(0,0,3,0))

add color vector
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

init horizon designation
hzdesgnname(sp1) <- 'name'

plot profiles
plotSPC(sp1, id.style = 'side')

title, note line argument:
title('Sample Data 1', line = 1, cex.main = 0.75)

plot profiles without horizon-line divisions
plotSPC(sp1, divide.hz = FALSE)

diagonal lines encode horizon boundary distinctness
sp1$hzD <- hzDistinctnessCodeToOffset(sp1$bound_distinct)
plotSPC(sp1, hz.distinctness.offset = 'hzD', name.style = 'center-center')

plot horizon color according to some property
data(sp4)
depths(sp4) <- id ~ top + bottom
hzdesgnname(sp4) <- 'name'
plotSPC(sp4, color = 'clay')

plotSPC 215

another example
data(sp2)
depths(sp2) <- id ~ top + bottom
hzdesgnname(sp2) <- 'name'
site(sp2) <- ~ surface

some of these profiles are very deep, truncate plot at 400cm
label / re-order with site-level attribute: `surface`
plotSPC(sp2, label = 'surface', plot.order = order(sp2$surface),
max.depth = 400)

example using a categorical attribute
plotSPC(sp2, color = "plasticity",
max.depth = 400)

plot two SPC objects in the same figure
par(mar = c(1,1,1,1))

plot the first SPC object and
allocate space for the second SPC object
plotSPC(sp1, n = length(sp1) + length(sp2))

plot the second SPC, starting from the first empty space
plotSPC(sp2, x.idx.offset = length(sp1), add = TRUE)

##
demonstrate horizon designation shrinkage
##

data("jacobs2000")

shrink "long" horizon names
plotSPC(

jacobs2000,
name = 'name',
name.style = 'center-center',
shrink = TRUE,
cex.names = 0.8

)

shrink horizon names in "thin" horizons
plotSPC(

jacobs2000,
name = 'name',
name.style = 'center-center',
shrink = TRUE,
shrink.thin = 15,
cex.names = 0.8,

)

##

216 plotSPC

demonstrate adaptive legend
##

data(sp3)
depths(sp3) <- id ~ top + bottom

make some fake categorical data
horizons(sp3)$fake.data <- sample(letters[1:15], size = nrow(sp3), replace=TRUE)

better margins
par(mar=c(0,0,3,1))

note that there are enough colors for 15 classes (vs. previous limit of 10)
note that the legend is split into 2 rows when length(classes) > n.legend argument
plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8)

make enough room in a single legend row
plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8, n.legend=15)

##
demonstrate y.offset argument
must be of length 1 or length(x)
##

example data and local copy
data("jacobs2000")
x <- jacobs2000
hzdesgnname(x) <- 'name'

y-axis offsets, simulating a elevation along a hillslope sequence
same units as horizon depths in `x`
same order as profiles in `x`
y.offset <- c(-5, -10, 22, 65, 35, 15, 12)

par(mar = c(0, 0, 2, 2))

y-offset at 0
plotSPC(x, color = 'matrix_color', cex.names = 0.66)

constant adjustment to y-offset
plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 50)

attempt using invalid y.offset
warning issued and default value of '0' used
plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 1:2)

variable y-offset
fix overlapping horizon depth labels
par(mar = c(0, 0, 1, 0))
plotSPC(

x,
y.offset = y.offset,

plot_distance_graph 217

color = 'matrix_color',
cex.names = 0.75,
shrink = TRUE,
hz.depths = TRUE,
hz.depths.offset = 0.05,
fixLabelCollisions = TRUE,
name.style = 'center-center'

)

random y-axis offsets
yoff <- runif(n = length(x), min = 1, max = 100)

random gradient of x-positions
xoff <- runif(n = length(x), min = 1, max = length(x))

note profiles overlap
plotSPC(x,

relative.pos = xoff,
y.offset = yoff,
color = 'matrix_color',
cex.names = 0.66,
hz.depths = TRUE,
name.style = 'center-center'

)

align / adjust relative x positions
set.seed(111)
pos <- alignTransect(xoff, x.min = 1, x.max = length(x), thresh = 0.65)

y-offset is automatically re-ordered according to
plot.order

par(mar = c(0.5, 0.5, 0.5, 0.5))
plotSPC(x,

plot.order = pos$order,
relative.pos = pos$relative.pos,
y.offset = yoff,
color = 'matrix_color',
cex.names = 0.66,
hz.depths = TRUE,
name.style = 'center-center'

)

box()

plot_distance_graph Between Individual Distance Plot

218 plot_distance_graph

Description

Plot pair-wise distances between individuals as line segments.

Usage

plot_distance_graph(D, idx = 1:dim(as.matrix((D)))[1])

Arguments

D distance matrix, should be of class ’dist’ or compatible class

idx an integer sequence defining which individuals should be compared

Details

By default all individuals are plotting on the same axis. When there are more than about 10 indi-
viduals, the plot can become quite messy. See examples below for ideas.

Value

No value is returned.

Author(s)

Dylan E Beaudette

References

https://casoilresource.lawr.ucdavis.edu/

See Also

sp2

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom
d <- NCSP(

sp2,
vars = c('prop', 'field_ph', 'hue', 'value'),
maxDepth = 100,
k = 0.01

)

par(mfcol=c(3,1), mar=c(2.5,4.5,1,1))
plot_distance_graph(d, idx=1:6)
plot_distance_graph(d, idx=7:12)
plot_distance_graph(d, idx=12:18)

previewColors 219

previewColors Preview Colors

Description

Preview colors arranged according to CIE2000 distances or manual specification.

Usage

previewColors(
cols,
method = c("grid", "MDS", "manual"),
labels = NULL,
labels.cex = 1,
col.order = NULL,
nrow = ceiling(sqrt(length(cols))),
ncol = nrow,
border.col = "black",
pt.cex = 2,
pt.pch = 15

)

Arguments

cols vector of R colors
method either "grid", "MDS", or "manual", see details
labels optional vector of labels, disabled when length(cols) > 5000

labels.cex scaling factor for labels
col.order integer vector used to order colors
nrow number of rows used by "grid" method
ncol number of columns used by "grid" method
border.col border color used by "grid" method
pt.cex point scaling factor used by "MDS" method
pt.pch point symbol used by "MDS" method

Details

Color sorting is based on CIE2000 distances as calculated by farver::compare_colour(). The
"grid" method arranges colors in a rectangular grid with ordering based on divisive hierarchical
clustering of the pair-wise distances. Unique colors are used when cols contains more than 5,000
colors.

The "MDS" method arranges unique colors via classical multidimensional scaling (principal coor-
dinates) via cmdscale().

Colors can be manually arranged by supplying a vector of integers to col.order and setting
method='manual'.

220 prj,SoilProfileCollection-method

Value

When method = "grid" or "manual", a vector of color order is returned. When method = "MDS", the
output from stats::cmdscale().

Author(s)

D.E. Beaudette

Examples

example data
data(sp2)

convert into SoilProfileCollection object
depths(sp2) <- id ~ top + bottom

previewColors(sp2$soil_color)
previewColors(sp2$soil_color, method = 'MDS', pt.cex = 3)

create colors using HCL space
cols.hcl <- hcl(h = 0:360, c = 100, l = 50)

grid, colors sorted by dE00
previewColors(cols.hcl)

manual specification
previewColors(cols.hcl, method = 'manual', col.order = 1:361)

MDS
previewColors(cols.hcl, method = 'MDS', pt.cex = 1)

prj,SoilProfileCollection-method

Get or Set Coordinate Reference System for SoilProfileCollection

Description

prj(): Get Coordinate Reference System (Projection) metadata
prj()<-: Set Coordinate Reference System metadata for the SoilProfileCollection

proj4string(): (Deprecated) Get Coordinate Reference System as PROJ4 String
proj4string()<-: (Deprecated) Set Coordinate Reference System metadata for the SoilProfileCol-
lection

profileApply 221

Usage

S4 method for signature 'SoilProfileCollection'
prj(object, ...)

S4 replacement method for signature 'SoilProfileCollection'
prj(object, ...) <- value

S4 method for signature 'SoilProfileCollection'
proj4string(obj)

S4 replacement method for signature 'SoilProfileCollection'
proj4string(obj) <- value

Arguments

object A SoilProfileCollection

... Additional arguments (not used)

value character. Representation of Coordinate Reference System as "authority:code",
integer EPSG code, WKT2019 / PROJ4 string, an sf crs or sp CRS object.

obj A SoilProfileCollection

See Also

initSpatial<-()

profileApply Iterate over profiles in a SoilProfileCollection

Description

Iterate over all profiles in a SoilProfileCollection, calling FUN on a single-profile SoilProfileCollec-
tion for each step.

Usage

S4 method for signature 'SoilProfileCollection'
profileApply(
object,
FUN,
simplify = TRUE,
frameify = FALSE,
chunk.size = 100,
column.names = NULL,
APPLY.FUN = lapply,
...

)

222 profileApply

Arguments

object a SoilProfileCollection

FUN a function to be applied to each profile within the collection

simplify logical, should the result be simplified to a vector? default: TRUE; see examples

frameify logical, should the result be collapsed into a data.frame? default: FALSE; over-
rides simplify argument; see examples

chunk.size numeric, size of "chunks" for faster processing of large SoilProfileCollection
objects; default: 100

column.names character, optional character vector to replace frameify-derived column names;
should match length of colnames() from FUN result; default: NULL

APPLY.FUN function, optional alternate lapply()-like function for processing chunks. For
example future.apply::future_lapply() for processing chunks in parallel.
Default base::lapply().

... additional arguments passed to FUN

Value

When simplify is TRUE, a vector of length nrow(object) (horizon data) or of length length(object)
(site data). When simplify is FALSE, a list is returned. When frameify is TRUE, a data.frame is
returned. An attempt is made to identify idname and/or hzidname in the data.frame result, safely
ensuring that IDs are preserved to facilitate merging profileApply result downstream.

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom

estimate soil depth using horizon designations
profileApply(sp1, estimateSoilDepth, name='name')

scale a single property 'prop' in horizon table
scaled = (x - mean(x)) / sd(x)
sp1$d <- profileApply(sp1, FUN=function(x) round(scale(x$prop), 2))
plot(sp1, name='d')

compute depth-wise differencing by profile
note that our function expects that the column 'prop' exists
f <- function(x) { c(x$prop[1], diff(x$prop)) }
sp1$d <- profileApply(sp1, FUN=f)
plot(sp1, name='d')

compute depth-wise cumulative sum by profile
note the use of an anonymous function
sp1$d <- profileApply(sp1, FUN=function(x) cumsum(x$prop))
plot(sp1, name='d')

compute profile-means, and save to @site
there must be some data in @site for this to work

profileApply 223

site(sp1) <- ~ group
sp1$mean_prop <- profileApply(sp1, FUN=function(x) mean(x$prop, na.rm=TRUE))

re-plot using ranks defined by computed summaries (in @site)
plot(sp1, plot.order=rank(sp1$mean_prop))

iterate over profiles, calculate on each horizon, merge into original SPC

example data
data(sp1)

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

calculate horizon thickness and proportional thickness
returns a data.frame result with multiple attributes per horizon
thicknessFunction <- function(p) {

hz <- horizons(p)
depthnames <- horizonDepths(p)
res <- data.frame(profile_id(p), hzID(p),

thk=(hz[[depthnames[[2]]]] - hz[[depthnames[1]]]))
res$hz_prop <- res$thk / sum(res$thk)
colnames(res) <- c(idname(p), hzidname(p), 'hz_thickness', 'hz_prop')
return(res)

}

list output option with simplify=F, list names are profile_id(sp1)
list.output <- profileApply(sp1, thicknessFunction, simplify = FALSE)
head(list.output)

data.frame output option with frameify=TRUE
df.output <- profileApply(sp1, thicknessFunction, frameify = TRUE)
head(df.output)

since df.output contains idname(sp1) and hzidname(sp1),
it can safely be merged by a left-join via horizons<- setter
horizons(sp1) <- df.output

plot(density(sp1$hz_thickness, na.rm=TRUE), main="Density plot of Horizon Thickness")

iterate over profiles, subsetting horizon data

example data
data(sp1)

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

make some fake site data related to a depth of some importance
sp1$dep <- profileApply(sp1, function(i) {round(rnorm(n=1, mean=mean(i$top)))})

224 profileGroupLabels

custom function for subsetting horizon data, by profile
keep horizons with lower boundary < site-level attribute 'dep'
fun <- function(i) {

extract horizons
h <- horizons(i)
make an expression to subset horizons
exp <- paste('bottom < ', i$dep, sep='')
subset horizons, and write-back into current SPC
slot(i, 'horizons') <- subset(h, subset=eval(parse(text=exp)))
return modified SPC
return(i)

}

list of modified SoilProfileCollection objects
l <- profileApply(sp1, fun, simplify=FALSE)

re-combine list of SoilProfileCollection objects into a single SoilProfileCollection
sp1.sub <- pbindlist(l)

graphically check
par(mfrow=c(2,1), mar=c(0,0,1,0))
plot(sp1)
points(1:length(sp1), sp1$dep, col='red', pch=7)
plot(sp1.sub)

profileGroupLabels Soil Profile Group Labels

Description

Labels groups of soil profiles within soil profile sketches.

See examples below for ideas.

Usage

profileGroupLabels(
x0,
x1,
labels,
y0 = 100,
y1 = 98,
label.offset = 2,
label.cex = 0.75

)

profileGroupLabels 225

Arguments

x0 integer indices to the first profile within each group

x1 integer indices to the last profile within each group

labels vector of group labels

y0 baseline depth used for group brackets

y1 depth used for start and end markers for group brackets (see examples)

label.offset vertical offset of group labels from baseline

label.cex label size

Note

This function is typically called by some other convenience function such as plotMultipleSPC.

Author(s)

D.E. Beaudette

See Also

plotMultipleSPC

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

load sample data
data(sp3)
data(sp4)

convert soil colors
sp3$h <- NA ; sp3$s <- NA ; sp3$v <- NA
sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets=TRUE))
sp3[, c('h','s','v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue=1)))

promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

combine into a list
spc.list <- list(sp3, sp4)

compute group lengths and start/stop locations
n.groups <- length(spc.list)
spc.lengths <- sapply(spc.list, length)
n.pedons <- sum(spc.lengths)
group.starts <- c(1, 1 + cumsum(spc.lengths[-n.groups]))
group.ends <- cumsum(spc.lengths)

226 profileInformationIndex

determine depths of first / last profile in each group
yy <- unlist(sapply(spc.list, function(i) profileApply(i, max)))
tick.heights <- yy[c(group.starts, group.ends)] + 2

plot 2 SoilProfileCollection objects on the same axis
par(mar=c(1,1,1,1))
plotSPC(sp3, n = n.pedons)
plotSPC(sp4, add = TRUE, x.idx.offset = group.ends[1],
depth.axis = FALSE, id.style = 'side')

annotate groups
profileGroupLabels(x0 = group.starts, x1 = group.ends,
labels=c('Collection 1', 'Collection 2'), y0=120, y1=tick.heights)

profileInformationIndex

Soil Profile Information Index

Description

A simple index of "information" content associated with individuals in a SoilProfileCollection
object. Information content is quantified by number of bytes after compression via memCompress().

Usage

profileInformationIndex(
x,
vars,
method = c("joint", "individual"),
baseline = FALSE,
numericDigits = 8,
padNA = FALSE,
scaleNumeric = FALSE,
compression = "gzip"

)

Arguments

x SoilProfileCollection object

vars character vector of site or horizon level attributes to consider

method character, ’individual’ or ’joint’ complexity

baseline logical, compute ratio to "baseline" information content, see details

numericDigits integer, number of significant digits to retain in numeric -> character conversion

padNA logical, pad depths to max(x), supplied to dice(fill = padNA)

scaleNumeric logical, scale() each numeric variable, causing "profile information" to vary
based on other profiles in the collection

profileInformationIndex 227

compression character, compression method as used by memCompress(): ’gzip’, ’bzip2’,
’xz’, ’none’

Details

Information content via compression (gzip) is the central assumption behind this function: the
values associated with a simple soil profile having few horizons and little variation between horizons
(isotropic depth-functions) will compress to a much smaller size than a complex profile (many
horizons, strong anisotropy). Information content is evaluated a profile at a time, over each site
or horizon level attribute specified in vars. The baseline argument invokes a comparison to the
simplest possible representation of each depth-function:

• numeric: replication of the mean value to match the number of horizons with non-NA values

• character or factor: replication of the most frequent value to match the number of horizons
with non-NA values

The ratios computed against a "simple" baseline represent something like "information gain". Larger
baseline ratios suggest more complexity (more information) associated with a soil profile’s depth-
functions. Alternatively, the total quantity of information (in bytes) can be determined by setting
baseline = FALSE.

Value

a numeric vector of the same length as length(x) and in the same order, suitable for direct assign-
ment to a new site-level attribute

Author(s)

D.E. Beaudette

Examples

single horizon, constant value
p1 <- data.frame(id = 1, top = 0, bottom = 100, p = 5, name = 'H')

multiple horizons, constant value
p2 <- data.frame(

id = 2, top = c(0, 10, 20, 30, 40, 50),
bottom = c(10, 20, 30, 40, 50, 100),
p = rep(5, times = 6),
name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')

)

multiple horizons, random values
p3 <- data.frame(

id = 3, top = c(0, 10, 20, 30, 40, 50),
bottom = c(10, 20, 30, 40, 50, 100),
p = c(1, 5, 10, 35, 6, 2),
name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')

)

228 profile_id<-

multiple horizons, mostly NA
p4 <- data.frame(

id = 4, top = c(0, 10, 20, 30, 40, 50),
bottom = c(10, 20, 30, 40, 50, 100),
p = c(1, NA, NA, NA, NA, NA),
name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')

)

shallower version of p1
p5 <- data.frame(id = 5, top = 0, bottom = 50, p = 5, name = 'H')

combine and upgrade to SPC
z <- rbind(p1, p2, p3, p4, p5)
depths(z) <- id ~ top + bottom
hzdesgnname(z) <- 'name'

z <- fillHzGaps(z)

visual check
par(mar = c(1, 0, 3, 3))
plotSPC(z, color = 'p', name.style = 'center-center', cex.names = 0.8, max.depth = 110)

factor version of horizon name
z$fname <- factor(z$name)

vars <- c('p', 'name')
result is total bytes
pi <- profileInformationIndex(z, vars = vars, method = 'joint', baseline = FALSE)

text(x = 1:5, y = 105, labels = pi, cex = 0.85)
mtext('Profile Information Index (bytes)', side = 1, line = -1)

profile_id<- Set profile IDs

Description

Set vector containing profile IDs

Get or set a vector of profile IDs

Usage

S4 replacement method for signature 'SoilProfileCollection'
profile_id(object) <- value

S4 method for signature 'SoilProfileCollection'
profile_id(object)

quickSPC 229

Arguments

object a SoilProfileCollection

value a unique vector of equal length to number of profiles length(object)

quickSPC Quickly Assemble a SoilProfileCollection

Description

Quickly assemble a single-profile, SoilProfileCollection object from two possible templates.
This function is a useful shortcut for creating theoretical SoilProfileCollection objects for test-
ing or demonstrative purposes.

Usage

quickSPC(
x,
id = "id",
d = "depths",
n = "name",
m = "soil_color",
interval = 10

)

Arguments

x either a list or character vector, see Details and Examples

id character, specified when x is a list, name of ID list element

d character, specified when x is a list, name of depths list element

n character, specified when x is a list, name of horizon name list element

m character, specified when x is a list, name of list element containing Munsell
color notation

interval numeric, typically an integer and only specified when using character templates
in mode 2. See Details.

Details

The list template for a single SPC allows for full specification of ID, horizon designation, bottom
depths, and an arbitrary number of horizon-level attributes. A compact notation is used for profile
ID (single value) and horizon depths (bottom depths, assuming datum of 0). Horizon designation
and additional data (e.g. clay content) are specified as vectors all of equal length, matching the
number of horizons in the profile.

The character template can be provided in one of several formats:

1. ’A-Bt1-Bt2-Bt3-Cr-R’

230 quickSPC

2. ’ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC’

Format 1 is interpreted as a horizon sequence delimited by ’-’ or newline character (\n). Random
integer thickness are assigned to horizons, and profile ID created via digest::digest(..., algo
= 'xxhash32'). Iteration over templates in this format is automatic when x is a character vector of
length > 1.

Format 2 is interpreted as a horizon sequence delimited by ’|’. Horizon thickness is proportional to
replication of horizon designation and scaled by the interval argument. Profile ID is created via
digest::digest(..., algo = 'xxhash32'). Iteration over templates in this format is automatic
when x is a character vector of length > 1.

Explicit naming of profile IDs can be accomplished by specifying an ID via prefix, as in "ID:A-
Bt1-Bt2-Cr-R" or "ID:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC". Labels specified before a ":" will
be interpreted as a profile ID. These labels are optional but if specified must be unique within x.

Single-horizon profile templates must include a trailing horizon delimiter: ’-’, ’\n’, or ’|’ depending
on the format.

Value

SoilProfileCollection object

Examples

list-based template
x <- list(
id = 'P1',
depths = c(25, 33, 100, 150),
name = c('A', 'Bw', 'Bt', 'Cr'),
clay = c(12, 15, 22, 25),
soil_color = c('10YR 3/3', '10YR 4/4', '10YR 4/6', '5G 6/2')
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

character template, mode 1
horizon thickness is generated at random (uniform [5,20])
x <- 'A-Bt1-Bt2-Bt3-Cr-R'

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

multiple templates
x <- c(
'A-Bt1-Bt2-Bt3-Cr-R',
'A-C1-C2-C3-C4-Ab',
'Ap-A-A/E-E-Bhs-Cr'
)

this interface is vectorized
s <- quickSPC(x)

quickSPC 231

plotSPC(s, name.style = 'center-center', cex.names = 1)

optionally specify profile IDs using "ID:" prefix
x <- c(
'P1:A-Bt1-Bt2-Bt3-Cr-R',
'P2:A-C1-C2-C3-C4-Ab',
'P3:Ap-A-A/E-E-Bhs-Cr'
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

optionally specify:
horizon bottom depths in cm
soil color in Munsell notation
x <- c(
'1. simple:Oe-A-E-Bhs',
'2. full:Oe,10,10YR 2/2-A,20,10YR 3/3-E,30,2.5Y 8/2-Bhs,60,7.5YR 4/6'
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

use newline character as delimiter, more compact
x <- 'Oe,10,10YR 2/2
A,20,10YR 3/3
E,30,2.5Y 8/2
Bhs,60,7.5YR 4/6
BC,125,7.5YR 6/4
C,150,10YR 6/2'

plotSPC(quickSPC(x), name.style = 'center-center', cex.names = 1)

character template, mode 2
horizon thickness is proportional to replication of
horizon designation and scaled by 'interval' argument
default of 10 depth units
e.g. A horizon is 3 * 10 = 30 depth units thick.
x <- c(

'AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
)

each horizon label is '10' depth-units (default)
s <- quickSPC(x)
plotSPC(s, name.style = 'center-center',

cex.names = 1, depth.axis = FALSE,
hz.depths = TRUE

)

232 random_profile

each horizon label is '5' depth-units
s <- quickSPC(x, interval = 5)
plotSPC(s, name.style = 'center-center',

cex.names = 1, depth.axis = FALSE,
hz.depths = TRUE

)

optionally specify some / all profile IDs with "ID:" prefix
x <- c(

'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center',

cex.names = 1, depth.axis = FALSE,
hz.depths = TRUE

)

make a NODATA profile, with a random hash ID
note the use of trailing horizon delimiter
note the use of NA soil color field
x <- 'NODATA,150,NA-'
s <- quickSPC(x)
plotSPC(s, name.style = 'center-center',

cex.names = 1, depth.axis = FALSE,
hz.depths = TRUE)

random_profile Random Profile

Description

Generate a random soil profile according to set criteria, with correlated depth trends.

The random walk method produces profiles with considerable variation between horizons and is
based on values from the normal distribution seeded with means and standard deviations drawn
from the uniform distribution of [0, 10].

The logistic power peak (LPP) function can be used to generate random soil property depth func-
tions that are sharply peaked. LPP parameters can be hard-coded using the optional arguments:
"lpp.a", "lpp.b", "lpp.u", "lpp.d", "lpp.e". Amplitude of the peak is controlled by ("lpp.a + "lpp.b"),
depth of the peak by "lpp.u", and abruptness by "lpp.d" and "lpp.e". Further description of the
method is outlined in (Brenton et al, 2011). Simulated horizon distinctness codes are based on the
USDA-NCSS field description methods.

random_profile 233

Simulated distinctness codes are constrained according to horizon thickness, i.e. a gradual boundary
(+/- 5cm) will not be simulated for horizons that are thinner than 3x this vertical distance

The rp() function is a convenient wrapper to this function, when requesting a simulated SoilProfileCollection
of specified size.

Usage

random_profile(
id,
n = c(3, 4, 5, 6),
min_thick = 5,
max_thick = 30,
n_prop = 5,
exact = FALSE,
method = "random_walk",
HzDistinctSim = FALSE,
SPC = FALSE,
...

)

Arguments

id a character or numeric id used for this profile

n vector of possible number of horizons, or the exact number of horizons (see
below)

min_thick minimum thickness criteria for a simulated horizon

max_thick maximum thickness criteria for a simulated horizon

n_prop number of simulated soil properties (columns in the returned dataframe)

exact should the exact number of requested horizons be generated? (defaults to FALSE)

method named method used to synthesize depth function (’random_walk’ or ’LPP’), see
details

HzDistinctSim optionally simulate horizon boundary distinctness codes

SPC result is a SoilProfileCollection object, otherwise a data.frame object

... additional parameters passed-in to the LPP .lpp) function

Value

A data.frame or SoilProfileCollection object.

Note

See examples for ideas on simulating several profiles at once.

Author(s)

Dylan E. Beaudette

234 random_profile

References

Myers, D. B.; Kitchen, N. R.; Sudduth, K. A.; Miles, R. J.; Sadler, E. J. & Grunwald, S. Peak
functions for modeling high resolution soil profile data Geoderma, 2011, 166, 74-83.

See Also

rp(), hzDistinctnessCodeToOffset()

Examples

generate 10 random profiles, result is a list of SoilProfileCollection objects
d <- lapply(1:10, random_profile, SPC=TRUE)

combine
d <- combine(d)

plot
opar <- par(mar=c(0,0,3,2))
plotSPC(d, color='p1', name='name', cex.names=0.75)
par(opar)

simulate horizon boundary distinctness codes:
d <- lapply(1:10, random_profile, SPC=TRUE, HzDistinctSim=TRUE)
d <- combine(d)

d$HzD <- hzDistinctnessCodeToOffset(d$HzDistinctCode)

opar <- par(mar=c(0,0,3,2))
plotSPC(d, name='name', color='p1', hz.distinctness.offset='HzD')
par(opar)

depth functions are generated using the LPP function
opar <- par(mfrow=c(2,1), mar=c(0,0,3,0))

generate data
d.1 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP')
d.1 <- combine(d.1)

plot
plotSPC(d.1, name='name', color='p1', col.label = 'LPP Defaults')

do this again, this time set all of the LPP parameters
d.2 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP',

lpp.a=5, lpp.b=10, lpp.d=5, lpp.e=5, lpp.u=25)
d.2 <- combine(d.2)

plot
plotSPC(d.2, name='name', color='p1', col.label = 'Custom LPP Parameters')

reactionclass 235

reset plotting defaults
par(opar)

try plotting the LPP-derived simulated data
aggregated over all profiles
a <- slab(d.2, fm= ~ p1)
a$mid <- with(a, (top + bottom) / 2)

library(lattice)
(p1 <- xyplot(mid ~ p.q50, data=a,

lower=a$p.q25, upper=a$p.q75, ylim=c(150,-5), alpha=0.5,
panel=panel.depth_function, prepanel=prepanel.depth_function,
cf=a$contributing_fraction, xlab='Simulated Data', ylab='Depth',
main='LPP(a=5, b=10, d=5, e=5, u=25)',
par.settings=list(superpose.line=list(col='black', lwd=2))

))

optionally add original data as step-functions
if(require(latticeExtra)) {

h <- horizons(d.2)
p1 + as.layer(xyplot(top ~ p1, groups=id, data=h,

horizontal=TRUE, type='S',
par.settings=list(superpose.line=list(col='blue', lwd=1, lty=2))))

}

reactionclass pH Reaction Classes

Description

Levels of pH (reaction) classes including descriptive name, and range from low to high pH

Usage

data(reactionclass)

Format

An object of class data.frame with 11 rows and 3 columns.

References

Soil Science Division Staff. (2017) Soil Survey Manual. C. Ditzler, K. Scheffe, and H.C. Monger
(eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.

236 rebuildSPC

rebuildSPC Rebuild a SoilProfileCollection object

Description

Rebuild a SoilProfileCollection object

Usage

rebuildSPC(x)

Arguments

x a SoilProfileCollection object

Details

Attempt rebuilding a SoilProfileCollection object by splitting into components and re-assembling.
Likely only used to fix outdated SoilProfileCollection objects that are missing slots.

Value

A valid SoilProfileCollection object.

A valid SoilProfileCollection object.

Author(s)

D.E. Beaudette

D.E. Beaudette, A.G. Brown

See Also

checkSPC Rebuild a SoilProfileCollection object

Rebuild a SoilProfileCollection object

Attempt rebuilding a SoilProfileCollection object by splitting into components and re-assembling.
Likely only used to fix outdated SoilProfileCollection objects that are missing slots.

checkSPC

reduceSPC 237

reduceSPC Select a subset of columns from a SoilProfileCollection

Description

Reduce the number of columns in a SoilProfileCollection to a minimal set plus additional
selected columns. Optional metadata columns are included if set. At a minimum the profile ID,
horizon top and bottom depths, and horizon ID are included. Horizon designation and horizon
texture class column names are included if metadata attributes are set. See details.

Usage

reduceSPC(p, column_names = NULL)

Arguments

p a SoilProfileCollection

column_names a set of additional columns to include in the result

Details

Minimum column names included (when column_names = NULL)

• idname(p), horizonDepths(p), hzidname(p)

Optional column names included (when metadata are set)

• hzdesgnname(p), hztexclname(p), GHL(p)

Value

a SoilProfileCollection

See Also

hzdesgnname() hztexclname() GHL()

238 repairMissingHzDepths

reorderHorizons Re-order corrupted horizon data

Description

This is a method made available primarily to repair horizon data that have been corrupted relative
to their order at time of SoilProfileCollection construction.

There is an option to specify the target order, but this will not update the corresponding metadata
entry tracking the original order. Use this functionality at your own risk.

Usage

S4 method for signature 'SoilProfileCollection'
reorderHorizons(object, target.order = NULL)

Arguments

object A SoilProfileCollection

target.order A numeric vector of equal length to object. Default value is NULL which re-
stores the internal order of the collection.

Value

SoilProfileCollection

repairMissingHzDepths Repair Problematic Lower Horizon Depths

Description

Attempt a simple repair of horizon bottom depths in the presence of NA, or in cases where the
horizon shares a common top and bottom depth. Both situations are common in pedon description
where "contact" (Cd, Cr, R, etc.) was described without a lower depth.

Usage

repairMissingHzDepths(x, adj = 10, max.depth = 200)

Arguments

x SoilProfileCollection

adj vertical offset applied to "repair" missing bottom depths when top and bottom
depth are equal or bottom depth is missing. (NA to use max.depth)

max.depth If adj is NA, or the resulting offset sum exceeds max.depth, max.depth is used.

repairMissingHzDepths 239

Details

This repair is applied to the deepest horizon within a profile as identified by getLastHorizonID,
as well as to bottom depths of any horizon that has a horizon below it. Horizon bottom depths
are adjusted by adding adj (if non-NA). If the resulting value exceeds max.depth, the max.depth
value is returned (if not NA).

Value

SoilProfileCollection with a new (logical) horizon-level attribute .repaired marking affected
horizons

Examples

h <- data.frame(
id = c(1, 1, 1, 2, 2, 2, 2, 3, 3),
top = c(0:2, 0:3, 0:1) * 10,
bottom = c(rep(NA_integer_, 7), c(10, 99))
)

NA depths result in warnings
suppressWarnings({

depths(h) <- id ~ top + bottom
})

inspect data before repairs
plotSPC(h)

g <- repairMissingHzDepths(h)

all depth logic now valid
all(checkHzDepthLogic(g)$valid)

inspect
plotSPC(g)

no adj, max.depth only
f <- repairMissingHzDepths(h, adj = NA, max.depth = 200)
all(checkHzDepthLogic(f)$valid)
plotSPC(f)

max.depth defaults to max(x) if too small
f$bottom[c(3,7)] <- NA
d <- repairMissingHzDepths(f, adj = NA, max.depth = 20)
all(checkHzDepthLogic(d)$valid)
plotSPC(d)

240 restrictions,SoilProfileCollection-method

replaceHorizons<- Replace Data in Horizon Slot

Description

Replaces horizon data with new data.frame object.

Usage

S4 replacement method for signature 'SoilProfileCollection'
replaceHorizons(object) <- value

Arguments

object A SoilProfileCollection

value An object inheriting data.frame

Examples

load test data
data(sp2)

promote to SPC
depths(sp2) <- id ~ top + bottom

one profile
p <- sp2[1,]

23 variables in horizon data
length(horizonNames(sp2))

remove all but essential ones
replaceHorizons(p) <- horizons(p)[,c(idname(p), hzidname(p), horizonDepths(p))]

inspect result (a clean slate)
horizons(p)

restrictions,SoilProfileCollection-method

Get or Set Restriction data in a SoilProfileCollection

rgb2munsell 241

Description

Restrictions describe root-limiting features in the soil. A single profile may have multiple restric-
tions.

• restrictions() (get method): Get restriction data from a SoilProfileCollection.

• restrictions<- (set method): Set restriction data for a SoilProfileCollection. The profile ID
column from object (idname(object)) must be present in the replacement value object.

Usage

S4 method for signature 'SoilProfileCollection'
restrictions(object)

S4 replacement method for signature 'SoilProfileCollection'
restrictions(object) <- value

Arguments

object A SoilProfileCollection
value An data.frame object containing at least a column with name idname(object)

Examples

load test data
data(sp2)

promote to SPC
depths(sp2) <- id ~ top + bottom

assign abrupt textural change to a profile
newdata <- data.frame(id = c("hon-21"),

restrkind = "abrupt textural change",
restrdep = 46)

do left join
restrictions(sp2) <- newdata

inspect site table: newvalue TRUE only for horizons
with top depth equal to zero
restrictions(sp2)

rgb2munsell sRGB to Munsell Color Conversion

Description

Convert sRGB color coordinates to the closest n Munsell chips in the munsell lookup table. This
function will be replaced by col2Munsell() in aqp 2.1.

242 rgb2munsell

Usage

rgb2munsell(color, colorSpace = c("CIE2000", "LAB", "sRGB"), nClosest = 1)

Arguments

color a data.frame or matrix object containing sRGB coordinates in the range of
(0,1)

colorSpace distance metric (colorspace) to use for finding the closest chip: CIE2000 is the
most accurate but requires farver >= 2.0.3, Euclidean distance in CIELAB is a
close second, while Euclidean distance in sRGB is not at all accurate and should
only be used for demonstration purposes.

nClosest number of closest Munsell colors to return (valid range is 1-20)

Value

an (NA-padded) data.frame containing hue, value, chroma, and distance (dE00 when colorSpace
= 'CIE2000', Euclidean distance otherwise) to nearest matching color.

Note

This function is fully vectorized and will pad output with NA-records when NA are present in
color.

Author(s)

D.E. Beaudette

References

• http://ncss-tech.github.io/AQP/

• http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

• http://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

• http://www.cis.rit.edu/mcsl/online/munsell.php

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

Munsell notation to sRGB triplets [0-1]
color <- munsell2rgb(

the_hue = c('10YR', '2.5YR', '5YR'),
the_value = c(3, 5, 2.5),
the_chroma = c(5, 6, 2),
return_triplets = TRUE

)

result is a data.frame
color

ROSETTA.centroids 243

back-transform sRGB -> closest Munsell color
sigma is the dE00 color contrast metric
rgb2munsell(color)

ROSETTA.centroids Average Hydraulic Parameters from the ROSETTA Model by USDA
Soil Texture Class

Description

Average soil hydraulic parameters generated by the first stage predictions of the ROSETTA model
by USDA soil texture class. These data were extracted from ROSETTA documentation and re-
formatted for ease of use.

Usage

data(ROSETTA.centroids)

Format

A data frame:

texture soil texture class, ordered from low to high available water holding capacity

theta_r average saturated water content

theta_s average residual water content

alpha average value, related to the inverse of the air entry suction, log10-transformed values with
units of cm

npar average value, index of pore size distribution, log10-transformed values with units of 1/cm

theta_r_sd 1 standard deviation of theta_r

theta_s_sd 1 standard deviation of theta_s

alpha_sd 1 standard deviation of alpha

npar_sd 1 standard deviation of npar

sat approximate volumetric water content at which soil material is saturated

fc approximate volumetric water content at which matrix potential = -33kPa

pwp approximate volumetric water content at which matrix potential = -1500kPa

awc approximate available water holding capacity: VWC(-33kPa)

• VWC(-1500kPa)

Details

Theoretical water-retention parameters for uniform soil material of each texture class have been
estimated via van Genuchten model.

See the related tutorial

https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/model/rosetta-class-average-hydraulic-parameters/
https://ncss-tech.github.io/AQP/soilDB/fetchKSSL-VG-demo.html

244 ROSETTA.centroids

Source

ROSETTA Class Average Hydraulic Parameters

References

van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity
of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892-898.

Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A computer program for
estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology
251(3–4): 163-176.

Examples

Not run:

library(aqp)
library(soilDB)
library(latticeExtra)

data("ROSETTA.centroids")

iterate over horizons and generate VG model curve
res <- lapply(1:nrow(ROSETTA.centroids), function(i) {
m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i,], phi_min = 10^-3, phi_max=10^6)$VG_curve
copy generalized hz label
m$hz <- ROSETTA.centroids$hz[i]
copy ID
m$texture_class <- ROSETTA.centroids$texture[i]
return(m)

})

copy over lab sample number as ID
res <- do.call('rbind', res)

check: OK
str(res)

visual check: OK
xyplot(

phi ~ theta | texture_class, data=res,
type=c('l', 'g'),
scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)),
yscale.components=yscale.components.logpower,
ylab=expression(Suction~~(kPa)),
xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)),
par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)),
strip=strip.custom(bg=grey(0.85)),
as.table=TRUE

)

https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/model/rosetta-class-average-hydraulic-parameters/

rowley2019 245

End(Not run)

rowley2019 Soil Morphologic, Geochemical, and Mineralogy Data from Rowley et
al. 2019.

Description

Data from Table 1 and Supplementary Tables 1 and 2 from "A cascading influence of calcium
carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland".

Usage

data(rowley2019)

Format

A SoilProfileCollection object:

site-level attributes

id profile ID

group profile group

horizon-level attributes

sample_id sample ID

name horizon name

pH pH

Al_exch cmol(+) / kg, exchangeable Al

Ca_exch cmol(+) / kg, exchangeable Ca

CEC_sum cmol(+) / kg, cation exchange capacity calculated as the sum of exchangeable cations,
not including H+

Ca_exch_saturation percent

Al_exch_saturation percent

TON percent, total nitrogen

SOC percent, soil organic carbon

C_to_N carbon to nitrogen ratio

Alo g/kg, oxalate-extractable Al

Feo g/kg, oxalate-extractable Fe

246 rowley2019

Ald g/kg, dithionite-extractable Al

Fed g/kg, dithionite-extractable Fe

Feo_Fed Fe_o to Fe_d ratio

id profile ID

top horizon top (cm)

bottom horizon bottom (cm)

Al g/kg by x-ray fluorescence

Ca g/kg by x-ray fluorescence

Cr g/kg by x-ray fluorescence

Fe g/kg by x-ray fluorescence

K g/kg by x-ray fluorescence

Mg g/kg by x-ray fluorescence

Mn g/kg by x-ray fluorescence

Na g/kg by x-ray fluorescence

Ni g/kg by x-ray fluorescence

P g/kg by x-ray fluorescence

Si g/kg by x-ray fluorescence

Ti g/kg by x-ray fluorescence

Phyllosilicates percent by x-ray diffraction spectra

Quartz percent by x-ray diffraction spectra

K_Feldspar percent by x-ray diffraction spectra

Na_Plagioclase percent by x-ray diffraction spectra

Goethite percent by x-ray diffraction spectra

Unidentified percent by x-ray diffraction spectra

CCE_Total percent

CCE_Reactive percent

Reactive_carbonate percent

Sand percent <2um

Silt percent 2-50um

Clay percent 50-2000um

CaH2O Milliq ex: grams of Ca per kilogram of dry soil (g kg-1)

Ca2MKCl 2M KCl: grams of Ca per kilogram of dry soil (g kg-1)

CaNa2EDTA 0.05 M Na2EDTA: grams of Ca per kilogram of dry soil (g kg-1)

CaCuCl2 0.5 M CuCl2: grams of Ca per kilogram of dry soil (g kg-1)

hzID horizon ID

rowley2019 247

References

Mike C. Rowley, Stephanie Grand, Thierry Adatte, Eric P. Verrecchia, Cascading influence of cal-
cium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils), Switzerland,
Geoderma, 2019, 114065, ISSN 0016-7061, doi:10.1016/j.geoderma.2019.114065.

Examples

library(lattice)

load data
data('rowley2019')

check first 5 rows and 10 columns of horizon data
horizons(rowley2019)[1:5, 1:10]

check site data
site(rowley2019)

graphical summary
par(mar=c(1,1,3,1))
plotSPC(rowley2019, color='Feo_Fed', name='name', cex.names=0.85)

plotSPC(rowley2019, color='Ca_exch', name='name', cex.names=0.85)

grouped plot
groupedProfilePlot(rowley2019, groups = 'group', color='Ca_exch',
name='name', cex.names=0.85, group.name.offset = -10)

aggregate over 1cm slices, for select properties
a <- slab(rowley2019, group ~ Reactive_carbonate + Ca_exch + pH + K_Feldspar + Na_Plagioclase + Al)

plot styling
tps <- list(superpose.line=list(lwd=2, col=c('royalblue', 'firebrick')))

make the figure
xyplot(top ~ p.q50 | variable, data=a, ylab='Depth', groups=group,

main='', as.table=TRUE,
xlab='median bounded by 25th and 75th percentiles',
lower=a$p.q25, upper=a$p.q75, ylim=c(55,-5),
panel=panel.depth_function,
prepanel=prepanel.depth_function,
cf=a$contributing_fraction,
alpha=0.33, sync.colors=TRUE,
scales=list(x=list(relation='free', alternating=1)),
par.settings=tps,
auto.key=list(columns=2, lines=TRUE, points=FALSE),
strip=strip.custom(bg=grey(0.9))

)

https://doi.org/10.1016/j.geoderma.2019.114065

248 SANN_1D

rp Generate a SoilProfileCollection of random profiles

Description

This function provides a convenient abstraction of lapply(), random_profile(), and combine()
which are typically used together to create a SoilProfileCollection object with >1 soil profiles.
rp() creates zero-padded integer IDs for logical sorting and indexing of profiles. For more com-
plex IDs or additional flexibility, see random_profile(). See random_profile() for all possible
arguments.

Usage

rp(size, prefix = NULL, ...)

Arguments

size integer, number of requested profiles

prefix prefix added to zero-padded, integer IDs

... additional arguments to random_profile()

Value

a SoilProfileCollection object

Examples

generate a SoilProfileCollection object with 10 profiles
using 0-padded, integer IDs for intuitive sorting
spc <- rp(10, method = 'LPP')
plotSPC(spc, color = 'p1')

apply a prefix to the IDs
spc <- rp(10, prefix = 'A-', method = 'LPP')
plotSPC(spc, color = 'p1')

SANN_1D Fix Overlap within a Sequence via Simulated Annealing

Description

This function makes small adjustments to elements of x until overlap defined by thresh is removed,
or until maxIter is reached. Rank order and boundary conditions (defined by min.x and max.x)
are preserved. The underlying algorithm is based on simulated annealing. The "cooling schedule"
parameters T0 and k can be used to tune the algorithm for specific applications.

SANN_1D 249

Usage

SANN_1D(
x,
thresh = 0.6,
adj = thresh * 2/3,
min.x = min(x) - 0.2,
max.x = max(x) + 0.2,
maxIter = 1000,
trace = FALSE,
tiny = 1e-04,
T0 = 500,
k = 10,
...

)

Arguments

x vector of horizontal positions, pre-sorted

thresh horizontal threshold defining "overlap" or distance between elements of x. For
adjusting soil profile sketches values are typically < 1 and likely in (0.3, 0.8).

adj specifies the size of perturbations within runif(min = adj * -1, max = adj).
Larger values will sometimes reduce the number of iterations required to solve
particularly difficult overlap conditions. See coolingRate argument when adj
is large

min.x left-side boundary condition, consider expanding if a solution cannot be found
within maxIter.

max.x right-side boundary condition, consider expanding if a solution cannot be found
within maxIter.

maxIter maximum number of iterations to attempt before giving up and returning a
regularly-spaced sequence

trace print diagnostics, result is a list vs vector

tiny the smallest allowable overlap

T0 starting temperature

k cooling constant

... not used, absorbs additional arguments to fixOverlap()

Details

Ideas for solving difficult overlap scenarios:

• widen the boundary conditions by adjusting min.x and max.x beyond the original scale of x

• reduce the allowable overlap threshold thresh

• reduce the magnitude of perturbations (adj) and increase maxIter

• increase k

250 SANN_1D

Value

When trace = FALSE, a vector of the same length as x, preserving rank-ordering and boundary
conditions. When trace = TRUE a list containing the new sequence along with information about
objective functions and decisions made during iteration.

Author(s)

D.E. Beaudette and K.C. Thompson

See Also

electroStatics_1D(), fixOverlap()

Examples

x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

easy
z <- fixOverlap(x, thresh = 0.2, trace = TRUE)

harder
z <- fixOverlap(x, thresh = 0.6, trace = TRUE)

much harder
z <- fixOverlap(x, thresh = 0.9, trace = TRUE)

interpret `trace` output

relatively challenging
x <- c(1, 2, 3.4, 3.4, 3.4, 3.4, 6, 8, 10, 12, 13, 13, 15, 15.5)

fix overlap, return debugging information
set.seed(10101)
z <- fixOverlap(x, thresh = 0.8, trace = TRUE)

setup plot device
par(mar = c(4, 4, 1, 1))
layout(matrix(c(1,2,3)), widths = 1, heights = c(1,1,2))

objective function = overlap + SSD
plot(

seq_along(z$stats), z$stats,
type = 'h', las = 1,
xlab = 'Iteration', ylab = 'Overlap',
cex.axis = 0.8

)

SSD: deviation from original configuration
plot(

seq_along(z$ssd), z$ssd,
type = 'h', las = 1,

shannonEntropy 251

xlab = 'Iteration', ylab = 'Deviation',
cex.axis = 0.8

)
adjustments at each iteration
matplot(

z$states, type = 'l',
lty = 1, las = 1,
xlab = 'Iteration', ylab = 'x-position'

)

trace log
B: boundary condition violation
O: rank (order) violation
+: accepted perturbation
-: rejected perturbation
table(z$log)

shannonEntropy Shannon Entropy

Description

A very simple implementation of Shannon entropy.

Usage

shannonEntropy(x, b = 2)

Arguments

x vector of probabilities (0,1), must sum to 1, should not contain NA

b logarithm base

Details

0s are automatically removed by na.rm = TRUE, as (0 * log(0) = Nan)

Value

A single numeric value.

Note

When b = length(x) the result is the normalized Shannon entropy of (Kempen et al, 2009).

252 shuffle

References

Kempen, Bas, Dick J. Brus, Gerard B.M. Heuvelink, and Jetse J. Stoorvogel. 2009. "Updating the
1:50,000 Dutch Soil Map Using Legacy Soil Data: A Multinominal Logistic Regression Approach."
Geoderma 151: 311-26. doi:10.1016/j.geoderma.2009.04.023

Shannon, Claude E. (July-October 1948). "A Mathematical Theory of Communication". Bell Sys-
tem Technical Journal. 27 (3): 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x

Examples

a very simple example
p <- c(0.25, 0.25, 0.4, 0.05, 0.05)

shannonEntropy(p)

shuffle Shuffle Horizons of a SoilProfileCollection

Description

This function shuffles the horizon data or physical ordering of horizons within profiles of a SoilProfileCollection
object.

Usage

shuffle(x, mode = c("data", "horizon"), replace = FALSE, size = NULL)

Arguments

x SoilProfileCollection

mode character, one of ’data’ or ’horizon’

• ’data’: shuffle the data associated with physical horizons, making no change
to the original horizon thickness and horizon IDs

• ’horizon’: shuffle physical horizons, horizon top and bottom depths are re-
calculated

replace logical, replacement argument to base::sample(), only used when mode = 'horizon'

size integer, size argument to base::sample(), only used when mode = 'horizon'

Value

SoilProfileCollection

sierraTransect 253

Examples

data('osd', package = 'aqp')
o <- osd

shuffling of data only
o.d <- shuffle(o, mode = 'data')

shuffling of horizons
o.h <- shuffle(o, mode = 'horizon')

shuffling / sampling with replacement
o.h2 <- shuffle(o, mode = 'horizon', replace = TRUE)

add method to IDs
profile_id(o.d) <- sprintf("%s\ndata", profile_id(o.d))
profile_id(o.h) <- sprintf("%s\nhz", profile_id(o.h))
profile_id(o.h2) <- sprintf("%s\nhz R", profile_id(o.h2))

combine into single SPC
g <- combine(o, o.d, o.h, o.h2)

graphical comparison
op <- par(mar = c(0, 0, 0.5, 2.5))
plotSPC(g, name.style = 'center-center', cex.names = 0.66, width = 0.3, cex.id = 0.75)

par(op)

sierraTransect Soil Physical and Chemical Data Related to Studies in the Sierra
Nevada Mountains, CA, USA.

Description

Soil physical and chemical data associated with two bio-climatic sequences (granitic and andesitic
parent material) from the western flank of the Sierra Nevada mountains.

Usage

data(sierraTransect)

Format

An object of class SoilProfileCollection of length 14.

Details

These data were assembled from Dahlgren et al. (1997) and Rasmussen et al. (2007), with permis-
sion granted by lead authors, by D.E. Beaudette.

254 sierraTransect

Source

Original manuscripts and personal communication with authors.

References

R.A. Dahlgren, J.L. Boettinger, G.L. Huntington, R.G. Amundson. Soil development along an
elevational transect in the western Sierra Nevada, California, Geoderma, Volume 78, Issues 3–4,
1997, Pages 207-236.

Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J. and Brauer, N. (2007), Soil Genesis
and Mineral Transformation Across an Environmental Gradient on Andesitic Lahar. Soil Sci. Soc.
Am. J., 71: 225-237.

Examples

data(sierraTransect)

tighter margins
op <- par(mar=c(0,0,0,0))

quick sketch
plotSPC(sierraTransect, name.style = 'center-center', width=0.3)

split by transect
par(mar=c(0,0,1,1))
groupedProfilePlot(
sierraTransect, groups='transect',
group.name.offset = -15, width=0.3,
name.style='center-center'
)

thematic
groupedProfilePlot(
sierraTransect, groups='transect',
group.name.offset = -15, width=0.3,
name.style='center-center', color='Fe_o_to_Fe_d'
)

horizon boundary viz
sierraTransect$hzd <- hzDistinctnessCodeToOffset(substr(sierraTransect$hz_boundary, 0, 1))

groupedProfilePlot(
sierraTransect, groups='transect', group.name.offset = -15,
width=0.3, name.style='center-center', color='Fe_o_to_Fe_d',
hz.distinctness.offset='hzd')

split transects
g <- subset(sierraTransect, transect == 'Granite')
a <- subset(sierraTransect, transect == 'Andesite')

g.order <- order(g$elev)

sim 255

a.order <- order(a$elev)

order (left -> right) by elevation
par(mar=c(2,0,0,2), mfrow=c(2,1))
plot(g, width=0.3, name.style='center-center', cex.names=0.75, plot.order=g.order)
axis(1, at=1:length(g), labels=g$elev[g.order], line=-1.5)

plot(a, width=0.3, name.style='center-center', cex.names=0.75, plot.order=a.order)
axis(1, at=1:length(a), labels=a$elev[a.order], line=-1.5)

par(op)

sim DEPRECATED Simulate Soil Profiles

Description

Simulate a collection of soil profiles based on the horizonation of a single soil profile. Now depre-
cated: use perturb() for perturbations of horizon thicknesses or boundaries.

Usage

sim(x, n = 1, iterations = 25, hz.sd = 2, min.thick = 2)

Arguments

x a SoilProfileCollection object containing a single profile from which to draw
simulated data

n the number of requested simulations

iterations sampling iterations used to determine each horizon thickness

hz.sd standard deviation used to simulate horizon thickness, can be a vector but must
divide evenly into the number of horizons found in x

min.thick minimum horizon thickness allowed in simulation results

Details

This function generates a collection of simulated soil profiles based on the horizon thickness data
associated with a single "template" profile. Simulation is based on sampling from a family of
Gaussian distribution with means defined by the "template" profile and standard deviation defined
by the user.

Value

A SoilProfileCollection object with n simulated profiles, each containing the same number of hori-
zons and same data as x

256 simulateColor

Author(s)

D. E. Beaudette

See Also

random_profile perturb

Examples

please see documentation for perturb() for examples
the sim() function calls perturb() internally

simulateColor Simulate Soil Colors

Description

Simulate plausible soil colors based on several possible parameterization of a "range in characteris-
tics" (RIC). Soil color RIC can be specified by a list of parameters:

• soil color proportions, as output from aggregateColor() – method = 'proportions'

• most likely Munsell color, CIE2000 threshold, and vector of acceptable hues – method =
'dE00'

• data.frame of Munsell hue, value, and chroma representing observed soil colors – method =
'mvnorm'

Usage

simulateColor(
method = c("dE00", "proportions", "mvnorm"),
n,
parameters,
SPC = NULL

)

Arguments

method simulation method, see details

n number of simulated colors per group

parameters a list, format depends on method:

• proportions: output from aggregateColor()

• dE00: formatted as list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR'))

• mvnorm: formatted as list(hvc = x)

simulateColor 257

Where m is a single representative Munsell chip, thresh is a threshold specified
in CIE2000 color contrast (dE00), hues is a vector of allowed Munsell hues,
and x is a data.frame representing columns of Munsell hue, value, and chroma
having at least 3 rows.

SPC SoilProfileCollection, attempt to modify SPC with simulated colors

Value

a list, unless SPC is specified, then a SoilProfileCollection object

Author(s)

D.E. Beaudette

Examples

restrict examples to 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

m: representative or most likely color
thresh: dE00 threshold
hues: allowed Munsell hues
p <- list(

'A' = list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR')),
'BA' = list(m = '7.5YR 4/4', thresh = 8, hues = c('7.5YR')),
'Bt1' = list(m = '7.5YR 4/4', thresh = 8, hues = c('5YR', '7.5YR')),
'Bt2' = list(m = '5YR 4/5', thresh = 8, hues = c('5YR', '7.5YR')),
'Bt3' = list(m = '10YR 4/6', thresh = 10, hues = c('10YR', '7.5YR')),
'Cr' = list(m = '2.5G 6/2', thresh = 15, hues = c('2.5G', '2.5GY', '2.5BG'))

)

simulate
(cols <- simulateColor(method = 'dE00', n = 10, parameters = p))

preview
previewColors(parseMunsell(unlist(cols)), method = 'MDS')

another example, this time using a larger dE00 threshold
p <- list(

'A' = list(m = '7.5YR 3/3', thresh = 20, hues = c('10YR', '7.5YR', '5YR'))
)

simulate
set.seed(54654)
cols <- simulateColor(method = 'dE00', n = 200, parameters = p)

flatten
cols <- unlist(cols)

tabulate, sort: most frequent color should be 7.5YR 3/3
sort(table(cols), decreasing = TRUE)

258 site,SoilProfileCollection-method

review colors
previewColors(parseMunsell(cols))

what does a dE00 threshold look like on 3 pages of hue?
contrastChart('7.5YR 3/3', hues = c('10YR', '7.5YR', '5YR'), thresh = 20)

site,SoilProfileCollection-method

Retrieve site data from SoilProfileCollection

Description

Get site data from SoilProfileCollection. Result is returned in the same data.frame class used to
initially construct the SoilProfileCollection.

There are two options available via the site<- setter.

The first is a "normalization" by formula interface, whereby one specifies an attribute that is constant
in horizons within profiles to be promoted to a site-level variable: site(spc) <- ~ horizonvariable

The second is creation of site data from an external data.frame via merge (LEFT JOIN). There
must be one or more same-named columns (with at least some matching data) on the left and right
hand side to facilitate the join: site(spc) <- newdata

Usage

S4 method for signature 'SoilProfileCollection'
site(object)

site(object) <- value

Arguments

object A SoilProfileCollection

value A formula or object inheriting data.frame

Examples

load test data
data(sp2)

promote to SPC
depths(sp2) <- id ~ top + bottom

normalize a horizon-level attribute to site
site(sp2) <- ~ surface

inspect site table
site(sp2)

siteNames<- 259

make some data: classify two geomorphic surfaces with numeric value
newdata <- data.frame(surface = c("holocene",

"lower riverbank"),
newvalue = c(1,2))

do left join based on newly-normalized "surface" attribute
site(sp2) <- newdata

inspect site table: holocene & lower riverbank have values
site(sp2)

siteNames<- Set site column names

Description

Set site column names

Get names of columns in site table.

Usage

S4 replacement method for signature 'SoilProfileCollection'
siteNames(object) <- value

S4 method for signature 'SoilProfileCollection'
siteNames(object)

Arguments

object a SoilProfileCollection

value a unique vector of equal length to number of columns in site: length(siteNames(object))

slab Slab-Wise Aggregation of SoilProfileCollection Objects

Description

Aggregate soil properties along user-defined slabs, and optionally within groups.

Multiple continuous variables OR a single categorical (factor) variable can be aggregated within a
call to slab(). Basic error checking is performed to make sure that top and bottom horizon bound-
aries make sense. User-defined aggregate functions (slab.fun) should return a named vector of
results. A new, named column will appear in the results of slab() for every named element of a

260 slab

vector returned by slab.fun. See examples below for a simple example of a slab function that com-
putes mean, mean +/- 1 standard deviation. The default slab function wraps stats::quantile().
Note that if group is a factor it must not contain NAs.

slab() uses dice() to "resample" profiles to 1cm slices from depth 0 to max(x) (or slab.structure[2],
if defined).

Sometimes slab() is used to conveniently re-arrange data vs. aggregate. This is performed by
specifying identity in slab.fun. See examples below for a demonstration of this functionality.

The default slab.fun was changed 2019-10-30 from a wrapper around Hmisc::hdquantile() to
a wrapper around stats::quantile(). See examples below for a simple way to switch to the HD
quantile estimator.

Execution time scales linearly (slower) with the total number of profiles in object, and exponen-
tially (faster) as the number of profiles / group is increased. slab() and dice() are much faster
and require less memory if input data are either numeric or character.

There are several possible ways to define slabs, using slab.structure:

• a single integer, e.g. 10: data are aggregated over a regular sequence of 10-unit thickness slabs

• a vector of 2 integers, e.g. c(50, 60): data are aggregated over depths spanning 50-60 depth
units

• a vector of 3 or more integers, e.g. c(0, 5, 10, 50, 100): data are aggregated over the depths
spanning 0-5, 5-10, 10-50, 50-100 depth units

Usage

S4 method for signature 'SoilProfileCollection'
slab(
object,
fm,
slab.structure = 1,
strict = FALSE,
byhz = TRUE,
slab.fun = slab_function(method = "numeric"),
cpm = 1,
weights = NULL,
...

)

slab_function(
method = c("numeric", "factor", "hd", "weighted.numeric", "weighted.factor", "fast")

)

Arguments

object a SoilProfileCollection

fm A formula: either groups ~ var1 + var2 + var3 where named variables are ag-
gregated within groups' OR where named variables are aggregated across the entire collection ~
var1 + var2 + var3. If groupsis a factor it must not containNA‘

slab.structure integer vector: user-defined slab structure. See Details.

slab 261

strict logical: should horizons be strictly checked for self-consistency?

byhz logical: should horizons or whole profiles be removed by logic checks in strict?
Default TRUE removes only offending horizons, FALSE removes whole profiles
with one or more illogical horizons.

slab.fun Function used to process each ’slab’ of data, ideally returning a vector with
names attribute. Defaults to a wrapper function around stats::quantile().
See details.

cpm Strategy for normalizing slice-wise probabilities, dividing by either:

• number of profiles with data at the current slice (cpm = 1), or
• by the number of profiles in the collection (cpm = 2).

Mode 1 values will always sum to the contributing fraction, while mode 2 values
will always sum to 1.

weights Column name containing site-level weights

... further arguments passed to slab.fun

method one of "numeric", "factor", "hd", "weighted.numeric", "weighted.factor",
"fast"

Details

slab_function(): The default "numeric" aggregation method is the "fast" numeric (quantile)
method. Additional methods include "factor" for categorical data, "hd" to use the Harrell-Davis
Distribution-Free Quantile Estimator from the Hmisc package, and "weighted" to use a weighted
quantile method from the Hmisc package

Value

Output is returned in long format, such that slice-wise aggregates are returned once for each com-
bination of grouping level (optional), variable described in the fm argument, and depth-wise ’slab’.

Aggregation of numeric variables, using the default slab function:

• variable: The names of variables included in fm

• groupname: The name of the grouping variable when provided, otherwise a fake grouping
variable named ’all.profiles’.

• p.q5: The slice-wise 5th percentile.

• p.q25: The slice-wise 25th percentile

• p.q50: The slice-wise 50th percentile (median)

• p.q75: The slice-wise 75th percentile

• p.q95: The slice-wise 95th percentile

• top: The slab top boundary

• bottom The slab bottom boundary.

• contributing_fraction: The fraction of profiles contributing to the aggregate value, ranges from
1/n_profiles to 1

262 slab

When a single factor variable is used, slice-wise probabilities for each level of that factor are re-
turned as:

• variable: The names of factor variable included in fm

• groupname: The name of the grouping variable when provided, otherwise a fake grouping
variable named ’all.profiles’

• A: The slice-wise probability of level A

• B: The slice-wise probability of level B

• n: The slice-wise probability of level n

• top: The slab top boundary.

• bottom: The slab bottom boundary

• contributing_fraction: The fraction of profiles contributing to the aggregate value, ranges from
1/n_profiles to 1

slab_function(): return an aggregation function based on the method argument

Methods

data = "SoilProfileCollection" Typical usage, where input is a SoilProfileCollection.

Note

Arguments to slab() have changed with aqp 1.5 (2012-12-29) as part of a code clean-up and opti-
mization. Calculation of weighted-summaries was broken in aqp 1.2-6 (2012-06-26), and removed as of aqp 1.5 (2012-12-29). slab()“
replaced the previously defined soil.slot.multiple function as of aqp 0.98-8.58 (2011-12-21).

Author(s)

D.E. Beaudette

References

D.E. Beaudette, P. Roudier, A.T. O’Geen, Algorithms for quantitative pedology: A toolkit for soil
scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.

Harrell FE, Davis CE (1982): A new distribution-free quantile estimator. Biometrika 69:635-640.

See Also

dice()

Examples

##
basic examples
##
library(lattice)
library(grid)
library(data.table)

slab 263

load sample data, upgrade to SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

hzdesgnname(sp1) <- "name"

aggregate entire collection with two different segment sizes
a <- slab(sp1, fm = ~ prop)
b <- slab(sp1, fm = ~ prop, slab.structure=5)

check output
str(a)

stack into long format
ab <- make.groups(a, b)
ab$which <- factor(ab$which, levels=c('a','b'),
labels=c('1-cm Interval', '5-cm Interval'))

plot median and IQR
custom plotting function for uncertainty viz.
xyplot(top ~ p.q50 | which, data=ab, ylab='Depth',
xlab='median bounded by 25th and 75th percentiles',
lower=ab$p.q25, upper=ab$p.q75, ylim=c(250,-5),
panel=panel.depth_function,
prepanel=prepanel.depth_function,
cf=ab$contributing_fraction,
alpha=0.5,
layout=c(2,1), scales=list(x=list(alternating=1))
)

###
re-arrange data / no aggregation
###

load sample data, upgrade to SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

arrange data by ID
a <- slab(sp1, fm = id ~ prop, slab.fun=identity)

convert id to a factor for plotting
a$id <- factor(a$id)

check output
str(a)

plot via step function
xyplot(top ~ value | id, data=a, ylab='Depth',

ylim=c(250, -5), as.table=TRUE,
panel=panel.depth_function,
prepanel=prepanel.depth_function,

264 slab

scales=list(x=list(alternating=1))
)

##
categorical variable example
##

data(sp1)
depths(sp1) <- id ~ top + bottom

normalize horizon names: result is a factor
sp1$name <- generalize.hz(

sp1$name,
new = c('O','A','B','C'),
pat = c('O', '^A','^B','C')
)

compute slice-wise probability so that it sums to contributing fraction, from 0-150
a <- slab(sp1, fm= ~ name, cpm=1, slab.structure=0:150)

convert wide -> long for plotting
result is a data.table
genhz factor levels are set by order in `measure.vars`
a.long <- data.table::melt(

data.table::as.data.table(a),
id.vars = c('top','bottom'),
measure.vars = c('O', 'A', 'B', 'C'),
)

plot horizon type proportions using panels
xyplot(top ~ value | variable,

data = a.long, subset=value > 0,
col = 1, lwd = 2,
xlab = 'Class Probability',
ylab = 'Depth (cm)',
strip = strip.custom(bg = grey(0.85)),
scales = list(x = list(alternating = FALSE)),
ylim = c(150, -5), type=c('S','g'),
horizontal = TRUE, layout = c(4,1)
)

again, this time using groups
xyplot(top ~ value,

data = a.long,
groups = variable,
subset = value > 0,
ylab = 'Depth (cm)',
ylim = c(150, -5),
type = c('S','g'),
horizontal = TRUE,
asp = 2,
lwd = 2,

slab 265

auto.key = list(
lines = TRUE,
points = FALSE,
cex = 0.8,
columns = 1,
space = 'right'

)
)

adjust probability to size of collection, from 0-150
a.1 <- slab(sp1, fm= ~ name, cpm = 2, slab.structure = 0:150)

convert wide -> long for plotting
result is a data.table
genhz factor levels are set by order in `measure.vars`
a.1.long <- data.table::melt(

data.table::as.data.table(a.1),
id.vars = c('top','bottom'),
measure.vars = c('O','A','B','C')

)

combine aggregation from `cpm` modes 1 and 2
g <- make.groups(cmp.mode.1 = a.long, cmp.mode.2 = a.1.long)

plot horizon type proportions
xyplot(top ~ value | variable,

groups = which,
data = g, subset = value > 0,
ylim = c(240, -5),
type = c('S','g'),
horizontal = TRUE,
layout = c(4,1),
auto.key = list(lines = TRUE, points = FALSE, columns = 2),
par.settings = list(superpose.line = list(col = c(1, 2), lwd = 2)),
scales = list(alternating = 3),
xlab = 'Class Probability',
ylab = 'Depth (cm)',
strip = strip.custom(bg = grey(0.85))

)

apply slice-wise evaluation of max probability, and assign ML-horizon at each slice
gen.hz.ml <- get.ml.hz(a, c('O','A','B','C'))

Not run:
##
HD quantile estimator
##

library(soilDB)
library(lattice)
library(data.table)

266 slab

sample data
data('loafercreek', package = 'soilDB')

defaul slab.fun wraps stats::quantile()
a <- slab(loafercreek, fm = ~ total_frags_pct + clay)

use HD quantile estimator from Hmisc package instead
a.HD <- slab(loafercreek, fm = ~ total_frags_pct + clay, slab.fun = aqp:::.slab.fun.numeric.HD)

combine
g <- make.groups(standard=a, HD=a.HD)

note differences
densityplot(~ p.q50 | variable, data=g, groups=which,

scales=list(relation='free', alternating=3, tick.number=10, y=list(rot=0)),
xlab='50th Percentile', pch=NA, main='Loafercreek',
auto.key=list(columns=2, points=FALSE, lines=TRUE),
par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2')))

)

differences are slight but important
xyplot(

top ~ p.q50 | variable, data=g, groups=which,
xlab='Value', ylab='Depth (cm)',
asp=1.5, main='Loafercreek',
lower=g$p.q25, upper=g$p.q75,
sync.colors=TRUE, alpha=0.25, cf=g$contributing_fraction,
ylim=c(115,-5), layout=c(2,1), scales=list(x=list(relation='free')),
par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))),
strip=strip.custom(bg=grey(0.85)),
panel=panel.depth_function,
prepanel=prepanel.depth_function,
auto.key=list(columns=2, lines=TRUE, points=FALSE)

)

##
multivariate examples
##
data(sp3)

add new grouping factor
sp3$group <- 'group 1'
sp3$group[as.numeric(sp3$id) > 5] <- 'group 2'
sp3$group <- factor(sp3$group)

upgrade to SPC
depths(sp3) <- id ~ top + bottom
site(sp3) <- ~ group

custom 'slab' function, returning mean +/- 1SD
mean.and.sd <- function(values) {

m <- mean(values, na.rm=TRUE)

slab 267

s <- sd(values, na.rm=TRUE)
upper <- m + s
lower <- m - s
res <- c(mean=m, lower=lower, upper=upper)
return(res)

}

aggregate several variables at once, within 'group'
a <- slab(sp3, fm = group ~ L + A + B, slab.fun = mean.and.sd)

check the results:
note that 'group' is the column containing group labels
xyplot(

top ~ mean | variable, data=a, groups=group,
lower=a$lower, upper=a$upper,
sync.colors=TRUE, alpha=0.5,
cf = a$contributing_fraction,
xlab = 'Mean Bounded by +/- 1SD',
ylab = 'Depth (cm)',
ylim=c(125,-5), layout=c(3,1),
scales=list(x=list(relation='free')),
par.settings = list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))),
panel = panel.depth_function,
prepanel = prepanel.depth_function,
strip = strip.custom(bg=grey(0.85)),
auto.key = list(columns=2, lines=TRUE, points=FALSE)

)

compare a single profile to the group-level aggregate values
a.1 <- slab(sp3[1,], fm = group ~ L + A + B, slab.fun = mean.and.sd)

manually update the group column
a.1$group <- 'profile 1'

combine into a single data.frame:
g <- rbind(a, a.1)

plot with customized line styles
xyplot(

top ~ mean | variable, data=g, groups=group, subscripts=TRUE,
lower=a$lower, upper=a$upper, ylim=c(125,-5),
layout=c(3,1), scales=list(x=list(relation='free')),
xlab = 'Mean Bounded by +/- 1SD',
ylab = 'Depth (cm)',
panel=panel.depth_function,
prepanel=prepanel.depth_function,
sync.colors = TRUE, alpha = 0.25,
par.settings = list(
superpose.line = list(

col = c('orange', 'royalblue', 'black'),
lwd = 2, lty = c(1,1,2)

)

268 slice-methods

),
strip = strip.custom(bg=grey(0.85)),
auto.key = list(columns=3, lines=TRUE, points=FALSE)

)

again, this time for a user-defined slab from 40-60 cm
a <- slab(sp3,

fm = group ~ L + A + B,
slab.structure = c(40,60),
slab.fun = mean.and.sd

)

now we have weighted average properties (within the defined slab)
for each variable, and each group
convert long -> wide
data.table::dcast(

data.table::as.data.table(a),
formula = group + top + bottom ~ variable,
value.var = 'mean'

)

this time, compute the weighted mean of selected properties, by profile ID
a <- slab(sp3,

fm = id ~ L + A + B,
slab.structure = c(40,60),
slab.fun = mean.and.sd

)

convert long -> wide
data.table::dcast(

data.table::as.data.table(a),
formula = id + top + bottom ~ variable,
value.var = 'mean'

)

aggregate the entire collection, using default slab function
note the missing left-hand side of the formula
a <- slab(sp3, fm = ~ L + A + B)

End(Not run)

slice-methods Slicing of SoilProfileCollection Objects

slice-methods 269

Description

A method for "slicing" of SoilProfileCollection objects into constant depth intervals. Now depre-
cated, see [dice()].

Usage

slice.fast(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE)

S4 method for signature 'SoilProfileCollection'
slice(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE)

get.slice(h, id, top, bottom, vars, z, include = "top", strict = TRUE)

Arguments

object a SoilProfileCollection

fm A formula: either integer.vector ~ var1 + var2 + var3 where named vari-
ables are sliced according to integer.vector OR where all variables are sliced
according to integer.vector: integer.vector ~ ..

top.down logical, slices are defined from the top-down: 0:10 implies 0-11 depth units.

just.the.data Logical, return just the sliced data or a new SoilProfileCollection object.

strict Check for logic errors? Default: TRUE

h Horizon data.frame

id Profile ID

top Top Depth Column Name

bottom Bottom Depth Column Name

vars Variables of Interest

z Slice Depth (index).

include Either 'top' or 'bottom'. Boundary to include in slice. Default: 'top'

Value

Either a new SoilProfileCollection with data sliced according to fm, or a data.frame.

Details

By default, slices are defined from the top-down: 0:10 implies 0-11 depth units.

Author(s)

D.E. Beaudette

References

D.E. Beaudette, P. Roudier, A.T. O’Geen, Algorithms for quantitative pedology: A toolkit for soil
scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.

270 slice-methods

See Also

slab

Examples

library(aqp)

simulate some data, IDs are 1:20
d <- lapply(1:20, random_profile)
d <- do.call('rbind', d)

init SoilProfileCollection object
depths(d) <- id ~ top + bottom
head(horizons(d))

generate single slice at 10 cm
output is a SoilProfileCollection object
s <- dice(d, fm = 10 ~ name + p1 + p2 + p3)

generate single slice at 10 cm, output data.frame
s <- dice(d, 10 ~ name + p1 + p2 + p3, SPC = FALSE)

generate integer slices from 0 - 26 cm
note that slices are specified by default as "top-down"
result is a SoilProfileCollection
e.g. the lower depth will always by top + 1
s <- dice(d, fm = 0:25 ~ name + p1 + p2 + p3)
par(mar=c(0,1,0,1))
plotSPC(s)

generate slices from 0 - 11 cm, for all variables
s <- dice(d, fm = 0:10 ~ .)
print(s)

compute percent missing, for each slice,
if all vars are missing, then NA is returned
d$p1[1:10] <- NA
s <- dice(d, 10 ~ ., SPC = FALSE, pctMissing = TRUE)
head(s)

Not run:
##
check sliced data
##

test that mean of 1 cm slices property is equal to the
hz-thickness weighted mean value of that property
data(sp1)
depths(sp1) <- id ~ top + bottom

get the first profile
sp1.sub <- sp1[which(profile_id(sp1) == 'P009'),]

slicedHSD 271

compute hz-thickness wt. mean
hz.wt.mean <- with(

horizons(sp1.sub),
sum((bottom - top) * prop) / sum(bottom - top)

)

hopefully the same value, calculated via slice()
s <- dice(sp1.sub, fm = 0:max(sp1.sub) ~ prop)
hz.slice.mean <- mean(s$prop, na.rm = TRUE)

they are the same
all.equal(hz.slice.mean, hz.wt.mean)

End(Not run)

slicedHSD Tukey’s HSD Over Slices

Description

Apply Tukey’s HSD over 1-unit depth slices.

Usage

slicedHSD(object, fm, conf = 0.95)

Arguments

object SoilProfileCollection object

fm a formula describing depth sequence, horizon attribute, and site (grouping) at-
tribute. For example 0:100 ~ estimated_oc | taxonname

conf confidence applied in TukeyHSD

Author(s)

D.E. Beaudette and Sharon Perrone

272 soilColorSignature

soilColorSignature Soil Profile Color Signatures

Description

Generate a color signature for each soil profile in a collection.

Usage

soilColorSignature(
spc,
color,
space = c("sRGB", "CIELAB"),
method = c("colorBucket", "depthSlices", "pam"),
perceptualDistMat = FALSE,
pam.k = 3,
prob = c(0.1, 0.5, 0.9),
useProportions = TRUE,
pigmentNames = c(".white.pigment", ".red.pigment", ".green.pigment", ".yellow.pigment",

".blue.pigment"),
apply.fun = lapply,
r = NULL,
g = NULL,
b = NULL,
RescaleLightnessBy = NULL

)

Arguments

spc a SoilProfileCollection object

color horizon-level attributes, either character of length 1 specifying a column con-
taining Munsell or sRGB in hex notation, or character vector of three column
names containing either sRGB or CIELAB color coordinates. sRGB color co-
ordinates should be within the range of 0 to 1.

space character, either ’sRGB’ or ’LAB’, specifying color space

method algorithm used to compute color signature, colorBucket, depthSlices, or pam
perceptualDistMat

logical, optionally return a distance matrix based on perceptual color distances,
when “method‘ is one of ’depthSlices’ or ’pam’, see Details

pam.k number of color classes for method = 'pam'

prob numeric vector, requested percentiles for method = 'depthSlices'

useProportions use proportions or quantities, see details

pigmentNames names for resulting pigment proportions or quantities

soilColorSignature 273

apply.fun function passed to aqp::profileApply(APPLY.FUN) argument, can be used
to add progress bars via pbapply::pblapply(), or parallel processing with
furrr::future_map()

r deprecated, use color argument
g deprecated, use color argument
b deprecated, use color argument
RescaleLightnessBy

deprecated, scaling factor for CIELAB L-coordinate

Details

Interpreation of color signature.

Choices related to weighting, scaling, and distance metric.

Perceptual distances (dE00), summed over color groups.

See the related tutorial.

Value

For the colorBucket method, a data.frame:

• id column: set according to idname(spc)

• .white.pigment: proportion or quantity of CIELAB L-values
• .red.pigment: proportion or quantity of CIELAB positive A-values
• .green.pigment: proportion or quantity of CIELAB negative A-values
• .yellow.pigment: proportion or quantity of CIELAB positive B-values
• .blue.pigment: proportion or quantity of CIELAB negative B-values

Column names can be adjusted with the pigmentNames argument.

For the depthSlices method, a data.frame:

• id column: set according to idname(spc)

• L.1, A.1, B.1: CIELAB color coordinates associated with the first depth slice, at depth per-
centile given in prob[1]

• ...
• L.n, A.n, B.n: CIELAB color coordinates associated with the n depth slice, at depth percentile

given in prob[n]

For the pam method, a data.frame:

• id column: set according to idname(spc)

• L.1, A.1, B.1: CIELAB color coordinates associated with the first color cluster, after sorting
all clusters in ascending order along L, A, B axes.

• ...
• L.n, A.n, B.n: CIELAB color coordinates associated with the nth color cluster, after sorting

all clusters in ascending order along L, A, B axes.

When perceptualDistMat = TRUE and method is one of ’depthSlices’ or ’pam’, a distance matrix
is returned.

http://ncss-tech.github.io/AQP/aqp/soil-color-signatures.html

274 soilPalette

Author(s)

D.E. Beaudette

References

https://en.wikipedia.org/wiki/Lab_color_space

See Also

plotProfileDendrogram()

Examples

trivial example, not very interesting
data(sp1)
depths(sp1) <- id ~ top + bottom

Munsell notation
sp1$m <- sprintf("%s %s/%s", sp1$hue, sp1$value, sp1$chroma)

extract color signature
pig <- soilColorSignature(sp1, color = 'm')

soilPalette Soil Color Palette

Description

A very simple function for generating labeled swatches of soil colors. Largely based on colorspace::swatchplot.

Usage

soilPalette(
colors,
lab = colors,
lab.cex = 0.75,
dynamic.labels = TRUE,
x.inset = 0.01,
y.inset = 0.01,
...

)

soilPalette 275

Arguments

colors vector of hex colors (e.g. #A66E46FF)

lab vector of labels

lab.cex character scaling for labels

dynamic.labels logical, adjust label colors for maximum contrast via invertLabelColor

x.inset horizontal adjustment for labels

y.inset vertical adjustment for labels

... further arguments to colorspace::swatchplot

Value

nothing is returned, function called for graphic output

Note

The result is a simple figure on the active plotting device.

Author(s)

D.E. Beaudette

Examples

maybe useful for teaching about soil color

par(mfrow=c(2,1), mar=c(1,1,1,1))

demonstrate range of Munsell value
m <- sprintf('10YR %s/4', 2:8)
convert to hex representation
cols <- parseMunsell(m)
plot
soilPalette(cols, m)

demonstrate range of Munsell chroma
m <- sprintf('10YR 4/%s', 2:8)
convert to hex representation
cols <- parseMunsell(m)
plot
soilPalette(cols, m)

276 SoilProfileCollection

SoilProfileCollection An S4 object representation of a group of soil profiles.

Description

In general, one should use depths() to initiate a SoilProfileCollection object from data. However,
sometimes there are instances where either an empty, or very specific, object is needed. If that is
the case, the general constructor SoilProfileCollection is available.

Usage

SoilProfileCollection(
idcol = "id",
hzidcol = "hzID",
depthcols = c("top", "bottom"),
metadata = list(aqp_df_class = "data.frame", aqp_group_by = "", aqp_hzdesgn = "",

aqp_hztexcl = "", stringsAsFactors = FALSE),
horizons = data.frame(id = character(0), hzID = character(0), top = numeric(0), bottom

= numeric(0), stringsAsFactors = FALSE),
site = data.frame(id = character(0), stringsAsFactors = FALSE),
diagnostic = data.frame(stringsAsFactors = FALSE),
restrictions = data.frame(stringsAsFactors = FALSE)

)

Arguments

idcol character. Profile ID Column Name

hzidcol character. Horizon ID Column Name

depthcols character. length 2 Top and Bottom Depth Column Names

metadata list. metadata including data.frame class in use and depth units

horizons data.frame. An object inheriting from data.frame containing Horizon data.

site data.frame. An object inheriting from data.frame containing Site data.

diagnostic data.frame. An object inheriting from data.frame containing diagnostic feature
data. Must contain profile ID. See diagnostic_hz()

restrictions data.frame. An object inheriting from data.frame containing restrictive feature
data. Must contain profile ID. See restrictions()

Details

After aqp 2.0.2, the @sp slot was removed from the SoilProfileCollection object. If you run into
errors related to old object definitions, use rebuildSPC() on the problematic object.

SoilProfileCollection 277

Slots

idcol character.

hzidcol character.

depthcols character.

metadata list.

horizons data.frame.

site data.frame.

diagnostic data.frame.

restrictions data.frame.

Author(s)

Pierre Roudier, Dylan E. Beaudette, Andrew G. Brown

Examples

structure of default, empty SoilProfileCollection
str(SoilProfileCollection())

use the depths() formula interface to specify
profile ID, top and bottom depth and set up
a SPC that is topologically correct and complete

d <- do.call('rbind', lapply(1:10, random_profile))

promote to SoilProfileCollection and plot
depths(d) <- id ~ top + bottom
plot(d)

split into new SoilProfileCollection objects by index
d.1 <- d[1,]
d.2 <- d[2,]
d.345 <- d[3:5,]

combine profile collections
note that profiles are sorted according to ID
d.new <- c(d.345, d.1, d.2)
plot(d.new)

data(sp1)

init SoilProfileCollection objects from data.frame
depths(sp1) <- id ~ top + bottom

depth units
du <- depth_units(sp1)
depth_units(sp1) <- 'in'
depth_units(sp1) <- du

278 SoilProfileCollection

horizon designation column
hzdesgnname(sp1) <- "name"
hzdesgnname(sp1)

all designations in an SPC (useful for single profile SPC)
hzDesgn(sp1)

horizon texture class column
hztexclname(sp1) <- "texture"
hztexclname(sp1)

get/set metadata on SoilProfileCollection objects
this is a 1-row data.frame
m <- metadata(sp1)
m$sampler <- 'Dylan'
metadata(sp1) <- m

extract horizon data from SoilProfileCollection objects as data.frame
h <- horizons(sp1)

also merge (left-join) of new columns and
replacement of existing columns via horizons<-
horizons(sp1) <- h

get number of horizons
nrow(sp1)

getting site-level data
site(sp1)

setting site-level data
site-level data from horizon-level data (stored in @horizons)
site(sp1) <- ~ group

make some fake site data, and append from data.frame
a matching ID column must be present in both @site and new data
note that IDs should all be character class
d <- data.frame(id=profile_id(sp1), p=runif(n=length(sp1)), stringsAsFactors=FALSE)
site(sp1) <- d

edit horizon depths
horizonDepths(sp1) <- c('t', 'b')
horizonDepths(sp1)

edit profile IDs
p <- sprintf("%s-new", profile_id(sp1))
profile_id(sp1) <- p
profile_id(sp1)

soiltexture 279

soiltexture Lookup tables for sand, silt, clay, texture class, and textural modifiers.

Description

A list that contains a snapshot of the values generated using the logic from the particle size estimator
calculation in NASIS, the average values per texture class, and average rock fragment values by
textural modifier.

Usage

data(soiltexture)

Format

A list with 3 data frames. The first named values which contains values for sand, silt and clay by
texture class. The second with average values for sand, silt and clay per texture class. The third has
fragvoltot low, rv and high values for texmod.

list("clay") clay percentage of the fine earth fraction, a integer vector

list("sand") sand percentage of the fine earth fraction, a integer vector

list("silt") silt percentage of the fine earth fraction, a integer vector

list("texcl") texture class, a character vector

list("texmod") textural modifiers, a character vector

soilTextureColorPal Soil Texture Color Palettes

Description

Suggested color palettes for USDA soil texture classes, ranked according to average plant-available
water holding capacity. The default color mapping schema is based on a palette used by SoilWeb
applications.

Usage

soilTextureColorPal(simplify = FALSE, schema = "soilweb")

Arguments

simplify logical, return the base 12 (TRUE) or full 21 (FALSE) soil texture classes

schema select mapping between soil texture classes, and colors, currently limited to
’soilweb’

280 SoilTextureLevels

Value

data.frame from soil texture class codes and colors

Author(s)

D.E. Beaudette, Mike Walkinshaw, A.T. O’Geen

Examples

base 12 soil texture classes
ranked by plant available water-holding capacity
d <- soilTextureColorPal(simplify = TRUE)
soilPalette(d$color, lab = d$class, lab.cex = 1)

full 21 soil texture classes
ranked by plant available water-holding capacity
d <- soilTextureColorPal(simplify = FALSE)
soilPalette(d$color, lab = d$class, lab.cex = 1)

SoilTextureLevels Ranking Systems for USDA Soil Texture Classes

Description

Generate a vector of USDA soil texture codes or class names, sorted according to approximate
particle size

Usage

SoilTextureLevels(which = "codes", simplify = FALSE)

Arguments

which ’codes’ (texture codes) or ’names’ (texture class names)

simplify Return 12-class factor levels (TRUE) or 21-class factor levels (default: FALSE)?
The 12-class system does not separate sands, loamy sands and sandy loams into
sand fraction variants (e.g. "very fine sandy loam" in the 21-class system is
"sandy loam" in 12-class system)

Value

an ordered factor

References

Field Book for Describing and Sampling Soils, version 3.0

https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=991

soil_minerals 281

Examples

class codes
SoilTextureLevels()

class names
SoilTextureLevels(which = 'names')

simpler class names
SoilTextureLevels(which = 'names', simplify = TRUE)

soil_minerals Munsell Colors of Common Soil Minerals

Description

Munsell colors for some common soil minerals.

Usage

data(soil_minerals)

Format

A data frame with 20 observations on the following 5 variables.

mineral mineral name

color Munsell color

hue Munsell hue

value Munsell value

chroma Munsell chroma

Details

Soil color and other properties including texture, structure, and consistence are used to distinguish
and identify soil horizons (layers) and to group soils according to the soil classification system
called Soil Taxonomy. Color development and distribution of color within a soil profile are part of
weathering. As rocks containing iron or manganese weather, the elements oxidize. Iron forms small
crystals with a yellow or red color, organic matter decomposes into black humus, and manganese
forms black mineral deposits. These pigments paint the soil (Michigan State Soil). Color is also
affected by the environment: aerobic environments produce sweeping vistas of uniform or subtly
changing color, and anaerobic (lacking oxygen), wet environments disrupt color flow with complex,
often intriguing patterns and points of accent. With depth below the soil surface, colors usually
become lighter, yellower, or redder.

282 soil_minerals

References

1. Lynn, W.C. and Pearson, M.J., The Color of Soil, The Science Teacher, May 2000. 2. Schw-
ertmann, U. 1993. Relations Between Iron Oxides, Soil Color, and Soil Formation. "Soil
Color". SSSA Special Publication no. 31, pages 51–69.

Examples

Not run:

library(aqp)
library(ape)
library(cluster)
library(farver)

load common soil mineral colors
data(soil_minerals)

convert Munsell to R colors
soil_minerals$col <- munsell2rgb(

soil_minerals$hue,
soil_minerals$value,
soil_minerals$chroma

)

make a grid for plotting
n <- ceiling(sqrt(nrow(soil_minerals)))

read from top-left to bottom-right
g <- expand.grid(x = 1:n, y = n:1)[1:nrow(soil_minerals),]

convert Munsell -> CIELAB
col.lab <- parseMunsell(soil_minerals$color, returnLAB = TRUE)

keep track of soil mineral names
in a way that will persist in a dist obj
row.names(col.lab) <- soil_minerals$mineral

pair-wise perceptual distances via CIE dE00
d <- compare_colour(

from = col.lab,
from_space = 'lab',
to_space = 'lab',
white_from = 'D65',
method = 'CIE2000'

)

matrix -> dist
note transpose,
required when specifying only `from` to compare_colour()
d <- as.dist(t(d))

divisive hierarchical clustering of LAB coordinates

sp1 283

h <- as.hclust(diana(d))
p <- as.phylo(h)

colors, in order based on clustering
starting from top-left
min.cols <- rev(soil_minerals$col[h$order])

mineral names, in order based on clustering
starting from top-left
min.names <- rev(soil_minerals$mineral[h$order])

min.munsell <- rev(soil_minerals$color[h$order])

plot grid of mineral names / colors
layout(matrix(c(1, 2), nrow = 1), widths = c(1.25, 1))

par(mar = c(1, 0, 0, 1))
plot(gx, gy, pch = 15, cex = 12, axes = FALSE, xlab = '', ylab = '',

col = min.cols,
xlim = c(0.5, 5.5), ylim = c(1.5, 5.5)

)
text(gx, gy, min.names, adj = c(0.45, 5.5), cex = 0.75, font = 2)
text(gx, gy, min.munsell, col = invertLabelColor(min.cols), cex = 0.85, font = 2)

title(main = 'Common Soil Pigments', line = -1.75, cex.main = 2)
mtext('U. Schwertmann, 1993. SSSA Special Publication no. 31, pages 51--69', side = 1,

cex = 0.75, line = -1.5)

dendrogram + tip labels with mineral colors
plot(p, cex = 0.85, label.offset = 5, font = 1)
tiplabels(pch = 15, cex = 3, offset = 2, col = soil_minerals$col)

End(Not run)

sp1 Soil Profile Data Example 1

Description

Soil profile data from Pinnacles National Monument, CA.

Format

A data frame with 60 observations on the following 21 variables.

group a numeric vector

id a character vector

284 sp1

top a numeric vector

bottom a numeric vector

bound_distinct a character vector

bound_topography a character vector

name a character vector

texture a character vector

prop a numeric vector

structure_grade a character vector

structure_size a character vector

structure_type a character vector

stickiness a character vector

plasticity a character vector

field_ph a numeric vector

hue a character vector

value a numeric vector

chroma a numeric vector

References

https://casoilresource.lawr.ucdavis.edu/

Examples

data(sp1)
convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

re-sample each profile into 1 cm (thick) depth slices
for the variables 'prop', 'name', 'soil_color'
result is a SoilProfileCollection object
s <- dice(sp1, 0:25 ~ prop + name + soil_color)

plot, note slices
plot(s)

aggregate all profiles along 1 cm depth slices,
using data from column 'prop'
s1 <- slab(sp1, fm= ~ prop)

check median & IQR
library(lattice)

https://casoilresource.lawr.ucdavis.edu/

sp2 285

xyplot(top ~ p.q50 + p.q25 + p.q75,
data=s1, type='S', horizontal=TRUE, col=1, lty=c(1,2,2),
panel=panel.superpose, ylim=c(110,-5), asp=2)

sp2 Honcut Creek Soil Profile Data

Description

A collection of 18 soil profiles, consisting of select soil morphologic attributes, associated with a
stratigraphic study conducted near Honcut Creek, California.

Format

A data frame with 154 observations on the following 21 variables.

id profile id

surface dated surface

top horizon top in cm

bottom horizon bottom in cm

bound_distinct horizon lower boundary distinctness class

bound_topography horizon lower boundary topography class

name horizon name

texture USDA soil texture class

prop field-estimated clay content

structure_grade soil structure grade

structure_size soil structure size

structure_type soil structure type

stickiness stickiness

plasticity plasticity

field_ph field-measured pH

hue Munsell hue

value Munsell value

chroma Munsell chroma

r RGB red component

g RGB green component

b RGB blue component

soil_color R-friendly encoding of soil color

286 sp2

Author(s)

Dylan E. Beaudette

Source

Busacca, Alan J.; Singer, Michael J.; Verosub, Kenneth L. 1989. Late Cenozoic stratigraphy of the
Feather and Yuba rivers area, California, with a section on soil development in mixed alluvium at
Honcut Creek. USGS Bulletin 1590-G.

References

https://casoilresource.lawr.ucdavis.edu/

Examples

keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp2)

convert into SoilProfileCollection object
depths(sp2) <- id ~ top + bottom

transfer site-level data
site(sp2) <- ~ surface

generate a new plotting order, based on the dated surface each soil was described on
p.order <- order(sp2$surface)

plot
par(mar=c(1,0,3,0))
plot(sp2, plot.order=p.order)

setup multi-figure output
par(mfrow=c(2,1), mar=c(0,0,1,0))

truncate plot to 200 cm depth
plot(sp2, plot.order=p.order, max.depth=200)
abline(h=200, lty=2, lwd=2)

compute numerical distances between profiles
based on select horizon-level properties, to a depth of 200 cm
d <- NCSP(sp2, vars=c('prop','field_ph','hue'), maxDepth = 100, k = 0)

plot dendrogram with ape package:
if(require(ape) & require(cluster)) {
h <- diana(d)
p <- as.phylo(as.hclust(h))
plot(p, cex=0.75, label.offset=0.01, font=1, direct='down', srt=90, adj=0.5, y.lim=c(-0.125, 0.5))

add in the dated surface type via color
tiplabels(col=as.numeric(sp2$surface), pch=15)

https://casoilresource.lawr.ucdavis.edu/

sp3 287

based on distance matrix values, YMMV
legend('topleft', legend=levels(sp2$surface), col=1:6, pch=15, bty='n', bg='white', cex=0.75)
}

sp3 Soil Profile Data Example 3

Description

Soil samples from 10 soil profiles, taken from the Sierra Foothill Region of California.

Format

A data frame with 46 observations on the following 15 variables.

id soil id

top horizon upper boundary (cm)

bottom horizon lower boundary (cm)

clay clay content

cec CEC by amonium acetate at pH 7

ph pH in 1:1 water-soil mixture

tc total carbon percent

hue Munsell hue (dry)

value Munsell value (dry)

chroma Munsell chroma (dry)

mid horizon midpoint (cm)

ln_tc natural log of total carbon percent

L color: l-coordinate, CIE-LAB colorspace (dry)

A color: a-coordinate, CIE-LAB colorspace (dry)

B color: b-coordinate, CIE-LAB colorspace (dry)

name horizon name

soil_color horizon color

Details

These data were collected to support research funded by the Kearney Foundation of Soil Science.

References

https://casoilresource.lawr.ucdavis.edu/

https://casoilresource.lawr.ucdavis.edu/

288 sp3

Examples

this example investigates the concept of a "median profile"

required packages
if (require(ape) & require(cluster)) {

data(sp3)

generate a RGB version of soil colors
and convert to HSV for aggregation
sp3$h <- NA
sp3$s <- NA
sp3$v <- NA
sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets = TRUE))

sp3[, c('h', 's', 'v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue = 1)))

promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom

aggregate across entire collection
a <- slab(sp3, fm = ~ clay + cec + ph + h + s + v, slab.structure = 10)

check
str(a)

convert back to wide format
library(data.table)

a.wide.q25 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q25'))
a.wide.q50 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q50'))
a.wide.q75 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q75'))

add a new id for the 25th, 50th, and 75th percentile pedons
a.wide.q25$id <- 'Q25'
a.wide.q50$id <- 'Q50'
a.wide.q75$id <- 'Q75'

combine original data with "mean profile"
vars <- c('top', 'bottom', 'id', 'clay', 'cec', 'ph', 'h', 's', 'v')
make data.frame version of sp3
sp3.df <- as(sp3, 'data.frame')

sp3.grouped <- as.data.frame(rbind(as.data.table(horizons(sp3))[, .SD, .SDcol = vars],
a.wide.q25[, .SD, .SDcol = vars],
a.wide.q50[, .SD, .SDcol = vars],
a.wide.q75[, .SD, .SDcol = vars]))

re-constitute the soil color from HSV triplets
convert HSV back to standard R colors
sp3.grouped$soil_color <- with(sp3.grouped, hsv(h, s, v))

give each horizon a name

sp3 289

sp3.grouped$name <- paste(
round(sp3.grouped$clay),
'/' ,
round(sp3.grouped$cec),
'/',
round(sp3.grouped$ph, 1)

)

first promote to SoilProfileCollection
depths(sp3.grouped) <- id ~ top + bottom

plot(sp3.grouped)

perform comparison, and convert to phylo class object
D is rescaled to [0,]
d <- NCSP(

sp3.grouped,
vars = c('clay', 'cec', 'ph'),
maxDepth = 100,
k = 0.01

)

h <- agnes(d, method = 'ward')
p <- ladderize(as.phylo(as.hclust(h)))

look at distance plot-- just the median profile
plot_distance_graph(d, 12)

similarity relative to median profile (profile #12)
round(1 - (as.matrix(d)[12,] / max(as.matrix(d)[12,])), 2)

make dendrogram + soil profiles

setup plot: note that D has a scale of [0,1]
par(mar = c(1, 1, 1, 1))
p.plot <- plot(p,

cex = 0.8,
label.offset = 3,
direction = 'up',
y.lim = c(200, 0),
x.lim = c(1.25, length(sp3.grouped) + 1),
show.tip.label = FALSE)

get the last plot geometry
lastPP <- get("last_plot.phylo", envir = ape::.PlotPhyloEnv)

the original labels, and new (indexed) order of pedons in dendrogram
d.labels <- attr(d, 'Labels')

new_order <- sapply(1:lastPP$Ntip,
function(i)

which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i))

290 sp4

plot the profiles, in the ordering defined by the dendrogram
with a couple fudge factors to make them fit
plotSPC(

sp3.grouped,
color = "soil_color",
plot.order = new_order,
y.offset = max(lastPP$yy) + 10,
width = 0.1,
cex.names = 0.5,
add = TRUE

)
}

sp4 Soil Chemical Data from Serpentinitic Soils of California

Description

Soil Chemical Data from Serpentinitic Soils of California

Format

A data frame with 30 observations on the following 13 variables.

id site name

name horizon designation

top horizon top boundary in cm

bottom horizon bottom boundary in cm

K exchangeable K in c mol/kg

Mg exchangeable Mg in cmol/kg

Ca exchangeable Ca in cmol/kg

CEC_7 cation exchange capacity (NH4OAc at pH 7)

ex_Ca_to_Mg extractable Ca:Mg ratio

sand sand content by weight percentage

silt silt content by weight percentage

clay clay content by weight percentage

CF >2mm fraction by volume percentage

Details

Selected soil physical and chemical data from (McGahan et al., 2009).

Source

https://www.soils.org/publications/sssaj/articles/73/6/2087

sp4 291

References

McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in
Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.

Examples

load sample data set, a simple data.frame object with horizon-level data from 10 profiles
library(aqp)
data(sp4)
str(sp4)
sp4$idbak <- sp4$id

upgrade to SoilProfileCollection
'id' is the name of the column containing the profile ID
'top' is the name of the column containing horizon upper boundaries
'bottom' is the name of the column containing horizon lower boundaries
depths(sp4) <- id ~ top + bottom

check it out
class(sp4) # class name
str(sp4) # internal structure

check integrity of site:horizon linkage
spc_in_sync(sp4)

check horizon depth logic
checkHzDepthLogic(sp4)

inspect object properties
idname(sp4) # self-explanitory
horizonDepths(sp4) # self-explanitory

you can change these:
depth_units(sp4) # defaults to 'cm'
metadata(sp4) # not much to start with

alter the depth unit metadata
depth_units(sp4) <- 'inches' # units are really 'cm'

more generic interface for adjusting metadata

add attributes to metadata list
metadata(sp4)$describer <- 'DGM'
metadata(sp4)$date <- as.Date('2009-01-01')
metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P.
2009. Plant-Available Calcium Varies Widely in Soils
on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.'

depth_units(sp4) <- 'cm' # fix depth units, back to 'cm'

further inspection with common function overloads
length(sp4) # number of profiles in the collection

292 sp4

nrow(sp4) # number of horizons in the collection
names(sp4) # column names
min(sp4) # shallowest profile depth in collection
max(sp4) # deepest profile depth in collection

extraction of soil profile components
profile_id(sp4) # vector of profile IDs
horizons(sp4) # horizon data

extraction of specific horizon attributes
sp4$clay # vector of clay content

subsetting SoilProfileCollection objects
sp4[1,] # first profile in the collection
sp4[, 1] # first horizon from each profile

basic plot method, highly customizable: see manual page ?plotSPC
plot(sp4)
inspect plotting area, very simple to overlay graphical elements
abline(v=1:length(sp4), lty=3, col='blue')
profiles are centered at integers, from 1 to length(obj)
axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2)
y-axis is based on profile depths
axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2)

symbolize soil properties via color
par(mar=c(0,0,4,0))
plot(sp4, color='clay')
plot(sp4, color='CF')

apply a function to each profile, returning a single value per profile,
in the same order as profile_id(sp4)
soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile

check that the order is correct
all.equal(names(soil.depths), profile_id(sp4))

a vector of values that is the same length as the number of profiles
can be stored into site-level data
sp4$depth <- soil.depths
check: looks good
max(sp4[1,]) == sp4$depth[1]

extract site-level data
site(sp4) # as a data.frame
sp4$depth # specific columns as a vector

use site-level data to alter plotting order
new.order <- order(sp4$depth) # the result is an index of rank
par(mar=c(0,0,0,0))
plot(sp4, plot.order=new.order)

sp5 293

deconstruct SoilProfileCollection into a data.frame, with horizon+site data
as(sp4, 'data.frame')

sp5 Sample Soil Database #5

Description

296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002)

Format

SoilProfileCollection object

Details

These data are c/o F. Carre (Florence.CARRE@ineris.fr).

Source

296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002). These data can
be found on the OSACA project page (http://eusoils.jrc.ec.europa.eu/projects/OSACA/).

References

F. Carre, M.C. Girard. 2002. Quantitative mapping of soil types based on regression kriging of
taxonomic distances with landform and land cover attributes. Geoderma. 110: 241–263.

Examples

Not run:
library(scales)
data(sp5)
par(mar=c(1,1,1,1))
plot a random sampling of profiles
s <- sample(1:length(sp5), size=25)
plot(sp5[s,], divide.hz=FALSE)

plot the first 100 profiles, as 4 rows of 25, hard-coding the max depth
layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25))
plot(sp5[1:25,], max.depth=300)
plot(sp5[26:50,], max.depth=300)
plot(sp5[51:75,], max.depth=300)
plot(sp5[76:100,], max.depth=300)

4x1 matrix of plotting areas
layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25))

http://eusoils.jrc.ec.europa.eu/projects/OSACA/

294 sp5

plot profiles, with points added to the mid-points of randomly selected horizons
sub <- sp5[1:25,]
plot(sub, max.depth=300) ; mtext('Set 1', 2, line=-0.5, font=2)
y.p <- profileApply(sub, function(x) {

s <- sample(1:nrow(x), 1)
h <- horizons(x); with(h[s,], (top+bottom)/2)
})

points(1:25, y.p, bg='white', pch=21)

plot profiles, with arrows pointing to profile bottoms
sub <- sp5[26:50,]
plot(sub, max.depth=300); mtext('Set 2', 2, line=-0.5, font=2)
y.a <- profileApply(sub, function(x) max(x))
arrows(1:25, y.a-50, 1:25, y.a, len=0.1, col='white')

plot profiles, with points connected by lines: ideally reflecting some kind of measured data
sub <- sp5[51:75,]
plot(sub, max.depth=300); mtext('Set 3', 2, line=-0.5, font=2)
y.p <- 20*(sin(1:25) + 2*cos(1:25) + 5)
points(1:25, y.p, bg='white', pch=21)
lines(1:25, y.p, lty=2)

plot profiles, with polygons connecting horizons with max clay content (+/-) 10 cm
sub <- sp5[76:100,]
y.clay.max <- profileApply(sub, function(x) {

i <- which.max(x$clay)
h <- horizons(x)
with(h[i,], (top+bottom)/2)
})

plot(sub, max.depth=300); mtext('Set 4', 2, line=-0.5, font=2)
polygon(c(1:25, 25:1), c(y.clay.max-10, rev(y.clay.max+10)),
border='black', col=rgb(0,0,0.8, alpha=0.25))
points(1:25, y.clay.max, pch=21, bg='white')

close plot
dev.off()

plotting parameters
yo <- 100 # y-offset
sf <- 0.65 # scaling factor
plot profile sketches
par(mar=c(0,0,0,0))
plot(sp5[1:25,], max.depth=300, y.offset=yo, scaling.factor=sf)
optionally add describe plotting area above profiles with lines
abline(h=c(0,90,100, (300*sf)+yo), lty=2)
simulate an environmental variable associated with profiles (elevation, etc.)
r <- vector(mode='numeric', length=25)
r[1] <- -50 ; for(i in 2:25) {r[i] <- r[i-1] + rnorm(mean=-1, sd=25, n=1)}
rescale
r <- rescale(r, to=c(80, 0))
illustrate gradient with points/lines/arrows

sp6 295

lines(1:25, r)
points(1:25, r, pch=16)
arrows(1:25, r, 1:25, 95, len=0.1)
add scale for simulated gradient
axis(2, at=pretty(0:80), labels=rev(pretty(0:80)), line=-1, cex.axis=0.75, las=2)
depict a secondary environmental gradient with polygons (water table depth, etc.)
polygon(c(1:25, 25:1), c((100-r)+150, rep((300*sf)+yo, times=25)),
border='black', col=rgb(0,0,0.8, alpha=0.25))

End(Not run)

sp6 Soil Physical and Chemical Data from Manganiferous Soils

Description

Soil Physical and Chemical Data from Manganiferous Soils (Bourgault and Rabenhorst, 2011)

Format

A data frame with 30 observations on the following 13 variables.

id pedon name

name horizon designation

top horizon top boundary in cm

bottom horizon bottom boundary in cm

color moist soil color in Munsell notation

texture USDA soil texture class

sand sand content by weight percentage

silt silt content by weight percentage

clay clay content by weight percentage

Fe DCB-extracted Fe in g/kg (see citation)

Mn DCB-extracted Mn in g/kg (see citation)

C total organic carbon as g/kg

pH measured in 1:1 H20 slurry

Db bulk density (g/cc), clod method

Details

Selected soil physical and chemical data from (Bourgault and Rabenhorst, 2011).

296 SPC.with.overlap

Source

http://www.sciencedirect.com/science/article/pii/S0016706111001972

References

Rebecca R. Bourgault, Martin C. Rabenhorst. 2011. Genesis and characterization of manganiferous
soils in the Eastern Piedmont, USA. Geoderma. 165:84-94.

Examples

setup environment
library(aqp)
data(sp6)

init SPC
depths(sp6) <- id ~ top + bottom
convert non-standard Munsell colors
sp6$soil_color <- getClosestMunsellChip(sp6$color)

profile sketches
par(mar=c(0,0,3,0))
plot(sp6, color='soil_color')
plot(sp6, color='Mn')
plot(sp6, color='Fe')
plot(sp6, color='pH')
plot(sp6, color='texture')

SPC.with.overlap Example SoilProfileCollection with Overlapping Horizons

Description

A SoilProfileCollection with overlapping horizons, derived from a Dynamic Soil Properties
project.

Usage

data(SPC.with.overlap)

Format

A SoilProfileCollection

spc2mpspline,SoilProfileCollection-method 297

spc2mpspline,SoilProfileCollection-method

SoilProfileCollection wrapper for mpspline2::mpspline()

Description

Generate mass-preserving splines for any numeric attribute in a SoilProfileCollection using mpspline2::mpspline().
mpspline2 implements the method described in Bishop et al. (1999).

Usage

S4 method for signature 'SoilProfileCollection'
spc2mpspline(
object,
var_name = NULL,
method = c("est_1cm", "est_icm", "est_dcm"),
pattern = "R|Cr|Cd|m",
hzdesgn = NULL,
...

)

Arguments

object A SoilProfileCollection

var_name Column name(s) in @horizons slot of object containing numeric values to
spline

method Options include "est_1cm" (default; 1cm estimates), "est_icm" (estimates over
original layer boundaries), "est_dcm" (estimates over constant interval, specified
with d argument to mpspline3::mpspline()). Default value for d is c(0, 5,
15, 30, 60, 100, 200).

pattern Regex pattern to match for bottom of profile (passed to minDepthOf()) default:
"R|Cr|Cd|m"; only used if hzdesgn is specified

hzdesgn Column name in @horizons slot of object containing horizon designations
default: NULL

... Additional arguments to mpspline2::mpspline()

Details

This function now relies on the missing data checks provided by the mpspline2 package. See
attr(..., 'removed') to see whole profiles that were removed from the set. Horizons containing
NA in the property of interest are dropped with a message.

Data completeness is assessed and the input SoilProfileCollection is filtered and truncated to create
a container for the results from mpspline2::mpspline().

298 spc2mpspline,SoilProfileCollection-method

Value

A SoilProfileCollection with 1cm slices. Spline variables are in columns prefixed with "spline_"
and RMSE/RMSE_IQR are in columns prefixed with "rmse_". If any profiles were removed from
the collection, their profile IDs are stored in attr(result, 'removed').

Author(s)

Andrew G. Brown

References

Bishop, T.F.A., McBratney, A.B., Laslett, G.M. (1999) Modelling soil attribute depth functions
with equal-area quadratic smoothing splines. Geoderma 91(1–2), pp. 27-45. doi:10.1016/S0016-
7061(99)000038

O’Brien, Lauren (2025). mpspline2: Mass-Preserving Spline Functions for Soil Data. R package
version 0.1.9. https://cran.r-project.org/package=mpspline2

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom
hzdesgnname(sp1) <- "name"

run on a single variable
res <- spc2mpspline(sp1, "prop")

plot single-variable result
plotSPC(res[1:5,], color = "prop_spline", divide.hz = FALSE)

add a second continuous numeric variable for demonstration
sp1$value2 <- runif(nrow(horizons(sp1)))

run on multiple variables
res2 <- spc2mpspline(sp1, c("prop", "value2"))

plot multi-variable result
plotSPC(res2[1:5,], color = "value2_spline", divide.hz = FALSE)

run on multiple variables with custom depth intervals
res3 <- spc2mpspline(sp1,

c("prop", "value2"),
method = "est_dcm",
d = c(0, 10, 20, 50, 100))

plotSPC(res3[1:5,], color = "value2_spline", divide.hz = FALSE)

https://doi.org/10.1016/S0016-7061%2899%2900003-8
https://doi.org/10.1016/S0016-7061%2899%2900003-8
https://cran.r-project.org/package=mpspline2

spc_in_sync 299

spc_in_sync Quickly assess relative state of site and horizon slots

Description

Determine "state" of SoilProfileCollection before or after major modifications of site or horizon slot
contents.

Two logical checks are performed on the site and horizon tables, and a third element valid returns
TRUE when both checks are TRUE.

Check 1: Same number of sites in site as number of sites in horizons. No intermingling of IDs, no
orphan horizons, no sites without horizons (for now)

Check 2: Site IDs match coalesced profile ID from horizons. Ensures the same relative ordering,
but horizons still may be out of order within profiles

Usage

spc_in_sync(object)

Arguments

object A SoilProfileCollection

Value

data.frame

Author(s)

Andrew G. Brown

Examples

data(sp5)

spc_in_sync(sp5)

300 spec2Munsell

spec2Munsell Convert reflectance spectra to closest Munsell chip

Description

Convert reflectance spectra to closest Munsell chip

Usage

spec2Munsell(
x,
res = 10,
convert = TRUE,
SO = c("CIE1931", "CIE1964"),
illuminant = c("D65", "F2"),
...

)

Arguments

x reflectance spectra, must range from 380nm to 730nm with resolution specified
in res

res spectra resolution in nm, typically 5nm or 10nm

convert logical, convert sRGB coordinates to closest Munsell chip (see ?munsell)

SO CIE standard observer: these are the color matching functions defined by CIE
and used to represent "average" human color perception. CIE1931 is the 2 de-
gree standard observer more useful for describing color perception over very
small areas or at distance. CIE1964 is the 10 degree standard observer, used for
most industrial color matching applications.

illuminant CIE standard illuminants:

• D65 represents average daylight
• F2 represents typical fluorescent lighting

... further arguments to col2Munsell()

Details

See the expanded tutorial for additional examples.

Value

output from col2Munsell()

https://ncss-tech.github.io/AQP/aqp/mix-colors.html

spectral.reference 301

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and
Technology (pp. 32-96). North-Holland.

CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-
1:2007(E)

CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls

spectral.reference Standard Illuminants and Observers

Description

D65 and F2 standard illuminant spectral power distributions, CIE1931 Standard Observer (2 de-
gree), and CIE1964 Supplemental Standard Observer (10 degree)

Usage

data(spectral.reference)

Format

An object of class data.frame with 71 rows and 9 columns.

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and
Technology (pp. 32-96). North-Holland.

CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-
1:2007(E)

CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls

Examples

data("spectral.reference")

matplot(
x = spectral.reference[, 1],
y = spectral.reference[, c('xbar_2', 'ybar_2', 'zbar_2')],
ylim = c(0, 2),
type = 'l',
lwd = 2,
lty = 1,
las = 1,
xlab = 'Wavelength (nm)',
ylab = 'Weight | Intensity',
main = "CIE1931 (2\u00B0) and CIE1964 (10\u00B0) Standard Observers
D65 and F2 Illuminant Power Spectrum (rescaled / offset for clarity)",

302 split,SoilProfileCollection-method

cex.main = 0.9
)

matlines(
x = spectral.reference[, 1],
y = spectral.reference[, c('xbar_10', 'ybar_10', 'zbar_10')],
type = 'l',
lwd = 2,
lty = 2,
las = 1,
xlab = 'Wavelength (nm)',
ylab = 'Weight | Intensity',
main = 'CIE1931 Standard Observer Weights\nD65 Standard Illuminant'

)

lines(
x = spectral.reference$w,
y = (spectral.reference$D65 / 100) + 0.33,
lty = 1,
col = 'royalblue'

)

lines(
x = spectral.reference$w,
y = (spectral.reference$F2 / 25) + 0.4,
lty = 1,
col = 'violet'

)

legend(
'topright',
legend = c('X_2', 'Y_2', 'Z_2', 'X_10', 'Y_10', 'Z_10', 'D65', 'F2'),
col = c(1, 2, 3, 1, 2, 3, 'royalblue', 'violet'),
lwd = c(2, 2, 2, 2, 2, 2, 1, 1),
lty = c(1, 1, 1, 2, 2, 2, 1, 1),
bty = 'n',
cex = 0.85

)

split,SoilProfileCollection-method

Split a SoilProfileCollection object into a list of SoilProfileCollection
objects.

Description

This function splits a SoilProfileCollection into a list of SoilProfileCollection objects
using a site-level attribute to define groups or profile ID (idname(x)).

split,SoilProfileCollection-method 303

Usage

S4 method for signature 'SoilProfileCollection'
split(x, f, drop = TRUE, ...)

Arguments

x SoilProfileCollection object

f character vector naming a single site-level attribute that defines groups, a ‘factor’
in the sense that as.factor(f) defines the grouping, or a list of such factors in
which case their interaction is used for the grouping.

drop logical indicating if levels that do not occur should be dropped (if f is a factor
or a list). When drop=FALSE and f contains missing values an additional group
"missing" is returned.

... additional arguments are ignored

Details

As of aqp 1.25, omission of f argument is no longer possible, as the base R generic is overloaded
by this SoilProfileCollection method. This used to result in an "identity" split, according to
idname(x), e.g. a list as long as length(x), with a single-profile SoilProfileCollection per
list element. Replicate this behavior using f = idname(x) or f = profile_id(x).

Value

A list of SoilProfileCollection or NULL for empty result.

Author(s)

D.E. Beaudette and A.G. Brown

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom

add a more interesting site-level attribute
site(sp2) <- ~ surface

using identity site-level attribute (profile ID)
p1 <- split(sp2, f = idname(sp2))
names(p1)
length(p1)

using vector equal in length to number of profiles (profile ID, again)
p2 <- split(sp2, f = profile_id(sp2))
names(p2)
length(p2)

which are both equivalent to setting `f` to NULL
p3 <- split(sp2, f = NULL)

304 splitLogicErrors

names(p3)
length(p3)

split on surface (age) site-level var
p4 <- split(sp2, f = "surface")
names(p4)
length(p4) # 5 unique "surfaces", 5 SPCs in result list

splitLogicErrors Split a SoilProfileCollection into a list based on types of horizon
logic errors

Description

Uses checkHzDepthLogic() to identify presence of depth logic errors, same depths, missing depths,
and overlaps/gaps between the horizons of each profile in a SoilProfileCollection.

Usage

splitLogicErrors(object, interact = FALSE, ...)

Arguments

object A SoilProfileCollection

interact Calculate interaction between the four logic errors for groups? Default: FALSE
always returns 4 groups, one for each logic error type.

... Additional arguments to split.default, called when interact = TRUE

Value

A named list of SoilProfileCollections (or NULL), with names: "depthLogic", "sameDepth",
"missingDepth", "overlapOrGap". If interact = TRUE then the list elements groups determined by
interaction() of the error types.

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

no errors (all four list elements return NULL)
splitLogicErrors(sp4)

NA in top depth triggers depth logic and missing depth errors
data(sp4)
sp4$top[1] <- NA
depths(sp4) <- id ~ top + bottom

splitLogicErrors(sp4)

subApply 305

interact = TRUE gets errors for profile 1 in same group
and allows you to pass extra arguments to split.default()
splitLogicErrors(sp4, interact = TRUE, sep = "_", drop = TRUE)

subApply Subset SPC based on result of performing function on each profile

Description

subApply() is a function used for subsetting SoilProfileCollections. It currently does NOT support
for "tidy" lexical features in the ... arguments passed to profileApply(). The expectation is that
the function .fun takes a single-profile SoilProfileCollection and returns a logical value of length
one. The use case would be for any logical comparisons that cannot be evaluated inline by subSPC()
because they require more than simple logical operations.

Usage

subApply(object, .fun, ...)

Arguments

object A SoilProfileCollection

.fun A function that takes a single profile, returns logical of length 1.

... Additional arguments are passed to .fun

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

subset,SoilProfileCollection-method

Subset a SoilProfileCollection with logical expressions

Description

subset() is a function used for extracting profiles from a SoilProfileCollection based on logical
criteria. It allows the user to specify an arbitrary number of logical vectors (equal in length to site or
horizon), separated by commas. The function includes some support for non-standard evaluation.

306 subsetHz,SoilProfileCollection-method

Usage

S4 method for signature 'SoilProfileCollection'
subset(x, ..., greedy = FALSE)

Arguments

x A SoilProfileCollection

... Comma-separated set of R expressions that evaluate as TRUE or FALSE. Length
for individual expressions matches number of sites OR number of horizons, in
object.

greedy Use "greedy" matching for combination of site and horizon level matches? greedy
= TRUE is the union, whereas greedy = FALSE (default) is the intersection (of site
and horizon matches).

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using
subset() inside another function, all expressions used in ... should be in terms of variables that
are in the site or horizon data frame.

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

subsetHz,SoilProfileCollection-method

Subset the horizons in a SoilProfileCollection using logical criteria

Description

subsetHz() is a function used for extracting horizons from a SoilProfileCollection based on logical
criteria.

Usage

S4 method for signature 'SoilProfileCollection'
subsetHz(x, ..., drop = TRUE)

subsetProfiles 307

Arguments

x a SoilProfileCollection
... Comma-separated set of R expressions that evaluate as TRUE or FALSE in context

of horizon data frame. Length for individual expressions matches number of
horizons, in x.

drop Default: TRUE. When drop=FALSE placeholder horizons (profile ID with all
other values NA) are created where the specified filter results in removal of all
horizons.

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using
subsetHz() inside another function, all expressions used in ... should be in terms of variables
that are in the horizon data frame.

Value

a SoilProfileCollection with a subset of horizons, possibly with some sites removed

Examples

data(sp3)

depths(sp3) <- id ~ top + bottom

show just horizons with 10YR hues
plot(subsetHz(sp3, hue == '10YR'))

subsetProfiles DEPRECATED use subset

Description

This function is used to subset SoilProfileCollection objects using either site-level or horizon-
level attributes, or both.

Usage

S4 method for signature 'SoilProfileCollection'
subsetProfiles(object, s, h, ...)

Arguments

object object
s fully-quoted search criteria for matching via site-level attributes
h fully-quoted search criteria for matching via horizon-level attributes
... not used

308 summarizeSPC

Details

The s argument supplies a fully-quoted search criteria for matching via site or horizon-level at-
tributes. The h argument supplies a fully-quoted search criteria for matching via horizon-level
attributes. All horizons associated with a single horizon-level match (i.e. out of several, only a
single horizon matches the search criteria) are returned. See examples for usage.

Value

A SoilProfileCollection class object.

Examples

more interesting sample data
data(sp2)
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

subset by integer index, note that this does not re-order the profiles
plot(sp2[1:5,])

generate an integer index via pattern-matching
idx <- grep('modesto', sp2$surface, ignore.case=TRUE)
plot(sp2[idx,])

generate in index via profileApply:
subset those profiles where: min(ph) < 5.6
idx <- which(profileApply(sp2, function(i) min(i$field_ph, na.rm=TRUE) < 5.6))
plot(sp2[idx,])

summarizeSPC Perform summaries on groups (from group_by) and create new site or
horizon level attributes

Description

summarize() is a function used for summarizing a SoilProfileCollection object. Specify the
groups using the group_by verb, and then (named) expressions to evaluate on each group. The result
is a data.frame with one row per categorical level in the grouping variable and one column for each
summary variable.

Usage

summarizeSPC(object, ...)

Arguments

object A SoilProfileCollection

... A set of (named) comma-delimited R expressions that resolve to a summary
value. e.g groupmean = mean(clay, na.rm = TRUE)

tauW 309

Value

A data.frame with one row per level in the grouping variable, and one column for each summary

Author(s)

Andrew G. Brown

tauW Compute weighted naive and tau statistics for a cross-classification
matrix

Description

tauW: Computes: (1) unweighted naive, (2) weighted naive, (3) unweighted tau, (4) weighted tau
accuracy statistics

Usage

tauW(
CM,
W = diag(sqrt(length(as.matrix(CM)))),
P = rep(1/nrow(as.matrix(CM)), nrow(as.matrix(CM)))

)

summaryTauW(result.tau)

Arguments

CM a square confusion (cross-classification) matrix (rows: allocation, columns: ref-
erence)

W weights: 1 on diagonals, [-1..1] off giving partial credit to this error
P prior probability vector, length = number of rows/columns in CM and W

result.tau tauW() result

Details

summaryTauW: prints a summary of the results from tauW

xtableTauW: formats a LaTeX table with results from tauW and saves it as a .tex file for import
into a LaTeX document.

Input matrices CM and W may be in data.frame format and will be converted

Weights matrix W: 0 = no credit; 1 = full credit; -1 = maximum penalty

If absent, default is no partial credit, i.e., unweighted.

Prior probabilities vector P: If absent, P are equal priors for each class. Special value P = 0 is
interpreted as P = column marginals.

Error checks: CM must be square; P must have correct number of classes and sum to 1 +/- 0.0001; W
& CM must be conformable

310 tauW

Value

Results are returned in a list with obvious R names

Author(s)

D.G. Rossiter

References

• Rossiter, D. G., Zeng, R., & Zhang, G.-L. (2017). Accounting for taxonomic distance in accu-
racy assessment of soil class predictions. Geoderma, 292, 118–127. doi:10.1016/j.geoderma.2017.01.012

• Ma, Z. K., & Redmond, R. L. (1995). Tau-coefficients for accuracy assessment of classi-
fication of remote-sensing data. Photogrammetric Engineering and Remote Sensing, 61(4),
435–439.

• Naesset, E. (1996). Conditional tau coefficient for assessment of producer’s accuracy of clas-
sified remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing, 51(2),
91–98. doi:10.1016/09242716(69)000074

Examples

example confusion matrix
rows: allocation (user's counts)
columns: reference (producer's counts)
crossclass <- matrix(data=c(2,1,0,5,0,0,

1,74,2,1,3,6,
0,5,8,6,1,3,
6,1,3,91,0,0,
0,4,0,0,0,4,
0,6,2,2,4,38),

nrow=6, byrow=TRUE)
row.names(crossclass) <- c("OP", "SA", "UA", "UC", "AV", "AC")
colnames(crossclass) <- row.names(crossclass)

build the weights matrix
how much credit for a mis-allocation
weights <- matrix(data=c(1.00,0.05,0.05,0.15,0.05,0.15,

0.05,1.00,0.05,0.05,0.05,0.35,
0.05,0.05,1.00,0.20,0.15,0.15,
0.15,0.05,0.25,1.00,0.10,0.25,
0.05,0.10,0.15,0.10,1.00,0.15,
0.20,0.30,0.10,0.25,0.20,1.00),

nrow=6, byrow=TRUE)

unweighted accuracy
summaryTauW(nnaive <- tauW(crossclass))

unweighted tau with equal priors, equivalent to Foody (1992) modified Kappa
tauW(crossclass)$tau

unweighted tau with user's = producer's marginals, equivalent to original kappa
(priors <- apply(crossclass, 2, sum)/sum(crossclass))

https://doi.org/10.1016/j.geoderma.2017.01.012
https://doi.org/10.1016/0924-2716%2869%2900007-4

texcl_to_ssc 311

tauW(crossclass, P=priors)$tau

weighted accuracy; tau with equal priors
summaryTauW(weighted <- tauW(crossclass, W=weights))

weighted accuracy; tau with user's = producer's marginals
summaryTauW(tauW(crossclass, W=weights, P=priors))

change in accuracy statistics weighted vs. non-weighted
(weighted$overall.weighted - weighted$overall.naive)
(weighted$user.weighted - weighted$user.naive)
(weighted$prod.weighted - weighted$prod.naive)

texcl_to_ssc Textural conversions

Description

These functions consist of several conversions between sand, silt and clay to texture class and visa
versa, textural modifiers to rock fragments, and grain size composition to the family particle size
class.

Usage

texcl_to_ssc(texcl = NULL, clay = NULL, sample = FALSE)

ssc_to_texcl(
sand = NULL,
clay = NULL,
simplify = FALSE,
as.is = FALSE,
droplevels = TRUE

)

texmod_to_fragvoltot(texmod = NULL, lieutex = NULL)

texture_to_taxpartsize(
texcl = NULL,
clay = NULL,
sand = NULL,
sandvf = NULL,
fragvoltot = NULL

)

texture_to_texmod(texture, duplicates = "combine")

fragvol_to_texmod(

312 texcl_to_ssc

object = NULL,
gravel = NULL,
cobbles = NULL,
stones = NULL,
boulders = NULL,
channers = NULL,
flagstones = NULL,
paragravel = NULL,
paracobbles = NULL,
parastones = NULL,
paraboulders = NULL,
parachanners = NULL,
paraflagstones = NULL,
as.is = TRUE,
droplevels = TRUE

)

Arguments

texcl vector of texture classes than conform to the USDA code conventions (e.g. c|C,
sil|SIL, sl|SL, cos|COS)

clay vector of clay percentages
sample logical: should ssc be random sampled from the lookup table? (default: FALSE)
sand vector of sand percentages
simplify Passed to SoilTextureLevels() to set the number of possible texture classes.

If TRUE, the ordered factor has a maximum of 12 levels, if FALSE (default) the
ordered factor has a maximum of 21 levels (including e.g. very fine/fine/coarse
variants)

as.is logical: should character vectors be converted to factors? (default: TRUE)
droplevels logical: indicating whether to drop unused levels in factors. This is useful when

the results have a large number of unused classes, which can waste space in
tables and figures.

texmod vector of textural modifiers that conform to the USDA code conventions (e.g.
gr|GR, grv|GRV)

lieutex vector of in lieu of texture terms that conform to the USDA code conventions
(e.g. gr|GR, pg|PG), only used when fragments or artifacts are > 90 percent by
volume (default: NULL))

sandvf vector of very fine sand percentages
fragvoltot vector of total rock fragment percentages
texture vector of combinations of texcl, texmod, and lieutex (e.g. CL, GR-CL, CBV-S,

GR)
duplicates character: specifying how multiple values should be handled, options are "combined"

(e.g. ’GR & GRV) or "max"(e.g. ’GRV’)
object data.frame: containing the following column names: gravel, cobbles, stones,

boulders, channers, flagstones, paragravel, paracobbles, parastones, paraboul-
ders, parachanners, paraflagstones

texcl_to_ssc 313

gravel numeric: gravel volume %
cobbles numeric: cobble volume %
stones numeric: stone volume %
boulders numeric: boulder volume %
channers numeric: channer volume %
flagstones numeric: flagstone volume %
paragravel numeric: para gravel volume %
paracobbles numeric: para cobble volume %
parastones numeric: para stone volume %
paraboulders numeric: para boulder volume %
parachanners numeric: para channer volume %
paraflagstones numeric: para flagstone volume %

Details

These functions are intended to estimate missing values or allocate particle size fractions to classes.
The ssc_to_texcl() function uses the same logic as the particle size estimator calculation in NA-
SIS to classify sand and clay into texture class. The results are stored in soiltexture and used
by texcl_to_ssc() as a lookup table to convert texture class to sand, silt and clay. The function
texcl_to_ssc() replicates the functionality described by Levi (2017). The texmod_to_fragvol()
function similarly uses the logical from the Exhibit618-11_texture_modifier.xls spreadsheet to de-
termine the textural modifier from the various combinations of rock and pararock fragments (e.g.
GR and PGR).
When sample = TRUE, the results can be used to estimate within-class, marginal distributions of
sand, silt, and clay fractions. It is recommended that at least 10 samples be drawn for reasonable
estimates.
The function texmod_to_fragvoltot returns a data.frame with multiple fragvoltot columns differ-
entiated by tailing abbreviations (e.g. _r) which refer to the following:

1. l = low
2. r = representative
3. h = high
4. nopf = no pararock fragments (i.e. total fragments - pararock fragments)

The function texture_to_texmod() parses texture (e.g. GR-CL) to extract the texmod values from
it in the scenario where it is missing from texmod column. If multiple texmod values are present
(for example in the case of stratified textures) and duplicates = "combine" they will be combined
in the output (e.g. GR & CBV). Otherwise if duplicates = "max" the texmod with the highest rock
fragment (e.g. CBV) will be returned.
Unlike the other functions, texture_to_taxpartsize() is intended to be computed on weighted
averages within the family particle size control section. Also recall from the criteria that carbonate
clay should be subtracted from clay content and added to silt content. Similarly, if the percent
of very fine sand is known it should be subtracted from the sand, and added to the silt content.
Unlike the other functions, texture_to_taxpartsize() is intended to be computed on weighted
averages within the family particle size control section. Also recall from the criteria that carbonate
clay should be subtracted from clay content and added to silt content. Similarly, if the percent of
very fine sand is known it should be subtracted from the sand, and added to the silt content.

314 texcl_to_ssc

Value

• texcl_to_ssc: A data.frame containing columns "sand","silt", "clay"

• ssc_to_texcl: A character vector containing texture class

• texmod_to_fragvoltot: A data.frame containing columns "fragvoltot_l", "fragvoltot_r",
"fragvoltot_h", "fragvoltot_l_nopf", "fragvoltot_r_nopf", "fragvoltot_h_nopf"

• texture_to_taxpartsize: a character vector containing "taxpartsize" classes

• texture_to_texmod: a character vector containing "texmod" classes

• texmod_to_fragvol: a data.frame containing "texmod" and "lieutex" classes

Author(s)

Stephen Roecker

References

Matthew R. Levi, Modified Centroid for Estimating Sand, Silt, and Clay from Soil Texture Class,
Soil Science Society of America Journal, 2017, 81(3):578-588, ISSN 1435-0661, doi:10.2136/
sssaj2016.09.0301.

See Also

SoilTextureLevels

hz_to_taxpartsize(), lookup_taxpartsize()

Examples

example of ssc_to_texcl()
tex <- expand.grid(sand = 0:100, clay = 0:100)
tex <- subset(tex, (sand + clay) < 101)
tex$texcl <- ssc_to_texcl(sand = tex$sand, clay = tex$clay)
head(tex)

example of texcl_to_ssc(texcl)
texcl <- c("cos", "s", "fs", "vfs", "lcos", "ls",

"lfs", "lvfs", "cosl", "sl", "fsl", "vfsl", "l",
"sil", "si", "scl", "cl", "sicl", "sc", "sic", "c"
)

test <- texcl_to_ssc(texcl)
head(test <- cbind(texcl, test), 10)

example of texcl_to_ssc(texcl, clay)
data(soiltexture)
st <- soiltexture$values
idx <- sample(1:length(st$texcl), 10)
st <- st[idx,]

https://doi.org/10.2136/sssaj2016.09.0301
https://doi.org/10.2136/sssaj2016.09.0301

texcl_to_ssc 315

ssc <- texcl_to_ssc(texcl = st$texcl)
head(cbind(texcl = st$texcl, clay = ssc$clay))

example of texmod_to_fragvoltol
frags <- c("gr", "grv", "grx", "pgr", "pgrv", "pgrx")
head(texmod_to_fragvoltot(frags))

example of texture_to_taxpartsize()
tex <- data.frame(texcl = c("c", "cl", "l", "ls", "s"),

clay = c(55, 33, 18, 6, 3),
sand = c(20, 33, 42, 82, 93),
fragvoltot = c(35, 15, 34, 60, 91))

tex$fpsc <- texture_to_taxpartsize(texcl = tex$texcl,
clay = tex$clay,
sand = tex$sand,
fragvoltot = tex$fragvoltot)

head(tex)

example of texture_to_taxpartsize() with carbonate clay and very fine sand
carbclay <- rnorm(5, 2, 3)
vfs <- rnorm(5, 10, 3)
st$fpsc <- texture_to_taxpartsize(texcl = tex$texcl,

clay = tex$clay - carbclay,
sand = tex$sand - vfs,
fragvoltot = tex$fragvoltot)

head(tex)

example of sample = TRUE
texcl <- rep(c("cl", "sil", "sl"), 10)
ssc1 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = FALSE))
ssc2 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = TRUE))
ssc1$sample <- FALSE
ssc2$sample <- TRUE
ssc <- rbind(ssc1, ssc2)
aggregate(clay ~ sample + texcl, data = ssc, summary)

example of texture_to_texmod()
tex <- c("SL", "GR-SL", "CBV-L", "SR- GR-FS GRX-COS")
texture_to_texmod(tex)
texture_to_texmod(tex, duplicates = "max")

example of fragvol_to_texmod()
df <- expand.grid(

gravel = seq(0, 100, 5),
cobbles = seq(0, 100, 5),
stones = seq(0, 100, 5),
boulders = seq(0, 100, 5)

316 textureTriangleSummary

)
df <- df[rowSums(df) < 100,]

data.frame input
test <- fragvol_to_texmod(df)
table(test$texmod)
table(test$lieutex)

vector inputs
fragvol_to_texmod(gravel = 10, cobbles = 10)

textureTriangleSummary

Soil Texture Low-RV-High as Defined by Quantiles

Description

This function accepts soil texture components (sand, silt, and clay percentages) and plots a soil
texture triangle with a "representative value" (point) and low-high region (polygon) defined by
quantiles (estimated with Hmisc::hdquantile). Marginal quantiles of sand, silt, and clay are used
to define the boundary of a low-high region. The default settings place the RV symbol at the texture
defined by marginal medians of sand, silt, and clay. The default low-high region is defined by the
5th and 95th marginal percentiles of sand, silt, and clay.

Usage

textureTriangleSummary(
ssc,
p = c(0.05, 0.5, 0.95),
delta = 1,
rv.col = "red",
range.border = "black",
range.col = "RoyalBlue",
range.alpha = 80,
range.lty = 1,
range.lwd = 2,
main = "Soil Textures",
legend.cex = 0.75,
legend = TRUE,
...

)

Arguments

ssc data.frame with columns: ’SAND’, ’SILT’, ’CLAY’, values are percentages
that should add to 100. No NA allowed.

textureTriangleSummary 317

p vector of percentiles (length = 3) defining ’low’, ’representative value’, and
’high’

delta grid size used to form low-high region

rv.col color used for representative value (RV) symbol

range.border color used for polygon border enclosing the low-high region

range.col color used for polygon enclosing the low-high region

range.alpha transparency of the low-high range polygon (0-255)

range.lty line style for polygon enclosing the low-high region

range.lwd line weight polygon enclosing the low-high region

main plot title

legend.cex scaling factor for legend

legend logical, enable/disable automatic legend

... further arguments passed to soiltexture::TT.points

Value

an invisible matrix with marginal percentiles of sand, silt, and clay

Author(s)

D.E. Beaudette, J. Nemecek, K. Godsey

See Also

bootstrapSoilTexture

Examples

if(
requireNamespace("Hmisc") &

requireNamespace("compositions") &
requireNamespace("soiltexture")

) {

sample data
data('sp4')

subset rows / columns
ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')]
names(ssc) <- toupper(names(ssc))

make figure, marginal percentiles are silently returned
stats <- textureTriangleSummary(

ssc, pch = 1, cex = 0.5,
range.alpha = 50,
range.lwd = 1,

318 thicknessOf

col = grey(0.5),
legend = FALSE

)

check
stats

simulate some data and try again
s <- bootstrapSoilTexture(ssc, n = 100)$samples

make the figure, ignore results
textureTriangleSummary(

s, pch = 1, cex = 0.5,
range.alpha = 50,
range.lwd = 1,
col = grey(0.5),
legend = FALSE

)
}

thicknessOf Calculate Thickness of Horizons Matching Logical Criteria

Description

This function calculates the cumulative (method="cumulative", default) or maximum difference
between (method="minmax") horizons within a profile that match a defined pattern (pattern) or,
more generally, any set of horizon-level logical expressions encoded in a function (FUN).

Usage

thicknessOf(
x,
pattern = NULL,
hzdesgn = hzdesgnname(x, required = TRUE),
method = "cumulative",
prefix = "",
thickvar = "thickness",
depthvars = horizonDepths(x),
FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]]),
na.rm = FALSE,
...

)

thicknessOf 319

Arguments

x A SoilProfileCollection

pattern character. A pattern to match in hzdesgn; used with the default FUN definition
for regular expression pattern matching on horizons.

hzdesgn character. A column containing horizon designations or other horizon-level
character label used to identify matches; used with the default FUN definition.

method character. Either "cumulative" (default) or "minmax". See details.

prefix character. Column prefix for calculated thickvar (and depthvar for method="minmax")
column results. Default: "".

thickvar character Length 1. Column name to use for calculated thickness column. De-
fault: "thickness"

depthvars character. Length 2. Column names to use for calculated minimum top depth
and maximum bottom depth in method="minmax". Default: horizonDepths(x)

FUN function. A function that returns a logical vector equal in length to the number
of horizons in x. See details.

na.rm logical. Omit NA values in summaries of thickness and in matching? Default:
FALSE

... Additional arguments passed to the matching function FUN.

Details

The two thickness methods currently available are:

• method="cumulative" (default): cumulative thickness of horizons where FUN returns true

• method="minmax": maximum bottom depth minus minimum top depth of horizons where FUN
returns true

If a custom function (FUN) is used, it should accept arbitrary additional arguments via an ellipsis
(...). It is not necessary to do anything with arguments, but the result should match the number of
horizons found in the input SoilProfileCollection x.

Value

A data.frame-like object (corresponding to the aqp_df_class() of x) with one row per profile in x.
First column is always the profile ID which is followed by "thickness". In method="minmax" the
upper and lower boundaries used to calculate "thickness" are also returned as "tmin" and "tmax"
columns, respectively.

Examples

data("jacobs2000")

cumulative thickness of horizon designations matching "Bt"
thicknessOf(jacobs2000, "Bt")

maximum bottom depth minus minimum top depth of horizon designations matching "Bt"
thicknessOf(jacobs2000, "Bt", prefix = "Bt_", method = "minmax")

320 thompson.bell.darkness

cumulative thickness of horizon designations matching "A|B"
thicknessOf(jacobs2000, "A|B", prefix = "AorB_")

maximum bottom depth minus minimum top depth of horizon designations matching "A|B"
thicknessOf(jacobs2000, "A|B", method = "minmax", prefix = "AorB_")
note that the latter includes the thickness of E horizons between the A and the B

when using a custom function (be sure to accept ... and consider the effect of NA values)

calculate cumulative thickness of horizons containing >18% clay
thicknessOf(jacobs2000, prefix = "claygt18_",

FUN = function(x, ...) !is.na(x[["clay"]]) & x[["clay"]] > 18)

thompson.bell.darkness

Thompson-Bell (1996) Index

Description

Calculate the "Profile Darkness Index" by the method of Thompson & Bell (1996) "Color index
for identifying hydric conditions for seasonally saturated mollisols in Minnesota" DOI: 10.2136/ss-
saj1996.03615995006000060051x. The Thompson-Bell Index has been shown to reflect catenary
relationships in some Mollisols of Minnesota (generally: wetter landscape positions = thicker,
darker surfaces).

Usage

thompson.bell.darkness(
p,
name = hzdesgnname(p, required = TRUE),
pattern = "^A",
value = "m_value",
chroma = "m_chroma"

)

Arguments

p A single-profile SoilProfileCollection (e.g. via profileApply())

name Column name containing horizon designations used to find A horizons (default:
first column name containing ’name’)

pattern Regular expression to match A horizons (default: "^A" which means horizon
designation starts with A)

value Column name containing horizon color values (default: "m_value")

chroma Column name containing horizon color chromas (default: "m_chroma")

traditionalColorNames 321

Value

A numeric vector reflecting horizon darkness (lower values = darker).

Author(s)

Andrew G. Brown

References

Thompson, J.A. and Bell, J.C. (1996), Color Index for Identifying Hydric Conditions for Season-
ally Saturated Mollisols in Minnesota. Soil Science Society of America Journal, 60: 1979-1988.
doi:10.2136/sssaj1996.03615995006000060051x

traditionalColorNames Traditional Soil Color Names

Description

Traditional soil color names associated with select Munsell colors.

Usage

data(traditionalColorNames)

Format

An object of class data.frame with 482 rows and 2 columns.

References

Sourced from the "colorconverter" NASIS property script.

transform,SoilProfileCollection-method

Transform a SPC with expressions based on site or horizon level at-
tributes

Description

transform() is a function used for modifying columns in SoilProfileCollections.

It allows the user to specify an arbitrary number of expressions that resolve to the (re-)calculation
of one or more site or horizon level attributes. For instance: mutate(spc, thickness = hzdepb -
hzdept). The expressions may depend on one another, and are evaluated from left to right.

322 unique,SoilProfileCollection-method

Usage

S4 method for signature 'SoilProfileCollection'
transform(`_data`, ...)

Arguments

_data A SoilProfileCollection

... Comma-separated set of R expressions e.g. thickness = hzdepb - hzdept,
hzdepm = hzdept + round(thk / 2)

Value

A SoilProfileCollection

Author(s)

Andrew G. Brown.

unique,SoilProfileCollection-method

Uniqueness within a SoilProfileCollection via MD5 Hash

Description

Unique profiles within a SoilProfileCollection using and MD5 hash of select horizon and / or
site level attributes.

Usage

S4 method for signature 'SoilProfileCollection'
unique(x, vars, SPC = TRUE)

Arguments

x a SoilProfileCollection

vars Variables to consider in uniqueness.

SPC logical return a SoilProfileCollection when TRUE, otherwise vector of pro-
file indices

Value

SoilProfileCollection when SPC = TRUE, otherwise a vector of integers

us.state.soils 323

Examples

an example soil profile
x <- data.frame(

id = 'A',
name = c('A', 'E', 'Bhs', 'Bt1', 'Bt2', 'BC', 'C'),
top = c(0, 10, 20, 30, 40, 50, 100),
bottom = c(10, 20, 30, 40, 50, 100, 125),
z = c(8, 5, 3, 7, 10, 2, 12)

)

init SPC
depths(x) <- id ~ top + bottom

horizon depth variability for simulation
horizons(x)$.sd <- 2

duplicate several times
x.dupes <- duplicate(x, times = 5)

simulate some new profiles based on example
x.sim <- perturb(x, n = 5, thickness.attr = '.sd')

graphical check
plotSPC(x.dupes, name.style = 'center-center')
plotSPC(x.sim, name.style = 'center-center')

inspect unique results
plotSPC(unique(x.dupes, vars = c('top', 'bottom')), name.style = 'center-center')

uniqueness is a function of variable selection
plotSPC(unique(x.sim, vars = c('top', 'bottom')), name.style = 'center-center')
plotSPC(unique(x.sim, vars = c('name')), name.style = 'center-center')

us.state.soils US State Soils

Description

A listing of the 50 US state soils, along with Puerto Rico and Virgin Islands.

Usage

data(us.state.soils)

324 warpHorizons

Format

state state name

abbreviated abbreviated state name

series soil series name

validSpatialData,SoilProfileCollection-method

Check for valid spatial reference of profiles

Description

Are coordinate column names defined in metadata and existing in the SoilProfileCollection?

Usage

S4 method for signature 'SoilProfileCollection'
validSpatialData(object)

Arguments

object a SoilProfileCollection

Value

logical TRUE if column names are defined and correspond to existing data

warpHorizons Inflate / Deflate Horizon Thickness

Description

This function applies a warping factor to the horizons of a single-profile SoilProfileCollection
object. Warping values >1 will inflate horizon thickness, values <1 will deflate horizon thickness.

Usage

warpHorizons(
x,
fact = NULL,
scaleTo = NULL,
soilDepthFun = estimateSoilDepth,
updateProfileID = TRUE,
suffix = "-w"

)

warpHorizons 325

Arguments

x a SoilProfileCollection object with a single soil profile

fact numeric or character; warping factor specified as a single numeric value, vec-
tor of numeric values (length = nrow(x)), or column name of a horizon level
attribute containing numeric values

scaleTo numeric, target depth resulting from rescaling all horizon thickness values, due
to rounding the actual depth may be within +/- 1 depth unit

soilDepthFun function for computing soil depth, either:

• estimateSoilDepth(): "soil depth" is defined as depth to contact, requires
that hzdesgnname() be set, see estimateSoilDepth() for details

• max(): "soil depth" is defined as the bottom depth of the soil profile
updateProfileID

logical; modify profile IDs

suffix character; suffix added to profile IDs when updateProfileID = TRUE

Value

a modified version of x, SoilProfileCollection object

Author(s)

D.E. Beaudette and S.W. Salley

Examples

create an example profile
s <- quickSPC('p1:AA|Bt1Bt1Bt1|Bt2Bt2B|Bt3|Cr|RRRRR')

warp each horizon
values > 1: inflation
values < 1: deflation (erosion / compaction)
s.w <- warpHorizons(s, fact = c(1.3, 0.7, 0.8, 1, 1, 1))

combine original + warped
x <- combine(s, s.w)

compute profile bottom depths
.bottoms <- x[, , .LAST, .BOTTOM]

change in total depth after warping
used to vertically offset the warped profile
.yoff <- c(0, .bottoms[1] - .bottoms[2])

depths for line segments connecting horizon tops
.y1 <- x[1, , .TOP]
.y2 <- x[2, , .TOP] + .yoff[2]

sketches
can't automatically add a depth axis

326 warpHorizons

par(mar = c(0.5, 0, 0, 2))
plotSPC(

x,
name.style = 'center-center',
cex.names = 0.8,
width = 0.2,
max.depth = 150,
depth.axis = FALSE,
y.offset = .yoff

)

illustrate warping with arrows
arrows(x0 = 1 + 0.25, y0 = .y1, x1 = 2 - 0.25, y1 = .y2, len = 0.1, col = 2)

manually add depth axis
axis(side = 4, line = -3.5, las = 1, at = seq(from = 0, to = 150, by = 25))

apply to multiple profiles
text-based template
.template <- c(
'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
'P3:A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
)

each horizon label is '10' depth-units (default)
s <- quickSPC(.template)

random warping factor, by horizon
s$f <- runif(n = nrow(s), min = 0.8, max = 1.2)

warp horizons by profile, result is a list of SPCs
s.w <- profileApply(s, FUN = warpHorizons, fact = 'f')

flatten list -> SoilProfileCollection
s.w <- combine(s.w)

combine with original SPC
x <- combine(s, s.w)

sketches
par(mar = c(0.5, 0, 0, 2.5))
plotSPC(

x,
name.style = 'center-center',
cex.names = 0.8,
width = 0.3,
max.depth = 165,
depth.axis = list(line = -2)

)

rescale all profiles to 100cm soil depth (depth to contact)

wilson2022 327

.template <- c(
'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
'P3:A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR',
'P4:AAAAA|CCC|RRRRRR'

)

each horizon label is '10' depth-units (default)
s <- quickSPC(.template)

warp horizons by profile, result is a list of SPCs
w <- profileApply(s, FUN = function(i) {

warpHorizons(i, scaleTo = 100, soilDepthFun = estimateSoilDepth)
})

flatten list -> SoilProfileCollection
w <- combine(w)

combine with original SPC
x <- combine(s, w)

highlight "contact"
x$color <- rep(grey(0.9), times = nrow(x))
x$color[grep('R|Cr|Cd', x$name)] <- 'royalblue'

sketches
par(mar = c(0.5, 0, 0, 2.5))
plotSPC(

x,
color = 'color',
name.style = 'center-center',
cex.names = 0.8,
width = 0.3,
max.depth = 165,
depth.axis = list(line = -2)

)

abline(h = 100, lty = 3)

wilson2022 Example Data from Wilson et al. 2022

Description

An example SoilProfileCollection, derived from Wilson et al., 2022. Select data extracted from
Appendix tables.

Usage

data(wilson2022)

328 wilson2022

Format

A SoilProfileCollection with the following elements. Total elemental analysis by lithium bo-
rate fusion.

Horizon level attributes:

• name: horizon designation

• Al2O3: total Al (wt %)

• Fe2O3: total Fe (wt %)

• K2O: total K (wt %)

• MgO: total Mg (wt %)

• Na2O: total Na (wt %)

• P2O5: total P (wt %)

• SiO2: total Si (wt %)

• CaO: total Ca(wt %)

• Alo: Oxalate Extractable Al (g/kg)

• Feo: Oxalate Extractable Fe (g/kg)

• Fed: Dithionite extractable Fe (g/kg)

• Fed_minus_Feo: Crystalline Fe (hydr)oxides (g/kg)

• CIA: Chemical Index of Alteration, see original paper (ratio, unitless)

• Fed_div_Fet: (ratio, unitless)

• Fet: Total Fe from lithium borate fusion (g/kg)

• resin_Pi: Hedley phosphorus fractions (mg/kg)

• NaHCO3_Pi: Hedley phosphorus fractions (mg/kg)

• labile_Pi: Sum of resin Pi and NaHCO3 Pi (mg/kg)

• NaCO3_Po: Hedley phosphorus fractions (mg/kg)

• NaOH_Pi: Hedley phosphorus fractions (mg/kg)

• NaOH_Po: Hedley phosphorus fractions (mg/kg)

• Ca_Pi: Hedley phosphorus fractions (mg/kg)

• organic_P: Sum of NaHCO3 and NaOH Po fractions (mg/kg)

• total_P: Total P from lithium borate fusion (mg/kg)

• occluded_P: Difference between total P and sum of Hedley P fractions (mg/kg)

• top: horizon top depth (cm)

• bottom: horizon bottom depth (cm)

• pedonID: pedon ID (serial number)

Site level attributes:

• pm: parent material group

• biome: biome

xtableTauW 329

References

Stewart G. Wilson, Randy A. Dahlgren, Andrew J. Margenot, Craig Rasmussen, Anthony T. O’Geen.
2022. Expanding the Paradigm: The influence of climate and lithology on soil phosphorus, Geo-
derma: 421. doi:10.1016/j.geoderma.2022.115809

Examples

data(wilson2022)

groupedProfilePlot(wilson2022, groups = 'pm',
group.name.offset = -15, label = 'biome',
name.style = 'center-center', color = 'CIA',
cex.names = 0.66, cex.id = 0.66, width = 0.3)

groupedProfilePlot(wilson2022, groups = 'biome',
group.name.offset = -15, label = 'pm',
name.style = 'center-center', color = 'Fet',
cex.names = 0.66, cex.id = 0.66, width = 0.3)

xtableTauW Format a LaTeX table with results

Description

Format a LaTeX table with results

Usage

xtableTauW(result.tau, file.name = "tau_results_table.tex")

Arguments

result.tau results returned by tauW

file.name name of file to write output TeX file; Default: file.name="tau_results_table.tex"

[,SoilProfileCollection-method

Matrix/data.frame-like access to profiles and horizons in a SoilPro-
fileCollection

https://doi.org/10.1016/j.geoderma.2022.115809

330 [[

Description

You can access the contents of a SoilProfileCollection by profile and horizon "index", i and j,
respectively: spc[i, j, ...]. Subset operations are propagated to other slots (such as diagnostics
or spatial) when they result in removal of sites from a collection.

• i refers to the profile position within the collection. By default the order is based on the
C SORT order of the variable that you specified as your unique profile ID at time of object
construction. Note that if your ID variable was numeric, then it has been sorted as a character.

• j refers to the horizon or "slice" index. This index is most useful when either a) working with
slice’d SoilProfileCollection or b) working with single-profile collections. j returns the layer
in the specified index positions for all profiles in a collection.

• ... is an area to specify an expression that is evaluated in the subset. Currently supported

– .LAST (last horizon in each profile): return the last horizon from each profile. This uses
i but ignores the regular j index.

– .FIRST (first horizon in each profile): return the last horizon from each profile. This uses
i but ignores the regular j index.

– .HZID (horizon index): return the horizon indices corresponding to i+j+... ("k") con-
straints

– .NHZ (number of horizons): return the number of horizons in the profiles resulting from
i+j+... ("k") constraints

Usage

S4 method for signature 'SoilProfileCollection'
x[i, j, ..., drop = TRUE]

Arguments

x a SoilProfileCollection

i a numeric or logical value denoting profile indices to select in a subset

j a numeric or logical value denoting horizon indices to select in a subset

... non-standard expressions to evaluate in a subset

drop Default: TRUE. When drop=FALSE placeholder horizons (profile ID with all
other values NA) are created where the specified j index results in removal of
all horizons.

[[Get column of horizon or site data in a SoilProfileCollection

Description

Get the data from a column accessed by name. Column names other than profile ID are not shared
between site and horizons. Bonus: [[gives access to all site and horizon level variables in tab
complete for RStudio using the magrittr pipe operator!

[[331

Usage

S4 method for signature 'SoilProfileCollection'
x[[i, j]]

Arguments

x a SoilProfileCollection

i an expression resolving to a single column name in site or horizon table

j (not used)

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

get with [[
sp2[['surface']]

get using "unknown" expression:
"2nd + 3rd horizon column names"
for(i in horizonNames(sp2)[2:3])
print(sp2[[i]])

data(sp5)

some column names to work with
rgb.columns <- c("R25","G25","B25")

res <- lapply(rgb.columns, function(x) {

[[allows you to access column names in a loop
round(sp5[[x]] * 255)

})

rename scaled results
names(res) <- paste0(rgb.columns,"_scl")

add horizon ID to results
result <- data.frame(hzID = hzID(sp5), do.call('cbind', res))
head(result)

join result back into horizons
horizons(sp5) <- result

332 $

[[<- Add or change column of horizon or site data in a SoilProfileCollec-
tion

Description

Add or change the data from a column accessed by name. Column names other than profile ID are
not shared between site and horizons. The benefit of using double bracket setter over $ is that name
can be calculated, whereas with $, it must be known a priori and hard coded.

When using the double bracket setter the length of input and output matching either the number of
sites or number of horizons is used to determine which slot new columns are assigned to.

Usage

S4 replacement method for signature 'SoilProfileCollection'
x[[i]] <- value

Arguments

x a SoilProfileCollection

i an expression resolving to a single column name in site or horizon table-

value New value to replace – unit length or equal in length to number of sites or hori-
zons in the collection.

$ Get data from column of horizon or site data in a SoilProfileCollection

Description

Get the data from a column accessed by name x$name. Column names other than profile ID are not
shared between site and horizons.

Usage

S4 method for signature 'SoilProfileCollection'
x$name

Arguments

x a SoilProfileCollection

name a single column name in site or horizon table

$<- 333

Examples

data(sp1)

depths(sp1) <- id ~ top + bottom

get data from a column by name (prop)
sp1$prop

$<- Set data in column of horizon or site data in a SoilProfileCollection

Description

Set the data in a column accessed by name spc$name. Column names other than profile ID are not
shared between site and horizons.

When using $<-, the length of input and output matching either the number of sites or number
of horizons is used to determine which slot new columns are assigned to. Use site(x)$name <-
value or horizons(x)$name <- value to be explicit about which slot is being accessed.

Usage

S4 replacement method for signature 'SoilProfileCollection'
x$name <- value

Arguments

x a SoilProfileCollection

name a single column name in site or horizon table

value Replacement values: unit length or equal to number of horizons or sites.

Index

∗ array
tauW, 309

∗ datasets
ca630, 34
equivalent_munsell, 74
jacobs2000, 165
munsell, 178
munsell.spectra, 179
munsellHuePosition, 184
osd, 190
reactionclass, 235
ROSETTA.centroids, 243
rowley2019, 245
sierraTransect, 253
soil_minerals, 281
soiltexture, 279
sp1, 283
sp2, 285
sp3, 287
sp4, 290
sp5, 293
sp6, 295
SPC.with.overlap, 296
spectral.reference, 301
traditionalColorNames, 321
us.state.soils, 323
wilson2022, 327

∗ hplots
aggregateColorPlot, 17
colorContrastPlot, 49
contrastChart, 55
groupedProfilePlot, 118
missingDataGrid, 173
plotMultipleSPC, 204
plotProfileDendrogram, 207
plotSPC, 209
soilPalette, 274
textureTriangleSummary, 316

∗ hplot

panel.depth_function, 191
plot_distance_graph, 217

∗ manip
argillic.clay.increase.depth, 26
colorContrast, 47
contrastChart, 55
contrastClass, 56
crit.clay.argillic, 59
duplicate, 69
estimatePSCS, 75
estimateSoilDepth, 79
evalGenHZ, 82
evalMissingData, 83
explainPlotSPC, 85
generalize.hz, 96
get.increase.matrix, 100
get.ml.hz, 102
getSoilDepthClass, 108
guessGenHzLevels, 122
huePosition, 136
hzDistinctnessCodeToOffset, 144
hzTopographyCodeToLineType, 149
hzTopographyCodeToOffset, 150
hzTransitionProbabilities, 152
NCSP, 188
random_profile, 232
slab, 259
slice-methods, 268
texcl_to_ssc, 311

∗ methods
NCSP, 188
slab, 259
slice-methods, 268

∗ package
aqp-package, 7

.colorSig2PerceptualDistMat, 7

.detectColorSpec, 8

.lpp (random_profile), 232
[,SoilProfileCollection-method, 329

334

INDEX 335

[[, 330
[[,SoilProfileCollection,ANY,ANY-method

([[), 330
[[,SoilProfileCollection,ANY-method

([[), 330
[[,SoilProfileCollection-method ([[),

330
[[<-, 332
[[<-,SoilProfileCollection,ANY,ANY-method

([[<-), 332
[[<-,SoilProfileCollection-method

([[<-), 332
$, 332
$,SoilProfileCollection-method ($), 332
$<-, 333
$<-,SoilProfileCollection-method ($<-),

333

accumulateDepths, 8
accumulateDepths(), 68
addBracket, 10
addBracket(), 14, 214
addDiagnosticBracket, 11, 13
addDiagnosticBracket(), 213
addVolumeFraction, 14
addVolumeFraction(), 213
aggregateColor, 15
aggregateColor(), 256
aggregateColorPlot, 17
aggregateColorPlot(), 16
aggregateSoilDepth, 18
alignTransect, 20
allocate, 21
aqp (aqp-package), 7
aqp-package, 7
aqp.env (aqp-package), 7
aqp_df_class

(aqp_df_class,SoilProfileCollection-method),
25

aqp_df_class,SoilProfileCollection-method,
25

aqp_df_class<-
(aqp_df_class,SoilProfileCollection-method),
25

aqp_df_class<-,SoilProfileCollection-method
(aqp_df_class,SoilProfileCollection-method),
25

argillic.clay.increase.depth, 26
as, 27

as,SoilProfileCollection-method (as), 27
as.data.frame,SoilProfileCollection-method

(as), 27

barron.torrent.redness.LAB, 28, 134
bootstrapSoilTexture, 29, 317
brierScore, 31
buntley.westin.index, 33, 134

c (c,SoilProfileCollection-method), 33
c,SoilProfileCollection-method, 33
ca630, 34
checkHzDepthLogic, 37, 39, 141
checkHzDepthLogic(), 92, 154
checkSPC, 39, 236
cluster::daisy(), 53, 82, 190
cluster::pam(), 15
cluster::silhouette(), 82
col2Munsell, 40
col2Munsell(), 203, 300
collapseHz, 42
colorChart, 45
colorContrast, 47, 57, 72, 137
colorContrast(), 50
colorContrastPlot, 48, 49, 72
colorQuantiles, 51
colorRamp(), 212
colorVariation, 52
combine

(c,SoilProfileCollection-method),
33

combine(), 248
combine,list-method

(c,SoilProfileCollection-method),
33

combine,SoilProfileCollection-method
(c,SoilProfileCollection-method),
33

compareSites, 53
compareSites(), 190
compositeSPC, 54
compositeSPC,SoilProfileCollection-method

(compositeSPC), 54
confusionIndex, 54
confusionIndex(), 187
contrastChart, 55
contrastClass, 56
coordinates (initSpatial<-), 163

336 INDEX

coordinates,SoilProfileCollection-method
(initSpatial<-), 163

coordinates<- (initSpatial<-), 163
coordinates<-,SoilProfileCollection,ANY-method

(initSpatial<-), 163
coordinates<-,SoilProfileCollection,character-method

(initSpatial<-), 163
correctAWC, 58
crit.clay.argillic, 59
crit.clay.argillic(), 101

denormalize, 60
depth_units

(depth_units,SoilProfileCollection-method),
66

depth_units,SoilProfileCollection-method,
66

depth_units<-
(depth_units,SoilProfileCollection-method),
66

depth_units<-,SoilProfileCollection-method
(depth_units,SoilProfileCollection-method),
66

depthOf, 61
depths, 63
depths,SoilProfileCollection-method

(depths), 63
depths<- (depths), 63
depths<-,data.frame-method (depths), 63
depths<-,SoilProfileCollection-method

(depths), 63
depthWeights, 65
depthWeights,SoilProfileCollection-method

(depthWeights), 65
diagnostic_hz

(diagnostic_hz,SoilProfileCollection-method),
66

diagnostic_hz,SoilProfileCollection-method,
66

diagnostic_hz<-
(diagnostic_hz,SoilProfileCollection-method),
66

diagnostic_hz<-,SoilProfileCollection-method
(diagnostic_hz,SoilProfileCollection-method),
66

dice
(dice,SoilProfileCollection-method),
67

dice(), 159, 189, 190, 260, 262

dice,SoilProfileCollection-method, 67
dissolve_hz (hz_dissolve), 153
duplicate, 69

electroStatics_1D, 70
electroStatics_1D(), 90, 212, 250
equivalent_munsell, 72, 74
equivalentMunsellChips, 72, 74
estimateAWC, 75
estimatePSCS, 75
estimateSoilColor, 78
estimateSoilDepth, 79, 109
estimateSoilDepth(), 19, 108, 325
evalGenHZ, 82
evalMissingData, 83
explainPlotSPC, 85
explainPlotSPC(), 214

fillHzGaps, 87, 141
fillHzGaps(), 68, 92
findOverlap, 89
fixOverlap, 90
fixOverlap(), 70, 71, 202, 212, 214, 249, 250
flagOverlappingHz, 92
fragmentClasses, 93
fragmentClasses(), 94, 95
fragmentSieve, 94
fragmentSieve(), 93
fragvol_to_texmod (texcl_to_ssc), 311

generalize.hz, 96, 122
generalize.hz(), 16, 153
generalizeHz (generalize.hz), 96
generalizeHz,character-method

(generalize.hz), 96
generalizeHz,SoilProfileCollection-method

(generalize.hz), 96
genhzTableToAdjMat, 99
genhzTableToAdjMat(), 152
genSlabLabels, 99
get.increase.depths

(get.increase.matrix), 100
get.increase.matrix, 59, 100
get.ml.hz, 102
get.ml.hz(), 83
get.slice (slice-methods), 268
getArgillicBounds, 59, 103
getArgillicBounds(), 77, 101
getCambicBounds, 106

INDEX 337

getClosestMunsellChip, 107
getLastHorizonID, 108, 239
getMineralSoilSurfaceDepth

(getSurfaceHorizonDepth), 110
getPlowLayerDepth

(getSurfaceHorizonDepth), 110
getSoilDepthClass, 80, 108
getSpatial (initSpatial<-), 163
getSpatial,SoilProfileCollection-method

(initSpatial<-), 163
getSurfaceHorizonDepth, 110
getSurfaceHorizonDepth(), 77
GHL, 112
GHL,SoilProfileCollection-method (GHL),

112
GHL<- (GHL), 112
GHL<-,SoilProfileCollection-method

(GHL), 112
glom, 117
glom

(glom,SoilProfileCollection-method),
113

glom(), 159
glom,SoilProfileCollection-method, 113
glomApply, 114, 116, 117
glomApply,SoilProfileCollection-method

(glomApply), 116
grepSPC, 118
grepSPC,SoilProfileCollection-method

(grepSPC), 118
groupedProfilePlot, 118
groupSPC, 121
guessGenHzLevels, 122
guessHzAttrName, 123
guessHzAttrName(), 148
guessHzDesgnName (guessHzAttrName), 123
guessHzTexClName (guessHzAttrName), 123

harden.melanization, 125
harden.rubification, 127
harmonize

(harmonize,SoilProfileCollection-method),
129

harmonize,SoilProfileCollection-method,
129

hasDarkColors, 131
Hmisc::hdquantile(), 260
horizonColorIndices, 133
horizonDepths (horizonDepths<-), 134

horizonDepths,SoilProfileCollection-method
(horizonDepths<-), 134

horizonDepths<-, 134
horizonDepths<-,SoilProfileCollection-method

(horizonDepths<-), 134
horizonNames (horizonNames<-), 135
horizonNames,SoilProfileCollection-method

(horizonNames<-), 135
horizonNames<-, 135
horizonNames<-,SoilProfileCollection-method

(horizonNames<-), 135
horizons

(horizons,SoilProfileCollection-method),
135

horizons,SoilProfileCollection-method,
135

horizons<-
(horizons,SoilProfileCollection-method),
135

horizons<-,SoilProfileCollection-method
(horizons,SoilProfileCollection-method),
135

huePosition, 48, 136
huePositionCircle, 48, 137, 138
hurst.redness, 134, 139
hz_dissolve, 153
hz_dissolve(), 156, 157, 159
hz_intersect, 155
hz_intersect(), 154, 157, 159
hz_lag, 156
hz_lag(), 154, 156, 159
hz_segment, 158
hz_segment(), 154, 156, 157
hz_to_taxpartsize, 160
hz_to_taxpartsize(), 169, 314
hzAbove, 140
hzBelow (hzAbove), 140
HzDepthLogicSubset, 141, 189
hzDepthTests, 142
hzDesgn

(hzDesgn,SoilProfileCollection-method),
143

hzDesgn(), 144
hzDesgn,SoilProfileCollection-method,

143
hzdesgnname, 143
hzdesgnname(), 97
hzdesgnname,SoilProfileCollection-method

338 INDEX

(hzdesgnname), 143
hzdesgnname<- (hzdesgnname), 143
hzdesgnname<-,SoilProfileCollection-method

(hzdesgnname), 143
hzDistinctnessCodeToOffset, 144
hzDistinctnessCodeToOffset(), 198, 212,

214, 234
hzID

(hzID<-,SoilProfileCollection-method),
146

hzID,SoilProfileCollection-method
(hzID<-,SoilProfileCollection-method),
146

hzID<-,SoilProfileCollection-method,
146

hzID<-
(hzID<-,SoilProfileCollection-method),
146

hzidname (hzidname<-), 146
hzidname,SoilProfileCollection-method

(hzidname<-), 146
hzidname<-, 146
hzidname<-,SoilProfileCollection-method

(hzidname<-), 146
hzMetadata

(hzMetadata,SoilProfileCollection-method),
147

hzMetadata,SoilProfileCollection-method,
147

hzmetaname, 147
hzmetaname,SoilProfileCollection-method

(hzmetaname), 147
hzmetaname<- (hzmetaname), 147
hzmetaname<-,SoilProfileCollection-method

(hzmetaname), 147
hzOffset (hzAbove), 140
hztexclname, 148
hztexclname,SoilProfileCollection-method

(hztexclname), 148
hztexclname<- (hztexclname), 148
hztexclname<-,SoilProfileCollection-method

(hztexclname), 148
hzTopographyCodeToLineType, 149
hzTopographyCodeToOffset, 150, 150
hzTopographyCodeToOffset(), 212
hzTransitionProbabilities, 152

idname
(idname,SoilProfileCollection-method),

162
idname,SoilProfileCollection-method,

162
initSpatial<-, 163
initSpatial<-,SoilProfileCollection,ANY,ANY-method

(initSpatial<-), 163
initSpatial<-,SoilProfileCollection,ANY,character-method

(initSpatial<-), 163
invertLabelColor, 164
isEmpty

(isEmpty,SoilProfileCollection-method),
165

isEmpty,SoilProfileCollection-method,
165

jacobs2000, 165

L1_profiles, 167
length

(length,SoilProfileCollection-method),
168

length,SoilProfileCollection-method,
168

lookup_taxpartsize, 169
lookup_taxpartsize(), 161, 314
lunique, 170

max (max,SoilProfileCollection-method),
171

max,SoilProfileCollection-method, 171
maxDepthOf (depthOf), 61
memCompress(), 227
metadata

(metadata,SoilProfileCollection-method),
171

metadata,SoilProfileCollection-method,
171

metadata<-
(metadata,SoilProfileCollection-method),
171

metadata<-,SoilProfileCollection-method
(metadata,SoilProfileCollection-method),
171

min (min,SoilProfileCollection-method),
172

min,SoilProfileCollection-method, 172
minDepthOf (depthOf), 61
missingDataGrid, 173
mixMunsell, 174

INDEX 339

mixMunsell(), 15, 202, 203
mollic.thickness.requirement, 177
mostLikelyHzSequence

(hzTransitionProbabilities),
152

mostLikelyHzSequence(), 152
mu_confusion_matrix, 186
munsell, 178
munsell.spectra, 176, 179
munsell.spectra.wide, 175
munsell2rgb, 180, 183
munsell2rgb(), 195, 213
munsell2spc

(munsell2spc,SoilProfileCollection-method),
182

munsell2spc,SoilProfileCollection-method,
182

munsellHuePosition, 184
mutate

(transform,SoilProfileCollection-method),
321

mutate,SoilProfileCollection-method
(transform,SoilProfileCollection-method),
321

mutate_profile, 184
mutate_profile,SoilProfileCollection-method

(mutate_profile), 184
mutate_profile_raw (mutate_profile), 184

names
(names,SoilProfileCollection-method),
187

names,SoilProfileCollection-method,
187

NCSP, 188
NCSP(), 53
nrow

(nrow,SoilProfileCollection-method),
190

nrow,SoilProfileCollection-method, 190

options(), 209
osd, 190
overlapMetrics (findOverlap), 89

panel.depth_function, 191
parseMunsell, 183, 195
pbindlist, 196
permute_profile (perturb), 197

perturb, 197, 256
perturb(), 255
ph_to_rxnclass, 201
plot (plotSPC), 209
plot,SoilProfileCollection,ANY-method

(plotSPC), 209
plot,SoilProfileCollection,ANY-method,plot.SoilProfileCollection

(plotSPC), 209
plot,SoilProfileCollection-method

(plotSPC), 209
plot_distance_graph, 217
plotColorMixture, 202
plotColorQuantiles, 203
plotColorQuantiles(), 51
plotMultipleSPC, 204, 225
plotProfileDendrogram, 207
plotProfileDendrogram(), 274
plotSPC, 11, 85, 86, 119, 145, 150, 151, 209
plotSPC(), 14, 15
prepanel.depth_function

(panel.depth_function), 191
pretty(), 213, 214
previewColors, 219
prj (prj,SoilProfileCollection-method),

220
prj(), 163
prj,SoilProfileCollection-method, 220
prj<-

(prj,SoilProfileCollection-method),
220

prj<-,SoilProfileCollection-method
(prj,SoilProfileCollection-method),
220

profile_id (profile_id<-), 228
profile_id,SoilProfileCollection-method

(profile_id<-), 228
profile_id<-, 228
profile_id<-,SoilProfileCollection-method

(profile_id<-), 228
profileApply, 80, 221
profileApply(), 79
profileApply,SoilProfileCollection-method

(profileApply), 221
profileGroupLabels, 205, 224
profileGroupLabels(), 214
profileInformationIndex, 226
proj4string

(prj,SoilProfileCollection-method),

340 INDEX

220
proj4string,SoilProfileCollection-method

(prj,SoilProfileCollection-method),
220

proj4string<-
(prj,SoilProfileCollection-method),
220

proj4string<-,SoilProfileCollection-method
(prj,SoilProfileCollection-method),
220

quickSPC, 229

random_profile, 232, 256
random_profile(), 198, 248
reactionclass, 235
ReactionClassLevels (ph_to_rxnclass),

201
rebuildSPC, 39, 236
reduceSPC, 237
reorderHorizons, 238
reorderHorizons,SoilProfileCollection-method

(reorderHorizons), 238
repairMissingHzDepths, 238
repairMissingHzDepths(), 68
replaceHorizons<-, 240
replaceHorizons<-,SoilProfileCollection-method

(replaceHorizons<-), 240
restrictions

(restrictions,SoilProfileCollection-method),
240

restrictions,SoilProfileCollection-method,
240

restrictions<-
(restrictions,SoilProfileCollection-method),
240

restrictions<-,SoilProfileCollection-method
(restrictions,SoilProfileCollection-method),
240

rgb, 180
rgb2munsell, 183, 241
ROSETTA.centroids, 243
rowley2019, 245
rp, 248
rp(), 233, 234
rxnclass_to_ph (ph_to_rxnclass), 201

SANN_1D, 248
SANN_1D(), 71, 90, 212

segment (hz_segment), 158
shannonEntropy, 251
shannonEntropy(), 187
shuffle, 252
sierraTransect, 253
sim, 255
simulateColor, 256
site

(site,SoilProfileCollection-method),
258

site,SoilProfileCollection-method, 258
site<-

(site,SoilProfileCollection-method),
258

site<-,SoilProfileCollection-method
(site,SoilProfileCollection-method),
258

siteNames (siteNames<-), 259
siteNames,SoilProfileCollection-method

(siteNames<-), 259
siteNames<-, 259
siteNames<-,SoilProfileCollection-method

(siteNames<-), 259
slab, 192, 259, 270
slab(), 19, 99, 100, 102, 103
slab,SoilProfileCollection-method

(slab), 259
slab_function (slab), 259
slice, 174, 192
slice (slice-methods), 268
slice,SoilProfileCollection-method

(slice-methods), 268
slice-methods, 268
slice.fast (slice-methods), 268
slicedHSD, 271
soil_minerals, 281
soilColorSignature, 272
soilPalette, 274
SoilProfileCollection, 214, 262, 276
SoilProfileCollection-class

(SoilProfileCollection), 276
soiltexture, 279
soilTextureColorPal, 279
SoilTextureLevels, 280, 314
SoilTextureLevels(), 169
sp1, 7, 192, 283
sp2, 7, 218, 285
sp3, 7, 287

INDEX 341

sp4, 7, 290
sp5, 7, 293
sp6, 7, 295
SPC.with.overlap, 296
spc2mpspline

(spc2mpspline,SoilProfileCollection-method),
297

spc2mpspline,SoilProfileCollection-method,
297

spc_in_sync, 299
spec2Munsell, 175, 300
spec2Munsell(), 175
spectral.reference, 301
split,SoilProfileCollection-method,

302
splitLogicErrors, 304
ssc_to_texcl (texcl_to_ssc), 311
stats::cmdscale(), 82, 220
stats::quantile(), 260, 261
subApply, 305
subApply,SoilProfileCollection-method

(subApply), 305
subset

(subset,SoilProfileCollection-method),
305

subset,SoilProfileCollection-method,
305

subsetHz
(subsetHz,SoilProfileCollection-method),
306

subsetHz,SoilProfileCollection-method,
306

subsetProfiles, 307
subsetProfiles,SoilProfileCollection-method

(subsetProfiles), 307
summarize (summarizeSPC), 308
summarizeSPC, 308
summarizeSPC,SoilProfileCollection-method,

(summarizeSPC), 308
summaryTauW (tauW), 309

tauW, 309
tauW(), 187
texcl_to_ssc, 311
texmod_to_fragvoltot (texcl_to_ssc), 311
texture_to_taxpartsize, 161
texture_to_taxpartsize (texcl_to_ssc),

311
texture_to_taxpartsize(), 161, 169

texture_to_texmod (texcl_to_ssc), 311
textureTriangleSummary, 316
thicknessOf, 318
thompson.bell.darkness, 320
traditionalColorNames, 321
transform,SoilProfileCollection-method,

321
trunc, 114, 117
trunc,SoilProfileCollection-method

(glom,SoilProfileCollection-method),
113

unique
(unique,SoilProfileCollection-method),
322

unique,SoilProfileCollection-method,
322

us.state.soils, 323

validSpatialData
(validSpatialData,SoilProfileCollection-method),
324

validSpatialData,SoilProfileCollection-method,
324

warpHorizons, 324
wilson2022, 327

xtableTauW, 329

	aqp-package
	.colorSig2PerceptualDistMat
	.detectColorSpec
	accumulateDepths
	addBracket
	addDiagnosticBracket
	addVolumeFraction
	aggregateColor
	aggregateColorPlot
	aggregateSoilDepth
	alignTransect
	allocate
	aqp_df_class,SoilProfileCollection-method
	argillic.clay.increase.depth
	as
	barron.torrent.redness.LAB
	bootstrapSoilTexture
	brierScore
	buntley.westin.index
	c,SoilProfileCollection-method
	ca630
	checkHzDepthLogic
	checkSPC
	col2Munsell
	collapseHz
	colorChart
	colorContrast
	colorContrastPlot
	colorQuantiles
	colorVariation
	compareSites
	compositeSPC
	confusionIndex
	contrastChart
	contrastClass
	correctAWC
	crit.clay.argillic
	denormalize
	depthOf
	depths
	depthWeights
	depth_units,SoilProfileCollection-method
	diagnostic_hz,SoilProfileCollection-method
	dice,SoilProfileCollection-method
	duplicate
	electroStatics_1D
	equivalentMunsellChips
	equivalent_munsell
	estimateAWC
	estimatePSCS
	estimateSoilColor
	estimateSoilDepth
	evalGenHZ
	evalMissingData
	explainPlotSPC
	fillHzGaps
	findOverlap
	fixOverlap
	flagOverlappingHz
	fragmentClasses
	fragmentSieve
	generalize.hz
	genhzTableToAdjMat
	genSlabLabels
	get.increase.matrix
	get.ml.hz
	getArgillicBounds
	getCambicBounds
	getClosestMunsellChip
	getLastHorizonID
	getSoilDepthClass
	getSurfaceHorizonDepth
	GHL
	glom,SoilProfileCollection-method
	glomApply
	grepSPC
	groupedProfilePlot
	groupSPC
	guessGenHzLevels
	guessHzAttrName
	harden.melanization
	harden.rubification
	harmonize,SoilProfileCollection-method
	hasDarkColors
	horizonColorIndices
	horizonDepths<-
	horizonNames<-
	horizons,SoilProfileCollection-method
	huePosition
	huePositionCircle
	hurst.redness
	hzAbove
	HzDepthLogicSubset
	hzDepthTests
	hzDesgn,SoilProfileCollection-method
	hzdesgnname
	hzDistinctnessCodeToOffset
	hzID<-,SoilProfileCollection-method
	hzidname<-
	hzMetadata,SoilProfileCollection-method
	hzmetaname
	hztexclname
	hzTopographyCodeToLineType
	hzTopographyCodeToOffset
	hzTransitionProbabilities
	hz_dissolve
	hz_intersect
	hz_lag
	hz_segment
	hz_to_taxpartsize
	idname,SoilProfileCollection-method
	initSpatial<-
	invertLabelColor
	isEmpty,SoilProfileCollection-method
	jacobs2000
	L1_profiles
	length,SoilProfileCollection-method
	lookup_taxpartsize
	lunique
	max,SoilProfileCollection-method
	metadata,SoilProfileCollection-method
	min,SoilProfileCollection-method
	missingDataGrid
	mixMunsell
	mollic.thickness.requirement
	munsell
	munsell.spectra
	munsell2rgb
	munsell2spc,SoilProfileCollection-method
	munsellHuePosition
	mutate_profile
	mu_confusion_matrix
	names,SoilProfileCollection-method
	NCSP
	nrow,SoilProfileCollection-method
	osd
	panel.depth_function
	parseMunsell
	pbindlist
	perturb
	ph_to_rxnclass
	plotColorMixture
	plotColorQuantiles
	plotMultipleSPC
	plotProfileDendrogram
	plotSPC
	plot_distance_graph
	previewColors
	prj,SoilProfileCollection-method
	profileApply
	profileGroupLabels
	profileInformationIndex
	profile_id<-
	quickSPC
	random_profile
	reactionclass
	rebuildSPC
	reduceSPC
	reorderHorizons
	repairMissingHzDepths
	replaceHorizons<-
	restrictions,SoilProfileCollection-method
	rgb2munsell
	ROSETTA.centroids
	rowley2019
	rp
	SANN_1D
	shannonEntropy
	shuffle
	sierraTransect
	sim
	simulateColor
	site,SoilProfileCollection-method
	siteNames<-
	slab
	slice-methods
	slicedHSD
	soilColorSignature
	soilPalette
	SoilProfileCollection
	soiltexture
	soilTextureColorPal
	SoilTextureLevels
	soil_minerals
	sp1
	sp2
	sp3
	sp4
	sp5
	sp6
	SPC.with.overlap
	spc2mpspline,SoilProfileCollection-method
	spc_in_sync
	spec2Munsell
	spectral.reference
	split,SoilProfileCollection-method
	splitLogicErrors
	subApply
	subset,SoilProfileCollection-method
	subsetHz,SoilProfileCollection-method
	subsetProfiles
	summarizeSPC
	tauW
	texcl_to_ssc
	textureTriangleSummary
	thicknessOf
	thompson.bell.darkness
	traditionalColorNames
	transform,SoilProfileCollection-method
	unique,SoilProfileCollection-method
	us.state.soils
	validSpatialData,SoilProfileCollection-method
	warpHorizons
	wilson2022
	xtableTauW
	[,SoilProfileCollection-method
	[[
	[[<-
	$
	$<-
	Index

